# ------------------------------
def CostFunction(x):
_X = numpy.asmatrix(x).flatten().T
- logging.info("%s CostFunction X = %s"%(self._name, numpy.asmatrix( _X ).flatten()))
+ logging.debug("%s CostFunction X = %s"%(self._name, numpy.asmatrix( _X ).flatten()))
_HX = Hm( _X )
_HX = numpy.asmatrix(_HX).flatten().T
Jb = 0.5 * (_X - Xb).T * BI * (_X - Xb)
#
def GradientOfCostFunction(x):
_X = numpy.asmatrix(x).flatten().T
- logging.info("%s GradientOfCostFunction X = %s"%(self._name, numpy.asmatrix( _X ).flatten()))
+ logging.debug("%s GradientOfCostFunction X = %s"%(self._name, numpy.asmatrix( _X ).flatten()))
_HX = Hm( _X )
_HX = numpy.asmatrix(_HX).flatten().T
GradJb = BI * (_X - Xb)
# ------------------------------
def CostFunction(x):
_X = numpy.asmatrix(x).flatten().T
- logging.info("%s CostFunction X = %s"%(self._name, numpy.asmatrix( _X ).flatten()))
+ logging.debug("%s CostFunction X = %s"%(self._name, numpy.asmatrix( _X ).flatten()))
_HX = Hm( _X )
_HX = numpy.asmatrix(_HX).flatten().T
Jb = 0.
#
def GradientOfCostFunction(x):
_X = numpy.asmatrix(x).flatten().T
- logging.info("%s GradientOfCostFunction X = %s"%(self._name, numpy.asmatrix( _X ).flatten()))
+ logging.debug("%s GradientOfCostFunction X = %s"%(self._name, numpy.asmatrix( _X ).flatten()))
_HX = Hm( _X )
_HX = numpy.asmatrix(_HX).flatten().T
GradJb = 0.
# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
name = "Data Assimilation Package"
-version = "0.4.0-SP640"
-date = "mardi 11 octobre 2011, 11:11:11 (UTC+0200)"
+version = "0.5.0-SP650"
+date = "jeudi 29 mars 2012, 11:11:11 (UTC+0200)"