"""
## \package smeshDC
-# To get started, please look at smeshDC::smeshDC documentation for general services of smesh package.
-# You can find the smeshDC::smeshDC documentation also by the first
+# To get started, please, have a look at smeshDC::smeshDC documentation
+# for general services of smesh package
+# You can also find the smeshDC::smeshDC documentation by the first
# item in the Data Structures list on this page.
# See also the list of Data Structures and the list of Functions
# for other classes and methods of smesh python interface.
import salome
import geompyDC
-import SMESH # necessary for back compatibility
+import SMESH # This is necessary for back compatibility
from SMESH import *
import StdMeshers
noNETGENPlugin = 1
pass
-# Types of algo
+# Types of algorithms
REGULAR = 1
PYTHON = 2
COMPOSITE = 3
LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
-# Fineness enumeration(for NETGEN)
+# Fineness enumeration (for NETGEN)
VeryCoarse = 0
Coarse = 1
Moderate = 2
attr = sobj.FindAttribute("AttributeName")[1]
return attr.Value()
-## Sets name to object
+## Sets a name to the object
def SetName(obj, name):
ior = salome.orb.object_to_string(obj)
sobj = salome.myStudy.FindObjectIOR(ior)
attr = sobj.FindAttribute("AttributeName")[1]
attr.SetValue(name)
-## Print error message if a hypothesis was not assigned.
+## Prints error message if a hypothesis was not assigned.
def TreatHypoStatus(status, hypName, geomName, isAlgo):
if isAlgo:
hypType = "algorithm"
if status == HYP_UNKNOWN_FATAL :
reason = "for unknown reason"
elif status == HYP_INCOMPATIBLE :
- reason = "this hypothesis mismatches algorithm"
+ reason = "this hypothesis mismatches the algorithm"
elif status == HYP_NOTCONFORM :
- reason = "not conform mesh would be built"
+ reason = "a non-conform mesh would be built"
elif status == HYP_ALREADY_EXIST :
- reason = hypType + " of the same dimension already assigned to this shape"
+ reason = hypType + " of the same dimension is already assigned to this shape"
elif status == HYP_BAD_DIM :
- reason = hypType + " mismatches shape"
+ reason = hypType + " mismatches the shape"
elif status == HYP_CONCURENT :
reason = "there are concurrent hypotheses on sub-shapes"
elif status == HYP_BAD_SUBSHAPE :
- reason = "shape is neither the main one, nor its subshape, nor a valid group"
+ reason = "the shape is neither the main one, nor its subshape, nor a valid group"
elif status == HYP_BAD_GEOMETRY:
- reason = "geometry mismatches algorithm's expectation"
+ reason = "geometry mismatches the expectation of the algorithm"
elif status == HYP_HIDDEN_ALGO:
- reason = "it is hidden by an algorithm of upper dimension generating all-dimensions elements"
+ reason = "it is hidden by an algorithm of an upper dimension, which generates elements of all dimensions"
elif status == HYP_HIDING_ALGO:
- reason = "it hides algorithm(s) of lower dimension by generating all-dimensions elements"
+ reason = "it hides algorithms of lower dimensions by generating elements of all dimensions"
else:
return
hypName = '"' + hypName + '"'
print hypName, "was not assigned to",geomName,":", reason
pass
-## Convert angle in degrees to radians
+## Converts an angle from degrees to radians
def DegreesToRadians(AngleInDegrees):
from math import pi
return AngleInDegrees * pi / 180.0
-## Methods of package smesh.py: general services of MESH component.
+## Methods of the package smesh.py provide general services of MESH component.
#
-# This class has been designed to provide general services of the MESH component.
# All methods of this class are accessible directly from the smesh.py package.
-# Use these methods to create an empty mesh, to import mesh from a file,
-# and also to create patterns and filtering criteria.
+# Use these methods to create an empty mesh, to import the mesh from file,
+# and to create patterns and filtering criteria.
class smeshDC(SMESH._objref_SMESH_Gen):
- ## To set current study and Geometry component
+ ## Sets the current study and Geometry component
def init_smesh(self,theStudy,geompyD):
self.geompyD=geompyD
self.SetGeomEngine(geompyD)
self.SetCurrentStudy(theStudy)
- ## Create an empty Mesh. This mesh can have underlying geometry.
- # @param obj Geometrical object to build the mesh on. If not defined,
- # the mesh will not have underlying geometry.
- # @param name A name for the new mesh.
- # @return instance of Mesh class.
+ ## Creates an empty Mesh. This mesh can have an underlying geometry.
+ # @param obj the Geometrical object on which the mesh is built. If not defined,
+ # the mesh will have no underlying geometry.
+ # @param name the name for the new mesh.
+ # @return an instance of Mesh class.
def Mesh(self, obj=0, name=0):
return Mesh(self,self.geompyD,obj,name)
- ## Returns long value from enumeration
- # To be used for SMESH.FunctorType enumeration
+ ## Returns a long value from enumeration
+ # Should be used for SMESH.FunctorType enumeration
def EnumToLong(self,theItem):
return theItem._v
- ## Get PointStruct from vertex
- # @param theVertex is GEOM object(vertex)
+ ## Gets PointStruct from vertex
+ # @param theVertex a GEOM object(vertex)
# @return SMESH.PointStruct
def GetPointStruct(self,theVertex):
[x, y, z] = self.geompyD.PointCoordinates(theVertex)
return PointStruct(x,y,z)
- ## Get DirStruct from vector
- # @param theVector is GEOM object(vector)
+ ## Gets DirStruct from vector
+ # @param theVector a GEOM object(vector)
# @return SMESH.DirStruct
def GetDirStruct(self,theVector):
vertices = self.geompyD.SubShapeAll( theVector, geompyDC.ShapeType["VERTEX"] )
dirst = DirStruct(pnt)
return dirst
- ## Make DirStruct from a triplet
- # @param x,y,z are vector components
+ ## Makes DirStruct from a triplet
+ # @param x,y,z vector components
# @return SMESH.DirStruct
def MakeDirStruct(self,x,y,z):
pnt = PointStruct(x,y,z)
return DirStruct(pnt)
## Get AxisStruct from object
- # @param theObj is GEOM object(line or plane)
+ # @param theObj a GEOM object (line or plane)
# @return SMESH.AxisStruct
def GetAxisStruct(self,theObj):
edges = self.geompyD.SubShapeAll( theObj, geompyDC.ShapeType["EDGE"] )
# From SMESH_Gen interface:
# ------------------------
- ## Set the current mode
+ ## Sets the current mode
def SetEmbeddedMode( self,theMode ):
#self.SetEmbeddedMode(theMode)
SMESH._objref_SMESH_Gen.SetEmbeddedMode(self,theMode)
- ## Get the current mode
+ ## Gets the current mode
def IsEmbeddedMode(self):
#return self.IsEmbeddedMode()
return SMESH._objref_SMESH_Gen.IsEmbeddedMode(self)
- ## Set the current study
+ ## Sets the current study
def SetCurrentStudy( self, theStudy ):
#self.SetCurrentStudy(theStudy)
SMESH._objref_SMESH_Gen.SetCurrentStudy(self,theStudy)
- ## Get the current study
+ ## Gets the current study
def GetCurrentStudy(self):
#return self.GetCurrentStudy()
return SMESH._objref_SMESH_Gen.GetCurrentStudy(self)
- ## Create Mesh object importing data from given UNV file
+ ## Creates a Mesh object importing data from the given UNV file
# @return an instance of Mesh class
def CreateMeshesFromUNV( self,theFileName ):
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromUNV(self,theFileName)
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
return aMesh
- ## Create Mesh object(s) importing data from given MED file
+ ## Creates a Mesh object(s) importing data from the given MED file
# @return a list of Mesh class instances
def CreateMeshesFromMED( self,theFileName ):
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromMED(self,theFileName)
aMeshes.append(aMesh)
return aMeshes, aStatus
- ## Create Mesh object importing data from given STL file
+ ## Creates a Mesh object importing data from the given STL file
# @return an instance of Mesh class
def CreateMeshesFromSTL( self, theFileName ):
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromSTL(self,theFileName)
return aMesh
## From SMESH_Gen interface
- # @return list of integer values
+ # @return the list of integer values
def GetSubShapesId( self, theMainObject, theListOfSubObjects ):
return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects)
- ## From SMESH_Gen interface. Creates pattern
+ ## From SMESH_Gen interface. Creates a pattern
# @return an instance of SMESH_Pattern
def GetPattern(self):
return SMESH._objref_SMESH_Gen.GetPattern(self)
return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
- ## Creates a criterion by given parameters
- # @param elementType is the type of elements(NODE, EDGE, FACE, VOLUME)
- # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
- # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
- # @param Treshold is threshold value (range of ids as string, shape, numeric)
- # @param UnaryOp is FT_LogicalNOT or FT_Undefined
- # @param BinaryOp is binary logical operation FT_LogicalAND, FT_LogicalOR or
- # FT_Undefined(must be for the last criterion in criteria)
+ ## Creates a criterion by the given parameters
+ # @param elementType the type of elements(NODE, EDGE, FACE, VOLUME)
+ # @param CritType the type of criterion (FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc.)
+ # @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
+ # @param Treshold the threshold value (range of ids as string, shape, numeric)
+ # @param UnaryOp FT_LogicalNOT or FT_Undefined
+ # @param BinaryOp a binary logical operation FT_LogicalAND, FT_LogicalOR or
+ # FT_Undefined (must be for the last criterion of all criteria)
# @return SMESH.Filter.Criterion
def GetCriterion(self,elementType,
CritType,
if CritType in [FT_BelongToGeom, FT_BelongToPlane, FT_BelongToGenSurface,
FT_BelongToCylinder, FT_LyingOnGeom]:
- # Check treshold
+ # Checks the treshold
if isinstance(aTreshold, geompyDC.GEOM._objref_GEOM_Object):
aCriterion.ThresholdStr = GetName(aTreshold)
aCriterion.ThresholdID = salome.ObjectToID(aTreshold)
else:
- print "Error: Treshold should be a shape."
+ print "Error: The treshold should be a shape."
return None
elif CritType == FT_RangeOfIds:
- # Check treshold
+ # Checks the treshold
if isinstance(aTreshold, str):
aCriterion.ThresholdStr = aTreshold
else:
- print "Error: Treshold should be a string."
+ print "Error: The treshold should be a string."
return None
elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume]:
- # Here we do not need treshold
+ # At this point the treshold is unnecessary
if aTreshold == FT_LogicalNOT:
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
elif aTreshold in [FT_LogicalAND, FT_LogicalOR]:
aTreshold = float(aTreshold)
aCriterion.Threshold = aTreshold
except:
- print "Error: Treshold should be a number."
+ print "Error: The treshold should be a number."
return None
if Treshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
return aCriterion
- ## Creates filter by given parameters of criterion
- # @param elementType is the type of elements in the group
- # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
- # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
- # @param Treshold is threshold value (range of id ids as string, shape, numeric)
- # @param UnaryOp is FT_LogicalNOT or FT_Undefined
+ ## Creates a filter with the given parameters
+ # @param elementType the type of elements in the group
+ # @param CritType the type of criterion ( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
+ # @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
+ # @param Treshold the threshold value (range of id ids as string, shape, numeric)
+ # @param UnaryOp FT_LogicalNOT or FT_Undefined
# @return SMESH_Filter
def GetFilter(self,elementType,
CritType=FT_Undefined,
aFilter.SetCriteria(aCriteria)
return aFilter
- ## Creates numerical functor by its type
- # @param theCrierion is FT_...; functor type
+ ## Creates a numerical functor by its type
+ # @param theCriterion FT_...; functor type
# @return SMESH_NumericalFunctor
def GetFunctor(self,theCriterion):
aFilterMgr = self.CreateFilterManager()
print "Error: given parameter is not numerucal functor type."
import omniORB
-#Register the new proxy for SMESH_Gen
+#Registering the new proxy for SMESH_Gen
omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshDC)
# Public class: Mesh
# ==================
-## Class to define a mesh
-#
-# This class allows to define and manage a mesh.
-# It has a set of methods to build a mesh on the given geometry, including definition of sub-meshes.
-# Also it has methods to define groups of mesh elements, to modify a mesh (by addition of
-# new nodes and elements and by changind of existing entities), to take information
+## This class allows defining and managing a mesh.
+# It has a set of methods to build a mesh on the given geometry, including the definition of sub-meshes.
+# It also has methods to define groups of mesh elements, to modify a mesh (by addition of
+# new nodes and elements and by changing the existing entities), to get information
# about a mesh and to export a mesh into different formats.
class Mesh:
## Constructor
#
- # Creates mesh on the shape \a obj (or the empty mesh if obj is equal to 0),
- # sets GUI name of this mesh to \a name.
+ # Creates a mesh on the shape \a obj (or an empty mesh if \a obj is equal to 0) and
+ # sets the GUI name of this mesh to \a name.
# @param obj Shape to be meshed or SMESH_Mesh object
# @param name Study name of the mesh
def __init__(self, smeshpyD, geompyD, obj=0, name=0):
self.editor = self.mesh.GetMeshEditor()
- ## Method that inits the Mesh object from instance of SMESH_Mesh interface
- # @param theMesh is SMESH_Mesh object
+ ## Initializes the Mesh object from an instance of SMESH_Mesh interface
+ # @param theMesh a SMESH_Mesh object
def SetMesh(self, theMesh):
self.mesh = theMesh
self.geom = self.mesh.GetShapeToMesh()
- ## Method that returns the mesh, that is instance of SMESH_Mesh interface
- # @return SMESH_Mesh object
+ ## Returns the mesh, that is an instance of SMESH_Mesh interface
+ # @return a SMESH_Mesh object
def GetMesh(self):
return self.mesh
- ## Get mesh name
- # @return name of the mesh as a string
+ ## Gets the name of the mesh
+ # @return the name of the mesh as a string
def GetName(self):
name = GetName(self.GetMesh())
return name
- ## Set name to mesh
- # @param name a new name for the mesh
+ ## Sets a name to the mesh
+ # @param name a new name of the mesh
def SetName(self, name):
SetName(self.GetMesh(), name)
- ## Get the subMesh object associated to \a theSubObject geometrical object.
- # The subMesh object gives access to nodes and elements IDs.
- # @param theSubObject A geometrical object (shape)
- # @return object of type SMESH_SubMesh, representing part of mesh, which lays on the given shape
+ ## Gets the subMesh object associated to a \a theSubObject geometrical object.
+ # The subMesh object gives access to the IDs of nodes and elements.
+ # @param theSubObject a geometrical object (shape)
+ # @return an object of type SMESH_SubMesh, representing a part of mesh, which lies on the given shape
def GetSubMesh(self, theSubObject, name):
submesh = self.mesh.GetSubMesh(theSubObject, name)
return submesh
- ## Method that returns the shape associated to the mesh
- # @return GEOM_Object
+ ## Returns the shape associated to the mesh
+ # @return a GEOM_Object
def GetShape(self):
return self.geom
- ## Method that associates given shape to the mesh(entails the mesh recreation)
- # @param geom shape to be meshed (GEOM_Object)
+ ## Associates the given shape to the mesh (entails the recreation of the mesh)
+ # @param geom the shape to be meshed (GEOM_Object)
def SetShape(self, geom):
self.mesh = self.smeshpyD.CreateMesh(geom)
- ## Return true if hypotheses are defined well
- # @param theSubObject subshape of a mesh shape
+ ## Returns true if the hypotheses are defined well
+ # @param theSubObject a subshape of a mesh shape
# @return True or False
def IsReadyToCompute(self, theSubObject):
return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject)
- ## Return errors of hypotheses definition.
- # Errors list is empty if everything is OK.
- # @param theSubObject subshape of a mesh shape
+ ## Returns errors of hypotheses definition.
+ # The list of errors is empty if everything is OK.
+ # @param theSubObject a subshape of a mesh shape
# @return a list of errors
def GetAlgoState(self, theSubObject):
return self.smeshpyD.GetAlgoState(self.mesh, theSubObject)
- ## Return geometrical object the given element is built on.
+ ## Returns a geometrical object on which the given element was built.
# The returned geometrical object, if not nil, is either found in the
- # study or is published by this method with the given name
- # @param theElementID an id of the mesh element
- # @param theGeomName user defined name of geometrical object
+ # study or published by this method with the given name
+ # @param theElementID the id of the mesh element
+ # @param theGeomName the user-defined name of the geometrical object
# @return GEOM::GEOM_Object instance
def GetGeometryByMeshElement(self, theElementID, theGeomName):
return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
- ## Returns mesh dimension depending on that of the underlying shape
+ ## Returns the mesh dimension depending on the dimension of the underlying shape
# @return mesh dimension as an integer value [0,3]
def MeshDimension(self):
shells = self.geompyD.SubShapeAllIDs( self.geom, geompyDC.ShapeType["SHELL"] )
## Creates a segment discretization 1D algorithm.
# If the optional \a algo parameter is not set, this algorithm is REGULAR.
# \n If the optional \a geom parameter is not set, this algorithm is global.
- # Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param algo type of desired algorithm. Possible values are:
+ # Otherwise, this algorithm defines a submesh based on \a geom subshape.
+ # @param algo the type of the required algorithm. Possible values are:
# - smesh.REGULAR,
- # - smesh.PYTHON for discretization via python function,
+ # - smesh.PYTHON for discretization via a python function,
# - smesh.COMPOSITE for meshing a set of edges on one face side as a whole.
- # @param geom If defined, subshape to be meshed
- # @return instance of Mesh_Segment or Mesh_Segment_Python, or Mesh_CompositeSegment class
+ # @param geom If defined is the subshape to be meshed
+ # @return an instance of Mesh_Segment or Mesh_Segment_Python, or Mesh_CompositeSegment class
def Segment(self, algo=REGULAR, geom=0):
## if Segment(geom) is called by mistake
if isinstance( algo, geompyDC.GEOM._objref_GEOM_Object):
else:
return Mesh_Segment(self, geom)
- ## Enable creation of nodes and segments usable by 2D algoritms.
- # Added nodes and segments must be bound to edges and vertices by
+ ## Enables creation of nodes and segments usable by 2D algoritms.
+ # The added nodes and segments must be bound to edges and vertices by
# SetNodeOnVertex(), SetNodeOnEdge() and SetMeshElementOnShape()
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom subshape to be manually meshed
+ # If the optional \a geom parameter is not set, this algorithm is global.
+ # \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
+ # @param geom the subshape to be manually meshed
# @return StdMeshers_UseExisting_1D algorithm that generates nothing
def UseExistingSegments(self, geom=0):
algo = Mesh_UseExisting(1,self,geom)
return algo.GetAlgorithm()
- ## Enable creation of nodes and faces usable by 3D algoritms.
- # Added nodes and faces must be bound to geom faces by SetNodeOnFace()
+ ## Enables creation of nodes and faces usable by 3D algoritms.
+ # The added nodes and faces must be bound to geom faces by SetNodeOnFace()
# and SetMeshElementOnShape()
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom subshape to be manually meshed
+ # If the optional \a geom parameter is not set, this algorithm is global.
+ # \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
+ # @param geom the subshape to be manually meshed
# @return StdMeshers_UseExisting_2D algorithm that generates nothing
def UseExistingFaces(self, geom=0):
algo = Mesh_UseExisting(2,self,geom)
return algo.GetAlgorithm()
## Creates a triangle 2D algorithm for faces.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # If the optional \a geom parameter is not set, this algorithm is global.
+ # \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param algo values are: smesh.MEFISTO || smesh.NETGEN_1D2D || smesh.NETGEN_2D || smesh.BLSURF
- # @param geom If defined, subshape to be meshed (GEOM_Object)
+ # @param geom If defined, the subshape to be meshed (GEOM_Object)
# @return an instance of Mesh_Triangle algorithm
def Triangle(self, algo=MEFISTO, geom=0):
## if Triangle(geom) is called by mistake
return Mesh_Triangle(self, algo, geom)
## Creates a quadrangle 2D algorithm for faces.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed (GEOM_Object)
+ # If the optional \a geom parameter is not set, this algorithm is global.
+ # \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
+ # @param geom If defined, the subshape to be meshed (GEOM_Object)
# @return an instance of Mesh_Quadrangle algorithm
def Quadrangle(self, geom=0):
return Mesh_Quadrangle(self, geom)
## Creates a tetrahedron 3D algorithm for solids.
- # The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # The parameter \a algo permits to choose the algorithm: NETGEN or GHS3D
+ # If the optional \a geom parameter is not set, this algorithm is global.
+ # \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.FULL_NETGEN
- # @param geom If defined, subshape to be meshed (GEOM_Object)
+ # @param geom If defined, the subshape to be meshed (GEOM_Object)
# @return an instance of Mesh_Tetrahedron algorithm
def Tetrahedron(self, algo=NETGEN, geom=0):
## if Tetrahedron(geom) is called by mistake
return Mesh_Tetrahedron(self, algo, geom)
## Creates a hexahedron 3D algorithm for solids.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # If the optional \a geom parameter is not set, this algorithm is global.
+ # \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param algo possible values are: smesh.Hexa, smesh.Hexotic
- # @param geom If defined, subshape to be meshed (GEOM_Object)
+ # @param geom If defined, the subshape to be meshed (GEOM_Object)
# @return an instance of Mesh_Hexahedron algorithm
def Hexahedron(self, algo=Hexa, geom=0):
## if Hexahedron(geom, algo) or Hexahedron(geom) is called by mistake
elif geom == 0: algo, geom = Hexa, algo
return Mesh_Hexahedron(self, algo, geom)
- ## Deprecated, only for compatibility!
+ ## Deprecated, used only for compatibility!
# @return an instance of Mesh_Netgen algorithm
def Netgen(self, is3D, geom=0):
return Mesh_Netgen(self, is3D, geom)
## Creates a projection 1D algorithm for edges.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
+ # If the optional \a geom parameter is not set, this algorithm is global.
+ # Otherwise, this algorithm defines a submesh based on \a geom subshape.
+ # @param geom If defined, the subshape to be meshed
# @return an instance of Mesh_Projection1D algorithm
def Projection1D(self, geom=0):
return Mesh_Projection1D(self, geom)
## Creates a projection 2D algorithm for faces.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
+ # If the optional \a geom parameter is not set, this algorithm is global.
+ # Otherwise, this algorithm defines a submesh based on \a geom subshape.
+ # @param geom If defined, the subshape to be meshed
# @return an instance of Mesh_Projection2D algorithm
def Projection2D(self, geom=0):
return Mesh_Projection2D(self, geom)
## Creates a projection 3D algorithm for solids.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
+ # If the optional \a geom parameter is not set, this algorithm is global.
+ # Otherwise, this algorithm defines a submesh based on \a geom subshape.
+ # @param geom If defined, the subshape to be meshed
# @return an instance of Mesh_Projection3D algorithm
def Projection3D(self, geom=0):
return Mesh_Projection3D(self, geom)
## Creates a 3D extrusion (Prism 3D) or RadialPrism 3D algorithm for solids.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
+ # If the optional \a geom parameter is not set, this algorithm is global.
+ # Otherwise, this algorithm defines a submesh based on \a geom subshape.
+ # @param geom If defined, the subshape to be meshed
# @return an instance of Mesh_Prism3D or Mesh_RadialPrism3D algorithm
def Prism(self, geom=0):
shape = geom
return Mesh_Prism3D(self, geom)
return Mesh_RadialPrism3D(self, geom)
- ## Compute the mesh and return the status of the computation
+ ## Computes the mesh and returns the status of the computation
# @return True or False
def Compute(self, geom=0):
if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value'
% ( glob, dim, name ))
elif err.state == HYP_BAD_GEOMETRY:
- reason = ('%s %sD algorithm "%s" is assigned to geometry mismatching'
- 'its expectation' % ( glob, dim, name ))
+ reason = ('%s %sD algorithm "%s" is assigned to mismatching'
+ 'geometry' % ( glob, dim, name ))
else:
reason = "For unknown reason."+\
" Revise Mesh.Compute() implementation in smeshDC.py!"
pass
return ok
- ## Compute tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
+ ## Computes a tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
# The parameter \a fineness [0,-1] defines mesh fineness
# @return True or False
def AutomaticTetrahedralization(self, fineness=0):
pass
return self.Compute()
- ## Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
+ ## Computes an hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
# The parameter \a fineness [0,-1] defines mesh fineness
# @return True or False
def AutomaticHexahedralization(self, fineness=0):
dim = self.MeshDimension()
- # assign hypotheses
+ # assign the hypotheses
self.RemoveGlobalHypotheses()
self.Segment().AutomaticLength(fineness)
if dim > 1 :
pass
return self.Compute()
- ## Assign hypothesis
- # @param hyp is a hypothesis to assign
- # @param geom is subhape of mesh geometry
+ ## Assigns a hypothesis
+ # @param hyp a hypothesis to assign
+ # @param geom a subhape of mesh geometry
# @return SMESH.Hypothesis_Status
def AddHypothesis(self, hyp, geom=0):
if isinstance( hyp, Mesh_Algorithm ):
TreatHypoStatus( status, GetName( hyp ), GetName( geom ), isAlgo )
return status
- ## Unassign hypothesis
- # @param hyp is a hypothesis to unassign
- # @param geom is subhape of mesh geometry
+ ## Unassigns a hypothesis
+ # @param hyp a hypothesis to unassign
+ # @param geom a subshape of mesh geometry
# @return SMESH.Hypothesis_Status
def RemoveHypothesis(self, hyp, geom=0):
if isinstance( hyp, Mesh_Algorithm ):
status = self.mesh.RemoveHypothesis(geom, hyp)
return status
- ## Get the list of hypothesis added on a geom
- # @param geom is subhape of mesh geometry
- # @return sequence of SMESH_Hypothesis
+ ## Gets the list of hypotheses added on a geometry
+ # @param geom a subshape of mesh geometry
+ # @return the sequence of SMESH_Hypothesis
def GetHypothesisList(self, geom):
return self.mesh.GetHypothesisList( geom )
pass
pass
- ## Create a mesh group based on geometric object \a grp
- # and give a \a name, \n if this parameter is not defined
+ ## Creates a mesh group based on the geometric object \a grp
+ # and gives a \a name, \n if this parameter is not defined
# the name is the same as the geometric group name \n
# Note: Works like GroupOnGeom().
- # @param grp is a geometric group, a vertex, an edge, a face or a solid
- # @param name is the name of the mesh group
+ # @param grp a geometric group, a vertex, an edge, a face or a solid
+ # @param name the name of the mesh group
# @return SMESH_GroupOnGeom
def Group(self, grp, name=""):
return self.GroupOnGeom(grp, name)
- ## Deprecated, only for compatibility! Please, use ExportMED() method instead.
- # Export the mesh in a file with the MED format and choice the \a version of MED format
- # @param f is the file name
+ ## Deprecated, used only for compatibility! Please, use ExportMED() method instead.
+ # Exports the mesh in a file in MED format and chooses the \a version of MED format
+ # @param f the file name
# @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
def ExportToMED(self, f, version, opt=0):
self.mesh.ExportToMED(f, opt, version)
- ## Export the mesh in a file with the MED format
+ ## Exports the mesh in a file in MED format
# @param f is the file name
# @param auto_groups boolean parameter for creating/not creating
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
def ExportMED(self, f, auto_groups=0, version=MED_V2_2):
self.mesh.ExportToMED(f, auto_groups, version)
- ## Export the mesh in a file with the DAT format
- # @param f is the file name
+ ## Exports the mesh in a file in DAT format
+ # @param f the file name
def ExportDAT(self, f):
self.mesh.ExportDAT(f)
- ## Export the mesh in a file with the UNV format
- # @param f is the file name
+ ## Exports the mesh in a file in UNV format
+ # @param f the file name
def ExportUNV(self, f):
self.mesh.ExportUNV(f)
- ## Export the mesh in a file with the STL format
- # @param f is the file name
- # @param ascii defined the kind of file contents
+ ## Export the mesh in a file in STL format
+ # @param f the file name
+ # @param ascii defines the file encoding
def ExportSTL(self, f, ascii=1):
self.mesh.ExportSTL(f, ascii)
# ----------------------
## Creates an empty mesh group
- # @param elementType is the type of elements in the group
- # @param name is the name of the mesh group
+ # @param elementType the type of elements in the group
+ # @param name the name of the mesh group
# @return SMESH_Group
def CreateEmptyGroup(self, elementType, name):
return self.mesh.CreateGroup(elementType, name)
- ## Creates a mesh group based on geometric object \a grp
- # and give a \a name, \n if this parameter is not defined
- # the name is the same as the geometric group name
- # @param grp is a geometric group, a vertex, an edge, a face or a solid
- # @param name is the name of the mesh group
+ ## Creates a mesh group based on the geometrical object \a grp
+ # and gives a \a name, \n if this parameter is not defined
+ # the name is the same as the geometrical group name
+ # @param grp a geometrical group, a vertex, an edge, a face or a solid
+ # @param name the name of the mesh group
# @return SMESH_GroupOnGeom
def GroupOnGeom(self, grp, name="", typ=None):
if name == "":
else:
return self.mesh.CreateGroupFromGEOM(typ, name, grp)
- ## Create a mesh group by the given ids of elements
- # @param groupName is the name of the mesh group
- # @param elementType is the type of elements in the group
- # @param elemIDs is the list of ids
+ ## Creates a mesh group by the given ids of elements
+ # @param groupName the name of the mesh group
+ # @param elementType the type of elements in the group
+ # @param elemIDs the list of ids
# @return SMESH_Group
def MakeGroupByIds(self, groupName, elementType, elemIDs):
group = self.mesh.CreateGroup(elementType, groupName)
group.Add(elemIDs)
return group
- ## Create a mesh group by the given conditions
- # @param groupName is the name of the mesh group
- # @param elementType is the type of elements in the group
- # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
- # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
- # @param Treshold is threshold value (range of id ids as string, shape, numeric)
- # @param UnaryOp is FT_LogicalNOT or FT_Undefined
+ ## Creates a mesh group by the given conditions
+ # @param groupName the name of the mesh group
+ # @param elementType the type of elements in the group
+ # @param CritType the type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
+ # @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
+ # @param Treshold the threshold value (range of id ids as string, shape, numeric)
+ # @param UnaryOp FT_LogicalNOT or FT_Undefined
# @return SMESH_Group
def MakeGroup(self,
groupName,
group = self.MakeGroupByCriterion(groupName, aCriterion)
return group
- ## Create a mesh group by the given criterion
- # @param groupName is the name of the mesh group
- # @param Criterion is the instance of Criterion class
+ ## Creates a mesh group by the given criterion
+ # @param groupName the name of the mesh group
+ # @param Criterion the instance of Criterion class
# @return SMESH_Group
def MakeGroupByCriterion(self, groupName, Criterion):
aFilterMgr = self.smeshpyD.CreateFilterManager()
group = self.MakeGroupByFilter(groupName, aFilter)
return group
- ## Create a mesh group by the given criteria(list of criterions)
- # @param groupName is the name of the mesh group
- # @param Criteria is the list of criterions
+ ## Creates a mesh group by the given criteria (list of criteria)
+ # @param groupName the name of the mesh group
+ # @param Criteria the list of criteria
# @return SMESH_Group
def MakeGroupByCriteria(self, groupName, theCriteria):
aFilterMgr = self.smeshpyD.CreateFilterManager()
group = self.MakeGroupByFilter(groupName, aFilter)
return group
- ## Create a mesh group by the given filter
- # @param groupName is the name of the mesh group
- # @param Criterion is the instance of Filter class
+ ## Creates a mesh group by the given filter
+ # @param groupName the name of the mesh group
+ # @param Criterion the instance of Filter class
# @return SMESH_Group
def MakeGroupByFilter(self, groupName, theFilter):
anIds = theFilter.GetElementsId(self.mesh)
group = self.MakeGroupByIds(groupName, anElemType, anIds)
return group
- ## Pass mesh elements through the given filter and return ids
- # @param theFilter is SMESH_Filter
- # @return list of ids
+ ## Passes mesh elements through the given filter and return IDs of fitting elements
+ # @param theFilter SMESH_Filter
+ # @return a list of ids
def GetIdsFromFilter(self, theFilter):
return theFilter.GetElementsId(self.mesh)
- ## Verify whether 2D mesh element has free edges(edges connected to one face only)\n
- # Returns list of special structures(borders).
- # @return list of SMESH.FreeEdges.Border structure: edge id and two its nodes ids.
+ ## Verifies whether a 2D mesh element has free edges (edges connected to one face only)\n
+ # Returns a list of special structures (borders).
+ # @return a list of SMESH.FreeEdges.Border structure: edge id and ids of two its nodes.
def GetFreeBorders(self):
aFilterMgr = self.smeshpyD.CreateFilterManager()
aPredicate = aFilterMgr.CreateFreeEdges()
aBorders = aPredicate.GetBorders()
return aBorders
- ## Remove a group
+ ## Removes a group
def RemoveGroup(self, group):
self.mesh.RemoveGroup(group)
- ## Remove group with its contents
+ ## Removes a group with its contents
def RemoveGroupWithContents(self, group):
self.mesh.RemoveGroupWithContents(group)
- ## Get the list of groups existing in the mesh
- # @return sequence of SMESH_GroupBase
+ ## Gets the list of groups existing in the mesh
+ # @return a sequence of SMESH_GroupBase
def GetGroups(self):
return self.mesh.GetGroups()
- ## Get number of groups existing in the mesh
- # @return quantity of groups as an integer value
+ ## Gets the number of groups existing in the mesh
+ # @return the quantity of groups as an integer value
def NbGroups(self):
return self.mesh.NbGroups()
- ## Get the list of names of groups existing in the mesh
+ ## Gets the list of names of groups existing in the mesh
# @return list of strings
def GetGroupNames(self):
groups = self.GetGroups()
names.append(group.GetName())
return names
- ## Union of two groups
- # New group is created. All mesh elements that are
- # present in initial groups are added to the new one
+ ## Produces a union of two groups
+ # A new group is created. All mesh elements that are
+ # present in the initial groups are added to the new one
# @return an instance of SMESH_Group
def UnionGroups(self, group1, group2, name):
return self.mesh.UnionGroups(group1, group2, name)
- ## Intersection of two groups
- # New group is created. All mesh elements that are
- # present in both initial groups are added to the new one.
+ ## Prodices an intersection of two groups
+ # A new group is created. All mesh elements that are common
+ # for the two initial groups are added to the new one.
# @return an instance of SMESH_Group
def IntersectGroups(self, group1, group2, name):
return self.mesh.IntersectGroups(group1, group2, name)
- ## Cut of two groups
- # New group is created. All mesh elements that are present in
- # main group but do not present in tool group are added to the new one
+ ## Produces a cut of two groups
+ # A new group is created. All mesh elements that are present in
+ # the main group but are not present in the tool group are added to the new one
# @return an instance of SMESH_Group
def CutGroups(self, mainGroup, toolGroup, name):
return self.mesh.CutGroups(mainGroup, toolGroup, name)
# Get some info about mesh:
# ------------------------
- ## Get the log of nodes and elements added or removed since previous
- # clear of the log.
+ ## Returns the log of nodes and elements added or removed
+ # since the previous clear of the log.
# @param clearAfterGet log is emptied after Get (safe if concurrents access)
# @return list of log_block structures:
# commandType
def GetLog(self, clearAfterGet):
return self.mesh.GetLog(clearAfterGet)
- ## Clear the log of nodes and elements added or removed since previous
+ ## Clears the log of nodes and elements added or removed since the previous
# clear. Must be used immediately after GetLog if clearAfterGet is false.
def ClearLog(self):
self.mesh.ClearLog()
- ## Toggle auto color mode on the object.
- # @param theAutoColor flag which toggles auto color mode.
+ ## Toggles auto color mode on the object.
+ # @param theAutoColor the flag which toggles auto color mode.
def SetAutoColor(self, theAutoColor):
self.mesh.SetAutoColor(theAutoColor)
- ## Get flag of object auto color mode.
+ ## Gets flag of object auto color mode.
# @return True or False
def GetAutoColor(self):
return self.mesh.GetAutoColor()
- ## Get the internal Id
+ ## Gets the internal ID
# @return integer value, which is the internal Id of the mesh
def GetId(self):
return self.mesh.GetId()
def GetStudyId(self):
return self.mesh.GetStudyId()
- ## Check group names for duplications.
- # Consider maximum group name length stored in MED file.
+ ## Checks the group names for duplications.
+ # Consider the maximum group name length stored in MED file.
# @return True or False
def HasDuplicatedGroupNamesMED(self):
return self.mesh.HasDuplicatedGroupNamesMED()
- ## Obtain mesh editor tool
+ ## Obtains the mesh editor tool
# @return an instance of SMESH_MeshEditor
def GetMeshEditor(self):
return self.mesh.GetMeshEditor()
- ## Get MED Mesh
+ ## Gets MED Mesh
# @return an instance of SALOME_MED::MESH
def GetMEDMesh(self):
return self.mesh.GetMEDMesh()
# Get informations about mesh contents:
# ------------------------------------
- ## Returns number of nodes in mesh
+ ## Returns the number of nodes in the mesh
# @return an integer value
def NbNodes(self):
return self.mesh.NbNodes()
- ## Returns number of elements in mesh
+ ## Returns the number of elements in the mesh
# @return an integer value
def NbElements(self):
return self.mesh.NbElements()
- ## Returns number of edges in mesh
+ ## Returns the number of edges in the mesh
# @return an integer value
def NbEdges(self):
return self.mesh.NbEdges()
- ## Returns number of edges with given order in mesh
- # @param elementOrder is order of elements:
+ ## Returns the number of edges with the given order in the mesh
+ # @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbEdgesOfOrder(self, elementOrder):
return self.mesh.NbEdgesOfOrder(elementOrder)
- ## Returns number of faces in mesh
+ ## Returns the number of faces in the mesh
# @return an integer value
def NbFaces(self):
return self.mesh.NbFaces()
- ## Returns number of faces with given order in mesh
- # @param elementOrder is order of elements:
+ ## Returns the number of faces with the given order in the mesh
+ # @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbFacesOfOrder(self, elementOrder):
return self.mesh.NbFacesOfOrder(elementOrder)
- ## Returns number of triangles in mesh
+ ## Returns the number of triangles in the mesh
# @return an integer value
def NbTriangles(self):
return self.mesh.NbTriangles()
- ## Returns number of triangles with given order in mesh
- # @param elementOrder is order of elements:
+ ## Returns the number of triangles with the given order in the mesh
+ # @param elementOrder is the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbTrianglesOfOrder(self, elementOrder):
return self.mesh.NbTrianglesOfOrder(elementOrder)
- ## Returns number of quadrangles in mesh
+ ## Returns the number of quadrangles in the mesh
# @return an integer value
def NbQuadrangles(self):
return self.mesh.NbQuadrangles()
- ## Returns number of quadrangles with given order in mesh
- # @param elementOrder is order of elements:
+ ## Returns the number of quadrangles with the given order in the mesh
+ # @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbQuadranglesOfOrder(self, elementOrder):
return self.mesh.NbQuadranglesOfOrder(elementOrder)
- ## Returns number of polygons in mesh
+ ## Returns the number of polygons in the mesh
# @return an integer value
def NbPolygons(self):
return self.mesh.NbPolygons()
- ## Returns number of volumes in mesh
+ ## Returns the number of volumes in the mesh
# @return an integer value
def NbVolumes(self):
return self.mesh.NbVolumes()
- ## Returns number of volumes with given order in mesh
- # @param elementOrder is order of elements:
+ ## Returns the number of volumes with the given order in the mesh
+ # @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbVolumesOfOrder(self, elementOrder):
return self.mesh.NbVolumesOfOrder(elementOrder)
- ## Returns number of tetrahedrons in mesh
+ ## Returns the number of tetrahedrons in the mesh
# @return an integer value
def NbTetras(self):
return self.mesh.NbTetras()
- ## Returns number of tetrahedrons with given order in mesh
- # @param elementOrder is order of elements:
+ ## Returns the number of tetrahedrons with the given order in the mesh
+ # @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbTetrasOfOrder(self, elementOrder):
return self.mesh.NbTetrasOfOrder(elementOrder)
- ## Returns number of hexahedrons in mesh
+ ## Returns the number of hexahedrons in the mesh
# @return an integer value
def NbHexas(self):
return self.mesh.NbHexas()
- ## Returns number of hexahedrons with given order in mesh
- # @param elementOrder is order of elements:
+ ## Returns the number of hexahedrons with the given order in the mesh
+ # @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbHexasOfOrder(self, elementOrder):
return self.mesh.NbHexasOfOrder(elementOrder)
- ## Returns number of pyramids in mesh
+ ## Returns the number of pyramids in the mesh
# @return an integer value
def NbPyramids(self):
return self.mesh.NbPyramids()
- ## Returns number of pyramids with given order in mesh
- # @param elementOrder is order of elements:
+ ## Returns the number of pyramids with the given order in the mesh
+ # @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbPyramidsOfOrder(self, elementOrder):
return self.mesh.NbPyramidsOfOrder(elementOrder)
- ## Returns number of prisms in mesh
+ ## Returns the number of prisms in the mesh
# @return an integer value
def NbPrisms(self):
return self.mesh.NbPrisms()
- ## Returns number of prisms with given order in mesh
- # @param elementOrder is order of elements:
+ ## Returns the number of prisms with the given order in the mesh
+ # @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbPrismsOfOrder(self, elementOrder):
return self.mesh.NbPrismsOfOrder(elementOrder)
- ## Returns number of polyhedrons in mesh
+ ## Returns the number of polyhedrons in the mesh
# @return an integer value
def NbPolyhedrons(self):
return self.mesh.NbPolyhedrons()
- ## Returns number of submeshes in mesh
+ ## Returns the number of submeshes in the mesh
# @return an integer value
def NbSubMesh(self):
return self.mesh.NbSubMesh()
- ## Returns list of mesh elements ids
- # @return list of integer values
+ ## Returns the list of mesh elements IDs
+ # @return the list of integer values
def GetElementsId(self):
return self.mesh.GetElementsId()
- ## Returns list of ids of mesh elements with given type
- # @param elementType is required type of elements
+ ## Returns the list of IDs of mesh elements with the given type
+ # @param elementType the required type of elements
# @return list of integer values
def GetElementsByType(self, elementType):
return self.mesh.GetElementsByType(elementType)
- ## Returns list of mesh nodes ids
- # @return list of integer values
+ ## Returns the list of mesh nodes IDs
+ # @return the list of integer values
def GetNodesId(self):
return self.mesh.GetNodesId()
- # Get informations about mesh elements:
+ # Get the information about mesh elements:
# ------------------------------------
- ## Returns type of mesh element
- # @return value from SMESH::ElementType enumeration
+ ## Returns the type of mesh element
+ # @return the value from SMESH::ElementType enumeration
def GetElementType(self, id, iselem):
return self.mesh.GetElementType(id, iselem)
- ## Returns list of submesh elements ids
- # @param Shape is geom object(subshape) IOR
- # Shape must be subshape of a ShapeToMesh()
- # @return list of integer values
+ ## Returns the list of submesh elements IDs
+ # @param Shape a geom object(subshape) IOR
+ # Shape must be the subshape of a ShapeToMesh()
+ # @return the list of integer values
def GetSubMeshElementsId(self, Shape):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
ShapeID = Shape
return self.mesh.GetSubMeshElementsId(ShapeID)
- ## Returns list of submesh nodes ids
- # @param Shape is geom object(subshape) IOR
- # Shape must be subshape of a ShapeToMesh()
- # @return list of integer values
+ ## Returns the list of submesh nodes IDs
+ # @param Shape a geom object(subshape) IOR
+ # Shape must be the subshape of a ShapeToMesh()
+ # @return the list of integer values
def GetSubMeshNodesId(self, Shape, all):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
ShapeID = Shape
return self.mesh.GetSubMeshNodesId(ShapeID, all)
- ## Returns list of ids of submesh elements with given type
- # @param Shape is geom object(subshape) IOR
- # Shape must be subshape of a ShapeToMesh()
- # @return list of integer values
+ ## Returns the list of IDs of submesh elements with the given type
+ # @param Shape a geom object(subshape) IOR
+ # Shape must be a subshape of a ShapeToMesh()
+ # @return the list of integer values
def GetSubMeshElementType(self, Shape):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
ShapeID = Shape
return self.mesh.GetSubMeshElementType(ShapeID)
- ## Get mesh description
+ ## Gets the mesh description
# @return string value
def Dump(self):
return self.mesh.Dump()
- # Get information about nodes and elements of mesh by its ids:
+ # Get the information about nodes and elements of a mesh by its IDs:
# -----------------------------------------------------------
- ## Get XYZ coordinates of node
- # \n If there is not node for given ID - returns empty list
+ ## Gets XYZ coordinates of a node
+ # \n If there is no nodes for the given ID - returns an empty list
# @return a list of double precision values
def GetNodeXYZ(self, id):
return self.mesh.GetNodeXYZ(id)
- ## For given node returns list of IDs of inverse elements
- # \n If there is not node for given ID - returns empty list
- # @return list of integer values
+ ## Returns list of IDs of inverse elements for the given node
+ # \n If there is no node for the given ID - returns an empty list
+ # @return a list of integer values
def GetNodeInverseElements(self, id):
return self.mesh.GetNodeInverseElements(id)
- ## @brief Return position of a node on shape
+ ## @brief Returns the position of a node on the shape
# @return SMESH::NodePosition
def GetNodePosition(self,NodeID):
return self.mesh.GetNodePosition(NodeID)
- ## If given element is node returns IDs of shape from position
- # \n If there is not node for given ID - returns -1
- # @return integer value
+ ## If the given element is a node, returns the ID of shape
+ # \n If there is no node for the given ID - returns -1
+ # @return an integer value
def GetShapeID(self, id):
return self.mesh.GetShapeID(id)
- ## For given element returns ID of result shape after
- # FindShape() from SMESH_MeshEditor
- # \n If there is not element for given ID - returns -1
- # @return integer value
+ ## Returns the ID of the result shape after
+ # FindShape() from SMESH_MeshEditor for the given element
+ # \n If there is no element for the given ID - returns -1
+ # @return an integer value
def GetShapeIDForElem(self,id):
return self.mesh.GetShapeIDForElem(id)
- ## Returns number of nodes for given element
- # \n If there is not element for given ID - returns -1
- # @return integer value
+ ## Returns the number of nodes for the given element
+ # \n If there is no element for the given ID - returns -1
+ # @return an integer value
def GetElemNbNodes(self, id):
return self.mesh.GetElemNbNodes(id)
- ## Returns ID of node by given index for given element
- # \n If there is not element for given ID - returns -1
- # \n If there is not node for given index - returns -2
- # @return integer value
+ ## Returns the node ID the given index for the given element
+ # \n If there is no element for the given ID - returns -1
+ # \n If there is no node for the given index - returns -2
+ # @return an integer value
def GetElemNode(self, id, index):
return self.mesh.GetElemNode(id, index)
- ## Returns IDs of nodes of given element
- # @return list of integer values
+ ## Returns the IDs of nodes of the given element
+ # @return a list of integer values
def GetElemNodes(self, id):
return self.mesh.GetElemNodes(id)
- ## Returns true if given node is medium node in given quadratic element
+ ## Returns true if the given node is the medium node in the given quadratic element
def IsMediumNode(self, elementID, nodeID):
return self.mesh.IsMediumNode(elementID, nodeID)
- ## Returns true if given node is medium node in one of quadratic elements
+ ## Returns true if the given node is the medium node in one of quadratic elements
def IsMediumNodeOfAnyElem(self, nodeID, elementType):
return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
- ## Returns number of edges for given element
+ ## Returns the number of edges for the given element
def ElemNbEdges(self, id):
return self.mesh.ElemNbEdges(id)
- ## Returns number of faces for given element
+ ## Returns the number of faces for the given element
def ElemNbFaces(self, id):
return self.mesh.ElemNbFaces(id)
- ## Returns true if given element is polygon
+ ## Returns true if the given element is a polygon
def IsPoly(self, id):
return self.mesh.IsPoly(id)
- ## Returns true if given element is quadratic
+ ## Returns true if the given element is quadratic
def IsQuadratic(self, id):
return self.mesh.IsQuadratic(id)
- ## Returns XYZ coordinates of bary center for given element
- # \n If there is not element for given ID - returns empty list
+ ## Returns XYZ coordinates of the barycenter of the given element
+ # \n If there is no element for the given ID - returns an empty list
# @return a list of three double values
def BaryCenter(self, id):
return self.mesh.BaryCenter(id)
# Mesh edition (SMESH_MeshEditor functionality):
# ---------------------------------------------
- ## Removes elements from mesh by ids
- # @param IDsOfElements is list of ids of elements to remove
+ ## Removes the elements from the mesh by ids
+ # @param IDsOfElements is a list of ids of elements to remove
# @return True or False
def RemoveElements(self, IDsOfElements):
return self.editor.RemoveElements(IDsOfElements)
## Removes nodes from mesh by ids
- # @param IDsOfNodes is list of ids of nodes to remove
+ # @param IDsOfNodes is a list of ids of nodes to remove
# @return True or False
def RemoveNodes(self, IDsOfNodes):
return self.editor.RemoveNodes(IDsOfNodes)
- ## Add node to mesh by coordinates
+ ## Add a node to the mesh by coordinates
# @return Id of the new node
def AddNode(self, x, y, z):
return self.editor.AddNode( x, y, z)
- ## Create edge either linear or quadratic (this is determined
- # by number of given nodes).
- # @param IdsOfNodes List of node IDs for creation of element.
- # Needed order of nodes in this list corresponds to description
+ ## Creates a linear or quadratic edge (this is determined
+ # by the number of given nodes).
+ # @param IdsOfNodes the list of node IDs for creation of the element.
+ # The order of nodes in this list should correspond to the description
# of MED. \n This description is located by the following link:
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
- # @return Id of the new edge
+ # @return the Id of the new edge
def AddEdge(self, IDsOfNodes):
return self.editor.AddEdge(IDsOfNodes)
- ## Create face either linear or quadratic (this is determined
- # by number of given nodes).
- # @param IdsOfNodes List of node IDs for creation of element.
- # Needed order of nodes in this list corresponds to description
+ ## Creates a linear or quadratic face (this is determined
+ # by the number of given nodes).
+ # @param IdsOfNodes the list of node IDs for creation of the element.
+ # The order of nodes in this list should correspond to the description
# of MED. \n This description is located by the following link:
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
- # @return Id of the new face
+ # @return the Id of the new face
def AddFace(self, IDsOfNodes):
return self.editor.AddFace(IDsOfNodes)
- ## Add polygonal face to mesh by list of nodes ids
- # @return Id of the new face
+ ## Adds a polygonal face to the mesh by the list of node IDs
+ # @return the Id of the new face
def AddPolygonalFace(self, IdsOfNodes):
return self.editor.AddPolygonalFace(IdsOfNodes)
- ## Create volume both similar and quadratic (this is determed
- # by number of given nodes).
- # @param IdsOfNodes List of node IDs for creation of element.
- # Needed order of nodes in this list corresponds to description
+ ## Creates both simple and quadratic volume (this is determined
+ # by the number of given nodes).
+ # @param IdsOfNodes the list of node IDs for creation of the element.
+ # The order of nodes in this list should correspond to the description
# of MED. \n This description is located by the following link:
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
- # @return Id of the new volumic element
+ # @return the Id of the new volumic element
def AddVolume(self, IDsOfNodes):
return self.editor.AddVolume(IDsOfNodes)
- ## Create volume of many faces, giving nodes for each face.
- # @param IdsOfNodes List of node IDs for volume creation face by face.
- # @param Quantities List of integer values, Quantities[i]
- # gives quantity of nodes in face number i.
- # @return Id of the new volumic element
+ ## Creates a volume of many faces, giving nodes for each face.
+ # @param IdsOfNodes the list of node IDs for volume creation face by face.
+ # @param Quantities the list of integer values, Quantities[i]
+ # gives the quantity of nodes in face number i.
+ # @return the Id of the new volumic element
def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
- ## Create volume of many faces, giving IDs of existing faces.
- # @param IdsOfFaces List of face IDs for volume creation.
+ ## Creates a volume of many faces, giving the IDs of the existing faces.
+ # @param IdsOfFaces the list of face IDs for volume creation.
#
- # Note: The created volume will refer only to nodes
- # of the given faces, not to the faces itself.
- # @return Id of the new volumic element
+ # Note: The created volume will refer only to the nodes
+ # of the given faces, not to the faces themselves.
+ # @return the Id of the new volumic element
def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
- ## @brief Bind a node to a vertex
- # @param NodeID - node ID
- # @param Vertex - vertex or vertex ID
- # @return True if succeed else raise an exception
+ ## @brief Binds a node to a vertex
+ # @param NodeID a node ID
+ # @param Vertex a vertex or vertex ID
+ # @return True if succeed else raises an exception
def SetNodeOnVertex(self, NodeID, Vertex):
if ( isinstance( Vertex, geompyDC.GEOM._objref_GEOM_Object)):
VertexID = Vertex.GetSubShapeIndices()[0]
return True
- ## @brief Store node position on an edge
- # @param NodeID - node ID
- # @param Edge - edge or edge ID
- # @param paramOnEdge - parameter on edge where the node is located
- # @return True if succeed else raise an exception
+ ## @brief Stores the node position on an edge
+ # @param NodeID a node ID
+ # @param Edge an edge or edge ID
+ # @param paramOnEdge a parameter on the edge where the node is located
+ # @return True if succeed else raises an exception
def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge):
if ( isinstance( Edge, geompyDC.GEOM._objref_GEOM_Object)):
EdgeID = Edge.GetSubShapeIndices()[0]
raise ValueError, inst.details.text
return True
- ## @brief Store node position on a face
- # @param NodeID - node ID
- # @param Face - face or face ID
- # @param u - U parameter on face where the node is located
- # @param v - V parameter on face where the node is located
- # @return True if succeed else raise an exception
+ ## @brief Stores node position on a face
+ # @param NodeID a node ID
+ # @param Face a face or face ID
+ # @param u U parameter on the face where the node is located
+ # @param v V parameter on the face where the node is located
+ # @return True if succeed else raises an exception
def SetNodeOnFace(self, NodeID, Face, u, v):
if ( isinstance( Face, geompyDC.GEOM._objref_GEOM_Object)):
FaceID = Face.GetSubShapeIndices()[0]
raise ValueError, inst.details.text
return True
- ## @brief Bind a node to a solid
- # @param NodeID - node ID
- # @param Solid - solid or solid ID
- # @return True if succeed else raise an exception
+ ## @brief Binds a node to a solid
+ # @param NodeID a node ID
+ # @param Solid a solid or solid ID
+ # @return True if succeed else raises an exception
def SetNodeInVolume(self, NodeID, Solid):
if ( isinstance( Solid, geompyDC.GEOM._objref_GEOM_Object)):
SolidID = Solid.GetSubShapeIndices()[0]
return True
## @brief Bind an element to a shape
- # @param ElementID - element ID
- # @param Shape - shape or shape ID
- # @return True if succeed else raise an exception
+ # @param ElementID an element ID
+ # @param Shape a shape or shape ID
+ # @return True if succeed else raises an exception
def SetMeshElementOnShape(self, ElementID, Shape):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
return True
- ## Move node with given id
- # @param NodeID id of the node
- # @param x new X coordinate
- # @param y new Y coordinate
- # @param z new Z coordinate
+ ## Moves the node with the given id
+ # @param NodeID the id of the node
+ # @param x a new X coordinate
+ # @param y a new Y coordinate
+ # @param z a new Z coordinate
# @return True if succeed else False
def MoveNode(self, NodeID, x, y, z):
return self.editor.MoveNode(NodeID, x, y, z)
- ## Find a node closest to a point
- # @param x X coordinate of a point
- # @param y Y coordinate of a point
- # @param z Z coordinate of a point
- # @return id of a node
+ ## Finds the node closest to a point
+ # @param x the X coordinate of a point
+ # @param y the Y coordinate of a point
+ # @param z the Z coordinate of a point
+ # @return the ID of a node
def FindNodeClosestTo(self, x, y, z):
preview = self.mesh.GetMeshEditPreviewer()
return preview.MoveClosestNodeToPoint(x, y, z, -1)
- ## Find a node closest to a point and move it to a point location
- # @param x X coordinate of a point
- # @param y Y coordinate of a point
- # @param z Z coordinate of a point
- # @return id of a moved node
+ ## Finds the node closest to a point and moves it to a point location
+ # @param x the X coordinate of a point
+ # @param y the Y coordinate of a point
+ # @param z the Z coordinate of a point
+ # @return the ID of a moved node
def MeshToPassThroughAPoint(self, x, y, z):
return self.editor.MoveClosestNodeToPoint(x, y, z, -1)
- ## Replace two neighbour triangles sharing Node1-Node2 link
- # with ones built on the same 4 nodes but having other common link.
- # @param NodeID1 first node id
- # @param NodeID2 second node id
- # @return false if proper faces not found
+ ## Replaces two neighbour triangles sharing Node1-Node2 link
+ # with the triangles built on the same 4 nodes but having other common link.
+ # @param NodeID1 the ID of the first node
+ # @param NodeID2 the ID of the second node
+ # @return false if proper faces were not found
def InverseDiag(self, NodeID1, NodeID2):
return self.editor.InverseDiag(NodeID1, NodeID2)
- ## Replace two neighbour triangles sharing Node1-Node2 link
+ ## Replaces two neighbour triangles sharing Node1-Node2 link
# with a quadrangle built on the same 4 nodes.
- # @param NodeID1 first node id
- # @param NodeID2 second node id
- # @return false if proper faces not found
+ # @param NodeID1 the ID of the first node
+ # @param NodeID2 the ID of the second node
+ # @return false if proper faces were not found
def DeleteDiag(self, NodeID1, NodeID2):
return self.editor.DeleteDiag(NodeID1, NodeID2)
- ## Reorient elements by ids
- # @param IDsOfElements if undefined reorient all mesh elements
+ ## Reorients elements by ids
+ # @param IDsOfElements if undefined reorients all mesh elements
# @return True if succeed else False
def Reorient(self, IDsOfElements=None):
if IDsOfElements == None:
IDsOfElements = self.GetElementsId()
return self.editor.Reorient(IDsOfElements)
- ## Reorient all elements of the object
- # @param theObject is mesh, submesh or group
+ ## Reorients all elements of the object
+ # @param theObject mesh, submesh or group
# @return True if succeed else False
def ReorientObject(self, theObject):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.ReorientObject(theObject)
- ## Fuse neighbour triangles into quadrangles.
+ ## Fuses the neighbouring triangles into quadrangles.
# @param IDsOfElements The triangles to be fused,
- # @param theCriterion is FT_...; used to choose a neighbour to fuse with.
- # @param MaxAngle is a max angle between element normals at which fusion
+ # @param theCriterion is FT_...; used to choose a neighbour to fuse with.
+ # @param MaxAngle is the maximum angle between element normals at which the fusion
# is still performed; theMaxAngle is mesured in radians.
# @return TRUE in case of success, FALSE otherwise.
def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
IDsOfElements = self.GetElementsId()
return self.editor.TriToQuad(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
- ## Fuse neighbour triangles of the object into quadrangles
+ ## Fuses the neighbouring triangles of the object into quadrangles
# @param theObject is mesh, submesh or group
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
- # @param MaxAngle is a max angle between element normals at which fusion
+ # @param MaxAngle a max angle between element normals at which the fusion
# is still performed; theMaxAngle is mesured in radians.
# @return TRUE in case of success, FALSE otherwise.
def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
theObject = theObject.GetMesh()
return self.editor.TriToQuadObject(theObject, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
- ## Split quadrangles into triangles.
+ ## Splits quadrangles into triangles.
# @param IDsOfElements the faces to be splitted.
- # @param theCriterion is FT_...; used to choose a diagonal for splitting.
+ # @param theCriterion FT_...; used to choose a diagonal for splitting.
# @return TRUE in case of success, FALSE otherwise.
def QuadToTri (self, IDsOfElements, theCriterion):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.QuadToTri(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion))
- ## Split quadrangles into triangles.
- # @param theObject object to taking list of elements from, is mesh, submesh or group
- # @param theCriterion is FT_...; used to choose a diagonal for splitting.
+ ## Splits quadrangles into triangles.
+ # @param theObject the object from which the list of elements is taken, this is mesh, submesh or group
+ # @param theCriterion FT_...; used to choose a diagonal for splitting.
# @return TRUE in case of success, FALSE otherwise.
def QuadToTriObject (self, theObject, theCriterion):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.QuadToTriObject(theObject, self.smeshpyD.GetFunctor(theCriterion))
- ## Split quadrangles into triangles.
- # @param theElems The faces to be splitted
+ ## Splits quadrangles into triangles.
+ # @param theElems the faces to be splitted
# @param the13Diag is used to choose a diagonal for splitting.
# @return TRUE in case of success, FALSE otherwise.
def SplitQuad (self, IDsOfElements, Diag13):
IDsOfElements = self.GetElementsId()
return self.editor.SplitQuad(IDsOfElements, Diag13)
- ## Split quadrangles into triangles.
- # @param theObject is object to taking list of elements from, is mesh, submesh or group
+ ## Splits quadrangles into triangles.
+ # @param theObject the object from which the list of elements is taken, this is mesh, submesh or group
# @return TRUE in case of success, FALSE otherwise.
def SplitQuadObject (self, theObject, Diag13):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.SplitQuadObject(theObject, Diag13)
- ## Find better splitting of the given quadrangle.
- # @param IDOfQuad ID of the quadrangle to be splitted.
- # @param theCriterion is FT_...; a criterion to choose a diagonal for splitting.
+ ## Finds a better splitting of the given quadrangle.
+ # @param IDOfQuad the ID of the quadrangle to be splitted.
+ # @param theCriterion FT_...; a criterion to choose a diagonal for splitting.
# @return 1 if 1-3 diagonal is better, 2 if 2-4
# diagonal is better, 0 if error occurs.
def BestSplit (self, IDOfQuad, theCriterion):
return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion))
- ## Split quadrangle faces near triangular facets of volumes
+ ## Splits quadrangle faces near triangular facets of volumes
#
def SplitQuadsNearTriangularFacets(self):
faces_array = self.GetElementsByType(SMESH.FACE)
isVolumeFound = True
self.SplitQuad([face_id], True) # diagonal 1-3
- ## @brief Split hexahedrons into tetrahedrons.
+ ## @brief Splits hexahedrons into tetrahedrons.
#
- # Use pattern mapping functionality for splitting.
- # @param theObject object to take list of hexahedrons from; is mesh, submesh or group.
- # @param theNode000,theNode001 is in range [0,7]; give an orientation of the
- # pattern relatively each hexahedron: the (0,0,0) key-point of pattern
+ # This operation uses pattern mapping functionality for splitting.
+ # @param theObject the object from which the list of hexahedrons is taken; this is mesh, submesh or group.
+ # @param theNode000,theNode001 within the range [0,7]; gives the orientation of the
+ # pattern relatively each hexahedron: the (0,0,0) key-point of the pattern
# will be mapped into <theNode000>-th node of each volume, the (0,0,1)
# key-point will be mapped into <theNode001>-th node of each volume.
- # The (0,0,0) key-point of used pattern corresponds to not split corner.
+ # The (0,0,0) key-point of the used pattern corresponds to a non-split corner.
# @return TRUE in case of success, FALSE otherwise.
def SplitHexaToTetras (self, theObject, theNode000, theNode001):
# Pattern: 5.---------.6
## @brief Split hexahedrons into prisms.
#
- # Use pattern mapping functionality for splitting.
- # @param theObject object to take list of hexahedrons from; is mesh, submesh or group.
- # @param theNode000,theNode001 is in range [0,7]; give an orientation of the
- # pattern relatively each hexahedron: the (0,0,0) key-point of pattern
- # will be mapped into <theNode000>-th node of each volume, the (0,0,1)
- # key-point will be mapped into <theNode001>-th node of each volume.
- # The edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
+ # Uses the pattern mapping functionality for splitting.
+ # @param theObject the object (mesh, submesh or group) from where the list of hexahedrons is taken;
+ # @param theNode000,theNode001 (within the range [0,7]) gives the orientation of the
+ # pattern relatively each hexahedron: keypoint (0,0,0) of the pattern
+ # will be mapped into the <theNode000>-th node of each volume, keypoint (0,0,1)
+ # will be mapped into the <theNode001>-th node of each volume.
+ # Edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
# @return TRUE in case of success, FALSE otherwise.
def SplitHexaToPrisms (self, theObject, theNode000, theNode001):
# Pattern: 5.---------.6
isDone = pattern.MakeMesh(self.mesh, False, False)
if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
- # split quafrangle faces near triangular facets of volumes
+ # Splits quafrangle faces near triangular facets of volumes
self.SplitQuadsNearTriangularFacets()
return isDone
- ## Smooth elements
- # @param IDsOfElements list if ids of elements to smooth
- # @param IDsOfFixedNodes list of ids of fixed nodes.
+ ## Smoothes elements
+ # @param IDsOfElements the list if ids of elements to smooth
+ # @param IDsOfFixedNodes the list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
- # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxNbOfIterations the maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
- ## Smooth elements belong to given object
- # @param theObject object to smooth
- # @param IDsOfFixedNodes list of ids of fixed nodes.
+ ## Smoothes elements which belong to the given object
+ # @param theObject the object to smooth
+ # @param IDsOfFixedNodes the list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
- # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxNbOfIterations the maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxxAspectRatio, Method)
- ## Parametric smooth the given elements
- # @param IDsOfElements list if ids of elements to smooth
- # @param IDsOfFixedNodes list of ids of fixed nodes.
+ ## Parametrically smoothes the given elements
+ # @param IDsOfElements the list if ids of elements to smooth
+ # @param IDsOfFixedNodes the list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
- # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxNbOfIterations the maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
- ## Parametric smooth elements belong to given object
- # @param theObject object to smooth
- # @param IDsOfFixedNodes list of ids of fixed nodes.
+ ## Parametrically smoothes the elements which belong to the given object
+ # @param theObject the object to smooth
+ # @param IDsOfFixedNodes the list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
- # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxNbOfIterations the maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
- # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
+ # @param Method Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
- ## Converts all mesh to quadratic one, deletes old elements, replacing
- # them with quadratic ones with the same id.
+ ## Converts the mesh to quadratic, deletes old elements, replacing
+ # them with quadratic with the same id.
def ConvertToQuadratic(self, theForce3d):
self.editor.ConvertToQuadratic(theForce3d)
- ## Converts all mesh from quadratic to ordinary ones,
+ ## Converts the mesh from quadratic to ordinary,
# deletes old quadratic elements, \n replacing
# them with ordinary mesh elements with the same id.
# @return TRUE in case of success, FALSE otherwise.
def RenumberElements(self):
self.editor.RenumberElements()
- ## Generate new elements by rotation of the elements around the axis
- # @param IDsOfElements list of ids of elements to sweep
- # @param Axix axis of rotation, AxisStruct or line(geom object)
- # @param AngleInRadians angle of Rotation
- # @param NbOfSteps number of steps
+ ## Generates new elements by rotation of the elements around the axis
+ # @param IDsOfElements the list of ids of elements to sweep
+ # @param Axix the axis of rotation, AxisStruct or line(geom object)
+ # @param AngleInRadians the angle of Rotation
+ # @param NbOfStep the number of steps
# @param Tolerance tolerance
- # @param MakeGroups to generate new groups from existing ones
- # @param TotalAngle gives meaning of AngleInRadians: if True then it is an anglular size
- # of all steps, else - size of each step
- # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
+ # @param MakeGroups forces the generation of new groups from existing ones
+ # @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
+ # of all steps, else - size of each step
+ # @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def RotationSweep(self, IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
if IDsOfElements == []:
self.editor.RotationSweep(IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance)
return []
- ## Generate new elements by rotation of the elements of object around the axis
- # @param theObject object wich elements should be sweeped
- # @param Axix axis of rotation, AxisStruct or line(geom object)
- # @param AngleInRadians angle of Rotation
+ ## Generates new elements by rotation of the elements of object around the axis
+ # @param theObject object which elements should be sweeped
+ # @param Axix the axis of rotation, AxisStruct or line(geom object)
+ # @param AngleInRadians the angle of Rotation
# @param NbOfSteps number of steps
# @param Tolerance tolerance
- # @param MakeGroups to generate new groups from existing ones
- # @param TotalAngle gives meaning of AngleInRadians: if True then it is an anglular size
- # of all steps, else - size of each step
- # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
+ # @param MakeGroups forces the generation of new groups from existing ones
+ # @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
+ # of all steps, else - size of each step
+ # @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def RotationSweepObject(self, theObject, Axix, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
if ( isinstance( theObject, Mesh )):
self.editor.RotationSweepObject(theObject, Axix, AngleInRadians, NbOfSteps, Tolerance)
return []
- ## Generate new elements by extrusion of the elements with given ids
- # @param IDsOfElements list of elements ids for extrusion
+ ## Generates new elements by extrusion of the elements with given ids
+ # @param IDsOfElements the list of elements ids for extrusion
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
- # @param MakeGroups to generate new groups from existing ones
- # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
+ # @param MakeGroups forces the generation of new groups from existing ones
+ # @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
return []
- ## Generate new elements by extrusion of the elements with given ids
+ ## Generates new elements by extrusion of the elements with given ids
# @param IDsOfElements is ids of elements
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
- # @param ExtrFlags set flags for performing extrusion
+ # @param ExtrFlags sets flags for extrusion
# @param SewTolerance uses for comparing locations of nodes if flag
# EXTRUSION_FLAG_SEW is set
- # @param MakeGroups to generate new groups from existing ones
+ # @param MakeGroups forces the generation of new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance, MakeGroups=False):
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
ExtrFlags, SewTolerance)
return []
- ## Generate new elements by extrusion of the elements belong to object
- # @param theObject object wich elements should be processed
+ ## Generates new elements by extrusion of the elements which belong to the object
+ # @param theObject the object which elements should be processed
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
- # @param MakeGroups to generate new groups from existing ones
+ # @param MakeGroups forces the generation of new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
return []
- ## Generate new elements by extrusion of the elements belong to object
- # @param theObject object wich elements should be processed
+ ## Generates new elements by extrusion of the elements which belong to the object
+ # @param theObject object which elements should be processed
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
# @param MakeGroups to generate new groups from existing ones
self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
return []
- ## Generate new elements by extrusion of the elements belong to object
- # @param theObject object wich elements should be processed
+ ## Generates new elements by extrusion of the elements which belong to the object
+ # @param theObject object which elements should be processed
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
- # @param MakeGroups to generate new groups from existing ones
+ # @param MakeGroups forces the generation of new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
return []
- ## Generate new elements by extrusion of the given elements
- # A path of extrusion must be a meshed edge.
- # @param IDsOfElements is ids of elements
+ ## Generates new elements by extrusion of the given elements
+ # The path of extrusion must be a meshed edge.
+ # @param IDsOfElements ids of elements
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
- # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
- # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
- # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
+ # @param PathShape shape(edge) defines the sub-mesh for the path
+ # @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
+ # @param HasAngles allows the shape to be rotated around the path
+ # to get the resulting mesh in a helical fashion
# @param Angles list of angles
- # @param HasRefPoint allows to use base point
- # @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
- # User can specify any point as the Base Point and the shape will be rotated with respect to this point.
- # @param MakeGroups to generate new groups from existing ones
- # @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps
+ # @param HasRefPoint allows using the reference point
+ # @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
+ # The User can specify any point as the Reference Point.
+ # @param MakeGroups forces the generation of new groups from existing ones
+ # @param LinearVariation forces the computation of rotation angles as linear
+ # variation of the given Angles along path steps
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh, PathShape,
NodeStart, HasAngles, Angles, HasRefPoint, RefPoint)
- ## Generate new elements by extrusion of the elements belong to object
- # A path of extrusion must be a meshed edge.
+ ## Generates new elements by extrusion of the elements which belong to the object
+ # The path of extrusion must be a meshed edge.
# @param IDsOfElements is ids of elements
- # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
- # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
- # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
- # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
+ # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
+ # @param PathShape shape(edge) defines the sub-mesh for the path
+ # @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
+ # @param HasAngles allows the shape to be rotated around the path
+ # to get the resulting mesh in a helical fashion
# @param Angles list of angles
- # @param HasRefPoint allows to use base point
- # @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
- # User can specify any point as the Base Point and the shape will be rotated with respect to this point.
- # @param MakeGroups to generate new groups from existing ones
- # @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps
+ # @param HasRefPoint allows using the reference point
+ # @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
+ # The User can specify any point as the Reference Point.
+ # @param MakeGroups forces the generation of new groups from existing ones
+ # @param LinearVariation forces the computation of rotation angles as linear
+ # variation of the given Angles along path steps
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
NodeStart, HasAngles, Angles, HasRefPoint,
RefPoint)
- ## Symmetrical copy of mesh elements
+ ## Creates a symmetrical copy of mesh elements
# @param IDsOfElements list of elements ids
# @param Mirror is AxisStruct or geom object(point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
- # If the Mirror is geom object this parameter is unnecessary
- # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
- # @param MakeGroups to generate new groups from existing ones (if Copy)
+ # If the Mirror is a geom object this parameter is unnecessary
+ # @param Copy allows to copy element (Copy is 1) or to replace with its mirroring (Copy is 0)
+ # @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0, MakeGroups=False):
if IDsOfElements == []:
self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
return []
- ## Create a new mesh by symmetrical copy of mesh elements
- # @param IDsOfElements list of elements ids
- # @param Mirror is AxisStruct or geom object(point, line, plane)
+ ## Creates a new mesh by a symmetrical copy of mesh elements
+ # @param IDsOfElements the list of elements ids
+ # @param Mirror is AxisStruct or geom object (point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
- # If the Mirror is geom object this parameter is unnecessary
+ # If the Mirror is a geom object this parameter is unnecessary
# @param MakeGroups to generate new groups from existing ones
- # @param NewMeshName is a name of new mesh to create
+ # @param NewMeshName a name of the new mesh to create
# @return instance of Mesh class
def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType, MakeGroups=0, NewMeshName=""):
if IDsOfElements == []:
MakeGroups, NewMeshName)
return Mesh(self.smeshpyD,self.geompyD,mesh)
- ## Symmetrical copy of object
+ ## Creates a symmetrical copy of the object
# @param theObject mesh, submesh or group
- # @param Mirror is AxisStruct or geom object(point, line, plane)
+ # @param Mirror AxisStruct or geom object (point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
- # If the Mirror is geom object this parameter is unnecessary
- # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
- # @param MakeGroups to generate new groups from existing ones (if Copy)
+ # If the Mirror is a geom object this parameter is unnecessary
+ # @param Copy allows copying the element (Copy is 1) or replacing it with its mirror (Copy is 0)
+ # @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
return []
- ## Create a new mesh by symmetrical copy of object
+ ## Creates a new mesh by a symmetrical copy of the object
# @param theObject mesh, submesh or group
- # @param Mirror is AxisStruct or geom object(point, line, plane)
- # @param theMirrorType is POINT, AXIS or PLANE
- # If the Mirror is geom object this parameter is unnecessary
- # @param MakeGroups to generate new groups from existing ones
- # @param NewMeshName is a name of new mesh to create
+ # @param Mirror AxisStruct or geom object (point, line, plane)
+ # @param theMirrorType POINT, AXIS or PLANE
+ # If the Mirror is a geom object this parameter is unnecessary
+ # @param MakeGroups forces the generation of new groups from existing ones
+ # @param NewMeshName the name of the new mesh to create
# @return instance of Mesh class
def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType,MakeGroups=0, NewMeshName=""):
if ( isinstance( theObject, Mesh )):
## Translates the elements
# @param IDsOfElements list of elements ids
- # @param Vector direction of translation(DirStruct or vector)
- # @param Copy allows to copy the translated elements
- # @param MakeGroups to generate new groups from existing ones (if Copy)
+ # @param Vector the direction of translation (DirStruct or vector)
+ # @param Copy allows copying the translated elements
+ # @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False):
if IDsOfElements == []:
self.editor.Translate(IDsOfElements, Vector, Copy)
return []
- ## Create a new mesh of translated elements
+ ## Creates a new mesh of translated elements
# @param IDsOfElements list of elements ids
- # @param Vector direction of translation(DirStruct or vector)
- # @param MakeGroups to generate new groups from existing ones
- # @param NewMeshName is a name of new mesh to create
+ # @param Vector the direction of translation (DirStruct or vector)
+ # @param MakeGroups forces the generation of new groups from existing ones
+ # @param NewMeshName the name of the newly created mesh
# @return instance of Mesh class
def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""):
if IDsOfElements == []:
return Mesh ( self.smeshpyD, self.geompyD, mesh )
## Translates the object
- # @param theObject object to translate(mesh, submesh, or group)
- # @param Vector direction of translation(DirStruct or geom vector)
- # @param Copy allows to copy the translated elements
- # @param MakeGroups to generate new groups from existing ones (if Copy)
+ # @param theObject the object to translate (mesh, submesh, or group)
+ # @param Vector direction of translation (DirStruct or geom vector)
+ # @param Copy allows copying the translated elements
+ # @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
self.editor.TranslateObject(theObject, Vector, Copy)
return []
- ## Create a new mesh from translated object
- # @param theObject object to translate(mesh, submesh, or group)
- # @param Vector direction of translation(DirStruct or geom vector)
- # @param MakeGroups to generate new groups from existing ones
- # @param NewMeshName is a name of new mesh to create
+ ## Creates a new mesh from the translated object
+ # @param theObject the object to translate (mesh, submesh, or group)
+ # @param Vector the direction of translation (DirStruct or geom vector)
+ # @param MakeGroups forces the generation of new groups from existing ones
+ # @param NewMeshName the name of the newly created mesh
# @return instance of Mesh class
def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""):
if (isinstance(theObject, Mesh)):
## Rotates the elements
# @param IDsOfElements list of elements ids
- # @param Axis axis of rotation(AxisStruct or geom line)
- # @param AngleInRadians angle of rotation(in radians)
- # @param Copy allows to copy the rotated elements
- # @param MakeGroups to generate new groups from existing ones (if Copy)
+ # @param Axis the axis of rotation (AxisStruct or geom line)
+ # @param AngleInRadians the angle of rotation (in radians)
+ # @param Copy allows copying the rotated elements
+ # @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False):
if IDsOfElements == []:
self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
return []
- ## Create a new mesh of rotated elements
+ ## Creates a new mesh of rotated elements
# @param IDsOfElements list of element ids
- # @param Axis axis of rotation(AxisStruct or geom line)
- # @param AngleInRadians angle of rotation(in radians)
- # @param MakeGroups to generate new groups from existing ones
- # @param NewMeshName is a name of new mesh to create
+ # @param Axis the axis of rotation (AxisStruct or geom line)
+ # @param AngleInRadians the angle of rotation (in radians)
+ # @param MakeGroups forces the generation of new groups from existing ones
+ # @param NewMeshName the name of the newly created mesh
# @return instance of Mesh class
def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""):
if IDsOfElements == []:
return Mesh( self.smeshpyD, self.geompyD, mesh )
## Rotates the object
- # @param theObject object to rotate(mesh, submesh, or group)
- # @param Axis axis of rotation(AxisStruct or geom line)
- # @param AngleInRadians angle of rotation(in radians)
- # @param Copy allows to copy the rotated elements
- # @param MakeGroups to generate new groups from existing ones (if Copy)
+ # @param theObject the object to rotate( mesh, submesh, or group)
+ # @param Axis the axis of rotation (AxisStruct or geom line)
+ # @param AngleInRadians the angle of rotation (in radians)
+ # @param Copy allows copying the rotated elements
+ # @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False):
if (isinstance(theObject, Mesh)):
self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
return []
- ## Create a new mesh from a rotated object
- # @param theObject object to rotate (mesh, submesh, or group)
- # @param Axis axis of rotation(AxisStruct or geom line)
- # @param AngleInRadians angle of rotation(in radians)
- # @param MakeGroups to generate new groups from existing ones
- # @param NewMeshName is a name of new mesh to create
+ ## Creates a new mesh from the rotated object
+ # @param theObject the object to rotate (mesh, submesh, or group)
+ # @param Axis the axis of rotation (AxisStruct or geom line)
+ # @param AngleInRadians the angle of rotation (in radians)
+ # @param MakeGroups forces the generation of new groups from existing ones
+ # @param NewMeshName the name of the newly created mesh
# @return instance of Mesh class
def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""):
if (isinstance( theObject, Mesh )):
MakeGroups, NewMeshName)
return Mesh( self.smeshpyD, self.geompyD, mesh )
- ## Find group of nodes close to each other within Tolerance.
- # @param Tolerance tolerance value
- # @return list of group of nodes
+ ## Finds groups of ajacent nodes within Tolerance.
+ # @param Tolerance the value of tolerance
+ # @return the list of groups of nodes
def FindCoincidentNodes (self, Tolerance):
return self.editor.FindCoincidentNodes(Tolerance)
- ## Find group of nodes close to each other within Tolerance.
- # @param Tolerance tolerance value
+ ## Finds groups of ajacent nodes within Tolerance.
+ # @param Tolerance the value of tolerance
# @param SubMeshOrGroup SubMesh or Group
- # @return list of group of nodes
+ # @return the list of groups of nodes
def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance):
return self.editor.FindCoincidentNodesOnPart(SubMeshOrGroup, Tolerance)
- ## Merge nodes
- # @param GroupsOfNodes list of group of nodes
+ ## Merges nodes
+ # @param GroupsOfNodes the list of groups of nodes
def MergeNodes (self, GroupsOfNodes):
self.editor.MergeNodes(GroupsOfNodes)
- ## Find elements built on the same nodes.
+ ## Finds the elements built on the same nodes.
# @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching
# @return a list of groups of equal elements
def FindEqualElements (self, MeshOrSubMeshOrGroup):
return self.editor.FindEqualElements(MeshOrSubMeshOrGroup)
- ## Merge elements in each given group.
+ ## Merges elements in each given group.
# @param GroupsOfElementsID groups of elements for merging
def MergeElements(self, GroupsOfElementsID):
self.editor.MergeElements(GroupsOfElementsID)
- ## Remove all but one of elements built on the same nodes.
+ ## Leaves one element and removes all other elements built on the same nodes.
def MergeEqualElements(self):
self.editor.MergeEqualElements()
- ## Sew free borders
+ ## Sews free borders
# @return SMESH::Sew_Error
def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2, LastNodeID2,
FirstNodeID2, SecondNodeID2, LastNodeID2,
CreatePolygons, CreatePolyedrs)
- ## Sew conform free borders
+ ## Sews conform free borders
# @return SMESH::Sew_Error
def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2):
return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2)
- ## Sew border to side
+ ## Sews border to side
# @return SMESH::Sew_Error
def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
- ## Sew two sides of a mesh. Nodes belonging to Side1 are
- # merged with nodes of elements of Side2.
- # Number of elements in theSide1 and in theSide2 must be
- # equal and they should have similar node connectivity.
- # The nodes to merge should belong to sides borders and
+ ## Sews two sides of a mesh. The nodes belonging to Side1 are
+ # merged with the nodes of elements of Side2.
+ # The number of elements in theSide1 and in theSide2 must be
+ # equal and they should have similar nodal connectivity.
+ # The nodes to merge should belong to side borders and
# the first node should be linked to the second.
# @return SMESH::Sew_Error
def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
- ## Set new nodes for given element.
+ ## Sets new nodes for the given element.
# @param ide the element id
# @param newIDs nodes ids
- # @return If number of nodes is not corresponded to type of element - returns false
+ # @return If the number of nodes does not correspond to the type of element - returns false
def ChangeElemNodes(self, ide, newIDs):
return self.editor.ChangeElemNodes(ide, newIDs)
- ## If during last operation of MeshEditor some nodes were
- # created this method returns list of its IDs, \n
- # if new nodes not created - returns empty list
- # @return list of integer values (can be empty)
+ ## If during the last operation of MeshEditor some nodes were
+ # created, this method returns the list of their IDs, \n
+ # if new nodes were not created - returns empty list
+ # @return the list of integer values (can be empty)
def GetLastCreatedNodes(self):
return self.editor.GetLastCreatedNodes()
- ## If during last operation of MeshEditor some elements were
- # created this method returns list of its IDs, \n
- # if new elements not creared - returns empty list
- # @return list of integer values (can be empty)
+ ## If during the last operation of MeshEditor some elements were
+ # created this method returns the list of their IDs, \n
+ # if new elements were not created - returns empty list
+ # @return the list of integer values (can be empty)
def GetLastCreatedElems(self):
return self.editor.GetLastCreatedElems()
-## Mother class to define algorithm, recommended to do not use directly.
+## The mother class to define algorithm, it is not recommended to use it directly.
#
# More details.
class Mesh_Algorithm:
self.subm = None
self.algo = None
- ## Find hypothesis in study by its type name and parameters.
- # Find only those hypothesis, which was created in smeshpyD engine.
+ ## Finds a hypothesis in the study by its type name and parameters.
+ # Finds only the hypotheses created in smeshpyD engine.
# @return SMESH.SMESH_Hypothesis
def FindHypothesis (self, hypname, args, CompareMethod, smeshpyD):
study = smeshpyD.GetCurrentStudy()
scomp = study.FindComponent(smeshpyD.ComponentDataType())
if scomp is not None:
res,hypRoot = scomp.FindSubObject(SMESH.Tag_HypothesisRoot)
- # is hypotheses root label exists?
+ # Check if the root label of the hypotheses exists
if res and hypRoot is not None:
iter = study.NewChildIterator(hypRoot)
- # check all published hypotheses
+ # Check all published hypotheses
while iter.More():
hypo_so_i = iter.Value()
attr = hypo_so_i.FindAttribute("AttributeIOR")[1]
anIOR = attr.Value()
hypo_o_i = salome.orb.string_to_object(anIOR)
if hypo_o_i is not None:
- # is hypothesis?
+ # Check if this is a hypothesis
hypo_i = hypo_o_i._narrow(SMESH.SMESH_Hypothesis)
if hypo_i is not None:
- # belongs to this engine?
+ # Check if the hypothesis belongs to current engine
if smeshpyD.GetObjectId(hypo_i) > 0:
- # is it the needed hypothesis?
+ # Check if this is the required hypothesis
if hypo_i.GetName() == hypname:
- # check args
+ # Check arguments
if CompareMethod(hypo_i, args):
# found!!!
return hypo_i
pass
return None
- ## Find algorithm in study by its type name.
- # Find only those algorithm, which was created in smeshpyD engine.
+ ## Finds the algorithm in the study by its type name.
+ # Finds only the algorithms, which have been created in smeshpyD engine.
# @return SMESH.SMESH_Algo
def FindAlgorithm (self, algoname, smeshpyD):
study = smeshpyD.GetCurrentStudy()
scomp = study.FindComponent(smeshpyD.ComponentDataType())
if scomp is not None:
res,hypRoot = scomp.FindSubObject(SMESH.Tag_AlgorithmsRoot)
- # is algorithms root label exists?
+ # Check if the root label of the algorithms exists
if res and hypRoot is not None:
iter = study.NewChildIterator(hypRoot)
- # check all published algorithms
+ # Check all published algorithms
while iter.More():
algo_so_i = iter.Value()
attr = algo_so_i.FindAttribute("AttributeIOR")[1]
anIOR = attr.Value()
algo_o_i = salome.orb.string_to_object(anIOR)
if algo_o_i is not None:
- # is algorithm?
+ # Check if this is an algorithm
algo_i = algo_o_i._narrow(SMESH.SMESH_Algo)
if algo_i is not None:
- # belongs to this engine?
+ # Checks if the algorithm belongs to the current engine
if smeshpyD.GetObjectId(algo_i) > 0:
- # is it the needed algorithm?
+ # Check if this is the required algorithm
if algo_i.GetName() == algoname:
# found!!!
return algo_i
pass
return None
- ## If the algorithm is global, return 0; \n
- # else return the submesh associated to this algorithm.
+ ## If the algorithm is global, returns 0; \n
+ # else returns the submesh associated to this algorithm.
def GetSubMesh(self):
return self.subm
- ## Return the wrapped mesher.
+ ## Returns the wrapped mesher.
def GetAlgorithm(self):
return self.algo
- ## Get list of hypothesis that can be used with this algorithm
+ ## Gets the list of hypothesis that can be used with this algorithm
def GetCompatibleHypothesis(self):
mylist = []
if self.algo:
mylist = self.algo.GetCompatibleHypothesis()
return mylist
- ## Get name of algo
+ ## Gets the name of the algorithm
def GetName(self):
GetName(self.algo)
- ## Set name to algo
+ ## Sets the name to the algorithm
def SetName(self, name):
SetName(self.algo, name)
- ## Get id of algo
+ ## Gets the id of the algorithm
def GetId(self):
return self.algo.GetId()
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Regular_1D")
- ## Define "LocalLength" hypothesis to cut an edge in several segments with the same length
+ ## Defines "LocalLength" hypothesis to cut an edge in several segments with the same length
# @param l for the length of segments that cut an edge
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- # @param p precision, used for number of segments calculation.
- # It must be pozitive, meaningfull values are in range [0,1].
- # In general, number of segments is calculated with formula:
+ # @param UseExisting if ==true - searches for an existing hypothesis created with
+ # the same parameters, else (default) - creates a new one
+ # @param p precision, used for calculation of the number of segments.
+ # The precision should be a positive, meaningful value within the range [0,1].
+ # In general, the number of segments is calculated with the formula:
# nb = ceil((edge_length / l) - p)
# Function ceil rounds its argument to the higher integer.
# So, p=0 means rounding of (edge_length / l) to the higher integer,
return hyp
## Private method
- ## Check if the given "LocalLength" hypothesis has the same parameters as given arguments
+ ## Checks if the given "LocalLength" hypothesis has the same parameters as the given arguments
def CompareLocalLength(self, hyp, args):
if IsEqual(hyp.GetLength(), args[0]):
return IsEqual(hyp.GetPrecision(), args[1])
return False
- ## Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments
+ ## Defines "NumberOfSegments" hypothesis to cut an edge in a fixed number of segments
# @param n for the number of segments that cut an edge
# @param s for the scale factor (optional)
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
+ # @param UseExisting if ==true - searches for an existing hypothesis created with
+ # the same parameters, else (default) - create a new one
# @return an instance of StdMeshers_NumberOfSegments hypothesis
def NumberOfSegments(self, n, s=[], UseExisting=0):
if s == []:
return hyp
## Private method
- ## Check if the given "NumberOfSegments" hypothesis has the same parameters as given arguments
+ ## Checks if the given "NumberOfSegments" hypothesis has the same parameters as the given arguments
def CompareNumberOfSegments(self, hyp, args):
if hyp.GetNumberOfSegments() == args[0]:
if len(args) == 1:
return True
return False
- ## Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing
- # @param start for the length of the first segment
- # @param end for the length of the last segment
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
+ ## Defines "Arithmetic1D" hypothesis to cut an edge in several segments with increasing arithmetic length
+ # @param start defines the length of the first segment
+ # @param end defines the length of the last segment
+ # @param UseExisting if ==true - searches for an existing hypothesis created with
+ # the same parameters, else (default) - creates a new one
# @return an instance of StdMeshers_Arithmetic1D hypothesis
def Arithmetic1D(self, start, end, UseExisting=0):
hyp = self.Hypothesis("Arithmetic1D", [start, end], UseExisting=UseExisting,
return hyp
## Private method
- ## Check if the given "Arithmetic1D" hypothesis has the same parameters as given arguments
+ ## Check if the given "Arithmetic1D" hypothesis has the same parameters as the given arguments
def CompareArithmetic1D(self, hyp, args):
if IsEqual(hyp.GetLength(1), args[0]):
if IsEqual(hyp.GetLength(0), args[1]):
return True
return False
- ## Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing
- # @param start for the length of the first segment
- # @param end for the length of the last segment
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
+ ## Defines "StartEndLength" hypothesis to cut an edge in several segments with increasing geometric length
+ # @param start defines the length of the first segment
+ # @param end defines the length of the last segment
+ # @param UseExisting if ==true - searches for an existing hypothesis created with
+ # the same parameters, else (default) - creates a new one
# @return an instance of StdMeshers_StartEndLength hypothesis
def StartEndLength(self, start, end, UseExisting=0):
hyp = self.Hypothesis("StartEndLength", [start, end], UseExisting=UseExisting,
hyp.SetLength(end , 0)
return hyp
- ## Check if the given "StartEndLength" hypothesis has the same parameters as given arguments
+ ## Check if the given "StartEndLength" hypothesis has the same parameters as the given arguments
def CompareStartEndLength(self, hyp, args):
if IsEqual(hyp.GetLength(1), args[0]):
if IsEqual(hyp.GetLength(0), args[1]):
return True
return False
- ## Define "Deflection1D" hypothesis
+ ## Defines "Deflection1D" hypothesis
# @param d for the deflection
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
+ # @param UseExisting if ==true - searches for an existing hypothesis created with
+ # the same parameters, else (default) - create a new one
def Deflection1D(self, d, UseExisting=0):
hyp = self.Hypothesis("Deflection1D", [d], UseExisting=UseExisting,
CompareMethod=self.CompareDeflection1D)
hyp.SetDeflection(d)
return hyp
- ## Check if the given "Deflection1D" hypothesis has the same parameters as given arguments
+ ## Check if the given "Deflection1D" hypothesis has the same parameters as the given arguments
def CompareDeflection1D(self, hyp, args):
return IsEqual(hyp.GetDeflection(), args[0])
- ## Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in
- # the opposite side in the case of quadrangular faces
+ ## Defines "Propagation" hypothesis that propagates all other hypotheses on all other edges that are at
+ # the opposite side in case of quadrangular faces
def Propagation(self):
return self.Hypothesis("Propagation", UseExisting=1, CompareMethod=self.CompareEqualHyp)
- ## Define "AutomaticLength" hypothesis
+ ## Defines "AutomaticLength" hypothesis
# @param fineness for the fineness [0-1]
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
+ # @param UseExisting if ==true - searches for an existing hypothesis created with the
+ # same parameters, else (default) - create a new one
def AutomaticLength(self, fineness=0, UseExisting=0):
hyp = self.Hypothesis("AutomaticLength",[fineness],UseExisting=UseExisting,
CompareMethod=self.CompareAutomaticLength)
hyp.SetFineness( fineness )
return hyp
- ## Check if the given "AutomaticLength" hypothesis has the same parameters as given arguments
+ ## Checks if the given "AutomaticLength" hypothesis has the same parameters as the given arguments
def CompareAutomaticLength(self, hyp, args):
return IsEqual(hyp.GetFineness(), args[0])
- ## Define "SegmentLengthAroundVertex" hypothesis
+ ## Defines "SegmentLengthAroundVertex" hypothesis
# @param length for the segment length
- # @param vertex for the length localization: vertex index [0,1] | vertex object.
- # Any other integer value means what hypo will be set on the
+ # @param vertex for the length localization: the vertex index [0,1] | vertex object.
+ # Any other integer value means that the hypothesis will be set on the
# whole 1D shape, where Mesh_Segment algorithm is assigned.
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
+ # @param UseExisting if ==true - searches for an existing hypothesis created with
+ # the same parameters, else (default) - creates a new one
def LengthNearVertex(self, length, vertex=0, UseExisting=0):
import types
store_geom = self.geom
hyp.SetLength( length )
return hyp
- ## Check if the given "LengthNearVertex" hypothesis has the same parameters as given arguments
+ ## Checks if the given "LengthNearVertex" hypothesis has the same parameters as the given arguments
def CompareLengthNearVertex(self, hyp, args):
return IsEqual(hyp.GetLength(), args[0])
- ## Define "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
- # If the 2D mesher sees that all boundary edges are quadratic ones,
+ ## Defines "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
+ # If the 2D mesher sees that all boundary edges are quadratic,
# it generates quadratic faces, else it generates linear faces using
- # medium nodes as if they were vertex ones.
+ # medium nodes as if they are vertices.
# The 3D mesher generates quadratic volumes only if all boundary faces
- # are quadratic ones, else it fails.
+ # are quadratic, else it fails.
def QuadraticMesh(self):
hyp = self.Hypothesis("QuadraticMesh", UseExisting=1, CompareMethod=self.CompareEqualHyp)
return hyp
# Public class: Mesh_CompositeSegment
# --------------------------
-## Class to define a segment 1D algorithm for discretization
-#
-# More details.
+## Defines a segment 1D algorithm for discretization
+#
class Mesh_CompositeSegment(Mesh_Segment):
## Private constructor.
# Public class: Mesh_Segment_Python
# ---------------------------------
-## Class to define a segment 1D algorithm for discretization with python function
+## Defines a segment 1D algorithm for discretization with python function
#
-# More details.
class Mesh_Segment_Python(Mesh_Segment):
## Private constructor.
import Python1dPlugin
self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so")
- ## Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality
+ ## Defines "PythonSplit1D" hypothesis
# @param n for the number of segments that cut an edge
- # @param func for the python function that calculate the length of all segments
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
+ # @param func for the python function that calculates the length of all segments
+ # @param UseExisting if ==true - searches for the existing hypothesis created with
+ # the same parameters, else (default) - creates a new one
def PythonSplit1D(self, n, func, UseExisting=0):
hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so",
UseExisting=UseExisting, CompareMethod=self.ComparePythonSplit1D)
hyp.SetPythonLog10RatioFunction(func)
return hyp
- ## Check if the given "PythonSplit1D" hypothesis has the same parameters as given arguments
+ ## Checks if the given "PythonSplit1D" hypothesis has the same parameters as the given arguments
def ComparePythonSplit1D(self, hyp, args):
#if hyp.GetNumberOfSegments() == args[0]:
# if hyp.GetPythonLog10RatioFunction() == args[1]:
# Public class: Mesh_Triangle
# ---------------------------
-## Class to define a triangle 2D algorithm
+## Defines a triangle 2D algorithm
#
-# More details.
class Mesh_Triangle(Mesh_Algorithm):
# default values
self.Create(mesh, geom, "NETGEN_2D_ONLY", "libNETGENEngine.so")
pass
- ## Define "MaxElementArea" hypothesis to give the maximum area of each triangle
+ ## Defines "MaxElementArea" hypothesis basing on the definition of the maximum area of each triangle
# @param area for the maximum area of each triangle
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
+ # @param UseExisting if ==true - searches for an existing hypothesis created with the
+ # same parameters, else (default) - creates a new one
#
# Only for algoType == MEFISTO || NETGEN_2D
def MaxElementArea(self, area, UseExisting=0):
print "Netgen 1D-2D algo doesn't support this hypothesis"
return None
- ## Check if the given "MaxElementArea" hypothesis has the same parameters as given arguments
+ ## Checks if the given "MaxElementArea" hypothesis has the same parameters as the given arguments
def CompareMaxElementArea(self, hyp, args):
return IsEqual(hyp.GetMaxElementArea(), args[0])
- ## Define "LengthFromEdges" hypothesis to build triangles
+ ## Defines "LengthFromEdges" hypothesis to build triangles
# based on the length of the edges taken from the wire
#
# Only for algoType == MEFISTO || NETGEN_2D
print "Netgen 1D-2D algo doesn't support this hypothesis"
return None
- ## Set PhysicalMesh
+ ## Sets PhysicalMesh
# @param thePhysicalMesh is:
# DefaultSize or Custom
def SetPhysicalMesh(self, thePhysicalMesh=1):
self.Parameters()
self.params.SetPhysicalMesh(thePhysicalMesh)
- ## Set PhySize flag
+ ## Sets PhySize flag
def SetPhySize(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetPhySize(theVal)
- ## Set GeometricMesh
+ ## Sets GeometricMesh
# @param theGeometricMesh is:
# DefaultGeom or Custom
def SetGeometricMesh(self, theGeometricMesh=0):
if self.params.GetPhysicalMesh() == 0: theGeometricMesh = 1
self.params.SetGeometricMesh(theGeometricMesh)
- ## Set AngleMeshS flag
+ ## Sets AngleMeshS flag
def SetAngleMeshS(self, theVal=_angleMeshS):
if self.params == 0:
self.Parameters()
if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS
self.params.SetAngleMeshS(theVal)
- ## Set Gradation flag
+ ## Sets Gradation flag
def SetGradation(self, theVal=_gradation):
if self.params == 0:
self.Parameters()
if self.params.GetGeometricMesh() == 0: theVal = self._gradation
self.params.SetGradation(theVal)
- ## Set QuadAllowed flag
+ ## Sets QuadAllowed flag
#
# Only for algoType == NETGEN || NETGEN_2D
def SetQuadAllowed(self, toAllow=True):
self.params.SetQuadAllowed(toAllow)
return
- ## Define "Netgen 2D Parameters" hypothesis
+ ## Defines "Netgen 2D Parameters" hypothesis
#
# Only for algoType == NETGEN
def Parameters(self):
return self.params
return None
- ## Set MaxSize
+ ## Sets MaxSize
#
# Only for algoType == NETGEN
def SetMaxSize(self, theSize):
if self.params is not None:
self.params.SetMaxSize(theSize)
- ## Set SecondOrder flag
+ ## Sets SecondOrder flag
#
# Only for algoType == NETGEN
def SetSecondOrder(self, theVal):
if self.params is not None:
self.params.SetSecondOrder(theVal)
- ## Set Optimize flag
+ ## Sets Optimize flag
#
# Only for algoType == NETGEN
def SetOptimize(self, theVal):
if self.params is not None:
self.params.SetOptimize(theVal)
- ## Set Fineness
+ ## Sets Fineness
# @param theFineness is:
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
#
if self.params is not None:
self.params.SetFineness(theFineness)
- ## Set GrowthRate
+ ## Sets GrowthRate
#
# Only for algoType == NETGEN
def SetGrowthRate(self, theRate):
if self.params is not None:
self.params.SetGrowthRate(theRate)
- ## Set NbSegPerEdge
+ ## Sets NbSegPerEdge
#
# Only for algoType == NETGEN
def SetNbSegPerEdge(self, theVal):
if self.params is not None:
self.params.SetNbSegPerEdge(theVal)
- ## Set NbSegPerRadius
+ ## Sets NbSegPerRadius
#
# Only for algoType == NETGEN
def SetNbSegPerRadius(self, theVal):
if self.params is not None:
self.params.SetNbSegPerRadius(theVal)
- ## Set Decimesh flag
+ ## Sets Decimesh flag
def SetDecimesh(self, toAllow=False):
if self.params == 0:
self.Parameters()
# Public class: Mesh_Quadrangle
# -----------------------------
-## Class to define a quadrangle 2D algorithm
+## Defines a quadrangle 2D algorithm
#
-# More details.
class Mesh_Quadrangle(Mesh_Algorithm):
## Private constructor.
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Quadrangle_2D")
- ## Define "QuadranglePreference" hypothesis, forcing construction
- # of quadrangles if the number of nodes on opposite edges is not the same
- # in the case where the global number of nodes on edges is even
+ ## Defines "QuadranglePreference" hypothesis, forcing construction
+ # of quadrangles if the number of nodes on the opposite edges is not the same
+ # while the total number of nodes on edges is even
def QuadranglePreference(self):
hyp = self.Hypothesis("QuadranglePreference", UseExisting=1,
CompareMethod=self.CompareEqualHyp)
# Public class: Mesh_Tetrahedron
# ------------------------------
-## Class to define a tetrahedron 3D algorithm
+## Defines a tetrahedron 3D algorithm
#
-# More details.
class Mesh_Tetrahedron(Mesh_Algorithm):
params = 0
self.algoType = algoType
- ## Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral
- # @param vol for the maximum volume of each tetrahedral
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
+ ## Defines "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedron
+ # @param vol for the maximum volume of each tetrahedron
+ # @param UseExisting if ==true - searches for the existing hypothesis created with
+ # the same parameters, else (default) - creates a new one
def MaxElementVolume(self, vol, UseExisting=0):
hyp = self.Hypothesis("MaxElementVolume", [vol], UseExisting=UseExisting,
CompareMethod=self.CompareMaxElementVolume)
hyp.SetMaxElementVolume(vol)
return hyp
- ## Check if the given "MaxElementVolume" hypothesis has the same parameters as given arguments
+ ## Checks if the given "MaxElementVolume" hypothesis has the same parameters as the given arguments
def CompareMaxElementVolume(self, hyp, args):
return IsEqual(hyp.GetMaxElementVolume(), args[0])
- ## Define "Netgen 3D Parameters" hypothesis
+ ## Defines "Netgen 3D Parameters" hypothesis
def Parameters(self):
if (self.algoType == FULL_NETGEN):
self.params = self.Hypothesis("NETGEN_Parameters", [],
print "Algo doesn't support this hypothesis"
return None
- ## Set MaxSize
+ ## Sets MaxSize
def SetMaxSize(self, theSize):
if self.params == 0:
self.Parameters()
self.params.SetMaxSize(theSize)
- ## Set SecondOrder flag
+ ## Sets SecondOrder flag
def SetSecondOrder(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetSecondOrder(theVal)
- ## Set Optimize flag
+ ## Sets Optimize flag
def SetOptimize(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetOptimize(theVal)
- ## Set Fineness
+ ## Sets Fineness
# @param theFineness is:
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
def SetFineness(self, theFineness):
self.Parameters()
self.params.SetFineness(theFineness)
- ## Set GrowthRate
+ ## Sets GrowthRate
def SetGrowthRate(self, theRate):
if self.params == 0:
self.Parameters()
self.params.SetGrowthRate(theRate)
- ## Set NbSegPerEdge
+ ## Sets NbSegPerEdge
def SetNbSegPerEdge(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetNbSegPerEdge(theVal)
- ## Set NbSegPerRadius
+ ## Sets NbSegPerRadius
def SetNbSegPerRadius(self, theVal):
if self.params == 0:
self.Parameters()
# Public class: Mesh_Hexahedron
# ------------------------------
-## Class to define a hexahedron 3D algorithm
+## Defines a hexahedron 3D algorithm
#
-# More details.
class Mesh_Hexahedron(Mesh_Algorithm):
params = 0
self.Create(mesh, geom, "Hexotic_3D", "libHexoticEngine.so")
pass
- ## Define "MinMaxQuad" hypothesis to give the three hexotic parameters
+ ## Defines "MinMaxQuad" hypothesis to give three hexotic parameters
def MinMaxQuad(self, min=3, max=8, quad=True):
self.params = self.Hypothesis("Hexotic_Parameters", [], "libHexoticEngine.so",
UseExisting=0)
# Public class: Mesh_Netgen
# ------------------------------
-## Class to define a NETGEN-based 2D or 3D algorithm
-# that need no discrete boundary (i.e. independent)
+## Defines a NETGEN-based 2D or 3D algorithm
+# that needs no discrete boundary (i.e. independent)
#
# This class is deprecated, only for compatibility!
#
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
pass
- ## Define hypothesis containing parameters of the algorithm
+ ## Defines the hypothesis containing parameters of the algorithm
def Parameters(self):
if self.is3D:
hyp = self.Hypothesis("NETGEN_Parameters", [],
# Public class: Mesh_Projection1D
# ------------------------------
-## Class to define a projection 1D algorithm
+## Defines a projection 1D algorithm
#
-# More details.
class Mesh_Projection1D(Mesh_Algorithm):
+
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Projection_1D")
- ## Define "Source Edge" hypothesis, specifying a meshed edge to
- # take a mesh pattern from, and optionally association of vertices
- # between the source edge and a target one (where a hipothesis is assigned to)
- # @param edge to take nodes distribution from
- # @param mesh to take nodes distribution from (optional)
- # @param srcV is vertex of \a edge to associate with \a tgtV (optional)
- # @param tgtV is vertex of \a the edge where the algorithm is assigned,
+ ## Defines "Source Edge" hypothesis, specifying a meshed edge, from where
+ # a mesh pattern is taken, and, optionally, the association of vertices
+ # between the source edge and a target edge (to which a hypothesis is assigned)
+ # @param edge from which nodes distribution is taken
+ # @param mesh from which nodes distribution is taken (optional)
+ # @param srcV a vertex of \a edge to associate with \a tgtV (optional)
+ # @param tgtV a vertex of \a the edge to which the algorithm is assigned,
# to associate with \a srcV (optional)
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
+ # @param UseExisting if ==true - searches for the existing hypothesis created with
+ # the same parameters, else (default) - creates a new one
def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None, UseExisting=0):
hyp = self.Hypothesis("ProjectionSource1D", [edge,mesh,srcV,tgtV],
UseExisting=0)
hyp.SetVertexAssociation( srcV, tgtV )
return hyp
- ## Check if the given "SourceEdge" hypothesis has the same parameters as given arguments
+ ## Checks if the given "SourceEdge" hypothesis has the same parameters as the given arguments
#def CompareSourceEdge(self, hyp, args):
- # # seems to be not really useful to reuse existing "SourceEdge" hypothesis
+ # # it does not seem to be useful to reuse the existing "SourceEdge" hypothesis
# return False
# Public class: Mesh_Projection2D
# ------------------------------
-## Class to define a projection 2D algorithm
+## Defines a projection 2D algorithm
#
-# More details.
class Mesh_Projection2D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Projection_2D")
- ## Define "Source Face" hypothesis, specifying a meshed face to
- # take a mesh pattern from, and optionally association of vertices
- # between the source face and a target one (where a hipothesis is assigned to)
- # @param face to take mesh pattern from
- # @param mesh to take mesh pattern from (optional)
- # @param srcV1 is vertex of \a face to associate with \a tgtV1 (optional)
- # @param tgtV1 is vertex of \a the face where the algorithm is assigned,
- # to associate with \a srcV1 (optional)
- # @param srcV2 is vertex of \a face to associate with \a tgtV1 (optional)
- # @param tgtV2 is vertex of \a the face where the algorithm is assigned,
- # to associate with \a srcV2 (optional)
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
+
+ ## Defines "Source Face" hypothesis, specifying a meshed face, from where
+ # a mesh pattern is taken, and, optionally, the association of vertices
+ # between the source face and the target face (to which a hypothesis is assigned)
+ # @param face from which the mesh pattern is taken
+ # @param mesh from which the mesh pattern is taken (optional)
+ # @param srcV1 a vertex of \a face to associate with \a tgtV1 (optional)
+ # @param tgtV1 a vertex of \a the face to which the algorithm is assigned,
+ # to associate with \a srcV1 (optional)
+ # @param srcV2 a vertex of \a face to associate with \a tgtV1 (optional)
+ # @param tgtV2 a vertex of \a the face to which the algorithm is assigned,
+ # to associate with \a srcV2 (optional)
+ # @param UseExisting if ==true - forces the search for the existing hypothesis created with
+ # the same parameters, else (default) - forces the creation a new one
#
- # Note: association vertices must belong to one edge of a face
+ # Note: all association vertices must belong to one edge of a face
def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None,
srcV2=None, tgtV2=None, UseExisting=0):
hyp = self.Hypothesis("ProjectionSource2D", [face,mesh,srcV1,tgtV1,srcV2,tgtV2],
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
return hyp
- ## Check if the given "SourceFace" hypothesis has the same parameters as given arguments
+ ## Checks if the given "SourceFace" hypothesis has the same parameters as the given arguments
#def CompareSourceFace(self, hyp, args):
- # # seems to be not really useful to reuse existing "SourceFace" hypothesis
+ # # it does not seem to be useful to reuse the existing "SourceFace" hypothesis
# return False
# Public class: Mesh_Projection3D
# ------------------------------
-## Class to define a projection 3D algorithm
+## Defines a projection 3D algorithm
#
-# More details.
class Mesh_Projection3D(Mesh_Algorithm):
## Private constructor.
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Projection_3D")
- ## Define "Source Shape 3D" hypothesis, specifying a meshed solid to
- # take a mesh pattern from, and optionally association of vertices
- # between the source solid and a target one (where a hipothesis is assigned to)
- # @param solid to take mesh pattern from
- # @param mesh to take mesh pattern from (optional)
- # @param srcV1 is vertex of \a solid to associate with \a tgtV1 (optional)
- # @param tgtV1 is vertex of \a the solid where the algorithm is assigned,
+ ## Defines the "Source Shape 3D" hypothesis, specifying a meshed solid, from where
+ # the mesh pattern is taken, and, optionally, the association of vertices
+ # between the source and the target solid (to which a hipothesis is assigned)
+ # @param solid from where the mesh pattern is taken
+ # @param mesh from where the mesh pattern is taken (optional)
+ # @param srcV1 a vertex of \a solid to associate with \a tgtV1 (optional)
+ # @param tgtV1 a vertex of \a the solid where the algorithm is assigned,
# to associate with \a srcV1 (optional)
- # @param srcV2 is vertex of \a solid to associate with \a tgtV1 (optional)
- # @param tgtV2 is vertex of \a the solid where the algorithm is assigned,
+ # @param srcV2 a vertex of \a solid to associate with \a tgtV1 (optional)
+ # @param tgtV2 a vertex of \a the solid to which the algorithm is assigned,
# to associate with \a srcV2 (optional)
- # @param UseExisting - if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
+ # @param UseExisting - if ==true - searches for the existing hypothesis created with
+ # the same parameters, else (default) - creates a new one
#
# Note: association vertices must belong to one edge of a solid
def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0,
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
return hyp
- ## Check if the given "SourceShape3D" hypothesis has the same parameters as given arguments
+ ## Checks if the given "SourceShape3D" hypothesis has the same parameters as given arguments
#def CompareSourceShape3D(self, hyp, args):
# # seems to be not really useful to reuse existing "SourceShape3D" hypothesis
# return False
# Public class: Mesh_Prism
# ------------------------
-## Class to define a 3D extrusion algorithm
+## Defines a 3D extrusion algorithm
#
-# More details.
class Mesh_Prism3D(Mesh_Algorithm):
## Private constructor.
# Public class: Mesh_RadialPrism
# -------------------------------
-## Class to define a Radial Prism 3D algorithm
+## Defines a Radial Prism 3D algorithm
#
-# More details.
class Mesh_RadialPrism3D(Mesh_Algorithm):
## Private constructor.
def Get3DHypothesis(self):
return self.distribHyp
- ## Private method creating 1D hypothes and storing it in the LayerDistribution
- # hypothes. Returns the created hypothes
+ ## Private method creating a 1D hypothesis and storing it in the LayerDistribution
+ # hypothesis. Returns the created hypothesis
def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
#print "OwnHypothesis",hypType
if not self.nbLayers is None:
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
- study = self.mesh.smeshpyD.GetCurrentStudy() # prevent publishing of own 1D hypothesis
+ study = self.mesh.smeshpyD.GetCurrentStudy() # prevents publishing own 1D hypothesis
hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
- self.mesh.smeshpyD.SetCurrentStudy( study ) # anable publishing
+ self.mesh.smeshpyD.SetCurrentStudy( study ) # enables publishing
self.distribHyp.SetLayerDistribution( hyp )
return hyp
- ## Define "NumberOfLayers" hypothesis, specifying a number of layers of
+ ## Defines "NumberOfLayers" hypothesis, specifying the number of layers of
# prisms to build between the inner and outer shells
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
+ # @param UseExisting if ==true - searches for the existing hypothesis created with
+ # the same parameters, else (default) - creates a new one
def NumberOfLayers(self, n, UseExisting=0):
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
self.nbLayers = self.Hypothesis("NumberOfLayers", [n], UseExisting=UseExisting,
self.nbLayers.SetNumberOfLayers( n )
return self.nbLayers
- ## Check if the given "NumberOfLayers" hypothesis has the same parameters as given arguments
+ ## Checks if the given "NumberOfLayers" hypothesis has the same parameters as the given arguments
def CompareNumberOfLayers(self, hyp, args):
return IsEqual(hyp.GetNumberOfLayers(), args[0])
- ## Define "LocalLength" hypothesis, specifying segment length
- # to build between the inner and outer shells
- # @param l for the length of segments
- # @param p for the precision of rounding
+ ## Defines "LocalLength" hypothesis, specifying the segment length
+ # to build between the inner and the outer shells
+ # @param l the length of segments
+ # @param p the precision of rounding
def LocalLength(self, l, p=1e-07):
hyp = self.OwnHypothesis("LocalLength", [l,p])
hyp.SetLength(l)
hyp.SetPrecision(p)
return hyp
- ## Define "NumberOfSegments" hypothesis, specifying a number of layers of
- # prisms to build between the inner and outer shells
- # @param n for the number of segments
- # @param s for the scale factor (optional)
+ ## Defines "NumberOfSegments" hypothesis, specifying the number of layers of
+ # prisms to build between the inner and the outer shells.
+ # @param n the number of layers
+ # @param s the scale factor (optional)
def NumberOfSegments(self, n, s=[]):
if s == []:
hyp = self.OwnHypothesis("NumberOfSegments", [n])
hyp.SetNumberOfSegments(n)
return hyp
- ## Define "Arithmetic1D" hypothesis, specifying distribution of segments
- # to build between the inner and outer shells as arithmetic length increasing
- # @param start for the length of the first segment
- # @param end for the length of the last segment
+ ## Defines "Arithmetic1D" hypothesis, specifying the distribution of segments
+ # to build between the inner and the outer shells with a length that changes in arithmetic progression
+ # @param start the length of the first segment
+ # @param end the length of the last segment
def Arithmetic1D(self, start, end ):
hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
- ## Define "StartEndLength" hypothesis, specifying distribution of segments
- # to build between the inner and outer shells as geometric length increasing
+ ## Defines "StartEndLength" hypothesis, specifying distribution of segments
+ # to build between the inner and the outer shells as geometric length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
def StartEndLength(self, start, end):
hyp.SetLength(end , 0)
return hyp
- ## Define "AutomaticLength" hypothesis, specifying number of segments
+ ## Defines "AutomaticLength" hypothesis, specifying the number of segments
# to build between the inner and outer shells
- # @param fineness for the fineness [0-1]
+ # @param fineness defines the quality of the mesh within the range [0-1]
def AutomaticLength(self, fineness=0):
hyp = self.OwnHypothesis("AutomaticLength")
hyp.SetFineness( fineness )