# ------------------------------
def CostFunction(x):
_X = numpy.asmatrix(numpy.ravel( x )).T
+ if self._parameters["StoreInternalVariables"] or "CurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["CurrentState"].store( _X )
_HX = Hm( _X )
_HX = numpy.asmatrix(numpy.ravel( _HX )).T
+ if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
Jb = 0.5 * (_X - Xb).T * BI * (_X - Xb)
Jo = 0.5 * (Y - _HX).T * RI * (Y - _HX)
J = float( Jb ) + float( Jo )
- if self._parameters["StoreInternalVariables"] or "CurrentState" in self._parameters["StoreSupplementaryCalculations"]:
- self.StoredVariables["CurrentState"].store( _X )
- if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
- self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
self.DirectInnovation = [None,] # Le pas 0 n'est pas observé
def CostFunction(x):
_X = numpy.asmatrix(numpy.ravel( x )).T
+ if self._parameters["StoreInternalVariables"] or "CurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["CurrentState"].store( _X )
Jb = 0.5 * (_X - Xb).T * BI * (_X - Xb)
self.DirectCalculation = [None,]
self.DirectInnovation = [None,]
Jo = Jo + _YmHMX.T * RI * _YmHMX
Jo = 0.5 * Jo
J = float( Jb ) + float( Jo )
- if self._parameters["StoreInternalVariables"] or "CurrentState" in self._parameters["StoreSupplementaryCalculations"]:
- self.StoredVariables["CurrentState"].store( _X )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
# ------------------------------
def CostFunction(x):
_X = numpy.asmatrix(numpy.ravel( x )).T
+ if self._parameters["StoreInternalVariables"] or "CurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["CurrentState"].store( _X )
_HX = Hm( _X )
_HX = numpy.asmatrix(numpy.ravel( _HX )).T
+ if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
Jb = 0.
Jo = 0.5 * (Y - _HX).T * RI * (Y - _HX)
J = float( Jb ) + float( Jo )
- if self._parameters["StoreInternalVariables"] or "CurrentState" in self._parameters["StoreSupplementaryCalculations"]:
- self.StoredVariables["CurrentState"].store( _X )
- if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
- self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
# ------------------------------
def CostFunction(x):
_X = numpy.asmatrix(numpy.ravel( x )).T
+ if self._parameters["StoreInternalVariables"] or "CurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["CurrentState"].store( _X )
_HX = Hm( _X )
_HX = numpy.asmatrix(numpy.ravel( _HX )).T
+ if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
Jb = 0.
Jo = 0.
J = Jb + Jo
- if self._parameters["StoreInternalVariables"] or "CurrentState" in self._parameters["StoreSupplementaryCalculations"]:
- self.StoredVariables["CurrentState"].store( _X )
- if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
- self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )