EOS[i] = numpy.nan*numpy.ones(__s)
EOS = numpy.stack(EOS, axis=1)
#
+ if len(EOS.shape) > 2 and EOS.shape[2]==1: # RaJ si transposition de Hm
+ EOS = EOS.squeeze( axis = 2 )
+ #
if selfA._parameters["SetDebug"]:
print("\n %s\n"%("-"*75,))
print("===> End evaluation, deactivating debug if necessary\n")
self.StoredVariables["CurrentOptimum"] = Persistence.OneVector(name = "CurrentOptimum")
self.StoredVariables["CurrentState"] = Persistence.OneVector(name = "CurrentState")
self.StoredVariables["CurrentStepNumber"] = Persistence.OneIndex(name = "CurrentStepNumber")
- self.StoredVariables["EnsembleOfSimulations"] = Persistence.OneMatrix(name = "EnsembleOfSimulations")
- self.StoredVariables["EnsembleOfSnapshots"] = Persistence.OneMatrix(name = "EnsembleOfSnapshots")
- self.StoredVariables["EnsembleOfStates"] = Persistence.OneMatrix(name = "EnsembleOfStates")
+ self.StoredVariables["EnsembleOfSimulations"] = Persistence.OneMatrice(name = "EnsembleOfSimulations")
+ self.StoredVariables["EnsembleOfSnapshots"] = Persistence.OneMatrice(name = "EnsembleOfSnapshots")
+ self.StoredVariables["EnsembleOfStates"] = Persistence.OneMatrice(name = "EnsembleOfStates")
self.StoredVariables["ExcludedPoints"] = Persistence.OneVector(name = "ExcludedPoints")
self.StoredVariables["ForecastCovariance"] = Persistence.OneMatrix(name = "ForecastCovariance")
self.StoredVariables["ForecastState"] = Persistence.OneVector(name = "ForecastState")
sampleList = __SampleAsnUplet
for i,Xx in enumerate(sampleList):
if numpy.ravel(Xx).size != __X0.size:
- raise ValueError("The size %i of the %ith state X in the sample and %i of the checking point Xb are different, they have to be identical."%(numpy.ravel(Xx).size,i+1,X0.size))
+ raise ValueError("The size %i of the %ith state X in the sample and %i of the checking point Xb are different, they have to be identical."%(numpy.ravel(Xx).size,i+1,__X0.size))
# ---------------------------
elif len(__SampleAsExplicitHyperCube) > 0:
sampleList = itertools.product(*list(__SampleAsExplicitHyperCube))
def __init__(self, name="", unit="", basetype = numpy.ravel):
Persistence.__init__(self, name, unit, basetype)
+class OneMatrice(Persistence):
+ """
+ Classe de stockage d'une matrice de valeurs homogènes par pas.
+ """
+ __slots__ = ()
+ #
+ def __init__(self, name="", unit="", basetype = numpy.array):
+ Persistence.__init__(self, name, unit, basetype)
+
class OneMatrix(Persistence):
"""
Classe de stockage d'une matrice de valeurs homogènes par pas.