#
return 0
+# ==============================================================================
+def ienkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="IEnKF12",
+ BnotT=False, _epsilon=1.e-3, _e=1.e-7, _jmax=15000):
+ """
+ Iterative EnKF (Sakov 2012, Sakov 2018)
+
+ selfA est identique au "self" d'algorithme appelant et contient les
+ valeurs.
+ """
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA._parameters["StoreInternalVariables"] = True
+ #
+ # Opérateurs
+ # ----------
+ H = HO["Direct"].appliedControledFormTo
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ M = EM["Direct"].appliedControledFormTo
+ #
+ if CM is not None and "Tangent" in CM and U is not None:
+ Cm = CM["Tangent"].asMatrix(Xb)
+ else:
+ Cm = None
+ #
+ # Nombre de pas identique au nombre de pas d'observations
+ # -------------------------------------------------------
+ if hasattr(Y,"stepnumber"):
+ duration = Y.stepnumber()
+ __p = numpy.cumprod(Y.shape())[-1]
+ else:
+ duration = 2
+ __p = numpy.array(Y).size
+ #
+ # Précalcul des inversions de B et R
+ # ----------------------------------
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ BI = B.getI()
+ RI = R.getI()
+ #
+ # Initialisation
+ # --------------
+ __n = Xb.size
+ __m = selfA._parameters["NumberOfMembers"]
+ if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
+ else: Pn = B
+ if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
+ else: Rn = R
+ if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n)
+ else: Qn = Q
+ Xn = BackgroundEnsembleGeneration( Xb, Pn, __m )
+ #
+ if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+ selfA.StoredVariables["Analysis"].store( numpy.ravel(Xb) )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+ covarianceXa = Pn
+ #
+ previousJMinimum = numpy.finfo(float).max
+ #
+ for step in range(duration-1):
+ if hasattr(Y,"store"):
+ Ynpu = numpy.ravel( Y[step+1] )[:,None]
+ else:
+ Ynpu = numpy.ravel( Y )[:,None]
+ #
+ if U is not None:
+ if hasattr(U,"store") and len(U)>1:
+ Un = numpy.asmatrix(numpy.ravel( U[step] )).T
+ elif hasattr(U,"store") and len(U)==1:
+ Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+ else:
+ Un = numpy.asmatrix(numpy.ravel( U )).T
+ else:
+ Un = None
+ #
+ if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
+ Xn = CovarianceInflation( Xn,
+ selfA._parameters["InflationType"],
+ selfA._parameters["InflationFactor"],
+ )
+ #
+ #--------------------------
+ if VariantM == "IEnKF12":
+ Xfm = numpy.asarray(Xn.mean(axis=1, dtype=mfp).astype('float'))
+ EaX = numpy.asarray((Xn - Xfm.reshape((__n,-1))) / numpy.sqrt(__m-1))
+ # EaX = EnsembleCenteredAnomalies( Xn ) / numpy.sqrt(__m-1)
+ __j = 0
+ Deltaw = 1
+ if not BnotT:
+ Ta = numpy.eye(__m)
+ vw = numpy.zeros(__m)
+ while numpy.linalg.norm(Deltaw) >= _e and __j <= _jmax:
+ vx1 = numpy.ravel(Xfm) + EaX @ vw
+ #
+ if BnotT:
+ E1 = vx1.reshape((__n,-1)) + _epsilon * EaX
+ else:
+ E1 = vx1.reshape((__n,-1)) + numpy.sqrt(__m-1) * EaX @ Ta
+ #
+ if selfA._parameters["EstimationOf"] == "State": # Forecast + Q
+ E2 = M( [(E1[:,i,numpy.newaxis], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ elif selfA._parameters["EstimationOf"] == "Parameters":
+ # --- > Par principe, M = Id
+ E2 = Xn
+ vx2 = E2.mean(axis=1, dtype=mfp).astype('float').reshape((__n,-1))
+ vy1 = H((vx2, Un)).reshape((__p,-1))
+ #
+ HE2 = H( [(E2[:,i,numpy.newaxis], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ vy2 = HE2.mean(axis=1, dtype=mfp).astype('float').reshape((__p,-1))
+ #
+ if BnotT:
+ EaY = (HE2 - vy2) / _epsilon
+ else:
+ EaY = ( (HE2 - vy2) @ numpy.linalg.inv(Ta) ) / numpy.sqrt(__m-1)
+ #
+ GradJ = numpy.ravel(vw[:,None] - EaY.transpose() @ (RI * ( Ynpu - vy1 )))
+ mH = numpy.eye(__m) + EaY.transpose() @ (RI * EaY)
+ Deltaw = - numpy.linalg.solve(mH,GradJ)
+ #
+ vw = vw + Deltaw
+ #
+ if not BnotT:
+ Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
+ #
+ __j = __j + 1
+ #
+ A2 = EnsembleCenteredAnomalies( E2 )
+ #
+ Xn = vx2 + A2
+ #--------------------------
+ else:
+ raise ValueError("VariantM has to be chosen in the authorized methods list.")
+ #
+ if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
+ Xn = CovarianceInflation( Xn,
+ selfA._parameters["InflationType"],
+ selfA._parameters["InflationFactor"],
+ )
+ #
+ Xa = Xn.mean(axis=1, dtype=mfp).astype('float').reshape((__n,-1))
+ #--------------------------
+ #
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("APosterioriCovariance") \
+ or selfA._toStore("InnovationAtCurrentAnalysis") \
+ or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
+ _Innovation = Ynpu - _HXa
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ # ---> avec analysis
+ selfA.StoredVariables["Analysis"].store( Xa )
+ if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+ # ---> avec current state
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CurrentState"):
+ selfA.StoredVariables["CurrentState"].store( Xn )
+ #~ if selfA._toStore("ForecastState"):
+ #~ selfA.StoredVariables["ForecastState"].store( Xn_predicted )
+ #~ if selfA._toStore("BMA"):
+ #~ selfA.StoredVariables["BMA"].store( Xn_predicted - Xa )
+ #~ if selfA._toStore("InnovationAtCurrentState"):
+ #~ selfA.StoredVariables["InnovationAtCurrentState"].store( - HX_predicted + Ynpu.reshape((__p,-1)) )
+ #~ if selfA._toStore("SimulatedObservationAtCurrentState") \
+ #~ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ #~ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
+ # ---> autres
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ Jb = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
+ Jo = float( 0.5 * _Innovation.T * RI * _Innovation )
+ J = Jb + Jo
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ #
+ if selfA._toStore("IndexOfOptimum") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ if selfA._toStore("APosterioriCovariance"):
+ Eai = numpy.asarray((Xn - Xa.reshape((__n,-1))) / numpy.sqrt(__m-1)) # Anomalies
+ Pn = Eai @ Eai.T
+ Pn = 0.5 * (Pn + Pn.T)
+ selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+ if selfA._parameters["EstimationOf"] == "Parameters" \
+ and J < previousJMinimum:
+ previousJMinimum = J
+ XaMin = Xa
+ if selfA._toStore("APosterioriCovariance"):
+ covarianceXaMin = Pn
+ #
+ # Stockage final supplémentaire de l'optimum en estimation de paramètres
+ # ----------------------------------------------------------------------
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ selfA.StoredVariables["Analysis"].store( XaMin )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+ #
+ return 0
+
# ==============================================================================
if __name__ == "__main__":
print('\n AUTODIAGNOSTIC\n')