#include "SMESHDS_Group.hxx"
#include "SMESHDS_Mesh.hxx"
-#include "SMESH_subMesh.hxx"
+#include "SMESH_Algo.hxx"
#include "SMESH_ControlsDef.hxx"
+#include "SMESH_Group.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_OctreeNode.hxx"
-#include "SMESH_Group.hxx"
+#include "SMESH_subMesh.hxx"
#include "utilities.h"
#include <BRep_Tool.hxx>
#include <ElCLib.hxx>
#include <Extrema_GenExtPS.hxx>
+#include <Extrema_POnCurv.hxx>
#include <Extrema_POnSurf.hxx>
+#include <GC_MakeSegment.hxx>
#include <Geom2d_Curve.hxx>
+#include <GeomAPI_ExtremaCurveCurve.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <Geom_Curve.hxx>
+#include <Geom_Line.hxx>
#include <Geom_Surface.hxx>
+#include <IntAna_IntConicQuad.hxx>
+#include <IntAna_Quadric.hxx>
#include <Precision.hxx>
#include <TColStd_ListOfInteger.hxx>
#include <TopAbs_State.hxx>
#include <gp_Vec.hxx>
#include <gp_XY.hxx>
#include <gp_XYZ.hxx>
+
#include <math.h>
#include <map>
//function : BestSplit
//purpose : Find better diagonal for cutting.
//=======================================================================
+
int SMESH_MeshEditor::BestSplit (const SMDS_MeshElement* theQuad,
SMESH::Controls::NumericalFunctorPtr theCrit)
{
return -1;
}
+namespace
+{
+ // Methods of splitting volumes into tetra
+
+ const int theHexTo5[5*4] =
+ {
+ 0, 1, 5, 2,
+ 0, 4, 5, 7,
+ 0, 3, 7, 2,
+ 5, 6, 7, 2,
+ 0, 2, 5, 7
+ };
+ const int theHexTo6[6*4] =
+ {
+ 0, 1, 5, 2,
+ 0, 4, 5, 7,
+ 0, 3, 7, 2,
+ 5, 6, 7, 2,
+ 0, 2, 5, 7
+ };
+ const int thePyraTo2[2*4] =
+ {
+ 0, 1, 2, 4,
+ 0, 2, 3, 4
+ };
+
+ const int thePentaTo8[8*4] =
+ {
+ 0, 1, 2, 6,
+ 3, 5, 4, 6,
+ 0, 3, 4, 6,
+ 0, 4, 1, 6,
+ 1, 4, 5, 6,
+ 1, 5, 2, 6,
+ 2, 5, 3, 6,
+ 2, 3, 0, 6
+ };
+
+ struct TSplitMethod
+ {
+ int _nbTetra;
+ const int* _connectivity;
+ bool _addNode; // additional node is to be created
+ TSplitMethod( int nbTet=0, const int* conn=0, bool addNode=false)
+ : _nbTetra(nbTet), _connectivity(conn), _addNode(addNode) {}
+ };
+
+ /*!
+ * \brief return TSplitMethod for the given element
+ */
+ TSplitMethod getSplitMethod( const SMDS_MeshElement* vol, const int theMethodFlags)
+ {
+ TSplitMethod method;
+ if ( vol->GetType() == SMDSAbs_Volume && !vol->IsPoly())
+ switch ( vol->NbNodes() )
+ {
+ case 8:
+ case 20:
+ if ( theMethodFlags & SMESH_MeshEditor::HEXA_TO_5 )
+ method = TSplitMethod( 5, theHexTo5 );
+ else
+ method = TSplitMethod( 6, theHexTo6 );
+ break;
+ case 5:
+ case 13:
+ method = TSplitMethod( 2, thePyraTo2 );
+ break;
+ case 6:
+ case 15:
+ method = TSplitMethod( 8, thePentaTo8, /*addNode=*/true );
+ break;
+ default:;
+ }
+ return method;
+ }
+}
+
+//=======================================================================
+//function : SplitVolumesIntoTetra
+//purpose : Split volumic elements into tetrahedra.
+//=======================================================================
+
+// void SMESH_MeshEditor::SplitVolumesIntoTetra (const TIDSortedElemSet & theElems,
+// const int theMethodFlags)
+// {
+// // sdt-like iterator on coordinates of nodes of mesh element
+// typedef SMDS_StdIterator< TNodeXYZ, SMDS_ElemIteratorPtr > NXyzIterator;
+// NXyzIterator xyzEnd;
+
+// SMESH_MesherHelper helper( *GetMesh());
+
+// TIDSortedElemSet::const_iterator elem = theElems.begin();
+// for ( ; elem != theElems.end(); ++elem )
+// {
+// SMDSAbs_EntityType geomType = (*elem)->GetEntityType();
+// if ( geomType <= SMDSEntity_Quad_Tetra )
+// continue; // tetra or face or edge
+
+// if ( (*elem)->IsQuadratic() )
+// {
+// // add quadratic links to the helper
+// SMDS_VolumeTool vol( *elem );
+// for ( int iF = 0; iF < vol.NbFaces(); ++iF )
+// {
+// const SMDS_MeshNode** fNodes = vol.GetFaceNodes( iF );
+// for ( int iN = 0; iN < vol.NbFaceNodes( iF ); iN += 2)
+// helper.AddTLinkNode( fNodes[iF], fNodes[iF+2], fNodes[iF+1] );
+// }
+// helper.SetIsQuadratic( true );
+// }
+// else
+// {
+// helper.SetIsQuadratic( false );
+// }
+
+// vector<const SMDS_MeshElement* > tetras; // splits of a volume
+
+// if ( geomType == SMDSEntity_Polyhedra )
+// {
+// // Each face of a polyhedron is split into triangles and
+// // each of triangles and a cell barycenter form a tetrahedron.
+
+// SMDS_VolumeTool vol( *elem );
+
+// // make a node at barycenter
+// gp_XYZ gc = std::accumulate( NXyzIterator((*elem)->nodesIterator()), xyzEnd,gp_XYZ(0,0,0));
+// gc /= vol.NbNodes();
+// SMDS_MeshNode* gcNode = GetMeshDS()->AddNode( gc.X(), gc.Y(), gc.Z() );
+
+// for ( int iF = 0; iF < vol.NbFaces(); ++iF )
+// {
+// const SMDS_MeshNode** fNodes = vol.GetFaceNodes( iF );
+// int nbFNodes = vol.NbFaceNodes( iF );
+// int nbTria = nbFNodes - 2;
+// bool extFace = vol.IsFaceExternal( iF );
+// SMDS_MeshElement* tet;
+// for ( int i = 0; i < nbTria; ++i )
+// {
+// if ( extFace )
+// tet = helper.AddVolume( fNodes[0], fNodes[i+1], fNodes[i+2], gcNode );
+// else
+// tet = helper.AddVolume( fNodes[0], fNodes[i+2], fNodes[i+1], gcNode );
+// tetras.push_back( tet );
+// }
+// }
+
+// }
+// else
+// {
+
+// TSplitMethod splitMethod = getSplitMethod( *elem, theMethodFlags );
+// if ( splitMethod._nbTetra < 1 ) continue;
+
+// vector<const SMDS_MeshNode*> volNodes( (*elem)->begin_nodes(), (*elem)->end_nodes());
+// }
+// }
+// }
+
//=======================================================================
//function : AddToSameGroups
//purpose : add elemToAdd to the groups the elemInGroups belongs to
ElementBndBoxTree(const SMDS_Mesh& mesh, SMDSAbs_ElementType elemType);
void getElementsNearPoint( const gp_Pnt& point, TIDSortedElemSet& foundElems);
+ void getElementsNearLine ( const gp_Ax1& line, TIDSortedElemSet& foundElems);
~ElementBndBoxTree();
protected:
}
}
+ //================================================================================
+ /*!
+ * \brief Return elements which can be intersected by the line
+ */
+ //================================================================================
+
+ void ElementBndBoxTree::getElementsNearLine( const gp_Ax1& line,
+ TIDSortedElemSet& foundElems)
+ {
+ if ( level() && getBox().IsOut( line ))
+ return;
+
+ if ( isLeaf() )
+ {
+ for ( int i = 0; i < _elements.size(); ++i )
+ if ( !_elements[i]->IsOut( line ))
+ foundElems.insert( _elements[i]->_element );
+ }
+ else
+ {
+ for (int i = 0; i < 8; i++)
+ ((ElementBndBoxTree*) myChildren[i])->getElementsNearLine( line, foundElems );
+ }
+ }
+
//================================================================================
/*!
* \brief Construct the element box
//=======================================================================
/*!
- * \brief Implementation of search for the elements by point
+ * \brief Implementation of search for the elements by point and
+ * of classification of point in 2D mesh
*/
//=======================================================================
struct SMESH_ElementSearcherImpl: public SMESH_ElementSearcher
{
- SMESHDS_Mesh* _mesh;
- ElementBndBoxTree* _ebbTree;
- SMESH_NodeSearcherImpl* _nodeSearcher;
- SMDSAbs_ElementType _elementType;
-
- SMESH_ElementSearcherImpl( SMESHDS_Mesh& mesh ): _mesh(&mesh),_ebbTree(0),_nodeSearcher(0) {}
+ SMESHDS_Mesh* _mesh;
+ ElementBndBoxTree* _ebbTree;
+ SMESH_NodeSearcherImpl* _nodeSearcher;
+ SMDSAbs_ElementType _elementType;
+ double _tolerance;
+ bool _outerFacesFound;
+ set<const SMDS_MeshElement*> _outerFaces; // empty means "no internal faces at all"
+
+ SMESH_ElementSearcherImpl( SMESHDS_Mesh& mesh )
+ : _mesh(&mesh),_ebbTree(0),_nodeSearcher(0), _tolerance(-1), _outerFacesFound(false) {}
~SMESH_ElementSearcherImpl()
{
if ( _ebbTree ) delete _ebbTree; _ebbTree = 0;
if ( _nodeSearcher ) delete _nodeSearcher; _nodeSearcher = 0;
}
+ virtual int FindElementsByPoint(const gp_Pnt& point,
+ SMDSAbs_ElementType type,
+ vector< const SMDS_MeshElement* >& foundElements);
+ virtual TopAbs_State GetPointState(const gp_Pnt& point);
- /*!
- * \brief Find elements of given type where the given point is IN or ON.
- * Returns nb of found elements and elements them-selves.
- *
- * 'ALL' type means elements of any type excluding nodes and 0D elements
- */
- int FindElementsByPoint(const gp_Pnt& point,
- SMDSAbs_ElementType type,
- vector< const SMDS_MeshElement* >& foundElements)
+ double getTolerance();
+ bool getIntersParamOnLine(const gp_Lin& line, const SMDS_MeshElement* face,
+ const double tolerance, double & param);
+ void findOuterBoundary(const SMDS_MeshElement* anyOuterFace);
+ bool isOuterBoundary(const SMDS_MeshElement* face) const
+ {
+ return _outerFaces.empty() || _outerFaces.count(face);
+ }
+ struct TInters //!< data of intersection of the line and the mesh face used in GetPointState()
+ {
+ const SMDS_MeshElement* _face;
+ gp_Vec _faceNorm;
+ bool _coincides; //!< the line lays in face plane
+ TInters(const SMDS_MeshElement* face, const gp_Vec& faceNorm, bool coinc=false)
+ : _face(face), _faceNorm( faceNorm ), _coincides( coinc ) {}
+ };
+ struct TFaceLink //!< link and faces sharing it (used in findOuterBoundary())
{
- foundElements.clear();
+ SMESH_TLink _link;
+ TIDSortedElemSet _faces;
+ TFaceLink( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshElement* face)
+ : _link( n1, n2 ), _faces( &face, &face + 1) {}
+ };
+};
+
+//=======================================================================
+/*!
+ * \brief define tolerance for search
+ */
+//=======================================================================
+double SMESH_ElementSearcherImpl::getTolerance()
+{
+ if ( _tolerance < 0 )
+ {
const SMDS_MeshInfo& meshInfo = _mesh->GetMeshInfo();
- // -----------------
- // define tolerance
- // -----------------
- double tolerance = 0;
+ _tolerance = 0;
if ( _nodeSearcher && meshInfo.NbNodes() > 1 )
{
double boxSize = _nodeSearcher->getTree()->maxSize();
- tolerance = 1e-8 * boxSize/* / meshInfo.NbNodes()*/;
+ _tolerance = 1e-8 * boxSize/* / meshInfo.NbNodes()*/;
}
else if ( _ebbTree && meshInfo.NbElements() > 0 )
{
double boxSize = _ebbTree->maxSize();
- tolerance = 1e-8 * boxSize/* / meshInfo.NbElements()*/;
+ _tolerance = 1e-8 * boxSize/* / meshInfo.NbElements()*/;
}
- if ( tolerance == 0 )
+ if ( _tolerance == 0 )
{
// define tolerance by size of a most complex element
int complexType = SMDSAbs_Volume;
while ( complexType > SMDSAbs_All &&
meshInfo.NbElements( SMDSAbs_ElementType( complexType )) < 1 )
--complexType;
- if ( complexType == SMDSAbs_All ) return foundElements.size(); // empty mesh
+ if ( complexType == SMDSAbs_All ) return 0; // empty mesh
double elemSize;
if ( complexType == int( SMDSAbs_Node ))
elemSize = max( dist, elemSize );
}
}
- tolerance = 1e-6 * elemSize;
+ _tolerance = 1e-6 * elemSize;
}
+ }
+ return _tolerance;
+}
- // =================================================================================
- if ( type == SMDSAbs_Node || type == SMDSAbs_0DElement )
+//================================================================================
+/*!
+ * \brief Find intersection of the line and an edge of face and return parameter on line
+ */
+//================================================================================
+
+bool SMESH_ElementSearcherImpl::getIntersParamOnLine(const gp_Lin& line,
+ const SMDS_MeshElement* face,
+ const double tol,
+ double & param)
+{
+ int nbInts = 0;
+ param = 0;
+
+ GeomAPI_ExtremaCurveCurve anExtCC;
+ Handle(Geom_Curve) lineCurve = new Geom_Line( line );
+
+ int nbNodes = face->IsQuadratic() ? face->NbNodes()/2 : face->NbNodes();
+ for ( int i = 0; i < nbNodes && nbInts < 2; ++i )
+ {
+ GC_MakeSegment edge( SMESH_MeshEditor::TNodeXYZ( face->GetNode( i )),
+ SMESH_MeshEditor::TNodeXYZ( face->GetNode( (i+1)%nbNodes) ));
+ anExtCC.Init( lineCurve, edge);
+ if ( anExtCC.NbExtrema() > 0 && anExtCC.LowerDistance() <= tol)
{
- if ( !_nodeSearcher )
- _nodeSearcher = new SMESH_NodeSearcherImpl( _mesh );
+ Quantity_Parameter pl, pe;
+ anExtCC.LowerDistanceParameters( pl, pe );
+ param += pl;
+ if ( ++nbInts == 2 )
+ break;
+ }
+ }
+ if ( nbInts > 0 ) param /= nbInts;
+ return nbInts > 0;
+}
+//================================================================================
+/*!
+ * \brief Find all faces belonging to the outer boundary of mesh
+ */
+//================================================================================
+
+void SMESH_ElementSearcherImpl::findOuterBoundary(const SMDS_MeshElement* outerFace)
+{
+ if ( _outerFacesFound ) return;
+
+ // Collect all outer faces passing from one outer face to another via their links
+ // and BTW find out if there are internal faces at all.
+
+ bool hasInternal = false;
- const SMDS_MeshNode* closeNode = _nodeSearcher->FindClosestTo( point );
- if ( !closeNode ) return foundElements.size();
+ // checked links
+ set< SMESH_TLink > visitedLinks;
- if ( point.Distance( SMESH_MeshEditor::TNodeXYZ( closeNode )) > tolerance )
- return foundElements.size(); // to far from any node
+ // links to treat with already visited faces sharing them
+ list < TFaceLink > startLinks;
- if ( type == SMDSAbs_Node )
+ // load startLinks with the first outerFace
+ startLinks.push_back( TFaceLink( outerFace->GetNode(0), outerFace->GetNode(1), outerFace));
+ _outerFaces.insert( outerFace );
+
+ TIDSortedElemSet emptySet;
+ while ( !startLinks.empty() )
+ {
+ const SMESH_TLink& link = startLinks.front()._link;
+ TIDSortedElemSet& faces = startLinks.front()._faces;
+
+ outerFace = *faces.begin();
+ // find other faces sharing the link
+ const SMDS_MeshElement* f;
+ while (( f = SMESH_MeshEditor::FindFaceInSet(link.node1(), link.node2(), emptySet, faces )))
+ faces.insert( f );
+
+ // select another outer face among the found
+ const SMDS_MeshElement* outerFace2 = 0;
+ if ( faces.size() == 2 )
+ {
+ outerFace2 = (outerFace == *faces.begin() ? *faces.rbegin() : *faces.begin());
+ }
+ else if ( faces.size() > 2 )
+ {
+ hasInternal = true;
+ // link direction within the outerFace
+ gp_Vec n1n2( SMESH_MeshEditor::TNodeXYZ( link.node1()),
+ SMESH_MeshEditor::TNodeXYZ( link.node2()));
+ int i1 = outerFace->GetNodeIndex( link.node1() );
+ int i2 = outerFace->GetNodeIndex( link.node2() );
+ bool rev = ( abs(i2-i1) == 1 ? i1 > i2 : i2 > i1 );
+ if ( rev ) n1n2.Reverse();
+ // outerFace normal
+ gp_XYZ ofNorm, fNorm;
+ if ( SMESH_Algo::FaceNormal( outerFace, ofNorm, /*normalized=*/false ))
{
- foundElements.push_back( closeNode );
+ // direction from the link inside outerFace
+ gp_Vec dirInOF = gp_Vec( ofNorm ) ^ n1n2;
+ // sort all other faces by angle with the dirInOF
+ map< double, const SMDS_MeshElement* > angle2Face;
+ set< const SMDS_MeshElement* >::const_iterator face = faces.begin();
+ for ( ; face != faces.end(); ++face )
+ {
+ if ( !SMESH_Algo::FaceNormal( *face, fNorm, /*normalized=*/false ))
+ continue;
+ gp_Vec dirInF = gp_Vec( fNorm ) ^ n1n2;
+ double angle = dirInOF.AngleWithRef( dirInF, n1n2 );
+ if ( angle < 0 ) angle += 2*PI;
+ angle2Face.insert( make_pair( angle, *face ));
+ }
+ if ( !angle2Face.empty() )
+ outerFace2 = angle2Face.begin()->second;
}
- else
+ }
+ // store the found outer face and add its links to continue seaching from
+ if ( outerFace2 )
+ {
+ _outerFaces.insert( outerFace );
+ int nbNodes = outerFace2->NbNodes()/( outerFace2->IsQuadratic() ? 2 : 1 );
+ for ( int i = 0; i < nbNodes; ++i )
{
- SMDS_ElemIteratorPtr elemIt = closeNode->GetInverseElementIterator( SMDSAbs_0DElement );
- while ( elemIt->more() )
- foundElements.push_back( elemIt->next() );
+ SMESH_TLink link2( outerFace2->GetNode(i), outerFace2->GetNode((i+1)%nbNodes));
+ if ( visitedLinks.insert( link2 ).second )
+ startLinks.push_back( TFaceLink( link2.node1(), link2.node2(), outerFace2 ));
}
}
- // =================================================================================
- else // elements more complex than 0D
+ startLinks.pop_front();
+ }
+ _outerFacesFound = true;
+ if ( !hasInternal )
+ _outerFaces.clear();
+}
+
+//=======================================================================
+/*!
+ * \brief Find elements of given type where the given point is IN or ON.
+ * Returns nb of found elements and elements them-selves.
+ *
+ * 'ALL' type means elements of any type excluding nodes and 0D elements
+ */
+//=======================================================================
+
+int SMESH_ElementSearcherImpl::
+FindElementsByPoint(const gp_Pnt& point,
+ SMDSAbs_ElementType type,
+ vector< const SMDS_MeshElement* >& foundElements)
+{
+ foundElements.clear();
+
+ double tolerance = getTolerance();
+
+ // =================================================================================
+ if ( type == SMDSAbs_Node || type == SMDSAbs_0DElement )
+ {
+ if ( !_nodeSearcher )
+ _nodeSearcher = new SMESH_NodeSearcherImpl( _mesh );
+
+ const SMDS_MeshNode* closeNode = _nodeSearcher->FindClosestTo( point );
+ if ( !closeNode ) return foundElements.size();
+
+ if ( point.Distance( SMESH_MeshEditor::TNodeXYZ( closeNode )) > tolerance )
+ return foundElements.size(); // to far from any node
+
+ if ( type == SMDSAbs_Node )
+ {
+ foundElements.push_back( closeNode );
+ }
+ else
{
- if ( !_ebbTree || _elementType != type )
+ SMDS_ElemIteratorPtr elemIt = closeNode->GetInverseElementIterator( SMDSAbs_0DElement );
+ while ( elemIt->more() )
+ foundElements.push_back( elemIt->next() );
+ }
+ }
+ // =================================================================================
+ else // elements more complex than 0D
+ {
+ if ( !_ebbTree || _elementType != type )
+ {
+ if ( _ebbTree ) delete _ebbTree;
+ _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type );
+ }
+ TIDSortedElemSet suspectElems;
+ _ebbTree->getElementsNearPoint( point, suspectElems );
+ TIDSortedElemSet::iterator elem = suspectElems.begin();
+ for ( ; elem != suspectElems.end(); ++elem )
+ if ( !SMESH_MeshEditor::isOut( *elem, point, tolerance ))
+ foundElements.push_back( *elem );
+ }
+ return foundElements.size();
+}
+
+//================================================================================
+/*!
+ * \brief Classify the given point in the closed 2D mesh
+ */
+//================================================================================
+
+TopAbs_State SMESH_ElementSearcherImpl::GetPointState(const gp_Pnt& point)
+{
+ double tolerance = getTolerance();
+ if ( !_ebbTree || _elementType != SMDSAbs_Face )
+ {
+ if ( _ebbTree ) delete _ebbTree;
+ _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = SMDSAbs_Face );
+ }
+ // Algo: analyse transition of a line starting at the point through mesh boundary;
+ // try three lines parallel to axis of the coordinate system and perform rough
+ // analysis. If solution is not clear perform thorough analysis.
+
+ const int nbAxes = 3;
+ gp_Dir axisDir[ nbAxes ] = { gp::DX(), gp::DY(), gp::DZ() };
+ map< double, TInters > paramOnLine2TInters[ nbAxes ];
+ list< TInters > tangentInters[ nbAxes ]; // of faces whose plane includes the line
+ multimap< int, int > nbInt2Axis; // to find the simplest case
+ for ( int axis = 0; axis < nbAxes; ++axis )
+ {
+ gp_Ax1 lineAxis( point, axisDir[axis]);
+ gp_Lin line ( lineAxis );
+
+ TIDSortedElemSet suspectFaces; // faces possibly intersecting the line
+ _ebbTree->getElementsNearLine( lineAxis, suspectFaces );
+
+ // Intersect faces with the line
+
+ map< double, TInters > & u2inters = paramOnLine2TInters[ axis ];
+ TIDSortedElemSet::iterator face = suspectFaces.begin();
+ for ( ; face != suspectFaces.end(); ++face )
+ {
+ // get face plane
+ gp_XYZ fNorm;
+ if ( !SMESH_Algo::FaceNormal( *face, fNorm, /*normalized=*/false)) continue;
+ gp_Pln facePlane( SMESH_MeshEditor::TNodeXYZ( (*face)->GetNode(0)), fNorm );
+
+ // perform intersection
+ IntAna_IntConicQuad intersection( line, IntAna_Quadric( facePlane ));
+ if ( !intersection.IsDone() )
+ continue;
+ if ( intersection.IsInQuadric() )
{
- if ( _ebbTree ) delete _ebbTree;
- _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type );
+ tangentInters[ axis ].push_back( TInters( *face, fNorm, true ));
+ }
+ else if ( ! intersection.IsParallel() && intersection.NbPoints() > 0 )
+ {
+ gp_Pnt intersectionPoint = intersection.Point(1);
+ if ( !SMESH_MeshEditor::isOut( *face, intersectionPoint, tolerance ))
+ u2inters.insert(make_pair( intersection.ParamOnConic(1), TInters( *face, fNorm )));
}
- TIDSortedElemSet suspectElems;
- _ebbTree->getElementsNearPoint( point, suspectElems );
- TIDSortedElemSet::iterator elem = suspectElems.begin();
- for ( ; elem != suspectElems.end(); ++elem )
- if ( !SMESH_MeshEditor::isOut( *elem, point, tolerance ))
- foundElements.push_back( *elem );
}
- return foundElements.size();
- }
-}; // struct SMESH_ElementSearcherImpl
+ // Analyse intersections roughly
+
+ int nbInter = u2inters.size();
+ if ( nbInter == 0 )
+ return TopAbs_OUT;
+
+ double f = u2inters.begin()->first, l = u2inters.rbegin()->first;
+ if ( nbInter == 1 ) // not closed mesh
+ return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN;
+
+ if ( fabs( f ) < tolerance || fabs( l ) < tolerance )
+ return TopAbs_ON;
+
+ if ( (f<0) == (l<0) )
+ return TopAbs_OUT;
+
+ int nbIntBeforePoint = std::distance( u2inters.begin(), u2inters.lower_bound(0));
+ int nbIntAfterPoint = nbInter - nbIntBeforePoint;
+ if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 )
+ return TopAbs_IN;
+
+ nbInt2Axis.insert( make_pair( min( nbIntBeforePoint, nbIntAfterPoint ), axis ));
+
+ } // three attempts - loop on CS axes
+
+ // Analyse intersections thoroughly.
+ // We make two loops maximum, on the first one we only exclude touching intersections,
+ // on the second, if situation is still unclear, we gather and use information on
+ // position of faces (internal or outer). If faces position is already gathered,
+ // we make the second loop right away.
+
+ for ( int hasPositionInfo = _outerFacesFound; hasPositionInfo < 2; ++hasPositionInfo )
+ {
+ multimap< int, int >::const_iterator nb_axis = nbInt2Axis.begin();
+ for ( ; nb_axis != nbInt2Axis.end(); ++nb_axis )
+ {
+ int axis = nb_axis->second;
+ map< double, TInters > & u2inters = paramOnLine2TInters[ axis ];
+
+ gp_Ax1 lineAxis( point, axisDir[axis]);
+ gp_Lin line ( lineAxis );
+
+ // add tangent intersections to u2inters
+ double param;
+ list< TInters >::const_iterator tgtInt = tangentInters[ axis ].begin();
+ for ( ; tgtInt != tangentInters[ axis ].end(); ++tgtInt )
+ if ( getIntersParamOnLine( line, tgtInt->_face, tolerance, param ))
+ u2inters.insert(make_pair( param, *tgtInt ));
+ tangentInters[ axis ].clear();
+
+ // Count intersections before and after the point excluding touching ones.
+ // If hasPositionInfo we count intersections of outer boundary only
+
+ int nbIntBeforePoint = 0, nbIntAfterPoint = 0;
+ double f = numeric_limits<double>::max(), l = -numeric_limits<double>::max();
+ map< double, TInters >::iterator u_int2 = u2inters.begin(), u_int1 = u_int2++;
+ bool ok = ! u_int1->second._coincides;
+ while ( ok && u_int1 != u2inters.end() )
+ {
+ // skip intersections at the same point (if the line passes through edge or node)
+ int nbSamePnt = 0;
+ double u = u_int1->first;
+ while ( u_int2 != u2inters.end() && fabs( u_int2->first - u ) < tolerance )
+ {
+ ++nbSamePnt;
+ ++u_int2;
+ }
+
+ // skip tangent intersections
+ int nbTgt = 0;
+ const SMDS_MeshElement* prevFace = u_int1->second._face;
+ while ( ok && u_int2->second._coincides )
+ {
+ if ( SMESH_Algo::GetCommonNodes(prevFace , u_int2->second._face).empty() )
+ ok = false;
+ else
+ {
+ nbTgt++;
+ u_int2++;
+ ok = ( u_int2 != u2inters.end() );
+ }
+ }
+ if ( !ok ) break;
+
+ // skip intersections at the same point after tangent intersections
+ if ( nbTgt > 0 )
+ {
+ double u = u_int2->first;
+ ++u_int2;
+ while ( u_int2 != u2inters.end() && fabs( u_int2->first - u ) < tolerance )
+ {
+ ++nbSamePnt;
+ ++u_int2;
+ }
+ }
+
+ bool touchingInt = false;
+ if ( nbSamePnt + nbTgt > 0 )
+ {
+ double minDot = numeric_limits<double>::max(), maxDot = -numeric_limits<double>::max();
+ map< double, TInters >::iterator u_int = u_int1;
+ for ( ; u_int != u_int2; ++u_int )
+ {
+ if ( u_int->second._coincides ) continue;
+ double dot = u_int->second._faceNorm * line.Direction();
+ if ( dot > maxDot ) maxDot = dot;
+ if ( dot < minDot ) minDot = dot;
+ }
+ touchingInt = ( minDot*maxDot < 0 );
+ }
+ if ( !touchingInt )
+ {
+ if ( !hasPositionInfo || isOuterBoundary( u_int1->second._face ))
+ {
+ if ( u < 0 )
+ ++nbIntBeforePoint;
+ else
+ ++nbIntAfterPoint;
+
+ }
+ if ( u < f ) f = u;
+ if ( u > l ) l = u;
+ }
+
+ u_int1 = u_int2++; // to next intersection
+
+ } // loop on intersections with one line
+
+ if ( ok )
+ {
+ if ( fabs( f ) < tolerance || fabs( l ) < tolerance )
+ return TopAbs_ON;
+
+ if ( nbIntBeforePoint == 0 || nbIntAfterPoint == 0)
+ return TopAbs_OUT;
+
+ if ( nbIntBeforePoint + nbIntAfterPoint == 1 ) // not closed mesh
+ return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN;
+
+ if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 )
+ return TopAbs_IN;
+
+ if ( (f<0) == (l<0) )
+ return TopAbs_OUT;
+
+ if ( hasPositionInfo )
+ return nbIntBeforePoint % 2 ? TopAbs_IN : TopAbs_OUT;
+ }
+ } // loop on intersections of the tree lines - thorough analysis
+
+ if ( !hasPositionInfo )
+ {
+ // gather info on faces position - is face in the outer boundary or not
+ map< double, TInters > & u2inters = paramOnLine2TInters[ 0 ];
+ findOuterBoundary( u2inters.begin()->second._face );
+ }
+
+ } // two attempts - with and w/o faces position info in the mesh
+
+ return TopAbs_UNKNOWN;
+}
//=======================================================================
/*!
}
return res;
}
-
-