// Remove _LayerEdge's intersecting the normAvg to avoid collisions
// during inflate().
//
- // find max length of the VERTEX based _LayerEdge whose direction is normAvg
+ // find max length of the VERTEX-based _LayerEdge whose direction is normAvg
double maxLen2D = _thickness * EL._len2dTo3dRatio;
const gp_XY& pCommOut = ER._uvOut;
gp_XY pCommIn = pCommOut + normAvg * maxLen2D;
}
// limit length of neighbour _LayerEdge's to avoid sharp change of layers thickness
+
vector< double > segLen( L._lEdges.size() );
segLen[0] = 0.0;
- for ( size_t i = 1; i < segLen.size(); ++i )
- {
- // accumulate length of segments
- double sLen = (L._lEdges[i-1]._uvOut - L._lEdges[i]._uvOut ).Modulus();
- segLen[i] = segLen[i-1] + sLen;
- }
- for ( int isR = 0; isR < 2; ++isR )
+
+ // check if length modification is usefull: look for _LayerEdge's
+ // with length limited due to collisions
+ bool lenLimited = false;
+ for ( size_t iLE = 1; ( iLE < L._lEdges.size()-1 && !lenLimited ); ++iLE )
+ lenLimited = L._lEdges[ iLE ]._isBlocked;
+
+ if ( lenLimited )
{
- size_t iF = 0, iL = L._lEdges.size()-1;
- size_t *i = isR ? &iL : &iF;
- _LayerEdge* prevLE = & L._lEdges[ *i ];
- double weight = 0;
- for ( ++iF, --iL; iF < L._lEdges.size()-1; ++iF, --iL )
+ for ( size_t i = 1; i < segLen.size(); ++i )
+ {
+ // accumulate length of segments
+ double sLen = (L._lEdges[i-1]._uvOut - L._lEdges[i]._uvOut ).Modulus();
+ segLen[i] = segLen[i-1] + sLen;
+ }
+ const double totSegLen = segLen.back();
+ // normalize the accumulated length
+ for ( size_t iS = 1; iS < segLen.size(); ++iS )
+ segLen[iS] /= totSegLen;
+
+ for ( int isR = 0; isR < 2; ++isR )
{
- _LayerEdge& LE = L._lEdges[*i];
- if ( prevLE->_length2D > 0 )
+ size_t iF = 0, iL = L._lEdges.size()-1;
+ size_t *i = isR ? &iL : &iF;
+ _LayerEdge* prevLE = & L._lEdges[ *i ];
+ double weight = 0;
+ for ( ++iF, --iL; iF < L._lEdges.size()-1; ++iF, --iL )
{
- gp_XY tangent ( LE._normal2D.Y(), -LE._normal2D.X() );
- weight += Abs( tangent * ( prevLE->_uvIn - LE._uvIn )) / segLen.back();
- // gp_XY prevTang( LE._uvOut - prevLE->_uvOut );
- // gp_XY prevNorm( -prevTang.Y(), prevTang.X() );
- gp_XY prevNorm = LE._normal2D;
- double prevProj = prevNorm * ( prevLE->_uvIn - prevLE->_uvOut );
- if ( prevProj > 0 ) {
- prevProj /= prevNorm.Modulus();
- if ( LE._length2D < prevProj )
- weight += 0.75 * ( 1 - weight ); // length decrease is more preferable
- LE._length2D = weight * LE._length2D + ( 1 - weight ) * prevProj;
- LE._uvIn = LE._uvOut + LE._normal2D * LE._length2D;
+ _LayerEdge& LE = L._lEdges[*i];
+ if ( prevLE->_length2D > 0 )
+ {
+ gp_XY tangent ( LE._normal2D.Y(), -LE._normal2D.X() );
+ weight += Abs( tangent * ( prevLE->_uvIn - LE._uvIn )) / totSegLen;
+ // gp_XY prevTang( LE._uvOut - prevLE->_uvOut );
+ // gp_XY prevNorm( -prevTang.Y(), prevTang.X() );
+ gp_XY prevNorm = LE._normal2D;
+ double prevProj = prevNorm * ( prevLE->_uvIn - prevLE->_uvOut );
+ if ( prevProj > 0 ) {
+ prevProj /= prevNorm.Modulus();
+ if ( LE._length2D < prevProj )
+ weight += 0.75 * ( 1 - weight ); // length decrease is more preferable
+ LE._length2D = weight * LE._length2D + ( 1 - weight ) * prevProj;
+ LE._uvIn = LE._uvOut + LE._normal2D * LE._length2D;
+ }
}
+ prevLE = & LE;
}
- prevLE = & LE;
}
}
// DEBUG: to see _uvRefined. cout can be redirected to hide NETGEN output
// cerr << "import smesh" << endl << "mesh = smesh.Mesh()"<< endl;
- // calculate intermediate UV on _LayerEdge's ( _LayerEdge::_uvRefined )
- size_t iLE = 0, nbLE = L._lEdges.size();
- if ( ! L._lEdges[0]._uvRefined.empty() ) ++iLE;
- if ( ! L._lEdges.back()._uvRefined.empty() ) --nbLE;
- for ( ; iLE < nbLE; ++iLE )
- {
- _LayerEdge& LE = L._lEdges[iLE];
- if ( fabs( LE._length2D - prevLen2D ) > LE._length2D / 100. )
- {
- calcLayersHeight( LE._length2D, layersHeight );
- prevLen2D = LE._length2D;
- }
- for ( size_t i = 0; i < layersHeight.size(); ++i )
- LE._uvRefined.push_back( LE._uvOut + LE._normal2D * layersHeight[i] );
-
- // DEBUG: to see _uvRefined
- // for ( size_t i = 0; i < LE._uvRefined.size(); ++i )
- // {
- // gp_XY uv = LE._uvRefined[i];
- // gp_Pnt p = _surface->Value( uv.X(), uv.Y() );
- // cerr << "mesh.AddNode( " << p.X() << ", " << p.Y() << ", " << p.Z() << " )" << endl;
- // }
- }
-
- // nodes to create 1 layer of faces
- vector< const SMDS_MeshNode* > outerNodes( L._lastPntInd - L._firstPntInd + 1 );
- vector< const SMDS_MeshNode* > innerNodes( L._lastPntInd - L._firstPntInd + 1 );
-
- // initialize outerNodes by nodes of the L._wire
const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
- for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
- outerNodes[ i-L._firstPntInd ] = points[i].node;
-
- // compute normalized [0;1] node parameters of outerNodes
- vector< double > normPar( L._lastPntInd - L._firstPntInd + 1 );
- const double
- normF = L._wire->FirstParameter( L._edgeInd ),
- normL = L._wire->LastParameter ( L._edgeInd ),
- normDist = normL - normF;
- for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
- normPar[ i - L._firstPntInd ] = ( points[i].normParam - normF ) / normDist;
- // Create layers of faces
-
+ // analyse extremities of the _PolyLine to find existing nodes
const TopoDS_Vertex& V1 = L._wire->FirstVertex( L._edgeInd );
const TopoDS_Vertex& V2 = L._wire->LastVertex ( L._edgeInd );
const int v1ID = getMeshDS()->ShapeToIndex( V1 );
bool hasRightNode = ( !L._rightLine->_leftNodes.empty() && rightEdgeShared );
bool hasOwnLeftNode = ( !L._leftNodes.empty() );
bool hasOwnRightNode = ( !L._rightNodes.empty() );
- bool isClosedEdge = ( outerNodes.front() == outerNodes.back() );
- size_t iS,
+ bool isClosedEdge = ( points[ L._firstPntInd ].node == points[ L._lastPntInd ].node );
+ const size_t
+ nbN = L._lastPntInd - L._firstPntInd + 1,
iN0 = ( hasLeftNode || hasOwnLeftNode || isClosedEdge || !isShrinkableL ),
- nbN = innerNodes.size() - ( hasRightNode || hasOwnRightNode || !isShrinkableR);
- L._leftNodes .reserve( _hyp->GetNumberLayers() );
- L._rightNodes.reserve( _hyp->GetNumberLayers() );
- int cur = 0, prev = -1; // to take into account orientation of _face
- if ( isReverse ) std::swap( cur, prev );
- for ( int iF = 0; iF < _hyp->GetNumberLayers(); ++iF ) // loop on layers of faces
+ iNE = nbN - ( hasRightNode || hasOwnRightNode || !isShrinkableR );
+
+ // update _uvIn of end _LayerEdge's by existing nodes
+ const SMDS_MeshNode *nL = 0, *nR = 0;
+ if ( hasOwnLeftNode ) nL = L._leftNodes.back();
+ else if ( hasLeftNode ) nL = L._leftLine->_rightNodes.back();
+ if ( hasOwnRightNode ) nR = L._rightNodes.back();
+ else if ( hasRightNode ) nR = L._rightLine->_leftNodes.back();
+ if ( nL )
+ L._lEdges[0]._uvIn = _helper.GetNodeUV( _face, nL, points[ L._firstPntInd + 1 ].node );
+ if ( nR )
+ L._lEdges.back()._uvIn = _helper.GetNodeUV( _face, nR, points[ L._lastPntInd - 1 ].node );
+
+ // compute normalized [0;1] node parameters of nodes on a _PolyLine
+ vector< double > normPar( nbN );
+ const double
+ normF = L._wire->FirstParameter( L._edgeInd ),
+ normL = L._wire->LastParameter ( L._edgeInd ),
+ normDist = normL - normF;
+ for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
+ normPar[ i - L._firstPntInd ] = ( points[i].normParam - normF ) / normDist;
+
+ // Calculate UV of most inner nodes
+
+ vector< gp_XY > innerUV( nbN );
+
+ // check if innerUV should be interpolated between _LayerEdge::_uvIn's
+ const size_t nbLE = L._lEdges.size();
+ bool needInterpol = ( nbN != nbLE );
+ if ( !needInterpol )
+ {
+ // more check: compare length of inner and outer end segments
+ double lenIn, lenOut;
+ for ( int isR = 0; isR < 2 && !needInterpol; ++isR )
+ {
+ const _Segment& segIn = isR ? L._segments.back() : L._segments[0];
+ const gp_XY& uvIn1 = segIn.p1();
+ const gp_XY& uvIn2 = segIn.p2();
+ const gp_XY& uvOut1 = L._lEdges[ isR ? nbLE-1 : 0 ]._uvOut;
+ const gp_XY& uvOut2 = L._lEdges[ isR ? nbLE-2 : 1 ]._uvOut;
+ if ( _is2DIsotropic )
+ {
+ lenIn = ( uvIn1 - uvIn2 ).Modulus();
+ lenOut = ( uvOut1 - uvOut2 ).Modulus();
+ }
+ else
+ {
+ lenIn = _surface->Value( uvIn1.X(), uvIn1.Y() )
+ .Distance( _surface->Value( uvIn2.X(), uvIn2.Y() ));
+ lenOut = _surface->Value( uvOut1.X(), uvOut1.Y() )
+ .Distance( _surface->Value( uvOut2.X(), uvOut2.Y() ));
+ }
+ needInterpol = ( lenIn < 0.66 * lenOut );
+ }
+ }
+
+ if ( needInterpol )
{
- // get accumulated length of intermediate segments
+ // compute normalized accumulated length of inner segments
+ size_t iS;
if ( _is2DIsotropic )
for ( iS = 1; iS < segLen.size(); ++iS )
{
- double sLen = (L._lEdges[iS-1]._uvRefined[iF] - L._lEdges[iS]._uvRefined[iF] ).Modulus();
+ double sLen = ( L._lEdges[iS-1]._uvIn - L._lEdges[iS]._uvIn ).Modulus();
segLen[iS] = segLen[iS-1] + sLen;
}
else
for ( iS = 1; iS < segLen.size(); ++iS )
{
- const gp_XY& uv1 = L._lEdges[iS-1]._uvRefined[iF];
- const gp_XY& uv2 = L._lEdges[iS ]._uvRefined[iF];
+ const gp_XY& uv1 = L._lEdges[iS-1]._uvIn;
+ const gp_XY& uv2 = L._lEdges[iS ]._uvIn;
gp_Pnt p1 = _surface->Value( uv1.X(), uv1.Y() );
gp_Pnt p2 = _surface->Value( uv2.X(), uv2.Y() );
double sLen = p1.Distance( p2 );
for ( iS = 1; iS < segLen.size(); ++iS )
segLen[iS] /= segLen.back();
- // create innerNodes of a current layer
+ // calculate UV of most inner nodes according to the normalized node parameters
iS = 0;
- for ( size_t i = iN0; i < nbN; ++i )
+ for ( size_t i = 0; i < innerUV.size(); ++i )
{
while ( normPar[i] > segLen[iS+1] )
++iS;
double r = ( normPar[i] - segLen[iS] ) / ( segLen[iS+1] - segLen[iS] );
- gp_XY uv = r * L._lEdges[iS+1]._uvRefined[iF] + (1-r) * L._lEdges[iS]._uvRefined[iF];
- gp_Pnt p = _surface->Value( uv.X(), uv.Y() );
+ innerUV[ i ] = r * L._lEdges[iS+1]._uvIn + (1-r) * L._lEdges[iS]._uvIn;
+ }
+ }
+ else // ! needInterpol
+ {
+ for ( size_t i = 0; i < nbLE; ++i )
+ innerUV[ i ] = L._lEdges[i]._uvIn;
+ }
+
+ // normalized height of layers
+ calcLayersHeight( 1., layersHeight );
+
+ // Create layers of faces
+
+ // nodes to create 1 layer of faces
+ vector< const SMDS_MeshNode* > outerNodes( nbN );
+ vector< const SMDS_MeshNode* > innerNodes( nbN );
+
+ // initialize outerNodes by nodes of the L._wire
+ for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
+ outerNodes[ i-L._firstPntInd ] = points[i].node;
+
+ L._leftNodes .reserve( _hyp->GetNumberLayers() );
+ L._rightNodes.reserve( _hyp->GetNumberLayers() );
+ int cur = 0, prev = -1; // to take into account orientation of _face
+ if ( isReverse ) std::swap( cur, prev );
+ for ( int iF = 0; iF < _hyp->GetNumberLayers(); ++iF ) // loop on layers of faces
+ {
+ // create innerNodes of a current layer
+ for ( size_t i = iN0; i < iNE; ++i )
+ {
+ gp_XY uvOut = points[ L._firstPntInd + i ].UV();
+ gp_XY& uvIn = innerUV[ i ];
+ gp_XY uv = layersHeight[ iF ] * uvIn + ( 1.-layersHeight[ iF ]) * uvOut;
+ gp_Pnt p = _surface->Value( uv.X(), uv.Y() );
innerNodes[i] = _helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, uv.X(), uv.Y() );
}
// use nodes created for adjacent _PolyLine's
outerNodes.swap( innerNodes );
}
+
// faces between not shared _LayerEdge's (at concave VERTEX)
for ( int isR = 0; isR < 2; ++isR )
{