#
return 0
+# ==============================================================================
+def uskf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+ """
+ Unscented Kalman Filter
+ """
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA._parameters["StoreInternalVariables"] = True
+ #
+ L = Xb.size
+ Alpha = selfA._parameters["Alpha"]
+ Beta = selfA._parameters["Beta"]
+ if selfA._parameters["Kappa"] == 0:
+ if selfA._parameters["EstimationOf"] == "State":
+ Kappa = 0
+ elif selfA._parameters["EstimationOf"] == "Parameters":
+ Kappa = 3 - L
+ else:
+ Kappa = selfA._parameters["Kappa"]
+ Lambda = float( Alpha**2 ) * ( L + Kappa ) - L
+ Gamma = math.sqrt( L + Lambda )
+ #
+ Ww = []
+ Ww.append( 0. )
+ for i in range(2*L):
+ Ww.append( 1. / (2.*(L + Lambda)) )
+ #
+ Wm = numpy.array( Ww )
+ Wm[0] = Lambda / (L + Lambda)
+ Wc = numpy.array( Ww )
+ Wc[0] = Lambda / (L + Lambda) + (1. - Alpha**2 + Beta)
+ #
+ # Opérateurs
+ Hm = HO["Direct"].appliedControledFormTo
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ Mm = EM["Direct"].appliedControledFormTo
+ #
+ if CM is not None and "Tangent" in CM and U is not None:
+ Cm = CM["Tangent"].asMatrix(Xb)
+ else:
+ Cm = None
+ #
+ # Durée d'observation et tailles
+ if hasattr(Y,"stepnumber"):
+ duration = Y.stepnumber()
+ __p = numpy.cumprod(Y.shape())[-1]
+ else:
+ duration = 2
+ __p = numpy.array(Y).size
+ #
+ # Précalcul des inversions de B et R
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ BI = B.getI()
+ RI = R.getI()
+ #
+ __n = Xb.size
+ #
+ if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+ Xn = Xb
+ if hasattr(B,"asfullmatrix"):
+ Pn = B.asfullmatrix(__n)
+ else:
+ Pn = B
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ selfA.StoredVariables["Analysis"].store( Xb )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+ elif selfA._parameters["nextStep"]:
+ Xn = selfA._getInternalState("Xn")
+ Pn = selfA._getInternalState("Pn")
+ #
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ XaMin = Xn
+ previousJMinimum = numpy.finfo(float).max
+ #
+ for step in range(duration-1):
+ if hasattr(Y,"store"):
+ Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+ else:
+ Ynpu = numpy.ravel( Y ).reshape((__p,1))
+ #
+ if U is not None:
+ if hasattr(U,"store") and len(U)>1:
+ Un = numpy.ravel( U[step] ).reshape((-1,1))
+ elif hasattr(U,"store") and len(U)==1:
+ Un = numpy.ravel( U[0] ).reshape((-1,1))
+ else:
+ Un = numpy.ravel( U ).reshape((-1,1))
+ else:
+ Un = None
+ #
+ Pndemi = numpy.linalg.cholesky(Pn)
+ Xnp = numpy.hstack([Xn, Xn+Gamma*Pndemi, Xn-Gamma*Pndemi])
+ nbSpts = 2*Xn.size+1
+ #
+ XEtnnp = []
+ for point in range(nbSpts):
+ if selfA._parameters["EstimationOf"] == "State":
+ XEtnnpi = numpy.asmatrix(numpy.ravel( Mm( (Xnp[:,point], Un) ) )).T
+ if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+ Cm = Cm.reshape(Xn.size,Un.size) # ADAO & check shape
+ XEtnnpi = XEtnnpi + Cm * Un
+ elif selfA._parameters["EstimationOf"] == "Parameters":
+ # --- > Par principe, M = Id, Q = 0
+ XEtnnpi = Xnp[:,point]
+ XEtnnp.append( XEtnnpi )
+ XEtnnp = numpy.hstack( XEtnnp )
+ #
+ Xncm = numpy.matrix( XEtnnp.getA()*numpy.array(Wm) ).sum(axis=1)
+ #
+ if selfA._parameters["EstimationOf"] == "State": Pnm = Q
+ elif selfA._parameters["EstimationOf"] == "Parameters": Pnm = 0.
+ for point in range(nbSpts):
+ Pnm += Wc[i] * (XEtnnp[:,point]-Xncm) * (XEtnnp[:,point]-Xncm).T
+ #
+ Pnmdemi = numpy.linalg.cholesky(Pnm)
+ #
+ Xnnp = numpy.hstack([Xncm, Xncm+Gamma*Pnmdemi, Xncm-Gamma*Pnmdemi])
+ #
+ Ynnp = []
+ for point in range(nbSpts):
+ if selfA._parameters["EstimationOf"] == "State":
+ Ynnpi = numpy.asmatrix(numpy.ravel( Hm( (Xnnp[:,point], None) ) )).T
+ elif selfA._parameters["EstimationOf"] == "Parameters":
+ Ynnpi = numpy.asmatrix(numpy.ravel( Hm( (Xnnp[:,point], Un) ) )).T
+ Ynnp.append( Ynnpi )
+ Ynnp = numpy.hstack( Ynnp )
+ #
+ Yncm = numpy.matrix( Ynnp.getA()*numpy.array(Wm) ).sum(axis=1)
+ #
+ Pyyn = R
+ Pxyn = 0.
+ for point in range(nbSpts):
+ Pyyn += Wc[i] * (Ynnp[:,point]-Yncm) * (Ynnp[:,point]-Yncm).T
+ Pxyn += Wc[i] * (Xnnp[:,point]-Xncm) * (Ynnp[:,point]-Yncm).T
+ #
+ _Innovation = Ynpu - Yncm
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
+ _Innovation = _Innovation - Cm * Un
+ #
+ Kn = Pxyn * Pyyn.I
+ Xn = Xncm + Kn * _Innovation
+ Pn = Pnm - Kn * Pyyn * Kn.T
+ #
+ Xa = Xn # Pointeurs
+ #--------------------------
+ selfA._setInternalState("Xn", Xn)
+ selfA._setInternalState("Pn", Pn)
+ #--------------------------
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ # ---> avec analysis
+ selfA.StoredVariables["Analysis"].store( Xa )
+ if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( Hm((Xa, Un)) )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+ # ---> avec current state
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CurrentState"):
+ selfA.StoredVariables["CurrentState"].store( Xn )
+ if selfA._toStore("ForecastState"):
+ selfA.StoredVariables["ForecastState"].store( Xncm )
+ if selfA._toStore("ForecastCovariance"):
+ selfA.StoredVariables["ForecastCovariance"].store( Pnm )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( Xncm - Xa )
+ if selfA._toStore("InnovationAtCurrentState"):
+ selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
+ if selfA._toStore("SimulatedObservationAtCurrentState") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( Yncm )
+ # ---> autres
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ Jb = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
+ Jo = float( 0.5 * _Innovation.T * RI * _Innovation )
+ J = Jb + Jo
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ #
+ if selfA._toStore("IndexOfOptimum") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+ if selfA._parameters["EstimationOf"] == "Parameters" \
+ and J < previousJMinimum:
+ previousJMinimum = J
+ XaMin = Xa
+ if selfA._toStore("APosterioriCovariance"):
+ covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
+ #
+ # Stockage final supplémentaire de l'optimum en estimation de paramètres
+ # ----------------------------------------------------------------------
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ selfA.StoredVariables["Analysis"].store( XaMin )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+ #
+ return 0
+
# ==============================================================================
def van3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
"""