]> SALOME platform Git repositories - modules/adao.git/commitdiff
Salome HOME
Adding UnscentedKalmanFilter algorithm
authorJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Tue, 1 Oct 2013 12:55:03 +0000 (14:55 +0200)
committerJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Tue, 1 Oct 2013 12:55:03 +0000 (14:55 +0200)
doc/en/reference.rst
src/daComposant/daAlgorithms/UnscentedKalmanFilter.py [new file with mode: 0644]
src/daSalome/daYacsSchemaCreator/infos_daComposant.py

index 230d485abb621cb4da379c5eedf7f78f1fb48bed..a9a280a50af0fae4a21487f02224bfc5f01b3ece 100644 (file)
@@ -238,6 +238,7 @@ Options and required commands for calculation algorithms
 .. index:: single: EnsembleBlue
 .. index:: single: KalmanFilter
 .. index:: single: ExtendedKalmanFilter
+.. index:: single: UnscentedKalmanFilter
 .. index:: single: LinearLeastSquares
 .. index:: single: NonLinearLeastSquares
 .. index:: single: ParticleSwarmOptimization
@@ -475,15 +476,19 @@ commands and keywords for an ADAO calculation case`_.
   *Required commands*
     *"Background", "BackgroundError",
     "Observation", "ObservationError",
-    "ObservationOperator",
-    "EvolutionModel", "EvolutionError",
-    "ControlInput"*
+    "ObservationOperator"*
 
   EstimationOf
     This key allows to choose the type of estimation to be performed. It can be
     either state-estimation, named "State", or parameter-estimation, named
     "Parameters". The default choice is "State".
 
+  StoreInternalVariables
+    This boolean key allows to store default internal variables, mainly the
+    current state during iterative optimization process. Be careful, this can be
+    a numerically costly choice in certain calculation cases. The default is
+    "False".
+
   StoreSupplementaryCalculations
     This list indicates the names of the supplementary variables that can be
     available at the end of the algorithm. It involves potentially costly
@@ -496,9 +501,43 @@ commands and keywords for an ADAO calculation case`_.
   *Required commands*
     *"Background", "BackgroundError",
     "Observation", "ObservationError",
-    "ObservationOperator",
-    "EvolutionModel", "EvolutionError",
-    "ControlInput"*
+    "ObservationOperator"*
+
+  Bounds
+    This key allows to define upper and lower bounds for every control variable
+    being optimized. Bounds can be given by a list of list of pairs of
+    lower/upper bounds for each variable, with extreme values every time there
+    is no bound. The bounds can always be specified, but they are taken into
+    account only by the constrained minimizers.
+
+  ConstrainedBy
+    This key allows to define the method to take bounds into account. The
+    possible methods are in the following list: ["EstimateProjection"].
+
+  EstimationOf
+    This key allows to choose the type of estimation to be performed. It can be
+    either state-estimation, named "State", or parameter-estimation, named
+    "Parameters". The default choice is "State".
+
+  StoreInternalVariables
+    This boolean key allows to store default internal variables, mainly the
+    current state during iterative optimization process. Be careful, this can be
+    a numerically costly choice in certain calculation cases. The default is
+    "False".
+
+  StoreSupplementaryCalculations
+    This list indicates the names of the supplementary variables that can be
+    available at the end of the algorithm. It involves potentially costly
+    calculations. The default is a void list, none of these variables being
+    calculated and stored by default. The possible names are in the following
+    list: ["APosterioriCovariance", "BMA", "Innovation"].
+
+**"UnscentedKalmanFilter"**
+
+  *Required commands*
+    *"Background", "BackgroundError",
+    "Observation", "ObservationError",
+    "ObservationOperator"*
 
   Bounds
     This key allows to define upper and lower bounds for every control variable
@@ -515,6 +554,19 @@ commands and keywords for an ADAO calculation case`_.
     This key allows to choose the type of estimation to be performed. It can be
     either state-estimation, named "State", or parameter-estimation, named
     "Parameters". The default choice is "State".
+  
+  Alpha, Beta, Kappa, Reconditioner
+    These keys are internal scaling parameters. "Alpha" requires a value between
+    1.e-4 and 1. "Beta" has an optimal value of 2 for gaussian priori
+    distribution. "Kappa" requires an integer value, and the right default is
+    obtained by setting it to 0. "Reconditioner" requires a value between 1.e-3
+    and 10, it defaults to 1.
+
+  StoreInternalVariables
+    This boolean key allows to store default internal variables, mainly the
+    current state during iterative optimization process. Be careful, this can be
+    a numerically costly choice in certain calculation cases. The default is
+    "False".
 
   StoreSupplementaryCalculations
     This list indicates the names of the supplementary variables that can be
diff --git a/src/daComposant/daAlgorithms/UnscentedKalmanFilter.py b/src/daComposant/daAlgorithms/UnscentedKalmanFilter.py
new file mode 100644 (file)
index 0000000..f07dc70
--- /dev/null
@@ -0,0 +1,306 @@
+#-*-coding:iso-8859-1-*-
+#
+#  Copyright (C) 2008-2013 EDF R&D
+#
+#  This library is free software; you can redistribute it and/or
+#  modify it under the terms of the GNU Lesser General Public
+#  License as published by the Free Software Foundation; either
+#  version 2.1 of the License.
+#
+#  This library is distributed in the hope that it will be useful,
+#  but WITHOUT ANY WARRANTY; without even the implied warranty of
+#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+#  Lesser General Public License for more details.
+#
+#  You should have received a copy of the GNU Lesser General Public
+#  License along with this library; if not, write to the Free Software
+#  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
+#
+#  See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+#  Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+import logging
+from daCore import BasicObjects, PlatformInfo
+m = PlatformInfo.SystemUsage()
+import numpy, math
+
+# ==============================================================================
+class ElementaryAlgorithm(BasicObjects.Algorithm):
+    def __init__(self):
+        BasicObjects.Algorithm.__init__(self, "UNSCENTEDKALMANFILTER")
+        self.defineRequiredParameter(
+            name     = "ConstrainedBy",
+            default  = "EstimateProjection",
+            typecast = str,
+            message  = "Prise en compte des contraintes",
+            listval  = ["EstimateProjection"],
+            )
+        self.defineRequiredParameter(
+            name     = "EstimationOf",
+            default  = "State",
+            typecast = str,
+            message  = "Estimation d'etat ou de parametres",
+            listval  = ["State", "Parameters"],
+            )
+        self.defineRequiredParameter(
+            name     = "Alpha",
+            default  = 1.,
+            typecast = float,
+            message  = "",
+            minval   = 1.e-4,
+            maxval   = 1.,
+            )
+        self.defineRequiredParameter(
+            name     = "Beta",
+            default  = 2,
+            typecast = float,
+            message  = "",
+            )
+        self.defineRequiredParameter(
+            name     = "Kappa",
+            default  = 0,
+            typecast = int,
+            message  = "",
+            maxval   = 2,
+            )
+        self.defineRequiredParameter(
+            name     = "Reconditioner",
+            default  = 1.,
+            typecast = float,
+            message  = "",
+            minval   = 1.e-3,
+            maxval   = 1.e+1,
+            )
+        self.defineRequiredParameter(
+            name     = "StoreInternalVariables",
+            default  = False,
+            typecast = bool,
+            message  = "Stockage des variables internes ou intermédiaires du calcul",
+            )
+        self.defineRequiredParameter(
+            name     = "StoreSupplementaryCalculations",
+            default  = [],
+            typecast = tuple,
+            message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
+            listval  = ["APosterioriCovariance", "BMA", "Innovation"]
+            )
+
+    def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
+        logging.debug("%s Lancement"%self._name)
+        logging.debug("%s Taille mémoire utilisée de %.1f Mo"%(self._name, m.getUsedMemory("M")))
+        #
+        # Paramètres de pilotage
+        # ----------------------
+        self.setParameters(Parameters)
+        #
+        if self._parameters.has_key("Bounds") and (type(self._parameters["Bounds"]) is type([]) or type(self._parameters["Bounds"]) is type(())) and (len(self._parameters["Bounds"]) > 0):
+            Bounds = self._parameters["Bounds"]
+            logging.debug("%s Prise en compte des bornes effectuee"%(self._name,))
+        else:
+            Bounds = None
+        if self._parameters["EstimationOf"] == "Parameters":
+            self._parameters["StoreInternalVariables"] = True
+        #
+        L     = Xb.size
+        Alpha = self._parameters["Alpha"]
+        Beta  = self._parameters["Beta"]
+        if self._parameters["Kappa"] == 0:
+            if self._parameters["EstimationOf"] == "State":
+                Kappa = 0
+            elif self._parameters["EstimationOf"] == "Parameters":
+                Kappa = 3 - L
+        else:
+            Kappa = self._parameters["Kappa"]
+        Lambda = float( Alpha**2 ) * ( L + Kappa ) - L
+        Gamma  = math.sqrt( L + Lambda )
+        #
+        Ww = []
+        Ww.append( 0. )
+        for i in range(2*L):
+            Ww.append( 1. / (2.*(L + Lambda)) )
+        #
+        Wm = numpy.array( Ww )
+        Wm[0] = Lambda / (L + Lambda)
+        Wc = numpy.array( Ww )
+        Wc[0] = Lambda / (L + Lambda) + (1. - Alpha**2 + Beta)
+        #
+        # Opérateurs
+        # ----------
+        if B is None:
+            raise ValueError("Background error covariance matrix has to be properly defined!")
+        if R is None:
+            raise ValueError("Observation error covariance matrix has to be properly defined!")
+        #
+        H = HO["Direct"].appliedControledFormTo
+        #
+        if self._parameters["EstimationOf"] == "State":
+            M = EM["Direct"].appliedControledFormTo
+        #
+        if CM is not None and CM.has_key("Tangent") and U is not None:
+            Cm = CM["Tangent"].asMatrix(Xb)
+        else:
+            Cm = None
+        #
+        # Nombre de pas du Kalman identique au nombre de pas d'observations
+        # -----------------------------------------------------------------
+        if hasattr(Y,"stepnumber"):
+            duration = Y.stepnumber()
+        else:
+            duration = 2
+        #
+        # Précalcul des inversions de B et R
+        # ----------------------------------
+        if self._parameters["StoreInternalVariables"]:
+            BI = B.getI()
+            RI = R.getI()
+        #
+        # Initialisation
+        # --------------
+        Xn = Xb
+        if hasattr(B,"asfullmatrix"):
+            Pn = B.asfullmatrix(Xn.size)
+        else:
+            Pn = B
+        #
+        self.StoredVariables["Analysis"].store( Xn.A1 )
+        if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["APosterioriCovariance"].store( Pn )
+            covarianceXa = Pn
+        Xa               = Xn
+        previousJMinimum = numpy.finfo(float).max
+        #
+        for step in range(duration-1):
+            if hasattr(Y,"store"):
+                Ynpu = numpy.asmatrix(numpy.ravel( Y[step+1] )).T
+            else:
+                Ynpu = numpy.asmatrix(numpy.ravel( Y )).T
+            #
+            if U is not None:
+                if hasattr(U,"store") and len(U)>1:
+                    Un = numpy.asmatrix(numpy.ravel( U[step] )).T
+                elif hasattr(U,"store") and len(U)==1:
+                    Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+                else:
+                    Un = numpy.asmatrix(numpy.ravel( U )).T
+            else:
+                Un = None
+            #
+            Pndemi = numpy.linalg.cholesky(Pn)
+            Xnp = numpy.hstack([Xn, Xn+Gamma*Pndemi, Xn-Gamma*Pndemi])
+            nbSpts = 2*Xn.size+1
+            #
+            if Bounds is not None and self._parameters["ConstrainedBy"] == "EstimateProjection":
+                for point in range(nbSpts):
+                    Xnp[:,point] = numpy.max(numpy.hstack((Xnp[:,point],numpy.asmatrix(Bounds)[:,0])),axis=1)
+                    Xnp[:,point] = numpy.min(numpy.hstack((Xnp[:,point],numpy.asmatrix(Bounds)[:,1])),axis=1)
+            #
+            XEtnnp = []
+            for point in range(nbSpts):
+                if self._parameters["EstimationOf"] == "State":
+                    XEtnnpi = numpy.asmatrix(numpy.ravel( M( (Xnp[:,point], Un) ) )).T
+                    if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+                        Cm = Cm.reshape(Xn.size,Un.size) # ADAO & check shape
+                        XEtnnpi = XEtnnpi + Cm * Un
+                    if Bounds is not None and self._parameters["ConstrainedBy"] == "EstimateProjection":
+                        XEtnnpi = numpy.max(numpy.hstack((XEtnnpi,numpy.asmatrix(Bounds)[:,0])),axis=1)
+                        XEtnnpi = numpy.min(numpy.hstack((XEtnnpi,numpy.asmatrix(Bounds)[:,1])),axis=1)
+                elif self._parameters["EstimationOf"] == "Parameters":
+                    # --- > Par principe, M = Id, Q = 0
+                    XEtnnpi = Xnp[:,point]
+                XEtnnp.append( XEtnnpi )
+            XEtnnp = numpy.hstack( XEtnnp )
+            #
+            Xncm = numpy.matrix( XEtnnp.getA()*numpy.array(Wm) ).sum(axis=1)
+            #
+            if Bounds is not None and self._parameters["ConstrainedBy"] == "EstimateProjection":
+                Xncm = numpy.max(numpy.hstack((Xncm,numpy.asmatrix(Bounds)[:,0])),axis=1)
+                Xncm = numpy.min(numpy.hstack((Xncm,numpy.asmatrix(Bounds)[:,1])),axis=1)
+            #
+            if self._parameters["EstimationOf"] == "State":        Pnm = Q
+            elif self._parameters["EstimationOf"] == "Parameters": Pnm = 0.
+            for point in range(nbSpts):
+                Pnm += Wc[i] * (XEtnnp[:,point]-Xncm) * (XEtnnp[:,point]-Xncm).T
+            #
+            if self._parameters["EstimationOf"] == "Parameters" and Bounds is not None:
+                Pnmdemi = self._parameters["Reconditioner"] * numpy.linalg.cholesky(Pnm)
+            else:
+                Pnmdemi = numpy.linalg.cholesky(Pnm)
+            #
+            Xnnp = numpy.hstack([Xncm, Xncm+Gamma*Pnmdemi, Xncm-Gamma*Pnmdemi])
+            #
+            if Bounds is not None and self._parameters["ConstrainedBy"] == "EstimateProjection":
+                for point in range(nbSpts):
+                    Xnnp[:,point] = numpy.max(numpy.hstack((Xnnp[:,point],numpy.asmatrix(Bounds)[:,0])),axis=1)
+                    Xnnp[:,point] = numpy.min(numpy.hstack((Xnnp[:,point],numpy.asmatrix(Bounds)[:,1])),axis=1)
+            #
+            Ynnp = []
+            for point in range(nbSpts):
+                if self._parameters["EstimationOf"] == "State":
+                    Ynnpi = numpy.asmatrix(numpy.ravel( H( (Xnnp[:,point], None) ) )).T
+                elif self._parameters["EstimationOf"] == "Parameters":
+                    Ynnpi = numpy.asmatrix(numpy.ravel( H( (Xnnp[:,point], Un) ) )).T
+                Ynnp.append( Ynnpi )
+            Ynnp = numpy.hstack( Ynnp )
+            #
+            Yncm = numpy.matrix( Ynnp.getA()*numpy.array(Wm) ).sum(axis=1)
+            #
+            Pyyn = R
+            Pxyn = 0.
+            for point in range(nbSpts):
+                Pyyn += Wc[i] * (Ynnp[:,point]-Yncm) * (Ynnp[:,point]-Yncm).T
+                Pxyn += Wc[i] * (Xnnp[:,point]-Xncm) * (Ynnp[:,point]-Yncm).T
+            #
+            d  = Ynpu - Yncm
+            if self._parameters["EstimationOf"] == "Parameters":
+                if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
+                    d = d - Cm * Un
+            #
+            Kn = Pxyn * Pyyn.I
+            Xn = Xncm + Kn * d
+            Pn = Pnm - Kn * Pyyn * Kn.T
+            #
+            if Bounds is not None and self._parameters["ConstrainedBy"] == "EstimateProjection":
+                Xn = numpy.max(numpy.hstack((Xn,numpy.asmatrix(Bounds)[:,0])),axis=1)
+                Xn = numpy.min(numpy.hstack((Xn,numpy.asmatrix(Bounds)[:,1])),axis=1)
+            #
+            self.StoredVariables["Analysis"].store( Xn.A1 )
+            if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["APosterioriCovariance"].store( Pn )
+            if "Innovation" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["Innovation"].store( numpy.ravel( d.A1 ) )
+            if self._parameters["StoreInternalVariables"]:
+                Jb  = 0.5 * (Xn - Xb).T * BI * (Xn - Xb)
+                Jo  = 0.5 * d.T * RI * d
+                J   = float( Jb ) + float( Jo )
+                self.StoredVariables["CurrentState"].store( Xn.A1 )
+                self.StoredVariables["CostFunctionJb"].store( Jb )
+                self.StoredVariables["CostFunctionJo"].store( Jo )
+                self.StoredVariables["CostFunctionJ" ].store( J )
+                if J < previousJMinimum:
+                    previousJMinimum  = J
+                    Xa                = Xn
+                    if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+                        covarianceXa  = Pn
+            else:
+                Xa = Xn
+            #
+        #
+        # Stockage supplementaire de l'optimum en estimation de parametres
+        # ----------------------------------------------------------------
+        if self._parameters["EstimationOf"] == "Parameters":
+            self.StoredVariables["Analysis"].store( Xa.A1 )
+            if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["APosterioriCovariance"].store( covarianceXa )
+        #
+        if "BMA" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+        #
+        logging.debug("%s Taille mémoire utilisée de %.1f Mo"%(self._name, m.getUsedMemory("M")))
+        logging.debug("%s Terminé"%self._name)
+        #
+        return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+    print '\n AUTODIAGNOSTIC \n'
index e6391de5610027028c98c28c29d5aa34ca3644b3..e3f3fdfa0aaf4c310b3eda629aa3abdbe5c1351d 100644 (file)
@@ -64,6 +64,7 @@ AssimAlgos = [
     "EnsembleBlue",
     "KalmanFilter",
     "ExtendedKalmanFilter",
+    "UnscentedKalmanFilter",
     "LinearLeastSquares",
     "NonLinearLeastSquares",
     "QuantileRegression",
@@ -100,15 +101,16 @@ AlgoDataRequirements["EnsembleBlue"] = [
 AlgoDataRequirements["KalmanFilter"] = [
     "Background", "BackgroundError",
     "Observation", "ObservationError",
-    "ObservationOperator",
-    "EvolutionModel", "EvolutionError",
     ]
 AlgoDataRequirements["ExtendedKalmanFilter"] = [
     "Background", "BackgroundError",
     "Observation", "ObservationError",
     "ObservationOperator",
-    "EvolutionModel", "EvolutionError",
-    "ControlInput",
+    ]
+AlgoDataRequirements["UnscentedKalmanFilter"] = [
+    "Background", "BackgroundError",
+    "Observation", "ObservationError",
+    "ObservationOperator",
     ]
 AlgoDataRequirements["LinearLeastSquares"] = [
     "Observation", "ObservationError",
@@ -154,6 +156,7 @@ AlgoType["ExtendedBlue"] = "Optim"
 AlgoType["EnsembleBlue"] = "Optim"
 AlgoType["KalmanFilter"] = "Optim"
 AlgoType["ExtendedKalmanFilter"] = "Optim"
+AlgoType["UnscentedKalmanFilter"] = "Optim"
 AlgoType["LinearLeastSquares"] = "Optim"
 AlgoType["NonLinearLeastSquares"] = "Optim"
 AlgoType["ParticleSwarmOptimization"] = "Optim"