#include "SMESH_subMesh.hxx"
#include "SMESH_subMeshEventListener.hxx"
#include "StdMeshers_FaceSide.hxx"
+#include "StdMeshers_ViscousLayers2D.hxx"
#include <Adaptor3d_HSurface.hxx>
+#include <BRepAdaptor_Curve.hxx>
#include <BRepAdaptor_Curve2d.hxx>
#include <BRepAdaptor_Surface.hxx>
#include <BRepLProp_SLProps.hxx>
+#include <BRepOffsetAPI_MakeOffsetShape.hxx>
#include <BRep_Tool.hxx>
#include <Bnd_B2d.hxx>
#include <Bnd_B3d.hxx>
#include <ElCLib.hxx>
#include <GCPnts_AbscissaPoint.hxx>
+#include <GCPnts_TangentialDeflection.hxx>
#include <Geom2d_Circle.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
+#include <TopTools_MapIteratorOfMapOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <gp_Vec.hxx>
#include <gp_XY.hxx>
-#include <list>
-#include <string>
#include <cmath>
#include <limits>
+#include <list>
+#include <queue>
+#include <string>
#ifdef _DEBUG_
-//#define __myDEBUG
+#define __myDEBUG
//#define __NOT_INVALIDATE_BAD_SMOOTH
#endif
+#define INCREMENTAL_SMOOTH // smooth only if min angle is too small
+#define BLOCK_INFLATION // of individual _LayerEdge's
+#define OLD_NEF_POLYGON
+
using namespace std;
//================================================================================
const double theMinSmoothCosin = 0.1;
const double theSmoothThickToElemSizeRatio = 0.3;
+ const double theMinSmoothTriaAngle = 30;
+ const double theMinSmoothQuadAngle = 45;
// what part of thickness is allowed till intersection
// (defined by SALOME_TESTS/Grids/smesh/viscous_layers_00/A5)
{
return cosin * tgtThick > theSmoothThickToElemSizeRatio * elemSize;
}
+ double getSmoothingThickness( double cosin, double elemSize )
+ {
+ return theSmoothThickToElemSizeRatio * elemSize / cosin;
+ }
/*!
* \brief SMESH_ProxyMesh computed by _ViscousBuilder for a SOLID.
SMESH_subMeshEventListenerData* data,
const SMESH_Hypothesis* hyp)
{
- if ( SMESH_subMesh::COMPUTE_EVENT == eventType &&
- SMESH_subMesh::CHECK_COMPUTE_STATE != event)
+ if (( SMESH_subMesh::COMPUTE_EVENT == eventType ) &&
+ ( SMESH_subMesh::CHECK_COMPUTE_STATE != event &&
+ SMESH_subMesh::SUBMESH_COMPUTED != event ))
{
// delete SMESH_ProxyMesh containing temporary faces
subMesh->DeleteEventListener( this );
const SMDS_MeshNode* nNext=0,
const SMDS_MeshNode* nOpp=0)
: _nPrev(nPrev), _nNext(nNext), _nOpp(nOpp) {}
- bool IsForward(const SMDS_MeshNode* nSrc, const gp_XYZ* pntTgt, double& vol) const
+ bool IsForward(const gp_XYZ* pntSrc, const gp_XYZ* pntTgt, double& vol) const
{
const double M[3][3] =
- {{ _nNext->X() - nSrc->X(), _nNext->Y() - nSrc->Y(), _nNext->Z() - nSrc->Z() },
- { pntTgt->X() - nSrc->X(), pntTgt->Y() - nSrc->Y(), pntTgt->Z() - nSrc->Z() },
- { _nPrev->X() - nSrc->X(), _nPrev->Y() - nSrc->Y(), _nPrev->Z() - nSrc->Z() }};
- vol = ( + M[0][0]*M[1][1]*M[2][2]
- + M[0][1]*M[1][2]*M[2][0]
- + M[0][2]*M[1][0]*M[2][1]
- - M[0][0]*M[1][2]*M[2][1]
- - M[0][1]*M[1][0]*M[2][2]
- - M[0][2]*M[1][1]*M[2][0]);
+ {{ _nNext->X() - pntSrc->X(), _nNext->Y() - pntSrc->Y(), _nNext->Z() - pntSrc->Z() },
+ { pntTgt->X() - pntSrc->X(), pntTgt->Y() - pntSrc->Y(), pntTgt->Z() - pntSrc->Z() },
+ { _nPrev->X() - pntSrc->X(), _nPrev->Y() - pntSrc->Y(), _nPrev->Z() - pntSrc->Z() }};
+ vol = ( + M[0][0] * M[1][1] * M[2][2]
+ + M[0][1] * M[1][2] * M[2][0]
+ + M[0][2] * M[1][0] * M[2][1]
+ - M[0][0] * M[1][2] * M[2][1]
+ - M[0][1] * M[1][0] * M[2][2]
+ - M[0][2] * M[1][1] * M[2][0]);
return vol > 1e-100;
}
+ bool IsForward(const SMDS_MeshNode* nSrc, const gp_XYZ& pTgt, double& vol) const
+ {
+ SMESH_TNodeXYZ pSrc( nSrc );
+ return IsForward( &pSrc, &pTgt, vol );
+ }
bool IsForward(const gp_XY& tgtUV,
const SMDS_MeshNode* smoothedNode,
const TopoDS_Face& face,
double d = v1 ^ v2;
return d*refSign > 1e-100;
}
+ bool IsMinAngleOK( const gp_XYZ& pTgt, double& minAngle ) const
+ {
+ SMESH_TNodeXYZ pPrev( _nPrev ), pNext( _nNext );
+ if ( !_nOpp ) // triangle
+ {
+ gp_Vec tp( pPrev - pTgt ), pn( pNext - pPrev ), nt( pTgt - pNext );
+ double tp2 = tp.SquareMagnitude();
+ double pn2 = pn.SquareMagnitude();
+ double nt2 = nt.SquareMagnitude();
+
+ if ( tp2 < pn2 && tp2 < nt2 )
+ minAngle = ( nt * -pn ) * ( nt * -pn ) / nt2 / pn2;
+ else if ( pn2 < nt2 )
+ minAngle = ( tp * -nt ) * ( tp * -nt ) / tp2 / nt2;
+ else
+ minAngle = ( pn * -tp ) * ( pn * -tp ) / pn2 / tp2;
+
+ static double theMaxCos2 = ( Cos( theMinSmoothTriaAngle * M_PI / 180. ) *
+ Cos( theMinSmoothTriaAngle * M_PI / 180. ));
+ return minAngle < theMaxCos2;
+ }
+ else // quadrangle
+ {
+ SMESH_TNodeXYZ pOpp( _nOpp );
+ gp_Vec tp( pPrev - pTgt ), po( pOpp - pPrev ), on( pNext - pOpp), nt( pTgt - pNext );
+ double tp2 = tp.SquareMagnitude();
+ double po2 = po.SquareMagnitude();
+ double on2 = on.SquareMagnitude();
+ double nt2 = nt.SquareMagnitude();
+ minAngle = Max( Max((( tp * -nt ) * ( tp * -nt ) / tp2 / nt2 ),
+ (( po * -tp ) * ( po * -tp ) / po2 / tp2 )),
+ Max((( on * -po ) * ( on * -po ) / on2 / po2 ),
+ (( nt * -on ) * ( nt * -on ) / nt2 / on2 )));
+
+ static double theMaxCos2 = ( Cos( theMinSmoothQuadAngle * M_PI / 180. ) *
+ Cos( theMinSmoothQuadAngle * M_PI / 180. ));
+ return minAngle < theMaxCos2;
+ }
+ }
bool IsNeighbour(const _Simplex& other) const
{
return _nPrev == other._nNext || _nNext == other._nPrev;
}
+ bool Includes( const SMDS_MeshNode* node ) const { return _nPrev == node || _nNext == node; }
static void GetSimplices( const SMDS_MeshNode* node,
vector<_Simplex>& simplices,
const set<TGeomID>& ingnoreShapes,
*/
struct _Curvature
{
- double _r; // radius
- double _k; // factor to correct node smoothed position
- double _h2lenRatio; // avgNormProj / (2*avgDist)
+ double _r; // radius
+ double _k; // factor to correct node smoothed position
+ double _h2lenRatio; // avgNormProj / (2*avgDist)
+ gp_Pnt2d _uv; // UV used in putOnOffsetSurface()
public:
static _Curvature* New( double avgNormProj, double avgDist )
{
//c->_k = avgNormProj / c->_r;
c->_k *= ( c->_r < 0 ? 1/1.1 : 1.1 ); // not to be too restrictive
c->_h2lenRatio = avgNormProj / ( avgDist + avgDist );
+
+ c->_uv.SetCoord( 0., 0. );
}
return c;
}
struct _2NearEdges;
struct _LayerEdge;
struct _EdgesOnShape;
+ struct _Smoother1D;
typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge;
//--------------------------------------------------------------------------------
vector< const SMDS_MeshNode*> _nodes;
- gp_XYZ _normal; // to solid surface
- vector<gp_XYZ> _pos; // points computed during inflation
- double _len; // length achived with the last inflation step
- double _cosin; // of angle (_normal ^ surface)
+ gp_XYZ _normal; // to boundary of solid
+ vector<gp_XYZ> _pos; // points computed during inflation
+ double _len; // length achived with the last inflation step
+ double _maxLen; // maximal possible length
+ double _cosin; // of angle (_normal ^ surface)
+ double _minAngle; // of _simplices
double _lenFactor; // to compute _len taking _cosin into account
+ int _flags;
- // face or edge w/o layer along or near which _LayerEdge is inflated
- //TopoDS_Shape* _sWOL;
// simplices connected to the source node (_nodes[0]);
// used for smoothing and quality check of _LayerEdge's based on the FACE
vector<_Simplex> _simplices;
+ vector<_LayerEdge*> _neibors; // all surrounding _LayerEdge's
PSmooFun _smooFunction; // smoothing function
+ _Curvature* _curvature;
// data for smoothing of _LayerEdge's based on the EDGE
_2NearEdges* _2neibors;
- _Curvature* _curvature;
- // TODO:: detele _Curvature, _plnNorm
+ enum EFlags { TO_SMOOTH = 1,
+ MOVED = 2, // set by _neibors[i]->SetNewLength()
+ SMOOTHED = 4, // set by this->Smooth()
+ DIFFICULT = 8, // near concave VERTEX
+ ON_CONCAVE_FACE = 16,
+ BLOCKED = 32, // not to inflate any more
+ INTERSECTED = 64, // close intersection with a face found
+ NORMAL_UPDATED = 128,
+ MARKED = 256, // local usage
+ MULTI_NORMAL = 512, // a normal is invisible by some of surrounding faces
+ NEAR_BOUNDARY = 1024,// is near FACE boundary forcing smooth
+ SMOOTHED_C1 = 2048,// is on _eosC1
+ DISTORTED = 4096,// was bad before smoothing
+ RISKY_SWOL = 8192 // SWOL is parallel to a source FACE
+ };
+ bool Is ( EFlags f ) const { return _flags & f; }
+ void Set ( EFlags f ) { _flags |= f; }
+ void Unset( EFlags f ) { _flags &= ~f; }
void SetNewLength( double len, _EdgesOnShape& eos, SMESH_MesherHelper& helper );
bool SetNewLength2d( Handle(Geom_Surface)& surface,
const SMDS_MeshNode* n2,
const _EdgesOnShape& eos,
SMESH_MesherHelper& helper);
- void InvalidateStep( int curStep, const _EdgesOnShape& eos, bool restoreLength=false );
+ void Block( _SolidData& data );
+ void InvalidateStep( size_t curStep, const _EdgesOnShape& eos, bool restoreLength=false );
void ChooseSmooFunction(const set< TGeomID >& concaveVertices,
const TNode2Edge& n2eMap);
- int Smooth(const int step, const bool isConcaveFace, const bool findBest);
- bool SmoothOnEdge(Handle(Geom_Surface)& surface,
- const TopoDS_Face& F,
- SMESH_MesherHelper& helper);
+ void SmoothPos( const vector< double >& segLen, const double tol );
+ int Smooth(const int step, const bool isConcaveFace, bool findBest);
+ int Smooth(const int step, bool findBest, vector< _LayerEdge* >& toSmooth );
+ int CheckNeiborsOnBoundary(vector< _LayerEdge* >* badNeibors = 0 );
+ void SmoothWoCheck();
+ bool SmoothOnEdge(Handle(ShapeAnalysis_Surface)& surface,
+ const TopoDS_Face& F,
+ SMESH_MesherHelper& helper);
+ void MoveNearConcaVer( const _EdgesOnShape* eov,
+ const _EdgesOnShape* eos,
+ const int step,
+ vector< _LayerEdge* > & badSmooEdges);
bool FindIntersection( SMESH_ElementSearcher& searcher,
double & distance,
const double& epsilon,
_EdgesOnShape& eos,
const SMDS_MeshElement** face = 0);
+ bool SegTriaInter( const gp_Ax1& lastSegment,
+ const gp_XYZ& p0,
+ const gp_XYZ& p1,
+ const gp_XYZ& p2,
+ double& dist,
+ const double& epsilon) const;
bool SegTriaInter( const gp_Ax1& lastSegment,
const SMDS_MeshNode* n0,
const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
double& dist,
- const double& epsilon) const;
+ const double& epsilon) const
+ { return SegTriaInter( lastSegment,
+ SMESH_TNodeXYZ( n0 ), SMESH_TNodeXYZ( n1 ), SMESH_TNodeXYZ( n2 ),
+ dist, epsilon );
+ }
+ const gp_XYZ& PrevPos() const { return _pos[ _pos.size() - 2 ]; }
+ const gp_XYZ& PrevCheckPos() const { return _pos[ Is( NORMAL_UPDATED ) ? _pos.size()-2 : 0 ]; }
gp_Ax1 LastSegment(double& segLen, _EdgesOnShape& eos) const;
gp_XY LastUV( const TopoDS_Face& F, _EdgesOnShape& eos ) const;
bool IsOnEdge() const { return _2neibors; }
gp_XYZ Copy( _LayerEdge& other, _EdgesOnShape& eos, SMESH_MesherHelper& helper );
void SetCosin( double cosin );
+ void SetNormal( const gp_XYZ& n ) { _normal = n; }
int NbSteps() const { return _pos.size() - 1; } // nb inlation steps
+ bool IsNeiborOnEdge( const _LayerEdge* edge ) const;
+ void SetSmooLen( double len ) { // set _len at which smoothing is needed
+ _cosin = len; // as for _LayerEdge's on FACE _cosin is not used
+ }
+ double GetSmooLen() { return _cosin; } // for _LayerEdge's on FACE _cosin is not used
gp_XYZ smoothLaplacian();
gp_XYZ smoothAngular();
{
return _inNorm * ( p - _pos ) < -tol;
}
- bool FindInterestion( const _halfPlane& hp, gp_XY & intPnt )
+ bool FindIntersection( const _halfPlane& hp, gp_XY & intPnt )
{
- const double eps = 1e-10;
+ //const double eps = 1e-10;
double D = _dir.Crossed( hp._dir );
if ( fabs(D) < std::numeric_limits<double>::min())
return false;
std::swap( _wgt [0], _wgt [1] );
std::swap( _edges[0], _edges[1] );
}
+ void set( _LayerEdge* e1, _LayerEdge* e2, double w1, double w2 ) {
+ _edges[0] = e1; _edges[1] = e2; _wgt[0] = w1; _wgt[1] = w2;
+ }
+ bool include( const _LayerEdge* e ) {
+ return ( _edges[0] == e || _edges[1] == e );
+ }
};
struct AverageHyp
{
AverageHyp( const StdMeshers_ViscousLayers* hyp = 0 )
- :_nbLayers(0), _nbHyps(0), _thickness(0), _stretchFactor(0), _method(0)
+ :_nbLayers(0), _nbHyps(0), _method(0), _thickness(0), _stretchFactor(0)
{
Add( hyp );
}
SMESH_subMesh * _subMesh;
// face or edge w/o layer along or near which _edges are inflated
TopoDS_Shape _sWOL;
+ bool _isRegularSWOL; // w/o singularities
// averaged StdMeshers_ViscousLayers parameters
AverageHyp _hyp;
bool _toSmooth;
+ _Smoother1D* _edgeSmoother;
+ vector< _EdgesOnShape* > _eosConcaVer; // edges at concave VERTEXes of a FACE
+ vector< _EdgesOnShape* > _eosC1; // to smooth together several C1 continues shapes
- vector< gp_XYZ > _faceNormals; // if _shape is FACE
+ vector< gp_XYZ > _faceNormals; // if _shape is FACE
vector< _EdgesOnShape* > _faceEOS; // to get _faceNormals of adjacent FACEs
+ Handle(ShapeAnalysis_Surface) _offsetSurf;
+ _LayerEdge* _edgeForOffset;
+
+ _SolidData* _data; // parent SOLID
+
TopAbs_ShapeEnum ShapeType() const
{ return _shape.IsNull() ? TopAbs_SHAPE : _shape.ShapeType(); }
TopAbs_ShapeEnum SWOLType() const
{ return _sWOL.IsNull() ? TopAbs_SHAPE : _sWOL.ShapeType(); }
+ bool HasC1( const _EdgesOnShape* other ) const
+ { return std::find( _eosC1.begin(), _eosC1.end(), other ) != _eosC1.end(); }
bool GetNormal( const SMDS_MeshElement* face, gp_Vec& norm );
+ _SolidData& GetData() const { return *_data; }
+
+ _EdgesOnShape(): _shapeID(-1), _subMesh(0), _toSmooth(false), _edgeSmoother(0) {}
};
//--------------------------------------------------------------------------------
{
TopoDS_Face _face;
- // edges whose _simplices are used to detect prism destorsion
+ // edges whose _simplices are used to detect prism distortion
vector< _LayerEdge* > _simplexTestEdges;
// map a sub-shape to _SolidData::_edgesOnShape
bool CheckPrisms() const;
};
+ //--------------------------------------------------------------------------------
+ /*!
+ * \brief Structure holding _LayerEdge's based on EDGEs that will collide
+ * at inflation up to the full thickness. A detected collision
+ * is fixed in updateNormals()
+ */
+ struct _CollisionEdges
+ {
+ _LayerEdge* _edge;
+ vector< _LayerEdge* > _intEdges; // each pair forms an intersected quadrangle
+ const SMDS_MeshNode* nSrc(int i) const { return _intEdges[i]->_nodes[0]; }
+ const SMDS_MeshNode* nTgt(int i) const { return _intEdges[i]->_nodes.back(); }
+ };
+
//--------------------------------------------------------------------------------
/*!
* \brief Data of a SOLID
int _nbShapesToSmooth;
- // <EDGE to smooth on> to <it's curve> -- for analytic smooth
- map< TGeomID,Handle(Geom_Curve)> _edge2curve;
+ //map< TGeomID,Handle(Geom_Curve)> _edge2curve;
+ vector< _CollisionEdges > _collisionEdges;
set< TGeomID > _concaveFaces;
double _maxThickness; // of all _hyps
double _epsilon; // precision for SegTriaInter()
+ SMESH_MesherHelper* _helper;
+
_SolidData(const TopoDS_Shape& s=TopoDS_Shape(),
_MeshOfSolid* m=0)
- :_solid(s), _proxyMesh(m) {}
+ :_solid(s), _proxyMesh(m), _helper(0) {}
~_SolidData();
- Handle(Geom_Curve) CurveForSmooth( const TopoDS_Edge& E,
- _EdgesOnShape& eos,
- SMESH_MesherHelper& helper);
-
- void SortOnEdge( const TopoDS_Edge& E,
- vector< _LayerEdge* >& edges,
- SMESH_MesherHelper& helper);
-
+ void SortOnEdge( const TopoDS_Edge& E, vector< _LayerEdge* >& edges);
void Sort2NeiborsOnEdge( vector< _LayerEdge* >& edges );
- _ConvexFace* GetConvexFace( const TGeomID faceID )
- {
+ _ConvexFace* GetConvexFace( const TGeomID faceID ) {
map< TGeomID, _ConvexFace >::iterator id2face = _convexFaces.find( faceID );
return id2face == _convexFaces.end() ? 0 : & id2face->second;
}
_EdgesOnShape* GetShapeEdges(const _LayerEdge* edge )
{ return GetShapeEdges( edge->_nodes[0]->getshapeId() ); }
- void AddShapesToSmooth( const set< _EdgesOnShape* >& shape );
+ SMESH_MesherHelper& GetHelper() const { return *_helper; }
+
+ void UnmarkEdges() {
+ for ( size_t i = 0; i < _edgesOnShape.size(); ++i )
+ for ( size_t j = 0; j < _edgesOnShape[i]._edges.size(); ++j )
+ _edgesOnShape[i]._edges[j]->Unset( _LayerEdge::MARKED );
+ }
+ void AddShapesToSmooth( const set< _EdgesOnShape* >& shape,
+ const set< _EdgesOnShape* >* edgesNoAnaSmooth=0 );
void PrepareEdgesToSmoothOnFace( _EdgesOnShape* eof, bool substituteSrcNodes );
};
//--------------------------------------------------------------------------------
+ /*!
+ * \brief Offset plane used in getNormalByOffset()
+ */
+ struct _OffsetPlane
+ {
+ gp_Pln _plane;
+ int _faceIndex;
+ int _faceIndexNext[2];
+ gp_Lin _lines[2]; // line of intersection with neighbor _OffsetPlane's
+ bool _isLineOK[2];
+ _OffsetPlane() {
+ _isLineOK[0] = _isLineOK[1] = false; _faceIndexNext[0] = _faceIndexNext[1] = -1;
+ }
+ void ComputeIntersectionLine( _OffsetPlane& pln );
+ gp_XYZ GetCommonPoint(bool& isFound) const;
+ int NbLines() const { return _isLineOK[0] + _isLineOK[1]; }
+ };
+ //--------------------------------------------------------------------------------
/*!
* \brief Container of centers of curvature at nodes on an EDGE bounding _ConvexFace
*/
set<TGeomID>& ignoreFaces);
bool makeLayer(_SolidData& data);
void setShapeData( _EdgesOnShape& eos, SMESH_subMesh* sm, _SolidData& data );
- bool setEdgeData(_LayerEdge& edge, _EdgesOnShape& eos, const set<TGeomID>& subIds,
- SMESH_MesherHelper& helper, _SolidData& data);
+ bool setEdgeData( _LayerEdge& edge, _EdgesOnShape& eos,
+ SMESH_MesherHelper& helper, _SolidData& data);
gp_XYZ getFaceNormal(const SMDS_MeshNode* n,
const TopoDS_Face& face,
SMESH_MesherHelper& helper,
const TopoDS_Face& face,
SMESH_MesherHelper& helper,
gp_Dir& normal );
- gp_XYZ getWeigthedNormal( const SMDS_MeshNode* n,
+ gp_XYZ getWeigthedNormal( const _LayerEdge* edge );
+ gp_XYZ getNormalByOffset( _LayerEdge* edge,
std::pair< TopoDS_Face, gp_XYZ > fId2Normal[],
int nbFaces );
bool findNeiborsOnEdge(const _LayerEdge* edge,
void limitStepSize( _SolidData& data, const double minSize);
bool inflate(_SolidData& data);
bool smoothAndCheck(_SolidData& data, const int nbSteps, double & distToIntersection);
- bool smoothAnalyticEdge( _SolidData& data,
- _EdgesOnShape& eos,
- Handle(Geom_Surface)& surface,
- const TopoDS_Face& F,
- SMESH_MesherHelper& helper);
- bool updateNormals( _SolidData& data, SMESH_MesherHelper& helper, int stepNb );
+ int invalidateBadSmooth( _SolidData& data,
+ SMESH_MesherHelper& helper,
+ vector< _LayerEdge* >& badSmooEdges,
+ vector< _EdgesOnShape* >& eosC1,
+ const int infStep );
+ void makeOffsetSurface( _EdgesOnShape& eos, SMESH_MesherHelper& );
+ void putOnOffsetSurface( _EdgesOnShape& eos, int infStep, int smooStep=0, bool moveAll=false );
+ void findCollisionEdges( _SolidData& data, SMESH_MesherHelper& helper );
+ bool updateNormals( _SolidData& data, SMESH_MesherHelper& helper, int stepNb, double stepSize );
bool updateNormalsOfConvexFaces( _SolidData& data,
SMESH_MesherHelper& helper,
int stepNb );
+ void updateNormalsOfC1Vertices( _SolidData& data );
+ bool updateNormalsOfSmoothed( _SolidData& data,
+ SMESH_MesherHelper& helper,
+ const int nbSteps,
+ const double stepSize );
+ bool isNewNormalOk( _SolidData& data,
+ _LayerEdge& edge,
+ const gp_XYZ& newNormal);
bool refine(_SolidData& data);
bool shrink();
bool prepareEdgeToShrink( _LayerEdge& edge, _EdgesOnShape& eos,
void Compute(bool set3D, SMESH_MesherHelper& helper);
void RestoreParams();
void SwapSrcTgtNodes(SMESHDS_Mesh* mesh);
+ const TopoDS_Edge& GeomEdge() const { return _geomEdge; }
+ const SMDS_MeshNode* TgtNode( bool is2nd ) const
+ { return _edges[is2nd] ? _edges[is2nd]->_nodes.back() : 0; }
+ const SMDS_MeshNode* SrcNode( bool is2nd ) const
+ { return _edges[is2nd] ? _edges[is2nd]->_nodes[0] : 0; }
+ };
+ //--------------------------------------------------------------------------------
+ /*!
+ * \brief Smoother of _LayerEdge's on EDGE.
+ */
+ struct _Smoother1D
+ {
+ struct OffPnt // point of the offsetted EDGE
+ {
+ gp_XYZ _xyz; // coord of a point inflated from EDGE w/o smooth
+ double _len; // length reached at previous inflation step
+ _2NearEdges _2edges; // 2 neighbor _LayerEdge's
+ double Distance( const OffPnt& p ) const { return ( _xyz - p._xyz ).Modulus(); }
+ };
+ vector< OffPnt > _offPoints;
+ vector< double > _leParams; // normalized param of _eos._edges on EDGE
+ Handle(Geom_Curve) _anaCurve; // for analytic smooth
+ _LayerEdge _leOnV[2]; // _LayerEdge's holding normal to the EDGE at VERTEXes
+ size_t _iSeg[2]; // index of segment where extreme tgt node is projected
+ _EdgesOnShape& _eos;
+
+ static Handle(Geom_Curve) CurveForSmooth( const TopoDS_Edge& E,
+ _EdgesOnShape& eos,
+ SMESH_MesherHelper& helper);
+
+ _Smoother1D( Handle(Geom_Curve) curveForSmooth,
+ _EdgesOnShape& eos )
+ : _anaCurve( curveForSmooth ), _eos( eos )
+ {
+ }
+ bool Perform(_SolidData& data,
+ Handle(ShapeAnalysis_Surface)& surface,
+ const TopoDS_Face& F,
+ SMESH_MesherHelper& helper )
+ {
+ if ( _leParams.empty() || ( !isAnalytic() && _offPoints.empty() ))
+ prepare( data );
+
+ if ( isAnalytic() )
+ return smoothAnalyticEdge( data, surface, F, helper );
+ else
+ return smoothComplexEdge ( data, surface, F, helper );
+ }
+ void prepare(_SolidData& data );
+
+ bool smoothAnalyticEdge( _SolidData& data,
+ Handle(ShapeAnalysis_Surface)& surface,
+ const TopoDS_Face& F,
+ SMESH_MesherHelper& helper);
+
+ bool smoothComplexEdge( _SolidData& data,
+ Handle(ShapeAnalysis_Surface)& surface,
+ const TopoDS_Face& F,
+ SMESH_MesherHelper& helper);
+
+ void setNormalOnV( const bool is2nd,
+ SMESH_MesherHelper& helper);
+
+ _LayerEdge* getLEdgeOnV( bool is2nd )
+ {
+ return _eos._edges[ is2nd ? _eos._edges.size()-1 : 0 ]->_2neibors->_edges[ is2nd ];
+ }
+ bool isAnalytic() const { return !_anaCurve.IsNull(); }
};
//--------------------------------------------------------------------------------
/*!
struct _TmpMeshFace : public SMDS_MeshElement
{
vector<const SMDS_MeshNode* > _nn;
- _TmpMeshFace( const vector<const SMDS_MeshNode*>& nodes, int id, int faceID=-1):
- SMDS_MeshElement(id), _nn(nodes) { setShapeId(faceID); }
+ _TmpMeshFace( const vector<const SMDS_MeshNode*>& nodes,
+ int id, int faceID=-1, int idInFace=-1):
+ SMDS_MeshElement(id), _nn(nodes) { setShapeId(faceID); setIdInShape(idInFace); }
virtual const SMDS_MeshNode* GetNode(const int ind) const { return _nn[ind]; }
virtual SMDSAbs_ElementType GetType() const { return SMDSAbs_Face; }
virtual vtkIdType GetVtkType() const { return -1; }
_nn[2]=_le2->_nodes.back();
_nn[3]=_le2->_nodes[0];
}
+ gp_XYZ GetDir() const // return average direction of _LayerEdge's, normal to EDGE
+ {
+ SMESH_TNodeXYZ p0s( _nn[0] );
+ SMESH_TNodeXYZ p0t( _nn[1] );
+ SMESH_TNodeXYZ p1t( _nn[2] );
+ SMESH_TNodeXYZ p1s( _nn[3] );
+ gp_XYZ v0 = p0t - p0s;
+ gp_XYZ v1 = p1t - p1s;
+ gp_XYZ v01 = p1s - p0s;
+ gp_XYZ n = ( v0 ^ v01 ) + ( v1 ^ v01 );
+ gp_XYZ d = v01 ^ n;
+ d.Normalize();
+ return d;
+ }
+ gp_XYZ GetDir(_LayerEdge* le1, _LayerEdge* le2) // return average direction of _LayerEdge's
+ {
+ _nn[0]=le1->_nodes[0];
+ _nn[1]=le1->_nodes.back();
+ _nn[2]=le2->_nodes.back();
+ _nn[3]=le2->_nodes[0];
+ return GetDir();
+ }
};
//--------------------------------------------------------------------------------
/*!
}
};
+ //================================================================================
+ /*!
+ * \brief Check angle between vectors
+ */
+ //================================================================================
+
+ inline bool isLessAngle( const gp_Vec& v1, const gp_Vec& v2, const double cos )
+ {
+ double dot = v1 * v2; // cos * |v1| * |v2|
+ double l1 = v1.SquareMagnitude();
+ double l2 = v2.SquareMagnitude();
+ return (( dot * cos >= 0 ) &&
+ ( dot * dot ) / l1 / l2 >= ( cos * cos ));
+ }
+
} // namespace VISCOUS_3D
{
int nbFaces, faceID, shapeToTreat, method;
load >> _nbLayers >> _thickness >> _stretchFactor >> nbFaces;
- while ( _shapeIds.size() < nbFaces && load >> faceID )
+ while ( (int) _shapeIds.size() < nbFaces && load >> faceID )
_shapeIds.push_back( faceID );
if ( load >> shapeToTreat ) {
_isToIgnoreShapes = !shapeToTreat;
gp_Vec dir;
double f,l;
Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l );
+ if ( c.IsNull() ) return gp_XYZ( Precision::Infinite(), 1e100, 1e100 );
gp_Pnt p = BRep_Tool::Pnt( fromV );
double distF = p.SquareDistance( c->Value( f ));
double distL = p.SquareDistance( c->Value( l ));
gp_Vec dir;
double f,l; gp_Pnt p;
Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l );
- if ( c.IsNull() ) return gp_XYZ( 1e100, 1e100, 1e100 );
+ if ( c.IsNull() ) return gp_XYZ( Precision::Infinite(), 1e100, 1e100 );
double u = helper.GetNodeU( E, atNode );
c->D1( u, p, dir );
return dir.XYZ();
{
TopoDS_Face faceFrw = F;
faceFrw.Orientation( TopAbs_FORWARD );
- double f,l; TopLoc_Location loc;
+ //double f,l; TopLoc_Location loc;
TopoDS_Edge edges[2]; // sharing a vertex
- int nbEdges = 0;
+ size_t nbEdges = 0;
{
TopoDS_Vertex VV[2];
TopExp_Explorer exp( faceFrw, TopAbs_EDGE );
double u1 = intervals( i );
double u2 = intervals( i+1 );
curve.D2( 0.5*( u1+u2 ), p, drv1, drv2 );
- double cross = drv2 ^ drv1;
+ double cross = drv1 ^ drv2;
if ( E.Orientation() == TopAbs_REVERSED )
cross = -cross;
- isConvex = ( cross > 0.1 ); //-1e-9 );
+ isConvex = ( cross > -1e-9 ); // 0.1 );
}
if ( !isConvex )
{
{ if (py) { *py<< " mesh.ChangeElemNodes( " << f->GetID()<<", [";
for ( int i=1; i < f->NbNodes(); ++i ) *py << f->GetNode(i-1)->GetID()<<", ";
*py << f->GetNode( f->NbNodes()-1 )->GetID() << " ])"<< endl; }}
-#define debugMsg( txt ) { cout << txt << " (line: " << __LINE__ << ")" << endl; }
+#define debugMsg( txt ) { cout << "# "<< txt << " (line: " << __LINE__ << ")" << endl; }
+
#else
+
struct PyDump { PyDump(SMESH_Mesh&) {} void Finish() {} };
#define dumpFunction(f) f
#define dumpMove(n)
#define dumpMoveComm(n,txt)
#define dumpCmd(txt)
#define dumpFunctionEnd()
-#define dumpChangeNodes(f)
+#define dumpChangeNodes(f) { if(f) {} } // prevent "unused variable 'f'" warning
#define debugMsg( txt ) {}
+
#endif
}
list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin();
const StdMeshers_ViscousLayers* viscHyp = 0;
for ( ; hyp != allHyps.end(); ++hyp )
- if ( viscHyp = dynamic_cast<const StdMeshers_ViscousLayers*>( *hyp ))
+ if (( viscHyp = dynamic_cast<const StdMeshers_ViscousLayers*>( *hyp )))
{
TopoDS_Shape hypShape;
filter.Init( filter.Is( viscHyp ));
_sdVec.push_back( _SolidData( allSolids(i), proxyMesh ));
soData = & _sdVec.back();
soData->_index = getMeshDS()->ShapeToIndex( allSolids(i));
+ soData->_helper = new SMESH_MesherHelper( *_mesh );
+ soData->_helper->SetSubShape( allSolids(i) );
}
soData->_hyps.push_back( viscHyp );
soData->_hypShapes.push_back( hypShape );
const TopoDS_Shape& vertex = shapes(iV);
// find faces WOL sharing the vertex
vector< TopoDS_Shape > facesWOL;
- int totalNbFaces = 0;
+ size_t totalNbFaces = 0;
PShapeIteratorPtr fIt = helper.GetAncestors(vertex, *_mesh, TopAbs_FACE);
while ( fIt->more())
{
{
SMESH_subMesh* fSubM = _mesh->GetSubMesh( exp.Current() );
if ( ! data._ignoreFaceIds.count( fSubM->GetId() ))
- {
faceIds.insert( fSubM->GetId() );
- SMESH_subMeshIteratorPtr subIt = fSubM->getDependsOnIterator(/*includeSelf=*/true);
- while ( subIt->more() )
- subIds.insert( subIt->next()->GetId() );
- }
}
// make a map to find new nodes on sub-shapes shared with other SOLID
{
edge->_nodes.push_back( helper.AddNode( xyz.X(), xyz.Y(), xyz.Z() ));
}
- if ( !setEdgeData( *edge, edgesByGeom[ shapeID ], subIds, helper, data ))
+ if ( !setEdgeData( *edge, edgesByGeom[ shapeID ], helper, data ))
return false;
+
+ if ( edge->_nodes.size() < 2 )
+ edge->Block( data );
+ //data._noShrinkShapes.insert( shapeID );
}
dumpMove(edge->_nodes.back());
// create a temporary face
const SMDS_MeshElement* newFace =
- new _TmpMeshFace( newNodes, --_tmpFaceID, face->getshapeId() );
+ new _TmpMeshFace( newNodes, --_tmpFaceID, face->getshapeId(), face->getIdInShape() );
proxySub->AddElement( newFace );
// compute inflation step size by min size of element on a convex surface
limitStepSize( data, face, maxCosinEdge );
} // loop on 2D elements on a FACE
- } // loop on FACEs of a SOLID
+ } // loop on FACEs of a SOLID to create _LayerEdge's
+
+
+ // Set _LayerEdge::_neibors
+ TNode2Edge::iterator n2e;
+ for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
+ {
+ _EdgesOnShape& eos = data._edgesOnShape[iS];
+ for ( size_t i = 0; i < eos._edges.size(); ++i )
+ {
+ _LayerEdge* edge = eos._edges[i];
+ TIDSortedNodeSet nearNodes;
+ SMDS_ElemIteratorPtr fIt = edge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
+ while ( fIt->more() )
+ {
+ const SMDS_MeshElement* f = fIt->next();
+ if ( !data._ignoreFaceIds.count( f->getshapeId() ))
+ nearNodes.insert( f->begin_nodes(), f->end_nodes() );
+ }
+ nearNodes.erase( edge->_nodes[0] );
+ edge->_neibors.reserve( nearNodes.size() );
+ TIDSortedNodeSet::iterator node = nearNodes.begin();
+ for ( ; node != nearNodes.end(); ++node )
+ if (( n2e = data._n2eMap.find( *node )) != data._n2eMap.end() )
+ edge->_neibors.push_back( n2e->second );
+ }
+ }
data._epsilon = 1e-7;
if ( data._stepSize < 1. )
limitStepSizeByCurvature( data ); // !!! it must be before node substitution in _Simplex
// Set target nodes into _Simplex and _LayerEdge's to _2NearEdges
- TNode2Edge::iterator n2e;
const SMDS_MeshNode* nn[2];
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[iS];
- vector< _LayerEdge* >& localEdges = eos._edges;
- for ( size_t i = 0; i < localEdges.size(); ++i )
+ for ( size_t i = 0; i < eos._edges.size(); ++i )
{
- _LayerEdge* edge = localEdges[i];
+ _LayerEdge* edge = eos._edges[i];
if ( edge->IsOnEdge() )
{
// get neighbor nodes
edge->_lenFactor = vEdge->_lenFactor;
edge->_cosin = vEdge->_cosin;
}
- }
- }
+
+ } // loop on data._edgesOnShape._edges
+ } // loop on data._edgesOnShape
// fix _LayerEdge::_2neibors on EDGEs to smooth
- map< TGeomID,Handle(Geom_Curve)>::iterator e2c = data._edge2curve.begin();
- for ( ; e2c != data._edge2curve.end(); ++e2c )
- if ( !e2c->second.IsNull() )
- {
- if ( _EdgesOnShape* eos = data.GetShapeEdges( e2c->first ))
- data.Sort2NeiborsOnEdge( eos->_edges );
- }
+ // map< TGeomID,Handle(Geom_Curve)>::iterator e2c = data._edge2curve.begin();
+ // for ( ; e2c != data._edge2curve.end(); ++e2c )
+ // if ( !e2c->second.IsNull() )
+ // {
+ // if ( _EdgesOnShape* eos = data.GetShapeEdges( e2c->first ))
+ // data.Sort2NeiborsOnEdge( eos->_edges );
+ // }
dumpFunctionEnd();
return true;
continue;
// check concavity and curvature and limit data._stepSize
const double minCurvature =
- 1. / ( eos->_hyp.GetTotalThickness() * ( 1+theThickToIntersection ));
+ 1. / ( eos->_hyp.GetTotalThickness() * ( 1 + theThickToIntersection ));
size_t iStep = Max( 1, eos->_edges.size() / nbTestPnt );
for ( size_t i = 0; i < eos->_edges.size(); i += iStep )
{
const SMDS_MeshNode* srcNode = ledge->_nodes[0];
if ( !usedNodes.insert( srcNode ).second ) continue;
- _Simplex::GetSimplices( srcNode, ledge->_simplices, data._ignoreFaceIds, &data );
for ( size_t i = 0; i < ledge->_simplices.size(); ++i )
{
usedNodes.insert( ledge->_simplices[i]._nPrev );
bool _ViscousBuilder::findShapesToSmooth( _SolidData& data )
{
// define allowed thickness
- computeGeomSize( data ); // compute data._geomSize
+ computeGeomSize( data ); // compute data._geomSize and _LayerEdge::_maxLen
data._maxThickness = 0;
data._minThickness = 1e100;
data._maxThickness = Max( data._maxThickness, (*hyp)->GetTotalThickness() );
data._minThickness = Min( data._minThickness, (*hyp)->GetTotalThickness() );
}
- const double tgtThick = /*Min( 0.5 * data._geomSize, */data._maxThickness;
+ //const double tgtThick = /*Min( 0.5 * data._geomSize, */data._maxThickness;
// Find shapes needing smoothing; such a shape has _LayerEdge._normal on it's
// boundry inclined to the shape at a sharp angle
if ( eos._edges.empty() || eos.ShapeType() != TopAbs_FACE )
continue;
+ double tgtThick = eos._hyp.GetTotalThickness();
TopExp_Explorer eExp( edgesByGeom[iS]._shape, TopAbs_EDGE );
for ( ; eExp.More() && !eos._toSmooth; eExp.Next() )
{
TGeomID iE = getMeshDS()->ShapeToIndex( eExp.Current() );
vector<_LayerEdge*>& eE = edgesByGeom[ iE ]._edges;
if ( eE.empty() ) continue;
- // TopLoc_Location loc;
- // Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face( S ), loc );
- // bool isPlane = GeomLib_IsPlanarSurface( surface ).IsPlanar();
- //if ( eE[0]->_sWOL.IsNull() )
- {
- double faceSize;
- for ( size_t i = 0; i < eE.size() && !eos._toSmooth; ++i )
- if ( eE[i]->_cosin > theMinSmoothCosin )
+
+ double faceSize;
+ for ( size_t i = 0; i < eE.size() && !eos._toSmooth; ++i )
+ if ( eE[i]->_cosin > theMinSmoothCosin )
+ {
+ SMDS_ElemIteratorPtr fIt = eE[i]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
+ while ( fIt->more() && !eos._toSmooth )
{
- SMDS_ElemIteratorPtr fIt = eE[i]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
- while ( fIt->more() && !eos._toSmooth )
+ const SMDS_MeshElement* face = fIt->next();
+ if ( face->getshapeId() == eos._shapeID &&
+ getDistFromEdge( face, eE[i]->_nodes[0], faceSize ))
{
- const SMDS_MeshElement* face = fIt->next();
- if ( getDistFromEdge( face, eE[i]->_nodes[0], faceSize ))
- eos._toSmooth = needSmoothing( eE[i]->_cosin, tgtThick, faceSize );
+ eos._toSmooth = needSmoothing( eE[i]->_cosin, tgtThick, faceSize );
}
}
- }
- // else
- // {
- // const TopoDS_Face& F1 = TopoDS::Face( S );
- // const TopoDS_Face& F2 = TopoDS::Face( eE[0]->_sWOL );
- // const TopoDS_Edge& E = TopoDS::Edge( eExp.Current() );
- // for ( size_t i = 0; i < eE.size() && !eos._toSmooth; ++i )
- // {
- // gp_Vec dir1 = getFaceDir( F1, E, eE[i]->_nodes[0], helper, ok );
- // gp_Vec dir2 = getFaceDir( F2, E, eE[i]->_nodes[0], helper, ok );
- // double angle = dir1.Angle( );
- // double cosin = cos( angle );
- // eos._toSmooth = ( cosin > theMinSmoothCosin );
- // }
- // }
+ }
}
if ( eos._toSmooth )
{
for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check EDGEs
{
_EdgesOnShape& eos = edgesByGeom[iS];
+ eos._edgeSmoother = NULL;
if ( eos._edges.empty() || eos.ShapeType() != TopAbs_EDGE ) continue;
if ( !eos._hyp.ToSmooth() ) continue;
if ( SMESH_Algo::isDegenerated( E ) || !edgesOfSmooFaces.Contains( E ))
continue;
+ double tgtThick = eos._hyp.GetTotalThickness();
for ( TopoDS_Iterator vIt( E ); vIt.More() && !eos._toSmooth; vIt.Next() )
{
TGeomID iV = getMeshDS()->ShapeToIndex( vIt.Value() );
vector<_LayerEdge*>& eV = edgesByGeom[ iV ]._edges;
if ( eV.empty() ) continue;
- gp_Vec eDir = getEdgeDir( E, TopoDS::Vertex( vIt.Value() ));
- double angle = eDir.Angle( eV[0]->_normal );
- double cosin = Cos( angle );
+ gp_Vec eDir = getEdgeDir( E, TopoDS::Vertex( vIt.Value() ));
+ double angle = eDir.Angle( eV[0]->_normal );
+ double cosin = Cos( angle );
double cosinAbs = Abs( cosin );
if ( cosinAbs > theMinSmoothCosin )
{
// always smooth analytic EDGEs
- eos._toSmooth = ! data.CurveForSmooth( E, eos, helper ).IsNull();
+ Handle(Geom_Curve) curve = _Smoother1D::CurveForSmooth( E, eos, helper );
+ eos._toSmooth = ! curve.IsNull();
// compare tgtThick with the length of an end segment
SMDS_ElemIteratorPtr eIt = eV[0]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Edge);
while ( eIt->more() && !eos._toSmooth )
{
const SMDS_MeshElement* endSeg = eIt->next();
- if ( endSeg->getshapeId() == iS )
+ if ( endSeg->getshapeId() == (int) iS )
{
double segLen =
SMESH_TNodeXYZ( endSeg->GetNode(0) ).Distance( endSeg->GetNode(1 ));
eos._toSmooth = needSmoothing( cosinAbs, tgtThick, segLen );
}
}
+ if ( eos._toSmooth )
+ {
+ eos._edgeSmoother = new _Smoother1D( curve, eos );
+
+ for ( size_t i = 0; i < eos._edges.size(); ++i )
+ eos._edges[i]->Set( _LayerEdge::TO_SMOOTH );
+ }
}
}
data._nbShapesToSmooth += eos._toSmooth;
}
- // int nbShapes = 0;
- // for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS )
- // {
- // nbShapes += ( edgesByGeom[iS]._edges.size() > 0 );
- // }
- // data._edgesOnShape.reserve( nbShapes );
+ // Fill _eosC1 to make that C1 FACEs and EGDEs between them to be smoothed as a whole
+
+ TopTools_MapOfShape c1VV;
+
+ for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check FACEs
+ {
+ _EdgesOnShape& eos = edgesByGeom[iS];
+ if ( eos._edges.empty() ||
+ eos.ShapeType() != TopAbs_FACE ||
+ !eos._toSmooth )
+ continue;
+
+ // check EDGEs of a FACE
+ TopTools_MapOfShape checkedEE, allVV;
+ list< SMESH_subMesh* > smQueue( 1, eos._subMesh ); // sm of FACEs
+ while ( !smQueue.empty() )
+ {
+ SMESH_subMesh* sm = smQueue.front();
+ smQueue.pop_front();
+ SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/false);
+ while ( smIt->more() )
+ {
+ sm = smIt->next();
+ if ( sm->GetSubShape().ShapeType() == TopAbs_VERTEX )
+ allVV.Add( sm->GetSubShape() );
+ if ( sm->GetSubShape().ShapeType() != TopAbs_EDGE ||
+ !checkedEE.Add( sm->GetSubShape() ))
+ continue;
+
+ _EdgesOnShape* eoe = data.GetShapeEdges( sm->GetId() );
+ vector<_LayerEdge*>& eE = eoe->_edges;
+ if ( eE.empty() || !eoe->_sWOL.IsNull() )
+ continue;
+
+ bool isC1 = true; // check continuity along an EDGE
+ for ( size_t i = 0; i < eE.size() && isC1; ++i )
+ isC1 = ( Abs( eE[i]->_cosin ) < theMinSmoothCosin );
+ if ( !isC1 )
+ continue;
+
+ // check that mesh faces are C1 as well
+ {
+ gp_XYZ norm1, norm2;
+ const SMDS_MeshNode* n = eE[ eE.size() / 2 ]->_nodes[0];
+ SMDS_ElemIteratorPtr fIt = n->GetInverseElementIterator(SMDSAbs_Face);
+ if ( !SMESH_MeshAlgos::FaceNormal( fIt->next(), norm1, /*normalized=*/true ))
+ continue;
+ while ( fIt->more() && isC1 )
+ isC1 = ( SMESH_MeshAlgos::FaceNormal( fIt->next(), norm2, /*normalized=*/true ) &&
+ Abs( norm1 * norm2 ) >= ( 1. - theMinSmoothCosin ));
+ if ( !isC1 )
+ continue;
+ }
+
+ // add the EDGE and an adjacent FACE to _eosC1
+ PShapeIteratorPtr fIt = helper.GetAncestors( sm->GetSubShape(), *_mesh, TopAbs_FACE );
+ while ( const TopoDS_Shape* face = fIt->next() )
+ {
+ _EdgesOnShape* eof = data.GetShapeEdges( *face );
+ if ( !eof ) continue; // other solid
+ if ( !eos.HasC1( eoe ))
+ {
+ eos._eosC1.push_back( eoe );
+ eoe->_toSmooth = false;
+ data.PrepareEdgesToSmoothOnFace( eoe, /*substituteSrcNodes=*/false );
+ }
+ if ( eos._shapeID != eof->_shapeID && !eos.HasC1( eof ))
+ {
+ eos._eosC1.push_back( eof );
+ eof->_toSmooth = false;
+ data.PrepareEdgesToSmoothOnFace( eof, /*substituteSrcNodes=*/false );
+ smQueue.push_back( eof->_subMesh );
+ }
+ }
+ }
+ }
+ if ( eos._eosC1.empty() )
+ continue;
+
+ // check VERTEXes of C1 FACEs
+ TopTools_MapIteratorOfMapOfShape vIt( allVV );
+ for ( ; vIt.More(); vIt.Next() )
+ {
+ _EdgesOnShape* eov = data.GetShapeEdges( vIt.Key() );
+ if ( !eov || eov->_edges.empty() || !eov->_sWOL.IsNull() )
+ continue;
+
+ bool isC1 = true; // check if all adjacent FACEs are in eos._eosC1
+ PShapeIteratorPtr fIt = helper.GetAncestors( vIt.Key(), *_mesh, TopAbs_FACE );
+ while ( const TopoDS_Shape* face = fIt->next() )
+ {
+ _EdgesOnShape* eof = data.GetShapeEdges( *face );
+ if ( !eof ) continue; // other solid
+ isC1 = ( face->IsSame( eos._shape ) || eos.HasC1( eof ));
+ if ( !isC1 )
+ break;
+ }
+ if ( isC1 )
+ {
+ eos._eosC1.push_back( eov );
+ data.PrepareEdgesToSmoothOnFace( eov, /*substituteSrcNodes=*/false );
+ c1VV.Add( eov->_shape );
+ }
+ }
+
+ } // fill _eosC1 of FACEs
+
+
+ // Find C1 EDGEs
+
+ vector< pair< _EdgesOnShape*, gp_XYZ > > dirOfEdges;
+
+ for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check VERTEXes
+ {
+ _EdgesOnShape& eov = edgesByGeom[iS];
+ if ( eov._edges.empty() ||
+ eov.ShapeType() != TopAbs_VERTEX ||
+ c1VV.Contains( eov._shape ))
+ continue;
+ const TopoDS_Vertex& V = TopoDS::Vertex( eov._shape );
+
+ // get directions of surrounding EDGEs
+ dirOfEdges.clear();
+ PShapeIteratorPtr fIt = helper.GetAncestors( eov._shape, *_mesh, TopAbs_EDGE );
+ while ( const TopoDS_Shape* e = fIt->next() )
+ {
+ _EdgesOnShape* eoe = data.GetShapeEdges( *e );
+ if ( !eoe ) continue; // other solid
+ gp_XYZ eDir = getEdgeDir( TopoDS::Edge( *e ), V );
+ if ( !Precision::IsInfinite( eDir.X() ))
+ dirOfEdges.push_back( make_pair( eoe, eDir.Normalized() ));
+ }
+
+ // find EDGEs with C1 directions
+ for ( size_t i = 0; i < dirOfEdges.size(); ++i )
+ for ( size_t j = i+1; j < dirOfEdges.size(); ++j )
+ if ( dirOfEdges[i].first && dirOfEdges[j].first )
+ {
+ double dot = dirOfEdges[i].second * dirOfEdges[j].second;
+ bool isC1 = ( dot < - ( 1. - theMinSmoothCosin ));
+ if ( isC1 )
+ {
+ double maxEdgeLen = 3 * Min( eov._edges[0]->_maxLen, eov._hyp.GetTotalThickness() );
+ double eLen1 = SMESH_Algo::EdgeLength( TopoDS::Edge( dirOfEdges[i].first->_shape ));
+ double eLen2 = SMESH_Algo::EdgeLength( TopoDS::Edge( dirOfEdges[j].first->_shape ));
+ if ( eLen1 < maxEdgeLen ) eov._eosC1.push_back( dirOfEdges[i].first );
+ if ( eLen2 < maxEdgeLen ) eov._eosC1.push_back( dirOfEdges[j].first );
+ dirOfEdges[i].first = 0;
+ dirOfEdges[j].first = 0;
+ }
+ }
+ } // fill _eosC1 of VERTEXes
- // // first we put _LayerEdge's on shapes to smooth (EGDEs go first)
- // vector< _LayerEdge* > edges;
- // list< TGeomID >::iterator gIt = shapesToSmooth.begin();
- // for ( ; gIt != shapesToSmooth.end(); ++gIt )
- // {
- // _EdgesOnShape& eos = edgesByGeom[ *gIt ];
- // if ( eos._edges.empty() ) continue;
- // eos._edges.swap( edges ); // avoid copying array
- // eos._toSmooth = true;
- // data._edgesOnShape.push_back( eos );
- // data._edgesOnShape.back()._edges.swap( edges );
- // }
- // // then the rest _LayerEdge's
- // for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS )
- // {
- // _EdgesOnShape& eos = edgesByGeom[ *gIt ];
- // if ( eos._edges.empty() ) continue;
- // eos._edges.swap( edges ); // avoid copying array
- // eos._toSmooth = false;
- // data._edgesOnShape.push_back( eos );
- // data._edgesOnShape.back()._edges.swap( edges );
- // }
return ok;
}
if ( eos.ShapeType() == TopAbs_FACE )
eos._shape.Orientation( helper.GetSubShapeOri( data._solid, eos._shape ));
eos._toSmooth = false;
+ eos._data = &data;
// set _SWOL
map< TGeomID, TopoDS_Shape >::const_iterator s2s =
if ( s2s != data._shrinkShape2Shape.end() )
eos._sWOL = s2s->second;
+ eos._isRegularSWOL = true;
+ if ( eos.SWOLType() == TopAbs_FACE )
+ {
+ const TopoDS_Face& F = TopoDS::Face( eos._sWOL );
+ Handle(ShapeAnalysis_Surface) surface = helper.GetSurface( F );
+ eos._isRegularSWOL = ( ! surface->HasSingularities( 1e-7 ));
+ }
+
// set _hyp
if ( data._hyps.size() == 1 )
{
}
if (( eos ) &&
- ( ok = ( face->getIdInShape() < eos->_faceNormals.size() )))
+ ( ok = ( face->getIdInShape() < (int) eos->_faceNormals.size() )))
{
norm = eos->_faceNormals[ face->getIdInShape() ];
}
//================================================================================
/*!
* \brief Set data of _LayerEdge needed for smoothing
- * \param subIds - ids of sub-shapes of a SOLID to take into account faces from
*/
//================================================================================
bool _ViscousBuilder::setEdgeData(_LayerEdge& edge,
_EdgesOnShape& eos,
- const set<TGeomID>& subIds,
SMESH_MesherHelper& helper,
_SolidData& data)
{
const SMDS_MeshNode* node = edge._nodes[0]; // source node
edge._len = 0;
+ edge._maxLen = Precision::Infinite();
+ edge._minAngle = 0;
edge._2neibors = 0;
edge._curvature = 0;
+ edge._flags = 0;
// --------------------------
// Compute _normal and _cosin
// --------------------------
- edge._cosin = 0;
+ edge._cosin = 0;
+ edge._lenFactor = 1.;
edge._normal.SetCoord(0,0,0);
+ _Simplex::GetSimplices( node, edge._simplices, data._ignoreFaceIds, &data );
int totalNbFaces = 0;
TopoDS_Face F;
const bool onShrinkShape = !eos._sWOL.IsNull();
const bool useGeometry = (( eos._hyp.UseSurfaceNormal() ) ||
- ( eos.ShapeType() != TopAbs_FACE && !onShrinkShape ));
+ ( eos.ShapeType() != TopAbs_FACE /*&& !onShrinkShape*/ ));
// get geom FACEs the node lies on
//if ( useGeometry )
for ( ; id != faceIds.end(); ++id )
{
const TopoDS_Shape& s = getMeshDS()->IndexToShape( *id );
- if ( s.IsNull() || s.ShapeType() != TopAbs_FACE || !subIds.count( *id ))
+ if ( s.IsNull() || s.ShapeType() != TopAbs_FACE || data._ignoreFaceIds.count( *id ))
continue;
F = TopoDS::Face( s );
face2Norm[ totalNbFaces ].first = F;
node, helper, normOK);
}
}
-
- // layers are on all faces of SOLID the node is on
- else
+ else // layers are on all FACEs of SOLID the node is on
{
int nbOkNorms = 0;
for ( int iF = 0; iF < totalNbFaces; ++iF )
}
}
- if ( totalNbFaces < 3 )
- {
- //edge._normal /= totalNbFaces;
- }
- else
+ if ( totalNbFaces >= 3 )
{
- edge._normal = getWeigthedNormal( node, face2Norm, totalNbFaces );
+ edge._normal = getNormalByOffset( &edge, face2Norm, totalNbFaces );
}
}
}
else // !useGeometry - get _normal using surrounding mesh faces
{
- set<TGeomID> faceIds;
+ edge._normal = getWeigthedNormal( &edge );
- SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
- while ( fIt->more() )
- {
- const SMDS_MeshElement* face = fIt->next();
- if ( eos.GetNormal( face, geomNorm ))
- {
- if ( onShrinkShape && !faceIds.insert( face->getshapeId() ).second )
- continue; // use only one mesh face on FACE
- edge._normal += geomNorm.XYZ();
- totalNbFaces++;
- }
- }
+ // set<TGeomID> faceIds;
+ //
+ // SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face);
+ // while ( fIt->more() )
+ // {
+ // const SMDS_MeshElement* face = fIt->next();
+ // if ( eos.GetNormal( face, geomNorm ))
+ // {
+ // if ( onShrinkShape && !faceIds.insert( face->getshapeId() ).second )
+ // continue; // use only one mesh face on FACE
+ // edge._normal += geomNorm.XYZ();
+ // totalNbFaces++;
+ // }
+ // }
}
// compute _cosin
gp_Vec inFaceDir = getFaceDir( F, E, node, helper, normOK );
double angle = inFaceDir.Angle( edge._normal ); // [0,PI]
edge._cosin = Cos( angle );
- //cout << "Cosin on EDGE " << edge._cosin << " node " << node->GetID() << endl;
break;
}
case TopAbs_VERTEX: {
inFaceDir = getFaceDir( F, V, node, helper, normOK=true );
if ( normOK ) {
double angle = inFaceDir.Angle( edge._normal );
- edge._cosin = Max( edge._cosin, Cos( angle ));
+ double cosin = Cos( angle );
+ if ( Abs( cosin ) > edge._cosin )
+ edge._cosin = cosin;
}
}
}
- //cout << "Cosin on VERTEX " << edge._cosin << " node " << node->GetID() << endl;
break;
}
default:
edge._normal /= sqrt( normSize );
- // TODO: if ( !normOK ) then get normal by mesh faces
+ if ( edge.Is( _LayerEdge::MULTI_NORMAL ) && edge._nodes.size() == 2 )
+ {
+ getMeshDS()->RemoveFreeNode( edge._nodes.back(), 0, /*fromGroups=*/false );
+ edge._nodes.resize( 1 );
+ edge._normal.SetCoord( 0,0,0 );
+ edge._maxLen = 0;
+ }
// Set the rest data
// --------------------
+
+ edge.SetCosin( edge._cosin ); // to update edge._lenFactor
+
if ( onShrinkShape )
{
- SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edge._nodes.back() );
+ const SMDS_MeshNode* tgtNode = edge._nodes.back();
if ( SMESHDS_SubMesh* sm = getMeshDS()->MeshElements( data._solid ))
sm->RemoveNode( tgtNode , /*isNodeDeleted=*/false );
if ( edge._nodes.size() > 1 )
getMeshDS()->SetNodeOnEdge( tgtNode, TopoDS::Edge( eos._sWOL ), u );
}
- else // TopAbs_FACE
+ else // eos.SWOLType() == TopAbs_FACE
{
gp_XY uv = helper.GetNodeUV( TopoDS::Face( eos._sWOL ), node, 0, &normOK );
edge._pos.push_back( gp_XYZ( uv.X(), uv.Y(), 0));
if ( edge._nodes.size() > 1 )
getMeshDS()->SetNodeOnFace( tgtNode, TopoDS::Face( eos._sWOL ), uv.X(), uv.Y() );
}
+
+ if ( edge._nodes.size() > 1 )
+ {
+ // check if an angle between a FACE with layers and SWOL is sharp,
+ // else the edge should not inflate
+ F.Nullify();
+ for ( int iF = 0; iF < totalNbFaces && F.IsNull(); ++iF ) // find a FACE with VL
+ if ( ! helper.IsSubShape( eos._sWOL, face2Norm[iF].first ))
+ F = face2Norm[iF].first;
+ if ( !F.IsNull())
+ {
+ geomNorm = getFaceNormal( node, F, helper, normOK );
+ if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED )
+ geomNorm.Reverse(); // inside the SOLID
+ if ( geomNorm * edge._normal < -0.001 )
+ {
+ getMeshDS()->RemoveFreeNode( tgtNode, 0, /*fromGroups=*/false );
+ edge._nodes.resize( 1 );
+ }
+ else if ( edge._lenFactor > 3 )
+ {
+ edge._lenFactor = 2;
+ edge.Set( _LayerEdge::RISKY_SWOL );
+ }
+ }
+ }
}
else
{
if ( eos.ShapeType() == TopAbs_FACE )
{
- _Simplex::GetSimplices( node, edge._simplices, data._ignoreFaceIds, &data );
+ double angle;
+ for ( size_t i = 0; i < edge._simplices.size(); ++i )
+ {
+ edge._simplices[i].IsMinAngleOK( edge._pos.back(), angle );
+ edge._minAngle = Max( edge._minAngle, angle ); // "angle" is actually cosine
+ }
}
}
- // Set neighbour nodes for a _LayerEdge based on EDGE
+ // Set neighbor nodes for a _LayerEdge based on EDGE
if ( eos.ShapeType() == TopAbs_EDGE /*||
( onShrinkShape && posType == SMDS_TOP_VERTEX && fabs( edge._cosin ) < 1e-10 )*/)
{
edge._2neibors = new _2NearEdges;
- // target node instead of source ones will be set later
- // if ( ! findNeiborsOnEdge( &edge,
- // edge._2neibors->_nodes[0],
- // edge._2neibors->_nodes[1], eos,
- // data))
- // return false;
- // edge.SetDataByNeighbors( edge._2neibors->_nodes[0],
- // edge._2neibors->_nodes[1],
- // helper);
+ // target nodes instead of source ones will be set later
}
- edge.SetCosin( edge._cosin ); // to update edge._lenFactor
-
return true;
}
//================================================================================
/*!
- * \brief Return a normal at a node weighted with angles taken by FACEs
- * \param [in] n - the node
- * \param [in] fId2Normal - FACE ids and normals
- * \param [in] nbFaces - nb of FACEs meeting at the node
- * \return gp_XYZ - computed normal
+ * \brief Return a normal at a node weighted with angles taken by faces
+ */
+//================================================================================
+
+gp_XYZ _ViscousBuilder::getWeigthedNormal( const _LayerEdge* edge )
+{
+ const SMDS_MeshNode* n = edge->_nodes[0];
+
+ gp_XYZ resNorm(0,0,0);
+ SMESH_TNodeXYZ p0( n ), pP, pN;
+ for ( size_t i = 0; i < edge->_simplices.size(); ++i )
+ {
+ pP.Set( edge->_simplices[i]._nPrev );
+ pN.Set( edge->_simplices[i]._nNext );
+ gp_Vec v0P( p0, pP ), v0N( p0, pN ), vPN( pP, pN ), norm = v0P ^ v0N;
+ double l0P = v0P.SquareMagnitude();
+ double l0N = v0N.SquareMagnitude();
+ double lPN = vPN.SquareMagnitude();
+ if ( l0P < std::numeric_limits<double>::min() ||
+ l0N < std::numeric_limits<double>::min() ||
+ lPN < std::numeric_limits<double>::min() )
+ continue;
+ double lNorm = norm.SquareMagnitude();
+ double sin2 = lNorm / l0P / l0N;
+ double angle = ACos(( v0P * v0N ) / Sqrt( l0P ) / Sqrt( l0N ));
+
+ double weight = sin2 * angle / lPN;
+ resNorm += weight * norm.XYZ() / Sqrt( lNorm );
+ }
+
+ return resNorm;
+}
+
+//================================================================================
+/*!
+ * \brief Return a normal at a node by getting a common point of offset planes
+ * defined by the FACE normals
*/
//================================================================================
-gp_XYZ _ViscousBuilder::getWeigthedNormal( const SMDS_MeshNode* n,
- std::pair< TopoDS_Face, gp_XYZ > fId2Normal[],
+gp_XYZ _ViscousBuilder::getNormalByOffset( _LayerEdge* edge,
+ std::pair< TopoDS_Face, gp_XYZ > f2Normal[],
int nbFaces )
{
+ SMESH_TNodeXYZ p0 = edge->_nodes[0];
+
gp_XYZ resNorm(0,0,0);
- TopoDS_Shape V = SMESH_MesherHelper::GetSubShapeByNode( n, getMeshDS() );
- if ( V.ShapeType() != TopAbs_VERTEX )
+ TopoDS_Shape V = SMESH_MesherHelper::GetSubShapeByNode( p0._node, getMeshDS() );
+ if ( V.ShapeType() != TopAbs_VERTEX || nbFaces < 3 )
{
for ( int i = 0; i < nbFaces; ++i )
- resNorm += fId2Normal[i].second;
+ resNorm += f2Normal[i].second;
return resNorm;
}
- // exclude equal normals
- int nbUniqNorms = nbFaces;
- for ( int i = 0; i < nbFaces; ++i ) {
- for ( int j = i+1; j < nbFaces; ++j )
- if ( fId2Normal[i].second.IsEqual( fId2Normal[j].second, 0.1 ))
- {
- fId2Normal[i].second.SetCoord( 0,0,0 );
- --nbUniqNorms;
- break;
- }
- }
+ // prepare _OffsetPlane's
+ vector< _OffsetPlane > pln( nbFaces );
for ( int i = 0; i < nbFaces; ++i )
- resNorm += fId2Normal[i].second;
+ {
+ pln[i]._faceIndex = i;
+ pln[i]._plane = gp_Pln( p0 + f2Normal[i].second, f2Normal[i].second );
+ }
- // assure that resNorm is visible by every FACE (IPAL0052675)
- if ( nbUniqNorms > 3 )
+ // intersect neighboring OffsetPlane's
+ PShapeIteratorPtr edgeIt = SMESH_MesherHelper::GetAncestors( V, *_mesh, TopAbs_EDGE );
+ while ( const TopoDS_Shape* edge = edgeIt->next() )
{
- bool change = false;
- for ( int nbAttempts = 0; nbAttempts < nbFaces; ++nbAttempts)
- {
- for ( int i = 0; i < nbFaces; ++i )
- if ( resNorm * fId2Normal[i].second < 0.5 )
- {
- resNorm += fId2Normal[i].second;
- change = true;
- }
- if ( !change ) break;
- }
+ int f1 = -1, f2 = -1;
+ for ( int i = 0; i < nbFaces && f2 < 0; ++i )
+ if ( SMESH_MesherHelper::IsSubShape( *edge, f2Normal[i].first ))
+ (( f1 < 0 ) ? f1 : f2 ) = i;
+
+ if ( f2 >= 0 )
+ pln[ f1 ].ComputeIntersectionLine( pln[ f2 ]);
}
- // double angles[30];
- // for ( int i = 0; i < nbFaces; ++i )
- // {
- // const TopoDS_Face& F = fId2Normal[i].first;
+ // get a common point
+ gp_XYZ commonPnt( 0, 0, 0 );
+ int nbPoints = 0;
+ bool isPointFound;
+ for ( int i = 0; i < nbFaces; ++i )
+ {
+ commonPnt += pln[ i ].GetCommonPoint( isPointFound );
+ nbPoints += isPointFound;
+ }
+ gp_XYZ wgtNorm = getWeigthedNormal( edge );
+ if ( nbPoints == 0 )
+ return wgtNorm;
- // // look for two EDGEs shared by F and other FACEs within fId2Normal
- // TopoDS_Edge ee[2];
- // int nbE = 0;
- // PShapeIteratorPtr eIt = SMESH_MesherHelper::GetAncestors( V, *_mesh, TopAbs_EDGE );
- // while ( const TopoDS_Shape* E = eIt->next() )
- // {
- // if ( !SMESH_MesherHelper::IsSubShape( *E, F ))
- // continue;
- // bool isSharedEdge = false;
- // for ( int j = 0; j < nbFaces && !isSharedEdge; ++j )
- // {
- // if ( i == j ) continue;
- // const TopoDS_Shape& otherF = fId2Normal[j].first;
- // isSharedEdge = SMESH_MesherHelper::IsSubShape( *E, otherF );
- // }
- // if ( !isSharedEdge )
- // continue;
- // ee[ nbE ] = TopoDS::Edge( *E );
- // ee[ nbE ].Orientation( SMESH_MesherHelper::GetSubShapeOri( F, *E ));
- // if ( ++nbE == 2 )
- // break;
- // }
+ commonPnt /= nbPoints;
+ resNorm = commonPnt - p0;
- // // get an angle between the two EDGEs
- // angles[i] = 0;
- // if ( nbE < 1 ) continue;
- // if ( nbE == 1 )
- // {
- // ee[ 1 ] == ee[ 0 ];
- // }
- // else
- // {
- // if ( !V.IsSame( SMESH_MesherHelper::IthVertex( 0, ee[ 1 ] )))
- // std::swap( ee[0], ee[1] );
- // }
- // angles[i] = SMESH_MesherHelper::GetAngle( ee[0], ee[1], F, TopoDS::Vertex( V ));
- // }
+ // choose the best among resNorm and wgtNorm
+ resNorm.Normalize();
+ wgtNorm.Normalize();
+ double resMinDot = std::numeric_limits<double>::max();
+ double wgtMinDot = std::numeric_limits<double>::max();
+ for ( int i = 0; i < nbFaces; ++i )
+ {
+ resMinDot = Min( resMinDot, resNorm * f2Normal[i].second );
+ wgtMinDot = Min( wgtMinDot, wgtNorm * f2Normal[i].second );
+ }
- // // compute a weighted normal
- // double sumAngle = 0;
- // for ( int i = 0; i < nbFaces; ++i )
- // {
- // angles[i] = ( angles[i] > 2*M_PI ) ? 0 : M_PI - angles[i];
- // sumAngle += angles[i];
- // }
- // for ( int i = 0; i < nbFaces; ++i )
- // resNorm += angles[i] / sumAngle * fId2Normal[i].second;
+ if ( Max( resMinDot, wgtMinDot ) < theMinSmoothCosin )
+ {
+ edge->Set( _LayerEdge::MULTI_NORMAL );
+ }
- return resNorm;
+ return ( resMinDot > wgtMinDot ) ? resNorm : wgtNorm;
+}
+
+//================================================================================
+/*!
+ * \brief Compute line of intersection of 2 planes
+ */
+//================================================================================
+
+void _OffsetPlane::ComputeIntersectionLine( _OffsetPlane& pln )
+{
+ int iNext = bool( _faceIndexNext[0] >= 0 );
+ _faceIndexNext[ iNext ] = pln._faceIndex;
+
+ gp_XYZ n1 = _plane.Axis().Direction().XYZ();
+ gp_XYZ n2 = pln._plane.Axis().Direction().XYZ();
+
+ gp_XYZ lineDir = n1 ^ n2;
+
+ double x = Abs( lineDir.X() );
+ double y = Abs( lineDir.Y() );
+ double z = Abs( lineDir.Z() );
+
+ int cooMax; // max coordinate
+ if (x > y) {
+ if (x > z) cooMax = 1;
+ else cooMax = 3;
+ }
+ else {
+ if (y > z) cooMax = 2;
+ else cooMax = 3;
+ }
+
+ if ( Abs( lineDir.Coord( cooMax )) < 0.05 )
+ return;
+
+ gp_Pnt linePos;
+ // the constants in the 2 plane equations
+ double d1 = - ( _plane.Axis().Direction().XYZ() * _plane.Location().XYZ() );
+ double d2 = - ( pln._plane.Axis().Direction().XYZ() * pln._plane.Location().XYZ() );
+
+ switch ( cooMax ) {
+ case 1:
+ linePos.SetX( 0 );
+ linePos.SetY(( d2*n1.Z() - d1*n2.Z()) / lineDir.X() );
+ linePos.SetZ(( d1*n2.Y() - d2*n1.Y()) / lineDir.X() );
+ break;
+ case 2:
+ linePos.SetX(( d1*n2.Z() - d2*n1.Z()) / lineDir.Y() );
+ linePos.SetY( 0 );
+ linePos.SetZ(( d2*n1.X() - d1*n2.X()) / lineDir.Y() );
+ break;
+ case 3:
+ linePos.SetX(( d2*n1.Y() - d1*n2.Y()) / lineDir.Z() );
+ linePos.SetY(( d1*n2.X() - d2*n1.X()) / lineDir.Z() );
+ linePos.SetZ( 0 );
+ }
+
+ gp_Lin& line = _lines[ iNext ];
+ line.SetDirection( lineDir );
+ line.SetLocation ( linePos );
+
+ _isLineOK[ iNext ] = true;
+
+
+ iNext = bool( pln._faceIndexNext[0] >= 0 );
+ pln._lines [ iNext ] = line;
+ pln._faceIndexNext[ iNext ] = this->_faceIndex;
+ pln._isLineOK [ iNext ] = true;
+}
+
+//================================================================================
+/*!
+ * \brief Computes intersection point of two _lines
+ */
+//================================================================================
+
+gp_XYZ _OffsetPlane::GetCommonPoint(bool& isFound) const
+{
+ gp_XYZ p( 0,0,0 );
+ isFound = false;
+
+ if ( NbLines() == 2 )
+ {
+ gp_Vec lPerp0 = _lines[0].Direction().XYZ() ^ _plane.Axis().Direction().XYZ();
+ gp_Vec l0l1 = _lines[1].Location().XYZ() - _lines[0].Location().XYZ();
+ double dot01 = lPerp0 * _lines[1].Direction().XYZ();
+ if ( Abs( dot01 ) > std::numeric_limits<double>::min() )
+ {
+ double u1 = - ( lPerp0 * l0l1 ) / dot01;
+ p = ( _lines[1].Location().XYZ() + _lines[1].Direction().XYZ() * u1 );
+ isFound = true;
+ }
+ }
+
+ return p;
}
//================================================================================
if ( eos.ShapeType() != TopAbs_EDGE )
return;
- gp_XYZ pos = SMESH_TNodeXYZ( _nodes[0] );
+ gp_XYZ pos = SMESH_TNodeXYZ( _nodes[0] );
gp_XYZ vec1 = pos - SMESH_TNodeXYZ( n1 );
gp_XYZ vec2 = pos - SMESH_TNodeXYZ( n2 );
{
_cosin = cosin;
cosin = Abs( _cosin );
- _lenFactor = ( /*0.1 < cosin &&*/ cosin < 1-1e-12 ) ? 1./sqrt(1-cosin*cosin) : 1.0;
+ //_lenFactor = ( cosin < 1.-1e-12 ) ? Min( 2., 1./sqrt(1-cosin*cosin )) : 1.0;
+ _lenFactor = ( cosin < 1.-1e-12 ) ? 1./sqrt(1-cosin*cosin ) : 1.0;
+}
+
+//================================================================================
+/*!
+ * \brief Check if another _LayerEdge is a neighbor on EDGE
+ */
+//================================================================================
+
+bool _LayerEdge::IsNeiborOnEdge( const _LayerEdge* edge ) const
+{
+ return (( this->_2neibors && this->_2neibors->include( edge )) ||
+ ( edge->_2neibors && edge->_2neibors->include( this )));
}
//================================================================================
const SMDS_MeshNode* nOpp = f->GetNode( SMESH_MesherHelper::WrapIndex( srcInd+2, nbNodes ));
if ( dataToCheckOri && dataToCheckOri->_reversedFaceIds.count( shapeInd ))
std::swap( nPrev, nNext );
- simplices.push_back( _Simplex( nPrev, nNext, nOpp ));
+ simplices.push_back( _Simplex( nPrev, nNext, ( nbNodes == 3 ? 0 : nOpp )));
}
if ( toSort )
{
vector<_Simplex> sortedSimplices( simplices.size() );
sortedSimplices[0] = simplices[0];
- int nbFound = 0;
+ size_t nbFound = 0;
for ( size_t i = 1; i < simplices.size(); ++i )
{
for ( size_t j = 1; j < simplices.size(); ++j )
for ( n2e = _sdVec[i]._n2eMap.begin(); n2e != _sdVec[i]._n2eMap.end(); ++n2e )
{
_LayerEdge* le = n2e->second;
- for ( size_t iN = 1; iN < le->_nodes.size(); ++iN )
- dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <<le->_nodes[iN-1]->GetID()
- << ", " << le->_nodes[iN]->GetID() <<"])");
+ // for ( size_t iN = 1; iN < le->_nodes.size(); ++iN )
+ // dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <<le->_nodes[iN-1]->GetID()
+ // << ", " << le->_nodes[iN]->GetID() <<"])");
+ if ( le ) {
+ dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <<le->_nodes[0]->GetID()
+ << ", " << le->_nodes.back()->GetID() <<"]) # " << le->_flags );
+ }
}
dumpFunctionEnd();
SMESH_TNodeXYZ nXYZ( edge->_nodes[0] );
nXYZ += edge->_normal * _sdVec[i]._stepSize;
dumpCmd(SMESH_Comment("mesh.AddEdge([ ") << edge->_nodes[0]->GetID()
- << ", mesh.AddNode( " << nXYZ.X()<<","<< nXYZ.Y()<<","<< nXYZ.Z()<<")])");
+ << ", mesh.AddNode( "<< nXYZ.X()<<","<< nXYZ.Y()<<","<< nXYZ.Z()<<")])");
}
dumpFunctionEnd();
TopExp_Explorer fExp( _sdVec[i]._solid, TopAbs_FACE );
for ( ; fExp.More(); fExp.Next() )
{
- if (const SMESHDS_SubMesh* sm = _sdVec[i]._proxyMesh->GetProxySubMesh( fExp.Current()))
+ if ( const SMESHDS_SubMesh* sm = _sdVec[i]._proxyMesh->GetProxySubMesh( fExp.Current() ))
{
if ( sm->NbElements() == 0 ) continue;
SMDS_ElemIteratorPtr fIt = sm->GetElements();
{
const SMDS_MeshElement* e = fIt->next();
SMESH_Comment cmd("mesh.AddFace([");
- for ( int j=0; j < e->NbCornerNodes(); ++j )
- cmd << e->GetNode(j)->GetID() << (j+1<e->NbCornerNodes() ? ",": "])");
+ for ( int j = 0; j < e->NbCornerNodes(); ++j )
+ cmd << e->GetNode(j)->GetID() << (j+1 < e->NbCornerNodes() ? ",": "])");
dumpCmd( cmd );
}
}
{
data._geomSize = Precision::Infinite();
double intersecDist;
- auto_ptr<SMESH_ElementSearcher> searcher
+ const SMDS_MeshElement* face;
+ SMESH_MesherHelper helper( *_mesh );
+
+ SMESHUtils::Deleter<SMESH_ElementSearcher> searcher
( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(),
- data._proxyMesh->GetFaces( data._solid )) );
+ data._proxyMesh->GetFaces( data._solid )));
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
- if ( eos._edges.empty() || eos.ShapeType() == TopAbs_EDGE )
+ if ( eos._edges.empty() )
continue;
+ // get neighbor faces intersection with which should not be considered since
+ // collisions are avoided by means of smoothing
+ set< TGeomID > neighborFaces;
+ if ( eos._hyp.ToSmooth() )
+ {
+ SMESH_subMeshIteratorPtr subIt =
+ eos._subMesh->getDependsOnIterator(/*includeSelf=*/eos.ShapeType() != TopAbs_FACE );
+ while ( subIt->more() )
+ {
+ SMESH_subMesh* sm = subIt->next();
+ PShapeIteratorPtr fIt = helper.GetAncestors( sm->GetSubShape(), *_mesh, TopAbs_FACE );
+ while ( const TopoDS_Shape* face = fIt->next() )
+ neighborFaces.insert( getMeshDS()->ShapeToIndex( *face ));
+ }
+ }
+ // find intersections
+ double thinkness = eos._hyp.GetTotalThickness();
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
- eos._edges[i]->FindIntersection( *searcher, intersecDist, data._epsilon, eos );
- if ( data._geomSize > intersecDist && intersecDist > 0 )
- data._geomSize = intersecDist;
+ if ( eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue;
+ eos._edges[i]->_maxLen = thinkness;
+ eos._edges[i]->FindIntersection( *searcher, intersecDist, data._epsilon, eos, &face );
+ if ( intersecDist > 0 && face )
+ {
+ data._geomSize = Min( data._geomSize, intersecDist );
+ if ( !neighborFaces.count( face->getshapeId() ))
+ eos._edges[i]->_maxLen = Min( thinkness, intersecDist / ( face->GetID() < 0 ? 3. : 2. ));
+ }
}
}
}
debugMsg( "-- geomSize = " << data._geomSize << ", stepSize = " << data._stepSize );
+ findCollisionEdges( data, helper );
+
+ // limit length of _LayerEdge's around MULTI_NORMAL _LayerEdge's
+ for ( size_t i = 0; i < data._edgesOnShape.size(); ++i )
+ if ( data._edgesOnShape[i].ShapeType() == TopAbs_VERTEX &&
+ data._edgesOnShape[i]._edges.size() > 0 &&
+ data._edgesOnShape[i]._edges[0]->Is( _LayerEdge::MULTI_NORMAL ))
+ data._edgesOnShape[i]._edges[0]->Block( data );
+
const double safeFactor = ( 2*data._maxThickness < data._geomSize ) ? 1 : theThickToIntersection;
double avgThick = 0, curThick = 0, distToIntersection = Precision::Infinite();
while ( avgThick < 0.99 )
{
// new target length
+ double prevThick = curThick;
curThick += data._stepSize;
if ( curThick > tgtThick )
{
nbRepeats++;
}
+ double stepSize = curThick - prevThick;
+ updateNormalsOfSmoothed( data, helper, nbSteps, stepSize ); // to ease smoothing
+
// Elongate _LayerEdge's
dumpFunction(SMESH_Comment("inflate")<<data._index<<"_step"<<nbSteps); // debug
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
}
dumpFunctionEnd();
- if ( !updateNormals( data, helper, nbSteps ))
+ if ( !updateNormals( data, helper, nbSteps, stepSize )) // to avoid collisions
return false;
// Improve and check quality
// Evaluate achieved thickness
avgThick = 0;
+ int nbActiveEdges = 0;
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[iS];
const double shapeTgtThick = eos._hyp.GetTotalThickness();
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
- avgThick += Min( 1., eos._edges[i]->_len / shapeTgtThick );
+ avgThick += Min( 1., eos._edges[i]->_len / shapeTgtThick );
+ nbActiveEdges += ( ! eos._edges[i]->Is( _LayerEdge::BLOCKED ));
}
}
avgThick /= data._n2eMap.size();
debugMsg( "-- Thickness " << curThick << " ("<< avgThick*100 << "%) reached" );
+#ifdef BLOCK_INFLATION
+ if ( nbActiveEdges == 0 )
+ {
+ debugMsg( "-- Stop inflation since all _LayerEdge's BLOCKED " );
+ break;
+ }
+#else
if ( distToIntersection < tgtThick * avgThick * safeFactor && avgThick < 0.9 )
{
debugMsg( "-- Stop inflation since "
<< tgtThick * avgThick << " ) * " << safeFactor );
break;
}
+#endif
// new step size
limitStepSize( data, 0.25 * distToIntersection );
if ( data._stepSizeNodes[0] )
} // while ( avgThick < 0.99 )
- if (nbSteps == 0 )
+ if ( nbSteps == 0 )
return error("failed at the very first inflation step", data._index);
if ( avgThick < 0.99 )
}
}
- // Restore position of src nodes moved by infaltion on _noShrinkShapes
+ // Restore position of src nodes moved by inflation on _noShrinkShapes
dumpFunction(SMESH_Comment("restoNoShrink_So")<<data._index); // debug
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
}
dumpFunctionEnd();
- return true;
+ return safeFactor > 0; // == true (avoid warning: unused variable 'safeFactor')
}
//================================================================================
//================================================================================
bool _ViscousBuilder::smoothAndCheck(_SolidData& data,
- const int nbSteps,
+ const int infStep,
double & distToIntersection)
{
if ( data._nbShapesToSmooth == 0 )
return true; // no shapes needing smoothing
bool moved, improved;
- vector< _LayerEdge* > badSmooEdges;
+ double vol;
+ vector< _LayerEdge* > movedEdges, badSmooEdges;
+ vector< _EdgesOnShape* > eosC1; // C1 continues shapes
+ vector< bool > isConcaveFace;
SMESH_MesherHelper helper(*_mesh);
- Handle(Geom_Surface) surface;
+ Handle(ShapeAnalysis_Surface) surface;
TopoDS_Face F;
for ( int isFace = 0; isFace < 2; ++isFace ) // smooth on [ EDGEs, FACEs ]
{
const TopAbs_ShapeEnum shapeType = isFace ? TopAbs_FACE : TopAbs_EDGE;
- for ( int iS = 0; iS < data._edgesOnShape.size(); ++iS )
+ for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
if ( !eos._toSmooth ||
continue;
// already smoothed?
- bool toSmooth = ( eos._edges[ 0 ]->NbSteps() >= nbSteps+1 );
- if ( !toSmooth ) continue;
+ // bool toSmooth = ( eos._edges[ 0 ]->NbSteps() >= infStep+1 );
+ // if ( !toSmooth ) continue;
if ( !eos._hyp.ToSmooth() )
{
// smooth disabled by the user; check validy only
if ( !isFace ) continue;
- double vol;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge* edge = eos._edges[i];
- const gp_XYZ& curPos ( );
for ( size_t iF = 0; iF < edge->_simplices.size(); ++iF )
- if ( !edge->_simplices[iF].IsForward( edge->_nodes[0],
- &edge->_pos.back(), vol ))
+ if ( !edge->_simplices[iF].IsForward( edge->_nodes[0], edge->_pos.back(), vol ))
+ {
+ debugMsg( "-- Stop inflation. Bad simplex ("
+ << " "<< edge->_nodes[0]->GetID()
+ << " "<< edge->_nodes.back()->GetID()
+ << " "<< edge->_simplices[iF]._nPrev->GetID()
+ << " "<< edge->_simplices[iF]._nNext->GetID() << " ) ");
return false;
+ }
}
- continue; // goto to the next EDGE or FACE
+ continue; // goto the next EDGE or FACE
}
// prepare data
if ( !F.IsSame( eos._sWOL )) {
F = TopoDS::Face( eos._sWOL );
helper.SetSubShape( F );
- surface = BRep_Tool::Surface( F );
+ surface = helper.GetSurface( F );
}
}
else
if ( eos.ShapeType() == TopAbs_EDGE )
{
- dumpFunction(SMESH_Comment("smooth")<<data._index << "_Ed"<<sInd <<"_InfStep"<<nbSteps);
+ dumpFunction(SMESH_Comment("smooth")<<data._index << "_Ed"<<sInd <<"_InfStep"<<infStep);
- // try a simple solution on an analytic EDGE
- if ( !smoothAnalyticEdge( data, eos, surface, F, helper ))
+ if ( !eos._edgeSmoother->Perform( data, surface, F, helper ))
{
- // smooth on EDGE's
+ // smooth on EDGE's (normally we should not get here)
int step = 0;
do {
moved = false;
}
dumpFunctionEnd();
}
- else
+
+ else // smooth on FACE
{
- // smooth on FACE's
+ eosC1.clear();
+ eosC1.push_back( & eos );
+ eosC1.insert( eosC1.end(), eos._eosC1.begin(), eos._eosC1.end() );
- const bool isConcaveFace = data._concaveFaces.count( sInd );
+ movedEdges.clear();
+ isConcaveFace.resize( eosC1.size() );
+ for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
+ {
+ isConcaveFace[ iEOS ] = data._concaveFaces.count( eosC1[ iEOS ]->_shapeID );
+ vector< _LayerEdge* > & edges = eosC1[ iEOS ]->_edges;
+ for ( size_t i = 0; i < edges.size(); ++i )
+ if ( edges[i]->Is( _LayerEdge::MOVED ) ||
+ edges[i]->Is( _LayerEdge::NEAR_BOUNDARY ))
+ movedEdges.push_back( edges[i] );
+
+ makeOffsetSurface( *eosC1[ iEOS ], helper );
+ }
int step = 0, stepLimit = 5, badNb = 0;
while (( ++step <= stepLimit ) || improved )
{
dumpFunction(SMESH_Comment("smooth")<<data._index<<"_Fa"<<sInd
- <<"_InfStep"<<nbSteps<<"_"<<step); // debug
+ <<"_InfStep"<<infStep<<"_"<<step); // debug
int oldBadNb = badNb;
badSmooEdges.clear();
- if ( step % 2 ) {
- for ( size_t i = 0; i < eos._edges.size(); ++i ) // iterate forward
- if ( eos._edges[i]->Smooth( step, isConcaveFace, false ))
- badSmooEdges.push_back( eos._edges[i] );
+#ifdef INCREMENTAL_SMOOTH
+ bool findBest = false; // ( step == stepLimit );
+ for ( size_t i = 0; i < movedEdges.size(); ++i )
+ {
+ movedEdges[i]->Unset( _LayerEdge::SMOOTHED );
+ if ( movedEdges[i]->Smooth( step, findBest, movedEdges ) > 0 )
+ badSmooEdges.push_back( movedEdges[i] );
}
-
- else {
- for ( int i = eos._edges.size()-1; i >= 0; --i ) // iterate backward
- if ( eos._edges[i]->Smooth( step, isConcaveFace, false ))
+#else
+ bool findBest = ( step == stepLimit || isConcaveFace[ iEOS ]);
+ for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
+ {
+ vector< _LayerEdge* > & edges = eosC1[ iEOS ]->_edges;
+ for ( size_t i = 0; i < edges.size(); ++i )
+ {
+ edges[i]->Unset( _LayerEdge::SMOOTHED );
+ if ( edges[i]->Smooth( step, findBest, false ) > 0 )
badSmooEdges.push_back( eos._edges[i] );
+ }
}
+#endif
badNb = badSmooEdges.size();
- improved = ( badNb < oldBadNb );
+
+ if ( badNb > 0 )
+ debugMsg(SMESH_Comment("badNb = ") << badNb );
if ( !badSmooEdges.empty() && step >= stepLimit / 2 )
{
+ if ( badSmooEdges[0]->Is( _LayerEdge::ON_CONCAVE_FACE ))
+ stepLimit = 9;
+
+ // resolve hard smoothing situation around concave VERTEXes
+ for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
+ {
+ vector< _EdgesOnShape* > & eosCoVe = eosC1[ iEOS ]->_eosConcaVer;
+ for ( size_t i = 0; i < eosCoVe.size(); ++i )
+ eosCoVe[i]->_edges[0]->MoveNearConcaVer( eosCoVe[i], eosC1[ iEOS ],
+ step, badSmooEdges );
+ }
// look for the best smooth of _LayerEdge's neighboring badSmooEdges
- vector<_Simplex> simplices;
+ badNb = 0;
for ( size_t i = 0; i < badSmooEdges.size(); ++i )
{
_LayerEdge* ledge = badSmooEdges[i];
- _Simplex::GetSimplices( ledge->_nodes[0], simplices, data._ignoreFaceIds );
- for ( size_t iS = 0; iS < simplices.size(); ++iS )
+ for ( size_t iN = 0; iN < ledge->_neibors.size(); ++iN )
{
- TNode2Edge::iterator n2e = data._n2eMap.find( simplices[iS]._nNext );
- if ( n2e != data._n2eMap.end()) {
- _LayerEdge* ledge2 = n2e->second;
- if ( ledge2->_nodes[0]->getshapeId() == sInd )
- ledge2->Smooth( step, isConcaveFace, /*findBest=*/true );
- }
+ ledge->_neibors[iN]->Unset( _LayerEdge::SMOOTHED );
+ badNb += ledge->_neibors[iN]->Smooth( step, true, /*findBest=*/true );
}
+ ledge->Unset( _LayerEdge::SMOOTHED );
+ badNb += ledge->Smooth( step, true, /*findBest=*/true );
+ }
+ debugMsg(SMESH_Comment("badNb = ") << badNb );
+ }
+
+ if ( badNb == oldBadNb &&
+ badNb > 0 &&
+ step < stepLimit ) // smooth w/o chech of validity
+ {
+ dumpFunctionEnd();
+ dumpFunction(SMESH_Comment("smoothWoCheck")<<data._index<<"_Fa"<<sInd
+ <<"_InfStep"<<infStep<<"_"<<step); // debug
+ for ( size_t i = 0; i < movedEdges.size(); ++i )
+ {
+ movedEdges[i]->SmoothWoCheck();
}
+ if ( stepLimit < 9 )
+ stepLimit++;
}
- // issue 22576 -- no bad faces but still there are intersections to fix
- // if ( improved && badNb == 0 )
- // stepLimit = step + 3;
+
+ improved = ( badNb < oldBadNb );
dumpFunctionEnd();
+
+ if (( step % 3 == 1 ) || ( badNb > 0 && step >= stepLimit / 2 ))
+ for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
+ {
+ putOnOffsetSurface( *eosC1[ iEOS ], infStep, step, /*moveAll=*/step == 1 );
+ }
+
+ } // smoothing steps
+
+ // project -- to prevent intersections or fix bad simplices
+ for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
+ {
+ if ( ! eosC1[ iEOS ]->_eosConcaVer.empty() || badNb > 0 )
+ putOnOffsetSurface( *eosC1[ iEOS ], infStep );
}
- if ( badNb > 0 )
+
+ if ( !badSmooEdges.empty() )
{
-#ifdef __myDEBUG
- double vol = 0;
- for ( int i = 0; i < eos._edges.size(); ++i )
+ badSmooEdges.clear();
+ for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
{
- _LayerEdge* edge = eos._edges[i];
- SMESH_TNodeXYZ tgtXYZ( edge->_nodes.back() );
- for ( size_t j = 0; j < edge->_simplices.size(); ++j )
- if ( !edge->_simplices[j].IsForward( edge->_nodes[0], &tgtXYZ, vol ))
+ for ( size_t i = 0; i < eosC1[ iEOS ]->_edges.size(); ++i )
+ {
+ if ( !eosC1[ iEOS ]->_sWOL.IsNull() ) continue;
+
+ _LayerEdge* edge = eosC1[ iEOS ]->_edges[i];
+ edge->CheckNeiborsOnBoundary( & badSmooEdges );
+ if ( badNb > 0 )
{
- cout << "Bad simplex ( " << edge->_nodes[0]->GetID()<< " "<< tgtXYZ._node->GetID()
- << " "<< edge->_simplices[j]._nPrev->GetID()
- << " "<< edge->_simplices[j]._nNext->GetID() << " )" << endl;
- return false;
+ SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back();
+ const gp_XYZ& prevXYZ = edge->PrevCheckPos();
+ for ( size_t j = 0; j < edge->_simplices.size(); ++j )
+ if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol ))
+ {
+ debugMsg("Bad simplex ( " << edge->_nodes[0]->GetID()
+ << " "<< tgtXYZ._node->GetID()
+ << " "<< edge->_simplices[j]._nPrev->GetID()
+ << " "<< edge->_simplices[j]._nNext->GetID() << " )" );
+ badSmooEdges.push_back( edge );
+ break;
+ }
}
+ }
}
-#endif
- return false;
+
+ // try to fix bad simplices by removing the last inflation step of some _LayerEdge's
+ badNb = invalidateBadSmooth( data, helper, badSmooEdges, eosC1, infStep );
+
+ if ( badNb > 0 )
+ return false;
}
+
} // // smooth on FACE's
} // loop on shapes
} // smooth on [ EDGEs, FACEs ]
- // Check orientation of simplices of _ConvexFace::_simplexTestEdges
- map< TGeomID, _ConvexFace >::iterator id2face = data._convexFaces.begin();
- for ( ; id2face != data._convexFaces.end(); ++id2face )
+ // Check orientation of simplices of _LayerEdge's on EDGEs and VERTEXes
+ eosC1.resize(1);
+ for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
- _ConvexFace & convFace = (*id2face).second;
- if ( !convFace._simplexTestEdges.empty() &&
- convFace._simplexTestEdges[0]->_nodes[0]->GetPosition()->GetDim() == 2 )
- continue; // _simplexTestEdges are based on FACE -- already checked while smoothing
+ _EdgesOnShape& eos = data._edgesOnShape[ iS ];
+ if ( eos.ShapeType() == TopAbs_FACE ||
+ eos._edges.empty() ||
+ !eos._sWOL.IsNull() )
+ continue;
+
+ badSmooEdges.clear();
+ for ( size_t i = 0; i < eos._edges.size(); ++i )
+ {
+ _LayerEdge* edge = eos._edges[i];
+ if ( edge->_nodes.size() < 2 ) continue;
+ SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back();
+ //const gp_XYZ& prevXYZ = edge->PrevCheckPos();
+ const gp_XYZ& prevXYZ = edge->PrevPos();
+ for ( size_t j = 0; j < edge->_simplices.size(); ++j )
+ if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol ))
+ {
+ debugMsg("Bad simplex on bnd ( " << edge->_nodes[0]->GetID()
+ << " "<< tgtXYZ._node->GetID()
+ << " "<< edge->_simplices[j]._nPrev->GetID()
+ << " "<< edge->_simplices[j]._nNext->GetID() << " )" );
+ badSmooEdges.push_back( edge );
+ break;
+ }
+ }
- if ( !convFace.CheckPrisms() )
+ // try to fix bad simplices by removing the last inflation step of some _LayerEdge's
+ eosC1[0] = &eos;
+ int badNb = invalidateBadSmooth( data, helper, badSmooEdges, eosC1, infStep );
+ if ( badNb > 0 )
return false;
}
+
// Check if the last segments of _LayerEdge intersects 2D elements;
// checked elements are either temporary faces or faces on surfaces w/o the layers
- auto_ptr<SMESH_ElementSearcher> searcher
+ SMESHUtils::Deleter<SMESH_ElementSearcher> searcher
( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(),
data._proxyMesh->GetFaces( data._solid )) );
+#ifdef BLOCK_INFLATION
+ const bool toBlockInfaltion = true;
+#else
+ const bool toBlockInfaltion = false;
+#endif
distToIntersection = Precision::Infinite();
double dist;
const SMDS_MeshElement* intFace = 0;
const SMDS_MeshElement* closestFace = 0;
_LayerEdge* le = 0;
- for ( int iS = 0; iS < data._edgesOnShape.size(); ++iS )
+ for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
if ( eos._edges.empty() || !eos._sWOL.IsNull() )
continue;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
+ if ( eos._edges[i]->Is( _LayerEdge::INTERSECTED ) ||
+ eos._edges[i]->Is( _LayerEdge::MULTI_NORMAL ))
+ continue;
if ( eos._edges[i]->FindIntersection( *searcher, dist, data._epsilon, eos, &intFace ))
return false;
- if ( distToIntersection > dist )
+ if ( !intFace )
+ {
+ SMESH_Comment msg("Invalid? normal at node "); msg << eos._edges[i]->_nodes[0]->GetID();
+ debugMsg( msg );
+ continue;
+ }
+
+ const bool isShorterDist = ( distToIntersection > dist );
+ if ( toBlockInfaltion || isShorterDist )
{
// ignore intersection of a _LayerEdge based on a _ConvexFace with a face
// lying on this _ConvexFace
if ( intFace->getshapeId() == eos._shapeID )
continue;
- distToIntersection = dist;
- le = eos._edges[i];
- closestFace = intFace;
- }
- }
- }
+ // ignore intersection with intFace of an adjacent FACE
+ if ( dist > 0 )
+ {
+ bool toIgnore = false;
+ if ( eos._edges[i]->Is( _LayerEdge::TO_SMOOTH ))
+ {
+ const TopoDS_Shape& S = getMeshDS()->IndexToShape( intFace->getshapeId() );
+ if ( !S.IsNull() && S.ShapeType() == TopAbs_FACE )
+ {
+ TopExp_Explorer edge( eos._shape, TopAbs_EDGE );
+ for ( ; !toIgnore && edge.More(); edge.Next() )
+ // is adjacent - has a common EDGE
+ toIgnore = ( helper.IsSubShape( edge.Current(), S ));
+
+ if ( toIgnore ) // check angle between normals
+ {
+ gp_XYZ normal;
+ if ( SMESH_MeshAlgos::FaceNormal( intFace, normal, /*normalized=*/true ))
+ toIgnore = ( normal * eos._edges[i]->_normal > -0.5 );
+ }
+ }
+ }
+ if ( !toIgnore ) // check if the edge is a neighbor of intFace
+ {
+ for ( size_t iN = 0; !toIgnore && iN < eos._edges[i]->_neibors.size(); ++iN )
+ {
+ int nInd = intFace->GetNodeIndex( eos._edges[i]->_neibors[ iN ]->_nodes.back() );
+ toIgnore = ( nInd >= 0 );
+ }
+ }
+ if ( toIgnore )
+ continue;
+ }
+
+ // intersection not ignored
+
+ if ( toBlockInfaltion &&
+ dist < ( eos._edges[i]->_len * theThickToIntersection ))
+ {
+ eos._edges[i]->Set( _LayerEdge::INTERSECTED ); // not to intersect
+ eos._edges[i]->Block( data ); // not to inflate
+
+ if ( _EdgesOnShape* eof = data.GetShapeEdges( intFace->getshapeId() ))
+ {
+ // block _LayerEdge's, on top of which intFace is
+ if ( const _TmpMeshFace* f = dynamic_cast< const _TmpMeshFace*>( intFace ))
+ {
+ const SMDS_MeshElement* srcFace =
+ eof->_subMesh->GetSubMeshDS()->GetElement( f->getIdInShape() );
+ SMDS_ElemIteratorPtr nIt = srcFace->nodesIterator();
+ while ( nIt->more() )
+ {
+ const SMDS_MeshNode* srcNode = static_cast<const SMDS_MeshNode*>( nIt->next() );
+ TNode2Edge::iterator n2e = data._n2eMap.find( srcNode );
+ if ( n2e != data._n2eMap.end() )
+ n2e->second->Block( data );
+ }
+ }
+ }
+ }
+
+ if ( isShorterDist )
+ {
+ distToIntersection = dist;
+ le = eos._edges[i];
+ closestFace = intFace;
+ }
+
+ } // if ( toBlockInfaltion || isShorterDist )
+ } // loop on eos._edges
+ } // loop on data._edgesOnShape
+
#ifdef __myDEBUG
if ( closestFace )
{
//================================================================================
/*!
- * \brief Return a curve of the EDGE to be used for smoothing and arrange
- * _LayerEdge's to be in a consequent order
+ * \brief try to fix bad simplices by removing the last inflation step of some _LayerEdge's
+ * \param [in,out] badSmooEdges - _LayerEdge's to fix
+ * \return int - resulting nb of bad _LayerEdge's
*/
//================================================================================
-Handle(Geom_Curve) _SolidData::CurveForSmooth( const TopoDS_Edge& E,
- _EdgesOnShape& eos,
- SMESH_MesherHelper& helper)
+int _ViscousBuilder::invalidateBadSmooth( _SolidData& data,
+ SMESH_MesherHelper& helper,
+ vector< _LayerEdge* >& badSmooEdges,
+ vector< _EdgesOnShape* >& eosC1,
+ const int infStep )
{
- const TGeomID eIndex = eos._shapeID;
+ if ( badSmooEdges.empty() || infStep == 0 ) return 0;
- map< TGeomID, Handle(Geom_Curve)>::iterator i2curve = _edge2curve.find( eIndex );
-
- if ( i2curve == _edge2curve.end() )
- {
- // sort _LayerEdge's by position on the EDGE
- SortOnEdge( E, eos._edges, helper );
+ dumpFunction(SMESH_Comment("invalidateBadSmooth")<<"_S"<<eosC1[0]->_shapeID<<"_InfStep"<<infStep);
- SMESHDS_SubMesh* smDS = eos._subMesh->GetSubMeshDS();
+ data.UnmarkEdges();
- TopLoc_Location loc; double f,l;
+ double vol;
+ for ( size_t i = 0; i < badSmooEdges.size(); ++i )
+ {
+ _LayerEdge* edge = badSmooEdges[i];
+ if ( edge->NbSteps() < 2 || edge->Is( _LayerEdge::MARKED ))
+ continue;
+ _EdgesOnShape* eos = data.GetShapeEdges( edge );
+ edge->InvalidateStep( edge->NbSteps(), *eos, /*restoreLength=*/true );
+ edge->Block( data );
+ edge->Set( _LayerEdge::MARKED );
+
+ if ( eos->ShapeType() == TopAbs_VERTEX )
+ {
+ // re-smooth on analytical EDGEs
+ PShapeIteratorPtr eIt = helper.GetAncestors( eos->_shape, *_mesh, TopAbs_EDGE );
+ while ( const TopoDS_Shape* e = eIt->next() )
+ if ( _EdgesOnShape* eoe = data.GetShapeEdges( *e ))
+ if ( eoe->_edgeSmoother && eoe->_edgeSmoother->isAnalytic() )
+ {
+ TopoDS_Face F; Handle(ShapeAnalysis_Surface) surface;
+ if ( eoe->SWOLType() == TopAbs_FACE ) {
+ F = TopoDS::Face( eoe->_sWOL );
+ surface = helper.GetSurface( F );
+ }
+ eoe->_edgeSmoother->Perform( data, surface, F, helper );
+ }
+ }
- Handle(Geom_Line) line;
- Handle(Geom_Circle) circle;
- bool isLine, isCirc;
- if ( eos._sWOL.IsNull() ) /////////////////////////////////////////// 3D case
+ // look for _LayerEdge's of bad _simplices
+ SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back();
+ const gp_XYZ& prevXYZ = edge->PrevCheckPos();
+ for ( size_t j = 0; j < edge->_simplices.size(); ++j )
{
- // check if the EDGE is a line
- Handle(Geom_Curve) curve = BRep_Tool::Curve( E, loc, f, l);
- if ( curve->IsKind( STANDARD_TYPE( Geom_TrimmedCurve )))
- curve = Handle(Geom_TrimmedCurve)::DownCast( curve )->BasisCurve();
-
- line = Handle(Geom_Line)::DownCast( curve );
- circle = Handle(Geom_Circle)::DownCast( curve );
- isLine = (!line.IsNull());
- isCirc = (!circle.IsNull());
-
- if ( !isLine && !isCirc ) // Check if the EDGE is close to a line
- {
- // Bnd_B3d bndBox;
- // SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
- // while ( nIt->more() )
- // bndBox.Add( SMESH_TNodeXYZ( nIt->next() ));
- // gp_XYZ size = bndBox.CornerMax() - bndBox.CornerMin();
-
- // gp_Pnt p0, p1;
- // if ( eos._edges.size() > 1 ) {
- // p0 = SMESH_TNodeXYZ( eos._edges[0]->_nodes[0] );
- // p1 = SMESH_TNodeXYZ( eos._edges[1]->_nodes[0] );
- // }
- // else {
- // p0 = curve->Value( f );
- // p1 = curve->Value( l );
- // }
- // const double lineTol = 1e-2 * p0.Distance( p1 );
- // for ( int i = 0; i < 3 && !isLine; ++i )
- // isLine = ( size.Coord( i+1 ) <= lineTol ); ////////// <--- WRONG
-
- isLine = SMESH_Algo::IsStraight( E );
-
- if ( isLine )
- line = new Geom_Line( gp::OX() ); // only type does matter
- }
- if ( !isLine && !isCirc && eos._edges.size() > 2) // Check if the EDGE is close to a circle
- {
- // TODO
- }
+ if ( edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol ))
+ continue;
+ for ( size_t iN = 0; iN < edge->_neibors.size(); ++iN )
+ if ( edge->_simplices[j].Includes( edge->_neibors[iN]->_nodes.back() ))
+ badSmooEdges.push_back( edge->_neibors[iN] );
}
- else //////////////////////////////////////////////////////////////////////// 2D case
- {
- const TopoDS_Face& F = TopoDS::Face( eos._sWOL );
-
- // check if the EDGE is a line
- Handle(Geom2d_Curve) curve = BRep_Tool::CurveOnSurface( E, F, f, l);
- if ( curve->IsKind( STANDARD_TYPE( Geom2d_TrimmedCurve )))
- curve = Handle(Geom2d_TrimmedCurve)::DownCast( curve )->BasisCurve();
-
- Handle(Geom2d_Line) line2d = Handle(Geom2d_Line)::DownCast( curve );
- Handle(Geom2d_Circle) circle2d = Handle(Geom2d_Circle)::DownCast( curve );
- isLine = (!line2d.IsNull());
- isCirc = (!circle2d.IsNull());
-
- if ( !isLine && !isCirc) // Check if the EDGE is close to a line
- {
- Bnd_B2d bndBox;
- SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
- while ( nIt->more() )
- bndBox.Add( helper.GetNodeUV( F, nIt->next() ));
- gp_XY size = bndBox.CornerMax() - bndBox.CornerMin();
+ }
- const double lineTol = 1e-2 * sqrt( bndBox.SquareExtent() );
- for ( int i = 0; i < 2 && !isLine; ++i )
- isLine = ( size.Coord( i+1 ) <= lineTol );
- }
- if ( !isLine && !isCirc && eos._edges.size() > 2) // Check if the EDGE is close to a circle
- {
- // TODO
- }
- if ( isLine )
- {
- line = new Geom_Line( gp::OX() ); // only type does matter
- }
- else if ( isCirc )
- {
- gp_Pnt2d p = circle2d->Location();
- gp_Ax2 ax( gp_Pnt( p.X(), p.Y(), 0), gp::DX());
- circle = new Geom_Circle( ax, 1.); // only center position does matter
- }
+ int badNb = 0;
+ for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS )
+ {
+ for ( size_t i = 0; i < eosC1[ iEOS ]->_edges.size(); ++i )
+ {
+ if ( !eosC1[ iEOS ]->_sWOL.IsNull() ) continue;
+ _LayerEdge* edge = eosC1[ iEOS ]->_edges[i];
+ SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back();
+ const gp_XYZ& prevXYZ = edge->PrevCheckPos();
+ for ( size_t j = 0; j < edge->_simplices.size(); ++j )
+ if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol ))
+ {
+ ++badNb;
+ debugMsg("Bad simplex remains ( " << edge->_nodes[0]->GetID()
+ << " "<< tgtXYZ._node->GetID()
+ << " "<< edge->_simplices[j]._nPrev->GetID()
+ << " "<< edge->_simplices[j]._nNext->GetID() << " )" );
+ }
}
-
- Handle(Geom_Curve)& res = _edge2curve[ eIndex ];
- if ( isLine )
- res = line;
- else if ( isCirc )
- res = circle;
-
- return res;
}
- return i2curve->second;
+ dumpFunctionEnd();
+
+ return badNb;
}
//================================================================================
/*!
- * \brief Sort _LayerEdge's by a parameter on a given EDGE
+ * \brief Create an offset surface
*/
//================================================================================
-void _SolidData::SortOnEdge( const TopoDS_Edge& E,
- vector< _LayerEdge* >& edges,
- SMESH_MesherHelper& helper)
+void _ViscousBuilder::makeOffsetSurface( _EdgesOnShape& eos, SMESH_MesherHelper& helper )
{
- map< double, _LayerEdge* > u2edge;
- for ( size_t i = 0; i < edges.size(); ++i )
- u2edge.insert( make_pair( helper.GetNodeU( E, edges[i]->_nodes[0] ), edges[i] ));
+ if ( eos._offsetSurf.IsNull() ||
+ eos._edgeForOffset == 0 ||
+ eos._edgeForOffset->Is( _LayerEdge::BLOCKED ))
+ return;
- ASSERT( u2edge.size() == edges.size() );
- map< double, _LayerEdge* >::iterator u2e = u2edge.begin();
- for ( int i = 0; i < edges.size(); ++i, ++u2e )
- edges[i] = u2e->second;
+ Handle(ShapeAnalysis_Surface) baseSurface = helper.GetSurface( TopoDS::Face( eos._shape ));
- Sort2NeiborsOnEdge( edges );
-}
+ // find offset
+ gp_Pnt tgtP = SMESH_TNodeXYZ( eos._edgeForOffset->_nodes.back() );
+ gp_Pnt2d uv = baseSurface->ValueOfUV( tgtP, Precision::Confusion() );
+ double offset = baseSurface->Gap();
-//================================================================================
-/*!
- * \brief Set _2neibors according to the order of _LayerEdge on EDGE
- */
-//================================================================================
+ eos._offsetSurf.Nullify();
-void _SolidData::Sort2NeiborsOnEdge( vector< _LayerEdge* >& edges )
-{
- for ( size_t i = 0; i < edges.size()-1; ++i )
- if ( edges[i]->_2neibors->tgtNode(1) != edges[i+1]->_nodes.back() )
- edges[i]->_2neibors->reverse();
+ try
+ {
+ BRepOffsetAPI_MakeOffsetShape offsetMaker( eos._shape, -offset, Precision::Confusion() );
+ if ( !offsetMaker.IsDone() ) return;
- const size_t iLast = edges.size() - 1;
- if ( edges.size() > 1 &&
- edges[iLast]->_2neibors->tgtNode(0) != edges[iLast-1]->_nodes.back() )
- edges[iLast]->_2neibors->reverse();
+ TopExp_Explorer fExp( offsetMaker.Shape(), TopAbs_FACE );
+ if ( !fExp.More() ) return;
+
+ TopoDS_Face F = TopoDS::Face( fExp.Current() );
+ Handle(Geom_Surface) surf = BRep_Tool::Surface( F );
+ if ( surf.IsNull() ) return;
+
+ eos._offsetSurf = new ShapeAnalysis_Surface( surf );
+ }
+ catch ( Standard_Failure )
+ {
+ }
}
//================================================================================
/*!
- * \brief Return _EdgesOnShape* corresponding to the shape
+ * \brief Put nodes of a curved FACE to its offset surface
*/
//================================================================================
-_EdgesOnShape* _SolidData::GetShapeEdges(const TGeomID shapeID )
+void _ViscousBuilder::putOnOffsetSurface( _EdgesOnShape& eos,
+ int infStep,
+ int smooStep,
+ bool moveAll )
{
- if ( shapeID < _edgesOnShape.size() &&
- _edgesOnShape[ shapeID ]._shapeID == shapeID )
- return & _edgesOnShape[ shapeID ];
+ if ( eos._offsetSurf.IsNull() ||
+ eos.ShapeType() != TopAbs_FACE ||
+ eos._edgeForOffset == 0 ||
+ eos._edgeForOffset->Is( _LayerEdge::BLOCKED ))
+ return;
- for ( size_t i = 0; i < _edgesOnShape.size(); ++i )
+ double preci = BRep_Tool::Tolerance( TopoDS::Face( eos._shape )), vol;
+ for ( size_t i = 0; i < eos._edges.size(); ++i )
+ {
+ _LayerEdge* edge = eos._edges[i];
+ edge->Unset( _LayerEdge::MARKED );
+ if ( edge->Is( _LayerEdge::BLOCKED ) || !edge->_curvature )
+ continue;
+ if ( !moveAll && !edge->Is( _LayerEdge::MOVED ))
+ continue;
+
+ int nbBlockedAround = 0;
+ for ( size_t iN = 0; iN < edge->_neibors.size(); ++iN )
+ nbBlockedAround += edge->_neibors[iN]->Is( _LayerEdge::BLOCKED );
+ if ( nbBlockedAround > 1 )
+ continue;
+
+ gp_Pnt tgtP = SMESH_TNodeXYZ( edge->_nodes.back() );
+ gp_Pnt2d uv = eos._offsetSurf->NextValueOfUV( edge->_curvature->_uv, tgtP, preci );
+ if ( eos._offsetSurf->Gap() > edge->_len ) continue; // NextValueOfUV() bug
+ edge->_curvature->_uv = uv;
+ if ( eos._offsetSurf->Gap() < 10 * preci ) continue; // same pos
+
+ gp_XYZ newP = eos._offsetSurf->Value( uv ).XYZ();
+ gp_XYZ prevP = edge->PrevCheckPos();
+ bool ok = true;
+ if ( !moveAll )
+ for ( size_t iS = 0; iS < edge->_simplices.size() && ok; ++iS )
+ {
+ ok = edge->_simplices[iS].IsForward( &prevP, &newP, vol );
+ }
+ if ( ok )
+ {
+ SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( edge->_nodes.back() );
+ n->setXYZ( newP.X(), newP.Y(), newP.Z());
+ edge->_pos.back() = newP;
+
+ edge->Set( _LayerEdge::MARKED );
+ }
+ }
+
+#ifdef _DEBUG_
+ // dumpMove() for debug
+ size_t i = 0;
+ for ( ; i < eos._edges.size(); ++i )
+ if ( eos._edges[i]->Is( _LayerEdge::MARKED ))
+ break;
+ if ( i < eos._edges.size() )
+ {
+ dumpFunction(SMESH_Comment("putOnOffsetSurface_F") << eos._shapeID
+ << "_InfStep" << infStep << "_" << smooStep );
+ for ( ; i < eos._edges.size(); ++i )
+ {
+ if ( eos._edges[i]->Is( _LayerEdge::MARKED ))
+ dumpMove( eos._edges[i]->_nodes.back() );
+ }
+ dumpFunctionEnd();
+ }
+#endif
+}
+
+//================================================================================
+/*!
+ * \brief Return a curve of the EDGE to be used for smoothing and arrange
+ * _LayerEdge's to be in a consequent order
+ */
+//================================================================================
+
+Handle(Geom_Curve) _Smoother1D::CurveForSmooth( const TopoDS_Edge& E,
+ _EdgesOnShape& eos,
+ SMESH_MesherHelper& helper)
+{
+ SMESHDS_SubMesh* smDS = eos._subMesh->GetSubMeshDS();
+
+ TopLoc_Location loc; double f,l;
+
+ Handle(Geom_Line) line;
+ Handle(Geom_Circle) circle;
+ bool isLine, isCirc;
+ if ( eos._sWOL.IsNull() ) /////////////////////////////////////////// 3D case
+ {
+ // check if the EDGE is a line
+ Handle(Geom_Curve) curve = BRep_Tool::Curve( E, f, l);
+ if ( curve->IsKind( STANDARD_TYPE( Geom_TrimmedCurve )))
+ curve = Handle(Geom_TrimmedCurve)::DownCast( curve )->BasisCurve();
+
+ line = Handle(Geom_Line)::DownCast( curve );
+ circle = Handle(Geom_Circle)::DownCast( curve );
+ isLine = (!line.IsNull());
+ isCirc = (!circle.IsNull());
+
+ if ( !isLine && !isCirc ) // Check if the EDGE is close to a line
+ {
+ isLine = SMESH_Algo::IsStraight( E );
+
+ if ( isLine )
+ line = new Geom_Line( gp::OX() ); // only type does matter
+ }
+ if ( !isLine && !isCirc && eos._edges.size() > 2) // Check if the EDGE is close to a circle
+ {
+ // TODO
+ }
+ }
+ else //////////////////////////////////////////////////////////////////////// 2D case
+ {
+ if ( !eos._isRegularSWOL ) // 23190
+ return NULL;
+
+ const TopoDS_Face& F = TopoDS::Face( eos._sWOL );
+
+ // check if the EDGE is a line
+ Handle(Geom2d_Curve) curve = BRep_Tool::CurveOnSurface( E, F, f, l );
+ if ( curve->IsKind( STANDARD_TYPE( Geom2d_TrimmedCurve )))
+ curve = Handle(Geom2d_TrimmedCurve)::DownCast( curve )->BasisCurve();
+
+ Handle(Geom2d_Line) line2d = Handle(Geom2d_Line)::DownCast( curve );
+ Handle(Geom2d_Circle) circle2d = Handle(Geom2d_Circle)::DownCast( curve );
+ isLine = (!line2d.IsNull());
+ isCirc = (!circle2d.IsNull());
+
+ if ( !isLine && !isCirc ) // Check if the EDGE is close to a line
+ {
+ Bnd_B2d bndBox;
+ SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
+ while ( nIt->more() )
+ bndBox.Add( helper.GetNodeUV( F, nIt->next() ));
+ gp_XY size = bndBox.CornerMax() - bndBox.CornerMin();
+
+ const double lineTol = 1e-2 * sqrt( bndBox.SquareExtent() );
+ for ( int i = 0; i < 2 && !isLine; ++i )
+ isLine = ( size.Coord( i+1 ) <= lineTol );
+ }
+ if ( !isLine && !isCirc && eos._edges.size() > 2 ) // Check if the EDGE is close to a circle
+ {
+ // TODO
+ }
+ if ( isLine )
+ {
+ line = new Geom_Line( gp::OX() ); // only type does matter
+ }
+ else if ( isCirc )
+ {
+ gp_Pnt2d p = circle2d->Location();
+ gp_Ax2 ax( gp_Pnt( p.X(), p.Y(), 0), gp::DX());
+ circle = new Geom_Circle( ax, 1.); // only center position does matter
+ }
+ }
+
+ if ( isLine )
+ return line;
+ if ( isCirc )
+ return circle;
+
+ return Handle(Geom_Curve)();
+}
+
+//================================================================================
+/*!
+ * \brief smooth _LayerEdge's on a staight EDGE or circular EDGE
+ */
+//================================================================================
+
+bool _Smoother1D::smoothAnalyticEdge( _SolidData& data,
+ Handle(ShapeAnalysis_Surface)& surface,
+ const TopoDS_Face& F,
+ SMESH_MesherHelper& helper)
+{
+ if ( !isAnalytic() ) return false;
+
+ const size_t iFrom = 0, iTo = _eos._edges.size();
+
+ if ( _anaCurve->IsKind( STANDARD_TYPE( Geom_Line )))
+ {
+ if ( F.IsNull() ) // 3D
+ {
+ SMESH_TNodeXYZ p0 ( _eos._edges[iFrom]->_2neibors->tgtNode(0) );
+ SMESH_TNodeXYZ p1 ( _eos._edges[iTo-1]->_2neibors->tgtNode(1) );
+ SMESH_TNodeXYZ pSrc0( _eos._edges[iFrom]->_2neibors->srcNode(0) );
+ SMESH_TNodeXYZ pSrc1( _eos._edges[iTo-1]->_2neibors->srcNode(1) );
+ gp_XYZ newPos;
+ for ( size_t i = iFrom; i < iTo; ++i )
+ {
+ if ( _eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue;
+
+ _LayerEdge* edge = _eos._edges[i];
+ SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edge->_nodes.back() );
+ newPos = p0 * ( 1. - _leParams[i] ) + p1 * _leParams[i];
+
+ if ( _eos._edges[i]->Is( _LayerEdge::NORMAL_UPDATED ))
+ {
+ gp_XYZ curPos = SMESH_TNodeXYZ ( tgtNode );
+ gp_XYZ lineDir = pSrc1 - pSrc0;
+ double shift = ( lineDir * ( newPos - pSrc0 ) -
+ lineDir * ( curPos - pSrc0 ));
+ newPos = curPos + lineDir * shift / lineDir.SquareModulus();
+ }
+ edge->_pos.back() = newPos;
+ tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
+ dumpMove( tgtNode );
+ }
+ }
+ else
+ {
+ _LayerEdge* e0 = getLEdgeOnV( 0 );
+ _LayerEdge* e1 = getLEdgeOnV( 1 );
+ gp_XY uv0 = e0->LastUV( F, *data.GetShapeEdges( e0 ));
+ gp_XY uv1 = e1->LastUV( F, *data.GetShapeEdges( e1 ));
+ if ( e0->_nodes.back() == e1->_nodes.back() ) // closed edge
+ {
+ int iPeriodic = helper.GetPeriodicIndex();
+ if ( iPeriodic == 1 || iPeriodic == 2 )
+ {
+ uv1.SetCoord( iPeriodic, helper.GetOtherParam( uv1.Coord( iPeriodic )));
+ if ( uv0.Coord( iPeriodic ) > uv1.Coord( iPeriodic ))
+ std::swap( uv0, uv1 );
+ }
+ }
+ const gp_XY rangeUV = uv1 - uv0;
+ for ( size_t i = iFrom; i < iTo; ++i )
+ {
+ if ( _eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue;
+ gp_XY newUV = uv0 + _leParams[i] * rangeUV;
+ _eos._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 );
+
+ gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() );
+ SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _eos._edges[i]->_nodes.back() );
+ tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
+ dumpMove( tgtNode );
+
+ SMDS_FacePosition* pos = static_cast<SMDS_FacePosition*>( tgtNode->GetPosition() );
+ pos->SetUParameter( newUV.X() );
+ pos->SetVParameter( newUV.Y() );
+ }
+ }
+ return true;
+ }
+
+ if ( _anaCurve->IsKind( STANDARD_TYPE( Geom_Circle )))
+ {
+ Handle(Geom_Circle) circle = Handle(Geom_Circle)::DownCast( _anaCurve );
+ gp_Pnt center3D = circle->Location();
+
+ if ( F.IsNull() ) // 3D
+ {
+ if ( getLEdgeOnV( 0 )->_nodes.back() == getLEdgeOnV( 1 )->_nodes.back() )
+ return true; // closed EDGE - nothing to do
+
+ // circle is a real curve of EDGE
+ gp_Circ circ = circle->Circ();
+
+ // new center is shifted along its axis
+ const gp_Dir& axis = circ.Axis().Direction();
+ _LayerEdge* e0 = getLEdgeOnV(0);
+ _LayerEdge* e1 = getLEdgeOnV(1);
+ SMESH_TNodeXYZ p0 = e0->_nodes.back();
+ SMESH_TNodeXYZ p1 = e1->_nodes.back();
+ double shift1 = axis.XYZ() * ( p0 - center3D.XYZ() );
+ double shift2 = axis.XYZ() * ( p1 - center3D.XYZ() );
+ gp_Pnt newCenter = center3D.XYZ() + axis.XYZ() * 0.5 * ( shift1 + shift2 );
+
+ double newRadius = 0.5 * ( newCenter.Distance( p0 ) + newCenter.Distance( p1 ));
+
+ gp_Ax2 newAxis( newCenter, axis, gp_Vec( newCenter, p0 ));
+ gp_Circ newCirc( newAxis, newRadius );
+ gp_Vec vecC1 ( newCenter, p1 );
+
+ double uLast = newAxis.XDirection().AngleWithRef( vecC1, newAxis.Direction() ); // -PI - +PI
+ if ( uLast < 0 )
+ uLast += 2 * M_PI;
+
+ for ( size_t i = iFrom; i < iTo; ++i )
+ {
+ if ( _eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue;
+ double u = uLast * _leParams[i];
+ gp_Pnt p = ElCLib::Value( u, newCirc );
+ _eos._edges[i]->_pos.back() = p.XYZ();
+
+ SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _eos._edges[i]->_nodes.back() );
+ tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
+ dumpMove( tgtNode );
+ }
+ return true;
+ }
+ else // 2D
+ {
+ const gp_XY center( center3D.X(), center3D.Y() );
+
+ _LayerEdge* e0 = getLEdgeOnV(0);
+ _LayerEdge* eM = _eos._edges[ 0 ];
+ _LayerEdge* e1 = getLEdgeOnV(1);
+ gp_XY uv0 = e0->LastUV( F, *data.GetShapeEdges( e0 ) );
+ gp_XY uvM = eM->LastUV( F, *data.GetShapeEdges( eM ) );
+ gp_XY uv1 = e1->LastUV( F, *data.GetShapeEdges( e1 ) );
+ gp_Vec2d vec0( center, uv0 );
+ gp_Vec2d vecM( center, uvM );
+ gp_Vec2d vec1( center, uv1 );
+ double uLast = vec0.Angle( vec1 ); // -PI - +PI
+ double uMidl = vec0.Angle( vecM );
+ if ( uLast * uMidl <= 0. )
+ uLast += ( uMidl > 0 ? +2. : -2. ) * M_PI;
+ const double radius = 0.5 * ( vec0.Magnitude() + vec1.Magnitude() );
+
+ gp_Ax2d axis( center, vec0 );
+ gp_Circ2d circ( axis, radius );
+ for ( size_t i = iFrom; i < iTo; ++i )
+ {
+ if ( _eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue;
+ double newU = uLast * _leParams[i];
+ gp_Pnt2d newUV = ElCLib::Value( newU, circ );
+ _eos._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 );
+
+ gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() );
+ SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _eos._edges[i]->_nodes.back() );
+ tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
+ dumpMove( tgtNode );
+
+ SMDS_FacePosition* pos = static_cast<SMDS_FacePosition*>( tgtNode->GetPosition() );
+ pos->SetUParameter( newUV.X() );
+ pos->SetVParameter( newUV.Y() );
+ }
+ }
+ return true;
+ }
+
+ return false;
+}
+
+//================================================================================
+/*!
+ * \brief smooth _LayerEdge's on a an EDGE
+ */
+//================================================================================
+
+bool _Smoother1D::smoothComplexEdge( _SolidData& data,
+ Handle(ShapeAnalysis_Surface)& surface,
+ const TopoDS_Face& F,
+ SMESH_MesherHelper& helper)
+{
+ if ( _offPoints.empty() )
+ return false;
+
+ // move _offPoints to a new position
+
+ _LayerEdge* e[2] = { getLEdgeOnV(0), getLEdgeOnV(1) };
+ if ( e[0]->Is( _LayerEdge::NORMAL_UPDATED )) setNormalOnV( 0, helper );
+ if ( e[1]->Is( _LayerEdge::NORMAL_UPDATED )) setNormalOnV( 1, helper );
+ _leOnV[0]._len = e[0]->_len;
+ _leOnV[1]._len = e[1]->_len;
+ for ( size_t i = 0; i < _offPoints.size(); i++ )
+ {
+ _LayerEdge* e0 = _offPoints[i]._2edges._edges[0];
+ _LayerEdge* e1 = _offPoints[i]._2edges._edges[1];
+ const double w0 = _offPoints[i]._2edges._wgt[0];
+ const double w1 = _offPoints[i]._2edges._wgt[1];
+ gp_XYZ avgNorm = ( e0->_normal * w0 + e1->_normal * w1 ).Normalized();
+ double avgLen = ( e0->_len * w0 + e1->_len * w1 );
+ double avgFact = ( e0->_lenFactor * w0 + e1->_lenFactor * w1 );
+
+ _offPoints[i]._xyz += avgNorm * ( avgLen - _offPoints[i]._len ) * avgFact;
+ _offPoints[i]._len = avgLen;
+ }
+
+ double fTol;
+ if ( !surface.IsNull() ) // project _offPoints to the FACE
+ {
+ fTol = 100 * BRep_Tool::Tolerance( F );
+ //const double segLen = _offPoints[0].Distance( _offPoints[1] );
+
+ gp_Pnt2d uv = surface->ValueOfUV( _offPoints[0]._xyz, fTol );
+ //if ( surface->Gap() < 0.5 * segLen )
+ _offPoints[0]._xyz = surface->Value( uv ).XYZ();
+
+ for ( size_t i = 1; i < _offPoints.size(); ++i )
+ {
+ uv = surface->NextValueOfUV( uv, _offPoints[i]._xyz, fTol );
+ //if ( surface->Gap() < 0.5 * segLen )
+ _offPoints[i]._xyz = surface->Value( uv ).XYZ();
+ }
+ }
+
+ // project tgt nodes of extreme _LayerEdge's to the offset segments
+
+ gp_Pnt pExtreme[2], pProj[2];
+ for ( int is2nd = 0; is2nd < 2; ++is2nd )
+ {
+ pExtreme[ is2nd ] = SMESH_TNodeXYZ( e[is2nd]->_nodes.back() );
+ int i = _iSeg[ is2nd ];
+ int di = is2nd ? -1 : +1;
+ bool projected = false;
+ double uOnSeg, uOnSegDiff, uOnSegBestDiff = Precision::Infinite();
+ do {
+ gp_Vec v0p( _offPoints[i]._xyz, pExtreme[ is2nd ] );
+ gp_Vec v01( _offPoints[i]._xyz, _offPoints[i+1]._xyz );
+ uOnSeg = ( v0p * v01 ) / v01.SquareMagnitude();
+ uOnSegDiff = Abs( uOnSeg - 0.5 );
+ projected = ( uOnSegDiff <= 0.5 );
+ if ( uOnSegDiff < uOnSegBestDiff )
+ {
+ _iSeg[ is2nd ] = i;
+ pProj[ is2nd ] = _offPoints[i]._xyz + ( v01 * uOnSeg ).XYZ();
+ uOnSegBestDiff = uOnSegDiff;
+ }
+ i += di;
+ }
+ while ( !projected &&
+ i >= 0 && i+1 < (int)_offPoints.size() );
+
+ if ( !projected )
+ {
+ if (( is2nd && _iSeg[1] != _offPoints.size()-2 ) || ( !is2nd && _iSeg[0] != 0 ))
+ {
+ _iSeg[0] = 0;
+ _iSeg[1] = _offPoints.size()-2;
+ debugMsg( "smoothComplexEdge() failed to project nodes of extreme _LayerEdge's" );
+ return false;
+ }
+ }
+ }
+ if ( _iSeg[0] > _iSeg[1] )
+ {
+ debugMsg( "smoothComplexEdge() incorrectly projected nodes of extreme _LayerEdge's" );
+ return false;
+ }
+
+ // compute normalized length of the offset segments located between the projections
+
+ size_t iSeg = 0, nbSeg = _iSeg[1] - _iSeg[0] + 1;
+ vector< double > len( nbSeg + 1 );
+ len[ iSeg++ ] = 0;
+ len[ iSeg++ ] = pProj[ 0 ].Distance( _offPoints[ _iSeg[0]+1 ]._xyz );
+ for ( size_t i = _iSeg[0]+1; i <= _iSeg[1]; ++i, ++iSeg )
+ {
+ len[ iSeg ] = len[ iSeg-1 ] + _offPoints[i].Distance( _offPoints[i+1] );
+ }
+ len[ nbSeg ] -= pProj[ 1 ].Distance( _offPoints[ _iSeg[1]+1 ]._xyz );
+
+ double d0 = pProj[0].Distance( pExtreme[0]);
+ double d1 = pProj[1].Distance( pExtreme[1]);
+ double fullLen = len.back() - d0 - d1;
+ for ( iSeg = 0; iSeg < len.size(); ++iSeg )
+ len[iSeg] = ( len[iSeg] - d0 ) / fullLen;
+
+ // temporary replace extreme _offPoints by pExtreme
+ gp_XYZ op[2] = { _offPoints[ _iSeg[0] ]._xyz,
+ _offPoints[ _iSeg[1]+1 ]._xyz };
+ _offPoints[ _iSeg[0] ]._xyz = pExtreme[0].XYZ();
+ _offPoints[ _iSeg[1]+ 1]._xyz = pExtreme[1].XYZ();
+
+ // distribute tgt nodes of _LayerEdge's between the projections
+
+ iSeg = 0;
+ for ( size_t i = 0; i < _eos._edges.size(); ++i )
+ {
+ if ( _eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue;
+ while ( iSeg+2 < len.size() && _leParams[i] > len[ iSeg+1 ] )
+ iSeg++;
+ double r = ( _leParams[i] - len[ iSeg ]) / ( len[ iSeg+1 ] - len[ iSeg ]);
+ gp_XYZ p = ( _offPoints[ iSeg + _iSeg[0] ]._xyz * ( 1 - r ) +
+ _offPoints[ iSeg + _iSeg[0] + 1 ]._xyz * r );
+
+ if ( surface.IsNull() )
+ {
+ _eos._edges[i]->_pos.back() = p;
+ }
+ else // project a new node position to a FACE
+ {
+ gp_Pnt2d uv ( _eos._edges[i]->_pos.back().X(), _eos._edges[i]->_pos.back().Y() );
+ gp_Pnt2d uv2( surface->NextValueOfUV( uv, p, fTol ));
+
+ p = surface->Value( uv2 ).XYZ();
+ _eos._edges[i]->_pos.back().SetCoord( uv2.X(), uv2.Y(), 0 );
+ }
+ SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( _eos._edges[i]->_nodes.back() );
+ tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
+ dumpMove( tgtNode );
+ }
+
+ _offPoints[ _iSeg[0] ]._xyz = op[0];
+ _offPoints[ _iSeg[1]+1 ]._xyz = op[1];
+
+ return true;
+}
+
+//================================================================================
+/*!
+ * \brief Prepare for smoothing
+ */
+//================================================================================
+
+void _Smoother1D::prepare(_SolidData& data)
+{
+ // sort _LayerEdge's by position on the EDGE
+ const TopoDS_Edge& E = TopoDS::Edge( _eos._shape );
+ data.SortOnEdge( E, _eos._edges );
+
+ // compute normalized param of _eos._edges on EDGE
+ _leParams.resize( _eos._edges.size() + 1 );
+ {
+ double curLen, prevLen = _leParams[0] = 1.0;
+ gp_Pnt pPrev = SMESH_TNodeXYZ( getLEdgeOnV( 0 )->_nodes[0] );
+ _leParams[0] = 0;
+ for ( size_t i = 0; i < _eos._edges.size(); ++i )
+ {
+ gp_Pnt p = SMESH_TNodeXYZ( _eos._edges[i]->_nodes[0] );
+ //curLen = prevLen * _eos._edges[i]->_2neibors->_wgt[1] / _eos._edges[i]->_2neibors->_wgt[0];
+ curLen = p.Distance( pPrev );
+ _leParams[i+1] = _leParams[i] + curLen;
+ prevLen = curLen;
+ pPrev = p;
+ }
+ double fullLen = _leParams.back() + pPrev.Distance( SMESH_TNodeXYZ( getLEdgeOnV(1)->_nodes[0]));
+ for ( size_t i = 0; i < _leParams.size(); ++i )
+ _leParams[i] = _leParams[i+1] / fullLen;
+ }
+
+ if ( isAnalytic() )
+ return;
+
+ // divide E to have offset segments with low deflection
+ BRepAdaptor_Curve c3dAdaptor( E );
+ const double curDeflect = 0.1; //0.3; // 0.01; // Curvature deflection
+ const double angDeflect = 0.1; //0.2; // 0.09; // Angular deflection
+ GCPnts_TangentialDeflection discret(c3dAdaptor, angDeflect, curDeflect);
+ if ( discret.NbPoints() <= 2 )
+ {
+ _anaCurve = new Geom_Line( gp::OX() ); // only type does matter
+ return;
+ }
+
+ const double edgeLen = SMESH_Algo::EdgeLength( E );
+ const double u0 = c3dAdaptor.FirstParameter();
+ _offPoints.resize( discret.NbPoints() );
+ for ( size_t i = 0; i < _offPoints.size(); i++ )
+ {
+ _offPoints[i]._xyz = discret.Value( i+1 ).XYZ();
+ // use OffPnt::_len to TEMPORARY store normalized param of an offset point
+ double u = discret.Parameter( i+1 );
+ _offPoints[i]._len = GCPnts_AbscissaPoint::Length( c3dAdaptor, u0, u ) / edgeLen;
+ }
+
+ _LayerEdge* leOnV[2] = { getLEdgeOnV(0), getLEdgeOnV(1) };
+
+ // set _2edges
+ _offPoints [0]._2edges.set( &_leOnV[0], &_leOnV[0], 0.5, 0.5 );
+ _offPoints.back()._2edges.set( &_leOnV[1], &_leOnV[1], 0.5, 0.5 );
+ _2NearEdges tmp2edges;
+ tmp2edges._edges[1] = _eos._edges[0];
+ _leOnV[0]._2neibors = & tmp2edges;
+ _leOnV[0]._nodes = leOnV[0]->_nodes;
+ _leOnV[1]._nodes = leOnV[1]->_nodes;
+ _LayerEdge* eNext, *ePrev = & _leOnV[0];
+ for ( size_t iLE = 0, i = 1; i < _offPoints.size()-1; i++ )
+ {
+ // find _LayerEdge's located before and after an offset point
+ // (_eos._edges[ iLE ] is next after ePrev)
+ while ( iLE < _eos._edges.size() && _offPoints[i]._len > _leParams[ iLE ] )
+ ePrev = _eos._edges[ iLE++ ];
+ eNext = ePrev->_2neibors->_edges[1];
+
+ gp_Pnt p0 = SMESH_TNodeXYZ( ePrev->_nodes[0] );
+ gp_Pnt p1 = SMESH_TNodeXYZ( eNext->_nodes[0] );
+ double r = p0.Distance( _offPoints[i]._xyz ) / p0.Distance( p1 );
+ _offPoints[i]._2edges.set( ePrev, eNext, 1-r, r );
+ }
+
+ int iLBO = _offPoints.size() - 2; // last but one
+ _offPoints[iLBO]._2edges._edges[1] = & _leOnV[1];
+
+ // {
+ // TopoDS_Face face[2]; // FACEs sharing the EDGE
+ // PShapeIteratorPtr fIt = helper.GetAncestors( _eos._shape, *helper.GetMesh(), TopAbs_FACE );
+ // while ( const TopoDS_Shape* F = fIt->next() )
+ // {
+ // TGeomID fID = helper.GetMeshDS()->ShapeToIndex( *F );
+ // if ( ! data._ignoreFaceIds.count( fID ))
+ // face[ !face[0].IsNull() ] = *F;
+ // }
+ // if ( face[0].IsNull() ) return;
+ // if ( face[1].IsNull() ) face[1] = face[0];
+ // }
+
+
+ // set _normal of _leOnV[0] and _leOnV[1] to be normal to the EDGE
+
+ setNormalOnV( 0, data.GetHelper() );
+ setNormalOnV( 1, data.GetHelper() );
+ _leOnV[ 0 ]._len = 0;
+ _leOnV[ 1 ]._len = 0;
+ _leOnV[ 0 ]._lenFactor = _offPoints[1 ]._2edges._edges[1]->_lenFactor;
+ _leOnV[ 1 ]._lenFactor = _offPoints[iLBO]._2edges._edges[0]->_lenFactor;
+
+ _iSeg[0] = 0;
+ _iSeg[1] = _offPoints.size()-2;
+
+ // initialize OffPnt::_len
+ for ( size_t i = 0; i < _offPoints.size(); ++i )
+ _offPoints[i]._len = 0;
+
+ if ( _eos._edges[0]->NbSteps() > 1 ) // already inflated several times, init _xyz
+ {
+ _leOnV[0]._len = leOnV[0]->_len;
+ _leOnV[1]._len = leOnV[1]->_len;
+ for ( size_t i = 0; i < _offPoints.size(); i++ )
+ {
+ _LayerEdge* e0 = _offPoints[i]._2edges._edges[0];
+ _LayerEdge* e1 = _offPoints[i]._2edges._edges[1];
+ const double w0 = _offPoints[i]._2edges._wgt[0];
+ const double w1 = _offPoints[i]._2edges._wgt[1];
+ double avgLen = ( e0->_len * w0 + e1->_len * w1 );
+ gp_XYZ avgXYZ = ( SMESH_TNodeXYZ( e0->_nodes.back() ) * w0 +
+ SMESH_TNodeXYZ( e1->_nodes.back() ) * w1 );
+ _offPoints[i]._xyz = avgXYZ;
+ _offPoints[i]._len = avgLen;
+ }
+ }
+}
+
+//================================================================================
+/*!
+ * \brief set _normal of _leOnV[is2nd] to be normal to the EDGE
+ */
+//================================================================================
+
+void _Smoother1D::setNormalOnV( const bool is2nd,
+ SMESH_MesherHelper& helper)
+{
+ _LayerEdge* leOnV = getLEdgeOnV( is2nd );
+ const TopoDS_Edge& E = TopoDS::Edge( _eos._shape );
+ TopoDS_Shape V = helper.GetSubShapeByNode( leOnV->_nodes[0], helper.GetMeshDS() );
+ gp_XYZ eDir = getEdgeDir( E, TopoDS::Vertex( V ));
+ gp_XYZ cross = leOnV->_normal ^ eDir;
+ gp_XYZ norm = eDir ^ cross;
+ double size = norm.Modulus();
+
+ _leOnV[ is2nd ]._normal = norm / size;
+}
+
+//================================================================================
+/*!
+ * \brief Sort _LayerEdge's by a parameter on a given EDGE
+ */
+//================================================================================
+
+void _SolidData::SortOnEdge( const TopoDS_Edge& E,
+ vector< _LayerEdge* >& edges)
+{
+ map< double, _LayerEdge* > u2edge;
+ for ( size_t i = 0; i < edges.size(); ++i )
+ u2edge.insert( u2edge.end(),
+ make_pair( _helper->GetNodeU( E, edges[i]->_nodes[0] ), edges[i] ));
+
+ ASSERT( u2edge.size() == edges.size() );
+ map< double, _LayerEdge* >::iterator u2e = u2edge.begin();
+ for ( size_t i = 0; i < edges.size(); ++i, ++u2e )
+ edges[i] = u2e->second;
+
+ Sort2NeiborsOnEdge( edges );
+}
+
+//================================================================================
+/*!
+ * \brief Set _2neibors according to the order of _LayerEdge on EDGE
+ */
+//================================================================================
+
+void _SolidData::Sort2NeiborsOnEdge( vector< _LayerEdge* >& edges )
+{
+ if ( edges.size() < 2 || !edges[0]->_2neibors ) return;
+
+ for ( size_t i = 0; i < edges.size()-1; ++i )
+ if ( edges[i]->_2neibors->tgtNode(1) != edges[i+1]->_nodes.back() )
+ edges[i]->_2neibors->reverse();
+
+ const size_t iLast = edges.size() - 1;
+ if ( edges.size() > 1 &&
+ edges[iLast]->_2neibors->tgtNode(0) != edges[iLast-1]->_nodes.back() )
+ edges[iLast]->_2neibors->reverse();
+}
+
+//================================================================================
+/*!
+ * \brief Return _EdgesOnShape* corresponding to the shape
+ */
+//================================================================================
+
+_EdgesOnShape* _SolidData::GetShapeEdges(const TGeomID shapeID )
+{
+ if ( shapeID < (int)_edgesOnShape.size() &&
+ _edgesOnShape[ shapeID ]._shapeID == shapeID )
+ return _edgesOnShape[ shapeID ]._subMesh ? & _edgesOnShape[ shapeID ] : 0;
+
+ for ( size_t i = 0; i < _edgesOnShape.size(); ++i )
if ( _edgesOnShape[i]._shapeID == shapeID )
- return & _edgesOnShape[i];
+ return _edgesOnShape[i]._subMesh ? & _edgesOnShape[i] : 0;
return 0;
}
*/
//================================================================================
-void _SolidData::PrepareEdgesToSmoothOnFace( _EdgesOnShape* eof, bool substituteSrcNodes )
+void _SolidData::PrepareEdgesToSmoothOnFace( _EdgesOnShape* eos, bool substituteSrcNodes )
{
- set< TGeomID > vertices;
SMESH_MesherHelper helper( *_proxyMesh->GetMesh() );
- if ( isConcave( TopoDS::Face( eof->_shape ), helper, &vertices ))
- _concaveFaces.insert( eof->_shapeID );
- for ( size_t i = 0; i < eof->_edges.size(); ++i )
- eof->_edges[i]->_smooFunction = 0;
+ set< TGeomID > vertices;
+ TopoDS_Face F;
+ if ( eos->ShapeType() == TopAbs_FACE )
+ {
+ // check FACE concavity and get concave VERTEXes
+ F = TopoDS::Face( eos->_shape );
+ if ( isConcave( F, helper, &vertices ))
+ _concaveFaces.insert( eos->_shapeID );
+
+ // set eos._eosConcaVer
+ eos->_eosConcaVer.clear();
+ eos->_eosConcaVer.reserve( vertices.size() );
+ for ( set< TGeomID >::iterator v = vertices.begin(); v != vertices.end(); ++v )
+ {
+ _EdgesOnShape* eov = GetShapeEdges( *v );
+ if ( eov && eov->_edges.size() == 1 )
+ {
+ eos->_eosConcaVer.push_back( eov );
+ for ( size_t i = 0; i < eov->_edges[0]->_neibors.size(); ++i )
+ eov->_edges[0]->_neibors[i]->Set( _LayerEdge::DIFFICULT );
+ }
+ }
+
+ // SetSmooLen() to _LayerEdge's on FACE
+ for ( size_t i = 0; i < eos->_edges.size(); ++i )
+ {
+ eos->_edges[i]->SetSmooLen( Precision::Infinite() );
+ }
+ SMESH_subMeshIteratorPtr smIt = eos->_subMesh->getDependsOnIterator(/*includeSelf=*/false);
+ while ( smIt->more() ) // loop on sub-shapes of the FACE
+ {
+ _EdgesOnShape* eoe = GetShapeEdges( smIt->next()->GetId() );
+ if ( !eoe ) continue;
+
+ vector<_LayerEdge*>& eE = eoe->_edges;
+ for ( size_t iE = 0; iE < eE.size(); ++iE ) // loop on _LayerEdge's on EDGE or VERTEX
+ {
+ if ( eE[iE]->_cosin <= theMinSmoothCosin )
+ continue;
+
+ SMDS_ElemIteratorPtr segIt = eE[iE]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Edge);
+ while ( segIt->more() )
+ {
+ const SMDS_MeshElement* seg = segIt->next();
+ if ( !eos->_subMesh->DependsOn( seg->getshapeId() ))
+ continue;
+ if ( seg->GetNode(0) != eE[iE]->_nodes[0] )
+ continue; // not to check a seg twice
+ for ( size_t iN = 0; iN < eE[iE]->_neibors.size(); ++iN )
+ {
+ _LayerEdge* eN = eE[iE]->_neibors[iN];
+ if ( eN->_nodes[0]->getshapeId() != eos->_shapeID )
+ continue;
+ double dist = SMESH_MeshAlgos::GetDistance( seg, SMESH_TNodeXYZ( eN->_nodes[0] ));
+ double smooLen = getSmoothingThickness( eE[iE]->_cosin, dist );
+ eN->SetSmooLen( Min( smooLen, eN->GetSmooLen() ));
+ eN->Set( _LayerEdge::NEAR_BOUNDARY );
+ }
+ }
+ }
+ }
+ } // if ( eos->ShapeType() == TopAbs_FACE )
- for ( size_t i = 0; i < eof->_edges.size(); ++i )
+ for ( size_t i = 0; i < eos->_edges.size(); ++i )
+ {
+ eos->_edges[i]->_smooFunction = 0;
+ eos->_edges[i]->Set( _LayerEdge::TO_SMOOTH );
+ }
+ bool isCurved = false;
+ for ( size_t i = 0; i < eos->_edges.size(); ++i )
{
- _LayerEdge* edge = eof->_edges[i];
- _Simplex::GetSimplices
- ( edge->_nodes[0], edge->_simplices, _ignoreFaceIds, this, /*sort=*/true );
+ _LayerEdge* edge = eos->_edges[i];
+ // get simplices sorted
+ _Simplex::SortSimplices( edge->_simplices );
+
+ // smoothing function
edge->ChooseSmooFunction( vertices, _n2eMap );
+ // set _curvature
double avgNormProj = 0, avgLen = 0;
- for ( size_t i = 0; i < edge->_simplices.size(); ++i )
+ for ( size_t iS = 0; iS < edge->_simplices.size(); ++iS )
{
- _Simplex& s = edge->_simplices[i];
+ _Simplex& s = edge->_simplices[iS];
gp_XYZ vec = edge->_pos.back() - SMESH_TNodeXYZ( s._nPrev );
avgNormProj += edge->_normal * vec;
}
avgNormProj /= edge->_simplices.size();
avgLen /= edge->_simplices.size();
- edge->_curvature = _Curvature::New( avgNormProj, avgLen );
+ if (( edge->_curvature = _Curvature::New( avgNormProj, avgLen )))
+ {
+ isCurved = true;
+ SMDS_FacePosition* fPos = dynamic_cast<SMDS_FacePosition*>( edge->_nodes[0]->GetPosition() );
+ if ( !fPos )
+ for ( size_t iS = 0; iS < edge->_simplices.size() && !fPos; ++iS )
+ fPos = dynamic_cast<SMDS_FacePosition*>( edge->_simplices[iS]._nPrev->GetPosition() );
+ if ( fPos )
+ edge->_curvature->_uv.SetCoord( fPos->GetUParameter(), fPos->GetVParameter() );
+ }
+ }
+
+ // prepare for putOnOffsetSurface()
+ if (( eos->ShapeType() == TopAbs_FACE ) &&
+ ( isCurved || !eos->_eosConcaVer.empty() ))
+ {
+ eos->_offsetSurf = helper.GetSurface( TopoDS::Face( eos->_shape ));
+ eos->_edgeForOffset = 0;
+
+ double maxCosin = -1;
+ for ( TopExp_Explorer eExp( eos->_shape, TopAbs_EDGE ); eExp.More(); eExp.Next() )
+ {
+ _EdgesOnShape* eoe = GetShapeEdges( eExp.Current() );
+ if ( !eoe || eoe->_edges.empty() ) continue;
+
+ vector<_LayerEdge*>& eE = eoe->_edges;
+ _LayerEdge* e = eE[ eE.size() / 2 ];
+ if ( e->_cosin > maxCosin )
+ {
+ eos->_edgeForOffset = e;
+ maxCosin = e->_cosin;
+ }
+ }
}
}
*/
//================================================================================
-void _SolidData::AddShapesToSmooth( const set< _EdgesOnShape* >& eosSet )
+void _SolidData::AddShapesToSmooth( const set< _EdgesOnShape* >& eosToSmooth,
+ const set< _EdgesOnShape* >* edgesNoAnaSmooth )
{
- set< _EdgesOnShape * >::const_iterator eos = eosSet.begin();
- for ( ; eos != eosSet.end(); ++eos )
+ set< _EdgesOnShape * >::const_iterator eos = eosToSmooth.begin();
+ for ( ; eos != eosToSmooth.end(); ++eos )
{
if ( !*eos || (*eos)->_toSmooth ) continue;
if ( (*eos)->ShapeType() == TopAbs_FACE )
{
- PrepareEdgesToSmoothOnFace( *eos, /*substituteSrcNodes=*/true );
+ PrepareEdgesToSmoothOnFace( *eos, /*substituteSrcNodes=*/false );
+ (*eos)->_toSmooth = true;
}
}
+
+ // avoid _Smoother1D::smoothAnalyticEdge() of edgesNoAnaSmooth
+ if ( edgesNoAnaSmooth )
+ for ( eos = edgesNoAnaSmooth->begin(); eos != edgesNoAnaSmooth->end(); ++eos )
+ {
+ if ( (*eos)->_edgeSmoother )
+ (*eos)->_edgeSmoother->_anaCurve.Nullify();
+ }
}
//================================================================================
/*!
- * \brief smooth _LayerEdge's on a staight EDGE or circular EDGE
+ * \brief Fill data._collisionEdges
*/
//================================================================================
-bool _ViscousBuilder::smoothAnalyticEdge( _SolidData& data,
- _EdgesOnShape& eos,
- Handle(Geom_Surface)& surface,
- const TopoDS_Face& F,
- SMESH_MesherHelper& helper)
+void _ViscousBuilder::findCollisionEdges( _SolidData& data, SMESH_MesherHelper& helper )
{
- const TopoDS_Edge& E = TopoDS::Edge( eos._shape );
+ data._collisionEdges.clear();
- Handle(Geom_Curve) curve = data.CurveForSmooth( E, eos, helper );
- if ( curve.IsNull() ) return false;
-
- const size_t iFrom = 0, iTo = eos._edges.size();
-
- // compute a relative length of segments
- vector< double > len( iTo-iFrom+1 );
+ // set the full thickness of the layers to LEs
+ for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
- double curLen, prevLen = len[0] = 1.0;
- for ( int i = iFrom; i < iTo; ++i )
+ _EdgesOnShape& eos = data._edgesOnShape[iS];
+ if ( eos._edges.empty() ) continue;
+ if ( eos.ShapeType() != TopAbs_EDGE && eos.ShapeType() != TopAbs_VERTEX ) continue;
+
+ for ( size_t i = 0; i < eos._edges.size(); ++i )
{
- curLen = prevLen * eos._edges[i]->_2neibors->_wgt[0] / eos._edges[i]->_2neibors->_wgt[1];
- len[i-iFrom+1] = len[i-iFrom] + curLen;
- prevLen = curLen;
+ if ( eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue;
+ double maxLen = eos._edges[i]->_maxLen;
+ eos._edges[i]->_maxLen = Precision::Infinite(); // avoid blocking
+ eos._edges[i]->SetNewLength( 1.5 * maxLen, eos, helper );
+ eos._edges[i]->_maxLen = maxLen;
}
}
- if ( curve->IsKind( STANDARD_TYPE( Geom_Line )))
+ // make temporary quadrangles got by extrusion of
+ // mesh edges along _LayerEdge._normal's
+
+ vector< const SMDS_MeshElement* > tmpFaces;
+
+ for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
- if ( F.IsNull() ) // 3D
+ _EdgesOnShape& eos = data._edgesOnShape[ iS ];
+ if ( eos.ShapeType() != TopAbs_EDGE )
+ continue;
+ if ( eos._edges.empty() )
{
- SMESH_TNodeXYZ p0( eos._edges[iFrom]->_2neibors->tgtNode(0));
- SMESH_TNodeXYZ p1( eos._edges[iTo-1]->_2neibors->tgtNode(1));
- for ( int i = iFrom; i < iTo; ++i )
+ _LayerEdge* edge[2] = { 0, 0 }; // LE of 2 VERTEX'es
+ SMESH_subMeshIteratorPtr smIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false);
+ while ( smIt->more() )
+ if ( _EdgesOnShape* eov = data.GetShapeEdges( smIt->next()->GetId() ))
+ if ( eov->_edges.size() == 1 )
+ edge[ bool( edge[0]) ] = eov->_edges[0];
+
+ if ( edge[1] )
{
- double r = len[i-iFrom] / len.back();
- gp_XYZ newPos = p0 * ( 1. - r ) + p1 * r;
- eos._edges[i]->_pos.back() = newPos;
- SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( eos._edges[i]->_nodes.back() );
- tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
- dumpMove( tgtNode );
+ _TmpMeshFaceOnEdge* f = new _TmpMeshFaceOnEdge( edge[0], edge[1], --_tmpFaceID );
+ tmpFaces.push_back( f );
}
}
- else
+ for ( size_t i = 0; i < eos._edges.size(); ++i )
{
- // gp_XY uv0 = helper.GetNodeUV( F, eos._edges[iFrom]->_2neibors->tgtNode(0));
- // gp_XY uv1 = helper.GetNodeUV( F, eos._edges[iTo-1]->_2neibors->tgtNode(1));
- _LayerEdge* e0 = eos._edges[iFrom]->_2neibors->_edges[0];
- _LayerEdge* e1 = eos._edges[iTo-1]->_2neibors->_edges[1];
- gp_XY uv0 = e0->LastUV( F, *data.GetShapeEdges( e0 ));
- gp_XY uv1 = e1->LastUV( F, *data.GetShapeEdges( e1 ));
- if ( eos._edges[iFrom]->_2neibors->tgtNode(0) ==
- eos._edges[iTo-1]->_2neibors->tgtNode(1) ) // closed edge
- {
- int iPeriodic = helper.GetPeriodicIndex();
- if ( iPeriodic == 1 || iPeriodic == 2 )
- {
- uv1.SetCoord( iPeriodic, helper.GetOtherParam( uv1.Coord( iPeriodic )));
- if ( uv0.Coord( iPeriodic ) > uv1.Coord( iPeriodic ))
- std::swap( uv0, uv1 );
- }
- }
- const gp_XY rangeUV = uv1 - uv0;
- for ( int i = iFrom; i < iTo; ++i )
+ _LayerEdge* edge = eos._edges[i];
+ for ( int j = 0; j < 2; ++j ) // loop on _2NearEdges
{
- double r = len[i-iFrom] / len.back();
- gp_XY newUV = uv0 + r * rangeUV;
- eos._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 );
+ const SMDS_MeshNode* src2 = edge->_2neibors->srcNode(j);
+ if ( src2->GetPosition()->GetDim() > 0 &&
+ src2->GetID() < edge->_nodes[0]->GetID() )
+ continue; // avoid using same segment twice
- gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() );
- SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( eos._edges[i]->_nodes.back() );
- tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
- dumpMove( tgtNode );
+ // a _LayerEdge containg tgt2
+ _LayerEdge* neiborEdge = edge->_2neibors->_edges[j];
- SMDS_FacePosition* pos = static_cast<SMDS_FacePosition*>( tgtNode->GetPosition() );
- pos->SetUParameter( newUV.X() );
- pos->SetVParameter( newUV.Y() );
+ _TmpMeshFaceOnEdge* f = new _TmpMeshFaceOnEdge( edge, neiborEdge, --_tmpFaceID );
+ tmpFaces.push_back( f );
}
}
- return true;
}
- if ( curve->IsKind( STANDARD_TYPE( Geom_Circle )))
- {
- Handle(Geom_Circle) circle = Handle(Geom_Circle)::DownCast( curve );
- gp_Pnt center3D = circle->Location();
+ // Find _LayerEdge's intersecting tmpFaces.
- if ( F.IsNull() ) // 3D
- {
- if ( eos._edges[iFrom]->_2neibors->tgtNode(0) ==
- eos._edges[iTo-1]->_2neibors->tgtNode(1) )
- return true; // closed EDGE - nothing to do
+ SMDS_ElemIteratorPtr fIt( new SMDS_ElementVectorIterator( tmpFaces.begin(),
+ tmpFaces.end()));
+ SMESHUtils::Deleter<SMESH_ElementSearcher> searcher
+ ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), fIt ));
+
+ double dist1, dist2, segLen, eps;
+ _CollisionEdges collEdges;
+ vector< const SMDS_MeshElement* > suspectFaces;
+ const double angle30 = Cos( 30. * M_PI / 180. );
- return false; // TODO ???
+ for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
+ {
+ _EdgesOnShape& eos = data._edgesOnShape[ iS ];
+ if ( eos.ShapeType() == TopAbs_FACE || !eos._sWOL.IsNull() )
+ continue;
+ // find sub-shapes whose VL can influence VL on eos
+ set< TGeomID > neighborShapes;
+ PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE );
+ while ( const TopoDS_Shape* face = fIt->next() )
+ {
+ TGeomID faceID = getMeshDS()->ShapeToIndex( *face );
+ if ( _EdgesOnShape* eof = data.GetShapeEdges( faceID ))
+ {
+ SMESH_subMeshIteratorPtr subIt = eof->_subMesh->getDependsOnIterator(/*includeSelf=*/false);
+ while ( subIt->more() )
+ neighborShapes.insert( subIt->next()->GetId() );
+ }
}
- else // 2D
+ if ( eos.ShapeType() == TopAbs_VERTEX )
{
- const gp_XY center( center3D.X(), center3D.Y() );
-
- _LayerEdge* e0 = eos._edges[iFrom]->_2neibors->_edges[0];
- _LayerEdge* eM = eos._edges[iFrom];
- _LayerEdge* e1 = eos._edges[iTo-1]->_2neibors->_edges[1];
- gp_XY uv0 = e0->LastUV( F, *data.GetShapeEdges( e0 ) );
- gp_XY uvM = eM->LastUV( F, *data.GetShapeEdges( eM ) );
- gp_XY uv1 = e1->LastUV( F, *data.GetShapeEdges( e1 ) );
- gp_Vec2d vec0( center, uv0 );
- gp_Vec2d vecM( center, uvM );
- gp_Vec2d vec1( center, uv1 );
- double uLast = vec0.Angle( vec1 ); // -PI - +PI
- double uMidl = vec0.Angle( vecM );
- if ( uLast * uMidl <= 0. )
- uLast += ( uMidl > 0 ? +2. : -2. ) * M_PI;
- const double radius = 0.5 * ( vec0.Magnitude() + vec1.Magnitude() );
+ PShapeIteratorPtr eIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_EDGE );
+ while ( const TopoDS_Shape* edge = eIt->next() )
+ neighborShapes.erase( getMeshDS()->ShapeToIndex( *edge ));
+ }
+ // find intersecting _LayerEdge's
+ for ( size_t i = 0; i < eos._edges.size(); ++i )
+ {
+ _LayerEdge* edge = eos._edges[i];
+ gp_Ax1 lastSegment = edge->LastSegment( segLen, eos );
+ eps = 0.5 * edge->_len;
+ segLen *= 1.2;
- gp_Ax2d axis( center, vec0 );
- gp_Circ2d circ( axis, radius );
- for ( int i = iFrom; i < iTo; ++i )
+ gp_Vec eSegDir0, eSegDir1;
+ if ( edge->IsOnEdge() )
{
- double newU = uLast * len[i-iFrom] / len.back();
- gp_Pnt2d newUV = ElCLib::Value( newU, circ );
- eos._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 );
+ SMESH_TNodeXYZ eP( edge->_nodes[0] );
+ eSegDir0 = SMESH_TNodeXYZ( edge->_2neibors->srcNode(0) ) - eP;
+ eSegDir1 = SMESH_TNodeXYZ( edge->_2neibors->srcNode(1) ) - eP;
+ }
+ suspectFaces.clear();
+ searcher->GetElementsInSphere( SMESH_TNodeXYZ( edge->_nodes.back()), edge->_len,
+ SMDSAbs_Face, suspectFaces );
+ collEdges._intEdges.clear();
+ for ( size_t j = 0 ; j < suspectFaces.size(); ++j )
+ {
+ const _TmpMeshFaceOnEdge* f = (const _TmpMeshFaceOnEdge*) suspectFaces[j];
+ if ( f->_le1 == edge || f->_le2 == edge ) continue;
+ if ( !neighborShapes.count( f->_le1->_nodes[0]->getshapeId() )) continue;
+ if ( !neighborShapes.count( f->_le2->_nodes[0]->getshapeId() )) continue;
+ if ( edge->IsOnEdge() ) {
+ if ( edge->_2neibors->include( f->_le1 ) ||
+ edge->_2neibors->include( f->_le2 )) continue;
+ }
+ else {
+ if (( f->_le1->IsOnEdge() && f->_le1->_2neibors->include( edge )) ||
+ ( f->_le2->IsOnEdge() && f->_le2->_2neibors->include( edge ))) continue;
+ }
+ dist1 = dist2 = Precision::Infinite();
+ if ( !edge->SegTriaInter( lastSegment, f->_nn[0], f->_nn[1], f->_nn[2], dist1, eps ))
+ dist1 = Precision::Infinite();
+ if ( !edge->SegTriaInter( lastSegment, f->_nn[3], f->_nn[2], f->_nn[0], dist2, eps ))
+ dist2 = Precision::Infinite();
+ if (( dist1 > segLen ) && ( dist2 > segLen ))
+ continue;
- gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() );
- SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( eos._edges[i]->_nodes.back() );
- tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
- dumpMove( tgtNode );
+ if ( edge->IsOnEdge() )
+ {
+ // skip perpendicular EDGEs
+ gp_Vec fSegDir = SMESH_TNodeXYZ( f->_nn[0] ) - SMESH_TNodeXYZ( f->_nn[3] );
+ bool isParallel = ( isLessAngle( eSegDir0, fSegDir, angle30 ) ||
+ isLessAngle( eSegDir1, fSegDir, angle30 ) ||
+ isLessAngle( eSegDir0, fSegDir.Reversed(), angle30 ) ||
+ isLessAngle( eSegDir1, fSegDir.Reversed(), angle30 ));
+ if ( !isParallel )
+ continue;
+ }
- SMDS_FacePosition* pos = static_cast<SMDS_FacePosition*>( tgtNode->GetPosition() );
- pos->SetUParameter( newUV.X() );
- pos->SetVParameter( newUV.Y() );
+ // either limit inflation of edges or remember them for updating _normal
+ // double dot = edge->_normal * f->GetDir();
+ // if ( dot > 0.1 )
+ {
+ collEdges._intEdges.push_back( f->_le1 );
+ collEdges._intEdges.push_back( f->_le2 );
+ }
+ // else
+ // {
+ // double shortLen = 0.75 * ( Min( dist1, dist2 ) / edge->_lenFactor );
+ // edge->_maxLen = Min( shortLen, edge->_maxLen );
+ // }
+ }
+
+ if ( !collEdges._intEdges.empty() )
+ {
+ collEdges._edge = edge;
+ data._collisionEdges.push_back( collEdges );
}
}
- return true;
}
- return false;
+ for ( size_t i = 0 ; i < tmpFaces.size(); ++i )
+ delete tmpFaces[i];
+
+ // restore the zero thickness
+ for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
+ {
+ _EdgesOnShape& eos = data._edgesOnShape[iS];
+ if ( eos._edges.empty() ) continue;
+ if ( eos.ShapeType() != TopAbs_EDGE && eos.ShapeType() != TopAbs_VERTEX ) continue;
+
+ for ( size_t i = 0; i < eos._edges.size(); ++i )
+ {
+ eos._edges[i]->InvalidateStep( 1, eos );
+ eos._edges[i]->_len = 0;
+ }
+ }
}
//================================================================================
bool _ViscousBuilder::updateNormals( _SolidData& data,
SMESH_MesherHelper& helper,
- int stepNb )
+ int stepNb,
+ double stepSize)
{
- if ( stepNb > 0 )
- return updateNormalsOfConvexFaces( data, helper, stepNb );
+ updateNormalsOfC1Vertices( data );
- // make temporary quadrangles got by extrusion of
- // mesh edges along _LayerEdge._normal's
+ if ( stepNb > 0 && !updateNormalsOfConvexFaces( data, helper, stepNb ))
+ return false;
- vector< const SMDS_MeshElement* > tmpFaces;
+ // map to store new _normal and _cosin for each intersected edge
+ map< _LayerEdge*, _LayerEdge, _LayerEdgeCmp > edge2newEdge;
+ map< _LayerEdge*, _LayerEdge, _LayerEdgeCmp >::iterator e2neIt;
+ _LayerEdge zeroEdge;
+ zeroEdge._normal.SetCoord( 0,0,0 );
+ zeroEdge._maxLen = Precision::Infinite();
+ zeroEdge._nodes.resize(1); // to init _TmpMeshFaceOnEdge
+
+ set< _EdgesOnShape* > shapesToSmooth, edgesNoAnaSmooth;
+
+ double segLen, dist1, dist2;
+ vector< pair< _LayerEdge*, double > > intEdgesDist;
+ _TmpMeshFaceOnEdge quad( &zeroEdge, &zeroEdge, 0 );
+
+ for ( int iter = 0; iter < 5; ++iter )
{
- set< SMESH_TLink > extrudedLinks; // contains target nodes
- vector< const SMDS_MeshNode*> nodes(4); // of a tmp mesh face
+ edge2newEdge.clear();
- dumpFunction(SMESH_Comment("makeTmpFacesOnEdges")<<data._index);
- for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
+ for ( size_t iE = 0; iE < data._collisionEdges.size(); ++iE )
{
- _EdgesOnShape& eos = data._edgesOnShape[ iS ];
- if ( eos.ShapeType() != TopAbs_EDGE || !eos._sWOL.IsNull() )
- continue;
- for ( size_t i = 0; i < eos._edges.size(); ++i )
+ _CollisionEdges& ce = data._collisionEdges[iE];
+ _LayerEdge* edge1 = ce._edge;
+ if ( !edge1 || edge1->Is( _LayerEdge::BLOCKED )) continue;
+ _EdgesOnShape* eos1 = data.GetShapeEdges( edge1 );
+ if ( !eos1 ) continue;
+
+ // detect intersections
+ gp_Ax1 lastSeg = edge1->LastSegment( segLen, *eos1 );
+ double testLen = 1.5 * edge1->_maxLen; //2 + edge1->_len * edge1->_lenFactor;
+ double eps = 0.5 * edge1->_len;
+ intEdgesDist.clear();
+ double minIntDist = Precision::Infinite();
+ for ( size_t i = 0; i < ce._intEdges.size(); i += 2 )
{
- _LayerEdge* edge = eos._edges[i];
- const SMDS_MeshNode* tgt1 = edge->_nodes.back();
- for ( int j = 0; j < 2; ++j ) // loop on _2NearEdges
+ if ( ce._intEdges[i ]->Is( _LayerEdge::BLOCKED ) ||
+ ce._intEdges[i+1]->Is( _LayerEdge::BLOCKED ))
+ continue;
+ double dot = edge1->_normal * quad.GetDir( ce._intEdges[i], ce._intEdges[i+1] );
+ double fact = ( 1.1 + dot * dot );
+ SMESH_TNodeXYZ pSrc0( ce.nSrc(i) ), pSrc1( ce.nSrc(i+1) );
+ SMESH_TNodeXYZ pTgt0( ce.nTgt(i) ), pTgt1( ce.nTgt(i+1) );
+ gp_XYZ pLast0 = pSrc0 + ( pTgt0 - pSrc0 ) * fact;
+ gp_XYZ pLast1 = pSrc1 + ( pTgt1 - pSrc1 ) * fact;
+ dist1 = dist2 = Precision::Infinite();
+ if ( !edge1->SegTriaInter( lastSeg, pSrc0, pTgt0, pSrc1, dist1, eps ) &&
+ !edge1->SegTriaInter( lastSeg, pSrc1, pTgt1, pTgt0, dist2, eps ))
+ continue;
+ if (( dist1 > testLen || dist1 < 0 ) &&
+ ( dist2 > testLen || dist2 < 0 ))
+ continue;
+
+ // choose a closest edge
+ gp_Pnt intP( lastSeg.Location().XYZ() +
+ lastSeg.Direction().XYZ() * ( Min( dist1, dist2 ) + segLen ));
+ double d1 = intP.SquareDistance( pSrc0 );
+ double d2 = intP.SquareDistance( pSrc1 );
+ int iClose = i + ( d2 < d1 );
+ _LayerEdge* edge2 = ce._intEdges[iClose];
+ edge2->Unset( _LayerEdge::MARKED );
+
+ // choose a closest edge among neighbors
+ gp_Pnt srcP( SMESH_TNodeXYZ( edge1->_nodes[0] ));
+ d1 = srcP.SquareDistance( SMESH_TNodeXYZ( edge2->_nodes[0] ));
+ for ( size_t j = 0; j < intEdgesDist.size(); ++j )
{
- const SMDS_MeshNode* tgt2 = edge->_2neibors->tgtNode(j);
- pair< set< SMESH_TLink >::iterator, bool > link_isnew =
- extrudedLinks.insert( SMESH_TLink( tgt1, tgt2 ));
- if ( !link_isnew.second )
+ _LayerEdge * edgeJ = intEdgesDist[j].first;
+ if ( edge2->IsNeiborOnEdge( edgeJ ))
{
- extrudedLinks.erase( link_isnew.first );
- continue; // already extruded and will no more encounter
+ d2 = srcP.SquareDistance( SMESH_TNodeXYZ( edgeJ->_nodes[0] ));
+ ( d1 < d2 ? edgeJ : edge2 )->Set( _LayerEdge::MARKED );
}
- // a _LayerEdge containg tgt2
- _LayerEdge* neiborEdge = edge->_2neibors->_edges[j];
-
- _TmpMeshFaceOnEdge* f = new _TmpMeshFaceOnEdge( edge, neiborEdge, --_tmpFaceID );
- tmpFaces.push_back( f );
-
- dumpCmd(SMESH_Comment("mesh.AddFace([ ")
- <<f->_nn[0]->GetID()<<", "<<f->_nn[1]->GetID()<<", "
- <<f->_nn[2]->GetID()<<", "<<f->_nn[3]->GetID()<<" ])");
}
+ intEdgesDist.push_back( make_pair( edge2, Min( dist1, dist2 )));
+ // if ( Abs( d2 - d1 ) / Max( d2, d1 ) < 0.5 )
+ // {
+ // iClose = i + !( d2 < d1 );
+ // intEdges.push_back( ce._intEdges[iClose] );
+ // ce._intEdges[iClose]->Unset( _LayerEdge::MARKED );
+ // }
+ minIntDist = Min( edge1->_len * edge1->_lenFactor - segLen + dist1, minIntDist );
+ minIntDist = Min( edge1->_len * edge1->_lenFactor - segLen + dist2, minIntDist );
}
- }
- dumpFunctionEnd();
- }
- // Check if _LayerEdge's based on EDGE's intersects tmpFaces.
- // Perform two loops on _LayerEdge on EDGE's:
- // 1) to find and fix intersection
- // 2) to check that no new intersection appears as result of 1)
-
- SMDS_ElemIteratorPtr fIt( new SMDS_ElementVectorIterator( tmpFaces.begin(),
- tmpFaces.end()));
- auto_ptr<SMESH_ElementSearcher> searcher
- ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), fIt ));
- // 1) Find intersections
- double dist;
- const SMDS_MeshElement* face;
- typedef map< _LayerEdge*, set< _LayerEdge*, _LayerEdgeCmp >, _LayerEdgeCmp > TLEdge2LEdgeSet;
- TLEdge2LEdgeSet edge2CloseEdge;
+ //ce._edge = 0;
- const double eps = data._epsilon * data._epsilon;
- for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
- {
- _EdgesOnShape& eos = data._edgesOnShape[ iS ];
- if (( eos.ShapeType() != TopAbs_EDGE ) &&
- ( eos._sWOL.IsNull() || eos.SWOLType() != TopAbs_FACE ))
- continue;
- for ( size_t i = 0; i < eos._edges.size(); ++i )
- {
- _LayerEdge* edge = eos._edges[i];
- if ( edge->FindIntersection( *searcher, dist, eps, eos, &face ))
+ // compute new _normals
+ for ( size_t i = 0; i < intEdgesDist.size(); ++i )
{
- const _TmpMeshFaceOnEdge* f = (const _TmpMeshFaceOnEdge*) face;
- set< _LayerEdge*, _LayerEdgeCmp > & ee = edge2CloseEdge[ edge ];
- ee.insert( f->_le1 );
- ee.insert( f->_le2 );
- if ( f->_le1->IsOnEdge() && data.GetShapeEdges( f->_le1 )->_sWOL.IsNull() )
- edge2CloseEdge[ f->_le1 ].insert( edge );
- if ( f->_le2->IsOnEdge() && data.GetShapeEdges( f->_le2 )->_sWOL.IsNull() )
- edge2CloseEdge[ f->_le2 ].insert( edge );
- }
- }
- }
-
- // Set _LayerEdge._normal
-
- if ( !edge2CloseEdge.empty() )
- {
- dumpFunction(SMESH_Comment("updateNormals")<<data._index);
-
- set< _EdgesOnShape* > shapesToSmooth;
+ _LayerEdge* edge2 = intEdgesDist[i].first;
+ double distWgt = edge1->_len / intEdgesDist[i].second;
+ if ( edge2->Is( _LayerEdge::MARKED )) continue;
+ edge2->Set( _LayerEdge::MARKED );
- // vector to store new _normal and _cosin for each edge in edge2CloseEdge
- vector< pair< _LayerEdge*, _LayerEdge > > edge2newEdge( edge2CloseEdge.size() );
-
- TLEdge2LEdgeSet::iterator e2ee = edge2CloseEdge.begin();
- for ( size_t iE = 0; e2ee != edge2CloseEdge.end(); ++e2ee, ++iE )
- {
- _LayerEdge* edge1 = e2ee->first;
- _LayerEdge* edge2 = 0;
- set< _LayerEdge*, _LayerEdgeCmp >& ee = e2ee->second;
+ // get a new normal
+ gp_XYZ dir1 = edge1->_normal, dir2 = edge2->_normal;
- edge2newEdge[ iE ].first = NULL;
+ double cos1 = Abs( edge1->_cosin ), cos2 = Abs( edge2->_cosin );
+ double wgt1 = ( cos1 + 0.001 ) / ( cos1 + cos2 + 0.002 );
+ double wgt2 = ( cos2 + 0.001 ) / ( cos1 + cos2 + 0.002 );
+ // double cos1 = Abs( edge1->_cosin ), cos2 = Abs( edge2->_cosin );
+ // double sgn1 = 0.1 * ( 1 + edge1->_cosin ), sgn2 = 0.1 * ( 1 + edge2->_cosin );
+ // double wgt1 = ( cos1 + sgn1 ) / ( cos1 + cos2 + sgn1 + sgn2 );
+ // double wgt2 = ( cos2 + sgn2 ) / ( cos1 + cos2 + sgn1 + sgn2 );
+ gp_XYZ newNormal = wgt1 * dir1 + wgt2 * dir2;
+ newNormal.Normalize();
- _EdgesOnShape* eos1 = data.GetShapeEdges( edge1 );
- if ( !eos1 ) continue;
+ // get new cosin
+ double newCos;
+ double sgn1 = edge1->_cosin / cos1, sgn2 = edge2->_cosin / cos2;
+ if ( cos1 < theMinSmoothCosin )
+ {
+ newCos = cos2 * sgn1;
+ }
+ else if ( cos2 > theMinSmoothCosin ) // both cos1 and cos2 > theMinSmoothCosin
+ {
+ newCos = ( wgt1 * cos1 + wgt2 * cos2 ) * edge1->_cosin / cos1;
+ }
+ else
+ {
+ newCos = edge1->_cosin;
+ }
- // find EDGEs the edges reside
- // TopoDS_Edge E1, E2;
- // TopoDS_Shape S = helper.GetSubShapeByNode( edge1->_nodes[0], getMeshDS() );
- // if ( S.ShapeType() != TopAbs_EDGE )
- // continue; // TODO: find EDGE by VERTEX
- // E1 = TopoDS::Edge( S );
- set< _LayerEdge*, _LayerEdgeCmp >::iterator eIt = ee.begin();
- for ( ; !edge2 && eIt != ee.end(); ++eIt )
- {
- if ( eos1->_sWOL == data.GetShapeEdges( *eIt )->_sWOL )
- edge2 = *eIt;
+ e2neIt = edge2newEdge.insert( make_pair( edge1, zeroEdge )).first;
+ e2neIt->second._normal += distWgt * newNormal;
+ e2neIt->second._cosin = newCos;
+ e2neIt->second._maxLen = 0.7 * minIntDist / edge1->_lenFactor;
+ if ( iter > 0 && sgn1 * sgn2 < 0 && edge1->_cosin < 0 )
+ e2neIt->second._normal += dir2;
+ e2neIt = edge2newEdge.insert( make_pair( edge2, zeroEdge )).first;
+ e2neIt->second._normal += distWgt * newNormal;
+ e2neIt->second._cosin = edge2->_cosin;
+ if ( iter > 0 && sgn1 * sgn2 < 0 && edge2->_cosin < 0 )
+ e2neIt->second._normal += dir1;
}
- if ( !edge2 ) continue;
+ }
- edge2newEdge[ iE ].first = edge1;
- _LayerEdge& newEdge = edge2newEdge[ iE ].second;
- // while ( E2.IsNull() && eIt != ee.end())
- // {
- // _LayerEdge* e2 = *eIt++;
- // TopoDS_Shape S = helper.GetSubShapeByNode( e2->_nodes[0], getMeshDS() );
- // if ( S.ShapeType() == TopAbs_EDGE )
- // E2 = TopoDS::Edge( S ), edge2 = e2;
- // }
- // if ( E2.IsNull() ) continue; // TODO: find EDGE by VERTEX
+ if ( edge2newEdge.empty() )
+ break; //return true;
- // find 3 FACEs sharing 2 EDGEs
+ dumpFunction(SMESH_Comment("updateNormals")<< data._index << "_" << stepNb << "_it" << iter);
- // TopoDS_Face FF1[2], FF2[2];
- // PShapeIteratorPtr fIt = helper.GetAncestors(E1, *_mesh, TopAbs_FACE);
- // while ( fIt->more() && FF1[1].IsNull() )
- // {
- // const TopoDS_Face *F = (const TopoDS_Face*) fIt->next();
- // if ( helper.IsSubShape( *F, data._solid))
- // FF1[ FF1[0].IsNull() ? 0 : 1 ] = *F;
- // }
- // fIt = helper.GetAncestors(E2, *_mesh, TopAbs_FACE);
- // while ( fIt->more() && FF2[1].IsNull())
- // {
- // const TopoDS_Face *F = (const TopoDS_Face*) fIt->next();
- // if ( helper.IsSubShape( *F, data._solid))
- // FF2[ FF2[0].IsNull() ? 0 : 1 ] = *F;
- // }
- // // exclude a FACE common to E1 and E2 (put it to FFn[1] )
- // if ( FF1[0].IsSame( FF2[0]) || FF1[0].IsSame( FF2[1]))
- // std::swap( FF1[0], FF1[1] );
- // if ( FF2[0].IsSame( FF1[0]) )
- // std::swap( FF2[0], FF2[1] );
- // if ( FF1[0].IsNull() || FF2[0].IsNull() )
- // continue;
-
- // get a new normal for edge1
- //bool ok;
- gp_Vec dir1 = edge1->_normal, dir2 = edge2->_normal;
- // if ( edge1->_cosin < 0 )
- // dir1 = getFaceDir( FF1[0], E1, edge1->_nodes[0], helper, ok ).Normalized();
- // if ( edge2->_cosin < 0 )
- // dir2 = getFaceDir( FF2[0], E2, edge2->_nodes[0], helper, ok ).Normalized();
-
- double cos1 = Abs( edge1->_cosin ), cos2 = Abs( edge2->_cosin );
- double wgt1 = ( cos1 + 0.001 ) / ( cos1 + cos2 + 0.002 );
- double wgt2 = ( cos2 + 0.001 ) / ( cos1 + cos2 + 0.002 );
- newEdge._normal = ( wgt1 * dir1 + wgt2 * dir2 ).XYZ();
- newEdge._normal.Normalize();
+ // Update data of edges depending on a new _normal
- // cout << edge1->_nodes[0]->GetID() << " "
- // << edge2->_nodes[0]->GetID() << " NORM: "
- // << newEdge._normal.X() << ", " << newEdge._normal.Y() << ", " << newEdge._normal.Z() << endl;
+ data.UnmarkEdges();
+ for ( e2neIt = edge2newEdge.begin(); e2neIt != edge2newEdge.end(); ++e2neIt )
+ {
+ _LayerEdge* edge = e2neIt->first;
+ _LayerEdge& newEdge = e2neIt->second;
+ _EdgesOnShape* eos = data.GetShapeEdges( edge );
- // get new cosin
- if ( cos1 < theMinSmoothCosin )
- {
- newEdge._cosin = edge2->_cosin;
- }
- else if ( cos2 > theMinSmoothCosin ) // both cos1 and cos2 > theMinSmoothCosin
- {
- // gp_Vec dirInFace;
- // if ( edge1->_cosin < 0 )
- // dirInFace = dir1;
- // else
- // dirInFace = getFaceDir( FF1[0], E1, edge1->_nodes[0], helper, ok );
- // double angle = dirInFace.Angle( edge1->_normal ); // [0,PI]
- // edge1->SetCosin( Cos( angle ));
- //newEdge._cosin = 0; // ???????????
- newEdge._cosin = ( wgt1 * cos1 + wgt2 * cos2 ) * edge1->_cosin / cos1;
- }
- else
+ // Check if a new _normal is OK:
+ newEdge._normal.Normalize();
+ if ( !isNewNormalOk( data, *edge, newEdge._normal ))
{
- newEdge._cosin = edge1->_cosin;
+ if ( newEdge._maxLen < edge->_len && iter > 0 ) // limit _maxLen
+ {
+ edge->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true );
+ edge->_maxLen = newEdge._maxLen;
+ edge->SetNewLength( newEdge._maxLen, *eos, helper );
+ }
+ continue; // the new _normal is bad
}
+ // the new _normal is OK
// find shapes that need smoothing due to change of _normal
- if ( edge1->_cosin < theMinSmoothCosin &&
+ if ( edge->_cosin < theMinSmoothCosin &&
newEdge._cosin > theMinSmoothCosin )
{
- if ( eos1->_sWOL.IsNull() )
+ if ( eos->_sWOL.IsNull() )
{
- SMDS_ElemIteratorPtr fIt = edge1->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
+ SMDS_ElemIteratorPtr fIt = edge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
shapesToSmooth.insert( data.GetShapeEdges( fIt->next()->getshapeId() ));
- //limitStepSize( data, fIt->next(), edge1->_cosin ); // too late
}
- else // edge1 inflates along a FACE
+ else // edge inflates along a FACE
{
- TopoDS_Shape V = helper.GetSubShapeByNode( edge1->_nodes[0], getMeshDS() );
+ TopoDS_Shape V = helper.GetSubShapeByNode( edge->_nodes[0], getMeshDS() );
PShapeIteratorPtr eIt = helper.GetAncestors( V, *_mesh, TopAbs_EDGE );
while ( const TopoDS_Shape* E = eIt->next() )
{
- if ( !helper.IsSubShape( *E, /*FACE=*/eos1->_sWOL ))
+ if ( !helper.IsSubShape( *E, /*FACE=*/eos->_sWOL ))
continue;
gp_Vec edgeDir = getEdgeDir( TopoDS::Edge( *E ), TopoDS::Vertex( V ));
double angle = edgeDir.Angle( newEdge._normal ); // [0,PI]
}
}
}
- }
- data.AddShapesToSmooth( shapesToSmooth );
+ double len = edge->_len;
+ edge->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true );
+ edge->SetNormal( newEdge._normal );
+ edge->SetCosin( newEdge._cosin );
+ edge->SetNewLength( len, *eos, helper );
+ edge->Set( _LayerEdge::MARKED );
+ edge->Set( _LayerEdge::NORMAL_UPDATED );
+ edgesNoAnaSmooth.insert( eos );
+ }
- // Update data of edges depending on a new _normal
+ // Update normals and other dependent data of not intersecting _LayerEdge's
+ // neighboring the intersecting ones
- for ( size_t iE = 0; iE < edge2newEdge.size(); ++iE )
+ for ( e2neIt = edge2newEdge.begin(); e2neIt != edge2newEdge.end(); ++e2neIt )
{
- _LayerEdge* edge1 = edge2newEdge[ iE ].first;
- _LayerEdge& newEdge = edge2newEdge[ iE ].second;
- if ( !edge1 ) continue;
+ _LayerEdge* edge1 = e2neIt->first;
_EdgesOnShape* eos1 = data.GetShapeEdges( edge1 );
- if ( !eos1 ) continue;
+ if ( !edge1->Is( _LayerEdge::MARKED ))
+ continue;
- edge1->_normal = newEdge._normal;
- edge1->SetCosin( newEdge._cosin );
- edge1->InvalidateStep( 1, *eos1 );
- edge1->_len = 0;
- edge1->SetNewLength( data._stepSize, *eos1, helper );
if ( edge1->IsOnEdge() )
{
const SMDS_MeshNode * n1 = edge1->_2neibors->srcNode(0);
edge1->SetDataByNeighbors( n1, n2, *eos1, helper );
}
- // Update normals and other dependent data of not intersecting _LayerEdge's
- // neighboring the intersecting ones
-
if ( !edge1->_2neibors )
continue;
for ( int j = 0; j < 2; ++j ) // loop on 2 neighbors
{
_LayerEdge* neighbor = edge1->_2neibors->_edges[j];
- if ( edge2CloseEdge.count ( neighbor ))
+ if ( neighbor->Is( _LayerEdge::MARKED ) /*edge2newEdge.count ( neighbor )*/)
continue; // j-th neighbor is also intersected
- _EdgesOnShape* eos = data.GetShapeEdges( neighbor );
- if ( !eos ) continue;
_LayerEdge* prevEdge = edge1;
const int nbSteps = 10;
for ( int step = nbSteps; step; --step ) // step from edge1 in j-th direction
{
- if ( !neighbor->_2neibors )
- break; // neighbor is on VERTEX
- int iNext = 0;
- _LayerEdge* nextEdge = neighbor->_2neibors->_edges[iNext];
- if ( nextEdge == prevEdge )
- nextEdge = neighbor->_2neibors->_edges[ ++iNext ];
+ if ( neighbor->Is( _LayerEdge::BLOCKED ) ||
+ neighbor->Is( _LayerEdge::MARKED ))
+ break;
+ _EdgesOnShape* eos = data.GetShapeEdges( neighbor );
+ if ( !eos ) continue;
+ _LayerEdge* nextEdge = neighbor;
+ if ( neighbor->_2neibors )
+ {
+ int iNext = 0;
+ nextEdge = neighbor->_2neibors->_edges[iNext];
+ if ( nextEdge == prevEdge )
+ nextEdge = neighbor->_2neibors->_edges[ ++iNext ];
+ }
double r = double(step-1)/nbSteps;
if ( !nextEdge->_2neibors )
- r = 0.5;
+ r = Min( r, 0.5 );
+
+ gp_XYZ newNorm = prevEdge->_normal * r + nextEdge->_normal * (1-r);
+ newNorm.Normalize();
+ if ( !isNewNormalOk( data, *neighbor, newNorm ))
+ break;
+
+ double len = neighbor->_len;
+ neighbor->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true );
+ neighbor->SetNormal( newNorm );
+ neighbor->SetCosin( prevEdge->_cosin * r + nextEdge->_cosin * (1-r) );
+ if ( neighbor->_2neibors )
+ neighbor->SetDataByNeighbors( prevEdge->_nodes[0], nextEdge->_nodes[0], *eos, helper );
+ neighbor->SetNewLength( len, *eos, helper );
+ neighbor->Set( _LayerEdge::MARKED );
+ neighbor->Set( _LayerEdge::NORMAL_UPDATED );
+ edgesNoAnaSmooth.insert( eos );
+
+ if ( !neighbor->_2neibors )
+ break; // neighbor is on VERTEX
+
+ // goto the next neighbor
+ prevEdge = neighbor;
+ neighbor = nextEdge;
+ }
+ }
+ }
+ dumpFunctionEnd();
+ } // iterations
+
+ data.AddShapesToSmooth( shapesToSmooth, &edgesNoAnaSmooth );
+
+ return true;
+}
+
+//================================================================================
+/*!
+ * \brief Check if a new normal is OK
+ */
+//================================================================================
+
+bool _ViscousBuilder::isNewNormalOk( _SolidData& data,
+ _LayerEdge& edge,
+ const gp_XYZ& newNormal)
+{
+ // check a min angle between the newNormal and surrounding faces
+ vector<_Simplex> simplices;
+ SMESH_TNodeXYZ n0( edge._nodes[0] ), n1, n2;
+ _Simplex::GetSimplices( n0._node, simplices, data._ignoreFaceIds, &data );
+ double newMinDot = 1, curMinDot = 1;
+ for ( size_t i = 0; i < simplices.size(); ++i )
+ {
+ n1.Set( simplices[i]._nPrev );
+ n2.Set( simplices[i]._nNext );
+ gp_XYZ normFace = ( n1 - n0 ) ^ ( n2 - n0 );
+ double normLen2 = normFace.SquareModulus();
+ if ( normLen2 < std::numeric_limits<double>::min() )
+ continue;
+ normFace /= Sqrt( normLen2 );
+ newMinDot = Min( newNormal * normFace, newMinDot );
+ curMinDot = Min( edge._normal * normFace, curMinDot );
+ }
+ if ( newMinDot < 0.5 )
+ {
+ return ( newMinDot >= curMinDot * 0.9 );
+ //return ( newMinDot >= ( curMinDot * ( 0.8 + 0.1 * edge.NbSteps() )));
+ // double initMinDot2 = 1. - edge._cosin * edge._cosin;
+ // return ( newMinDot * newMinDot ) >= ( 0.8 * initMinDot2 );
+ }
+ return true;
+}
+
+//================================================================================
+/*!
+ * \brief Modify normals of _LayerEdge's on FACE to reflex smoothing
+ */
+//================================================================================
+
+bool _ViscousBuilder::updateNormalsOfSmoothed( _SolidData& data,
+ SMESH_MesherHelper& helper,
+ const int nbSteps,
+ const double stepSize )
+{
+ if ( data._nbShapesToSmooth == 0 || nbSteps == 0 )
+ return true; // no shapes needing smoothing
- gp_XYZ newNorm = prevEdge->_normal * r + nextEdge->_normal * (1-r);
- newNorm.Normalize();
+ for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
+ {
+ _EdgesOnShape& eos = data._edgesOnShape[ iS ];
+ if ( //!eos._toSmooth || _eosC1 have _toSmooth == false
+ !eos._hyp.ToSmooth() ||
+ eos.ShapeType() != TopAbs_FACE ||
+ eos._edges.empty() )
+ continue;
- neighbor->_normal = newNorm;
- neighbor->SetCosin( prevEdge->_cosin * r + nextEdge->_cosin * (1-r) );
- neighbor->SetDataByNeighbors( prevEdge->_nodes[0], nextEdge->_nodes[0], *eos, helper );
+ bool toSmooth = ( eos._edges[ 0 ]->NbSteps() >= nbSteps+1 );
+ if ( !toSmooth ) continue;
- neighbor->InvalidateStep( 1, *eos );
- neighbor->_len = 0;
- neighbor->SetNewLength( data._stepSize, *eos, helper );
+ for ( size_t i = 0; i < eos._edges.size(); ++i )
+ {
+ _LayerEdge* edge = eos._edges[i];
+ if ( !edge->Is( _LayerEdge::SMOOTHED ))
+ continue;
+ if ( edge->Is( _LayerEdge::DIFFICULT ) && nbSteps != 1 )
+ continue;
- // goto the next neighbor
- prevEdge = neighbor;
- neighbor = nextEdge;
- }
- }
+ const gp_XYZ& pPrev = edge->PrevPos();
+ const gp_XYZ& pLast = edge->_pos.back();
+ gp_XYZ stepVec = pLast - pPrev;
+ double realStepSize = stepVec.Modulus();
+ if ( realStepSize < numeric_limits<double>::min() )
+ continue;
+
+ edge->_lenFactor = realStepSize / stepSize;
+ edge->_normal = stepVec / realStepSize;
+ edge->Set( _LayerEdge::NORMAL_UPDATED );
}
- dumpFunctionEnd();
}
- // 2) Check absence of intersections
- // TODO?
-
- for ( size_t i = 0 ; i < tmpFaces.size(); ++i )
- delete tmpFaces[i];
return true;
}
+//================================================================================
+/*!
+ * \brief Modify normals of _LayerEdge's on C1 VERTEXes
+ */
+//================================================================================
+
+void _ViscousBuilder::updateNormalsOfC1Vertices( _SolidData& data )
+{
+ for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
+ {
+ _EdgesOnShape& eov = data._edgesOnShape[ iS ];
+ if ( eov._eosC1.empty() ||
+ eov.ShapeType() != TopAbs_VERTEX ||
+ eov._edges.empty() )
+ continue;
+
+ gp_XYZ newNorm = eov._edges[0]->_normal;
+ double curThick = eov._edges[0]->_len * eov._edges[0]->_lenFactor;
+ bool normChanged = false;
+
+ for ( size_t i = 0; i < eov._eosC1.size(); ++i )
+ {
+ _EdgesOnShape* eoe = eov._eosC1[i];
+ const TopoDS_Edge& e = TopoDS::Edge( eoe->_shape );
+ const double eLen = SMESH_Algo::EdgeLength( e );
+ TopoDS_Shape oppV = SMESH_MesherHelper::IthVertex( 0, e );
+ if ( oppV.IsSame( eov._shape ))
+ oppV = SMESH_MesherHelper::IthVertex( 1, e );
+ _EdgesOnShape* eovOpp = data.GetShapeEdges( oppV );
+ if ( !eovOpp || eovOpp->_edges.empty() ) continue;
+
+ double curThickOpp = eovOpp->_edges[0]->_len * eovOpp->_edges[0]->_lenFactor;
+ if ( curThickOpp + curThick < eLen )
+ continue;
+
+ double wgt = 2. * curThick / eLen;
+ newNorm += wgt * eovOpp->_edges[0]->_normal;
+ normChanged = true;
+ }
+ if ( normChanged )
+ {
+ eov._edges[0]->SetNormal( newNorm.Normalized() );
+ eov._edges[0]->Set( _LayerEdge::NORMAL_UPDATED );
+ }
+ }
+}
+
//================================================================================
/*!
* \brief Modify normals of _LayerEdge's on _ConvexFace's
eos._edges[ i ]->_cosin = avgCosin;
for ( size_t i = 0; i < eos._edges.size(); ++i )
- eos._edges[ i ]->_normal = avgNormal;
+ {
+ eos._edges[ i ]->SetNormal( avgNormal );
+ eos._edges[ i ]->Set( _LayerEdge::NORMAL_UPDATED );
+ }
}
}
else // if ( isSpherical )
else
{
if ( ! eos->_toSmooth )
- data.SortOnEdge( edge, eos->_edges, helper );
+ data.SortOnEdge( edge, eos->_edges );
edgeLEdge = &eos->_edges[ 0 ];
edgeLEdgeEnd = edgeLEdge + eos->_edges.size();
vertexLEdges[0] = eos->_edges.front()->_2neibors->_edges[0];
if ( centerCurves[ iE ]._isDegenerated )
continue;
for ( size_t iLE = 0; iLE < centerCurves[ iE ]._ledges.size(); ++iLE )
- centerCurves[ iE ]._ledges[ iLE ]->_normal = centerCurves[ iE ]._normals[ iLE ];
+ {
+ centerCurves[ iE ]._ledges[ iLE ]->SetNormal( centerCurves[ iE ]._normals[ iLE ]);
+ centerCurves[ iE ]._ledges[ iLE ]->Set( _LayerEdge::NORMAL_UPDATED );
+ }
}
// set new normals to _LayerEdge's of degenerated central curves
for ( size_t iE = 0; iE < centerCurves.size(); ++iE )
0.5 * centerCurves[ iE ]._ledges.back ()->_cosin );
for ( size_t iLE = 1, nb = centerCurves[ iE ]._ledges.size() - 1; iLE < nb; ++iLE )
{
- centerCurves[ iE ]._ledges[ iLE ]->_normal = newNorm;
- centerCurves[ iE ]._ledges[ iLE ]->_cosin = newCosin;
+ centerCurves[ iE ]._ledges[ iLE ]->SetNormal( newNorm );
+ centerCurves[ iE ]._ledges[ iLE ]->_cosin = newCosin;
+ centerCurves[ iE ]._ledges[ iLE ]->Set( _LayerEdge::NORMAL_UPDATED );
}
}
newNorm.SetCoord( 0,0,0 );
if ( centerCurves[ iE ].FindNewNormal( center, newNorm ))
{
- ledge->_normal = newNorm;
+ ledge->SetNormal( newNorm );
ledge->_cosin = avgCosin;
+ ledge->Set( _LayerEdge::NORMAL_UPDATED );
break;
}
}
ledge->SetCosin( ledge->_cosin );
ledge->SetNewLength( len, eos, helper );
}
-
+ if ( eos.ShapeType() != TopAbs_FACE )
+ for ( size_t i = 0; i < eos._edges.size(); ++i )
+ {
+ _LayerEdge* ledge = eos._edges[ i ];
+ for ( size_t iN = 0; iN < ledge->_neibors.size(); ++iN )
+ {
+ _LayerEdge* neibor = ledge->_neibors[iN];
+ if ( neibor->_nodes[0]->GetPosition()->GetDim() == 2 )
+ {
+ neibor->Set( _LayerEdge::NEAR_BOUNDARY );
+ neibor->Set( _LayerEdge::MOVED );
+ neibor->SetSmooLen( neibor->_len );
+ }
+ }
+ }
} // loop on sub-shapes of convFace._face
// Find FACEs adjacent to convFace._face that got necessity to smooth
const _LayerEdge* edge = _simplexTestEdges[i];
SMESH_TNodeXYZ tgtXYZ( edge->_nodes.back() );
for ( size_t j = 0; j < edge->_simplices.size(); ++j )
- if ( !edge->_simplices[j].IsForward( edge->_nodes[0], &tgtXYZ, vol ))
+ if ( !edge->_simplices[j].IsForward( edge->_nodes[0], tgtXYZ, vol ))
{
debugMsg( "Bad simplex of _simplexTestEdges ("
<< " "<< edge->_nodes[0]->GetID()<< " "<< tgtXYZ._node->GetID()
double & distance,
const double& epsilon,
_EdgesOnShape& eos,
- const SMDS_MeshElement** face)
+ const SMDS_MeshElement** intFace)
{
vector< const SMDS_MeshElement* > suspectFaces;
double segLen;
distance = dist, iFace = j;
}
}
- if ( iFace != -1 && face ) *face = suspectFaces[iFace];
+ if ( intFace ) *intFace = ( iFace != -1 ) ? suspectFaces[iFace] : 0;
+
+ distance -= segLen;
if ( segmentIntersected )
{
#ifdef __myDEBUG
SMDS_MeshElement::iterator nIt = suspectFaces[iFace]->begin_nodes();
- gp_XYZ intP( lastSegment.Location().XYZ() + lastSegment.Direction().XYZ() * distance );
+ gp_XYZ intP( lastSegment.Location().XYZ() + lastSegment.Direction().XYZ() * ( distance+segLen ));
cout << "nodes: tgt " << _nodes.back()->GetID() << " src " << _nodes[0]->GetID()
<< ", intersection with face ("
<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()
<< ") at point (" << intP.X() << ", " << intP.Y() << ", " << intP.Z()
- << ") distance = " << distance - segLen<< endl;
+ << ") distance = " << distance << endl;
#endif
}
- distance -= segLen;
-
return segmentIntersected;
}
{
// find two non-coincident positions
gp_XYZ orig = _pos.back();
- gp_XYZ dir;
+ gp_XYZ vec;
int iPrev = _pos.size() - 2;
- const double tol = ( _len > 0 ) ? 0.3*_len : 1e-100; // adjusted for IPAL52478 + PAL22576
+ //const double tol = ( _len > 0 ) ? 0.3*_len : 1e-100; // adjusted for IPAL52478 + PAL22576
+ const double tol = ( _len > 0 ) ? ( 1e-6 * _len ) : 1e-100;
while ( iPrev >= 0 )
{
- dir = orig - _pos[iPrev];
- if ( dir.SquareModulus() > tol*tol )
+ vec = orig - _pos[iPrev];
+ if ( vec.SquareModulus() > tol*tol )
break;
else
iPrev--;
Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face( eos._sWOL ), loc );
pPrev = surface->Value( pPrev.X(), pPrev.Y() ).Transformed( loc );
}
- dir = SMESH_TNodeXYZ( _nodes.back() ) - pPrev.XYZ();
+ vec = SMESH_TNodeXYZ( _nodes.back() ) - pPrev.XYZ();
}
segDir.SetLocation( pPrev );
- segDir.SetDirection( dir );
- segLen = dir.Modulus();
+ segDir.SetDirection( vec );
+ segLen = vec.Modulus();
}
return segDir;
*/
//================================================================================
-bool _LayerEdge::SegTriaInter( const gp_Ax1& lastSegment,
- const SMDS_MeshNode* n0,
- const SMDS_MeshNode* n1,
- const SMDS_MeshNode* n2,
- double& t,
- const double& EPSILON) const
+bool _LayerEdge::SegTriaInter( const gp_Ax1& lastSegment,
+ const gp_XYZ& vert0,
+ const gp_XYZ& vert1,
+ const gp_XYZ& vert2,
+ double& t,
+ const double& EPSILON) const
{
- //const double EPSILON = 1e-6;
-
const gp_Pnt& orig = lastSegment.Location();
const gp_Dir& dir = lastSegment.Direction();
- SMESH_TNodeXYZ vert0( n0 );
- SMESH_TNodeXYZ vert1( n1 );
- SMESH_TNodeXYZ vert2( n2 );
-
/* calculate distance from vert0 to ray origin */
gp_XYZ tvec = orig.XYZ() - vert0;
/* if determinant is near zero, ray lies in plane of triangle */
double det = edge1 * pvec;
- if (det > -EPSILON && det < EPSILON)
+ const double ANGL_EPSILON = 1e-12;
+ if ( det > -ANGL_EPSILON && det < ANGL_EPSILON )
return false;
/* calculate U parameter and test bounds */
double u = ( tvec * pvec ) / det;
//if (u < 0.0 || u > 1.0)
- if (u < -EPSILON || u > 1.0 + EPSILON)
+ if ( u < -EPSILON || u > 1.0 + EPSILON )
return false;
/* prepare to test V parameter */
/* calculate V parameter and test bounds */
double v = (dir.XYZ() * qvec) / det;
//if ( v < 0.0 || u + v > 1.0 )
- if ( v < -EPSILON || u + v > 1.0 + EPSILON)
+ if ( v < -EPSILON || u + v > 1.0 + EPSILON )
return false;
/* calculate t, ray intersects triangle */
return t > 0.;
}
+//================================================================================
+/*!
+ * \brief _LayerEdge, located at a concave VERTEX of a FACE, moves target nodes of
+ * neighbor _LayerEdge's by it's own inflation vector.
+ * \param [in] eov - EOS of the VERTEX
+ * \param [in] eos - EOS of the FACE
+ * \param [in] step - inflation step
+ * \param [in,out] badSmooEdges - not untangled _LayerEdge's
+ */
+//================================================================================
+
+void _LayerEdge::MoveNearConcaVer( const _EdgesOnShape* eov,
+ const _EdgesOnShape* eos,
+ const int step,
+ vector< _LayerEdge* > & badSmooEdges )
+{
+ // check if any of _neibors is in badSmooEdges
+ if ( std::find_first_of( _neibors.begin(), _neibors.end(),
+ badSmooEdges.begin(), badSmooEdges.end() ) == _neibors.end() )
+ return;
+
+ // get all edges to move
+
+ set< _LayerEdge* > edges;
+
+ // find a distance between _LayerEdge on VERTEX and its neighbors
+ gp_XYZ curPosV = SMESH_TNodeXYZ( _nodes.back() );
+ double dist2 = 0;
+ for ( size_t i = 0; i < _neibors.size(); ++i )
+ {
+ _LayerEdge* nEdge = _neibors[i];
+ if ( nEdge->_nodes[0]->getshapeId() == eos->_shapeID )
+ {
+ edges.insert( nEdge );
+ dist2 = Max( dist2, ( curPosV - nEdge->_pos.back() ).SquareModulus() );
+ }
+ }
+ // add _LayerEdge's close to curPosV
+ size_t nbE;
+ do {
+ nbE = edges.size();
+ for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e )
+ {
+ _LayerEdge* edgeF = *e;
+ for ( size_t i = 0; i < edgeF->_neibors.size(); ++i )
+ {
+ _LayerEdge* nEdge = edgeF->_neibors[i];
+ if ( nEdge->_nodes[0]->getshapeId() == eos->_shapeID &&
+ dist2 > ( curPosV - nEdge->_pos.back() ).SquareModulus() )
+ edges.insert( nEdge );
+ }
+ }
+ }
+ while ( nbE < edges.size() );
+
+ // move the target node of the got edges
+
+ gp_XYZ prevPosV = PrevPos();
+ if ( eov->SWOLType() == TopAbs_EDGE )
+ {
+ BRepAdaptor_Curve curve ( TopoDS::Edge( eov->_sWOL ));
+ prevPosV = curve.Value( prevPosV.X() ).XYZ();
+ }
+ else if ( eov->SWOLType() == TopAbs_FACE )
+ {
+ BRepAdaptor_Surface surface( TopoDS::Face( eov->_sWOL ));
+ prevPosV = surface.Value( prevPosV.X(), prevPosV.Y() ).XYZ();
+ }
+
+ SMDS_FacePosition* fPos;
+ //double r = 1. - Min( 0.9, step / 10. );
+ for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e )
+ {
+ _LayerEdge* edgeF = *e;
+ const gp_XYZ prevVF = edgeF->PrevPos() - prevPosV;
+ const gp_XYZ newPosF = curPosV + prevVF;
+ SMDS_MeshNode* tgtNodeF = const_cast<SMDS_MeshNode*>( edgeF->_nodes.back() );
+ tgtNodeF->setXYZ( newPosF.X(), newPosF.Y(), newPosF.Z() );
+ edgeF->_pos.back() = newPosF;
+ dumpMoveComm( tgtNodeF, "MoveNearConcaVer" ); // debug
+
+ // set _curvature to make edgeF updated by putOnOffsetSurface()
+ if ( !edgeF->_curvature )
+ if (( fPos = dynamic_cast<SMDS_FacePosition*>( edgeF->_nodes[0]->GetPosition() )))
+ {
+ edgeF->_curvature = new _Curvature;
+ edgeF->_curvature->_r = 0;
+ edgeF->_curvature->_k = 0;
+ edgeF->_curvature->_h2lenRatio = 0;
+ edgeF->_curvature->_uv.SetCoord( fPos->GetUParameter(), fPos->GetVParameter() );
+ }
+ }
+ // gp_XYZ inflationVec( SMESH_TNodeXYZ( _nodes.back() ) -
+ // SMESH_TNodeXYZ( _nodes[0] ));
+ // for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e )
+ // {
+ // _LayerEdge* edgeF = *e;
+ // gp_XYZ newPos = SMESH_TNodeXYZ( edgeF->_nodes[0] ) + inflationVec;
+ // SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edgeF->_nodes.back() );
+ // tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
+ // edgeF->_pos.back() = newPosF;
+ // dumpMoveComm( tgtNode, "MoveNearConcaVer" ); // debug
+ // }
+
+ // smooth _LayerEdge's around moved nodes
+ //size_t nbBadBefore = badSmooEdges.size();
+ for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e )
+ {
+ _LayerEdge* edgeF = *e;
+ for ( size_t j = 0; j < edgeF->_neibors.size(); ++j )
+ if ( edgeF->_neibors[j]->_nodes[0]->getshapeId() == eos->_shapeID )
+ //&& !edges.count( edgeF->_neibors[j] ))
+ {
+ _LayerEdge* edgeFN = edgeF->_neibors[j];
+ edgeFN->Unset( SMOOTHED );
+ int nbBad = edgeFN->Smooth( step, /*isConcaFace=*/true, /*findBest=*/true );
+ // if ( nbBad > 0 )
+ // {
+ // gp_XYZ newPos = SMESH_TNodeXYZ( edgeFN->_nodes[0] ) + inflationVec;
+ // const gp_XYZ& prevPos = edgeFN->_pos[ edgeFN->_pos.size()-2 ];
+ // int nbBadAfter = edgeFN->_simplices.size();
+ // double vol;
+ // for ( size_t iS = 0; iS < edgeFN->_simplices.size(); ++iS )
+ // {
+ // nbBadAfter -= edgeFN->_simplices[iS].IsForward( &prevPos, &newPos, vol );
+ // }
+ // if ( nbBadAfter <= nbBad )
+ // {
+ // SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edgeFN->_nodes.back() );
+ // tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
+ // edgeF->_pos.back() = newPosF;
+ // dumpMoveComm( tgtNode, "MoveNearConcaVer 2" ); // debug
+ // nbBad = nbBadAfter;
+ // }
+ // }
+ if ( nbBad > 0 )
+ badSmooEdges.push_back( edgeFN );
+ }
+ }
+ // move a bit not smoothed around moved nodes
+ // for ( size_t i = nbBadBefore; i < badSmooEdges.size(); ++i )
+ // {
+ // _LayerEdge* edgeF = badSmooEdges[i];
+ // SMDS_MeshNode* tgtNode = const_cast<SMDS_MeshNode*>( edgeF->_nodes.back() );
+ // gp_XYZ newPos1 = SMESH_TNodeXYZ( edgeF->_nodes[0] ) + inflationVec;
+ // gp_XYZ newPos2 = 0.5 * ( newPos1 + SMESH_TNodeXYZ( tgtNode ));
+ // tgtNode->setXYZ( newPos2.X(), newPos2.Y(), newPos2.Z() );
+ // edgeF->_pos.back() = newPosF;
+ // dumpMoveComm( tgtNode, "MoveNearConcaVer 2" ); // debug
+ // }
+}
+
//================================================================================
/*!
* \brief Perform smooth of _LayerEdge's based on EDGE's
*/
//================================================================================
-bool _LayerEdge::SmoothOnEdge(Handle(Geom_Surface)& surface,
- const TopoDS_Face& F,
- SMESH_MesherHelper& helper)
+bool _LayerEdge::SmoothOnEdge(Handle(ShapeAnalysis_Surface)& surface,
+ const TopoDS_Face& F,
+ SMESH_MesherHelper& helper)
{
ASSERT( IsOnEdge() );
newPos.ChangeCoord() += _normal * lenDelta;
}
- distNewOld = newPos.Distance( oldPos );
+ distNewOld = newPos.Distance( oldPos );
+
+ if ( F.IsNull() )
+ {
+ if ( _2neibors->_plnNorm )
+ {
+ // put newPos on the plane defined by source node and _plnNorm
+ gp_XYZ new2src = SMESH_TNodeXYZ( _nodes[0] ) - newPos.XYZ();
+ double new2srcProj = (*_2neibors->_plnNorm) * new2src;
+ newPos.ChangeCoord() += (*_2neibors->_plnNorm) * new2srcProj;
+ }
+ tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
+ _pos.back() = newPos.XYZ();
+ }
+ else
+ {
+ tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
+ gp_XY uv( Precision::Infinite(), 0 );
+ helper.CheckNodeUV( F, tgtNode, uv, 1e-10, /*force=*/true );
+ _pos.back().SetCoord( uv.X(), uv.Y(), 0 );
+
+ newPos = surface->Value( uv );
+ tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
+ }
+
+ // commented for IPAL0052478
+ // if ( _curvature && lenDelta < 0 )
+ // {
+ // gp_Pnt prevPos( _pos[ _pos.size()-2 ]);
+ // _len -= prevPos.Distance( oldPos );
+ // _len += prevPos.Distance( newPos );
+ // }
+ bool moved = distNewOld > dist01/50;
+ //if ( moved )
+ dumpMove( tgtNode ); // debug
+
+ return moved;
+}
+
+//================================================================================
+/*!
+ * \brief Perform 3D smooth of nodes inflated from FACE. No check of validity
+ */
+//================================================================================
+
+void _LayerEdge::SmoothWoCheck()
+{
+ if ( Is( DIFFICULT ))
+ return;
+
+ bool moved = Is( SMOOTHED );
+ for ( size_t i = 0; i < _neibors.size() && !moved; ++i )
+ moved = _neibors[i]->Is( SMOOTHED );
+ if ( !moved )
+ return;
+
+ gp_XYZ newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction()
+
+ SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() );
+ n->setXYZ( newPos.X(), newPos.Y(), newPos.Z());
+ _pos.back() = newPos;
+
+ dumpMoveComm( n, SMESH_Comment("No check - ") << _funNames[ smooFunID() ]);
+}
+
+//================================================================================
+/*!
+ * \brief Checks validity of _neibors on EDGEs and VERTEXes
+ */
+//================================================================================
+
+int _LayerEdge::CheckNeiborsOnBoundary( vector< _LayerEdge* >* badNeibors )
+{
+ if ( ! Is( NEAR_BOUNDARY ))
+ return 0;
+
+ int nbBad = 0;
+ double vol;
+ for ( size_t iN = 0; iN < _neibors.size(); ++iN )
+ {
+ _LayerEdge* eN = _neibors[iN];
+ if ( eN->_nodes[0]->getshapeId() == _nodes[0]->getshapeId() )
+ continue;
+ SMESH_TNodeXYZ curPosN ( eN->_nodes.back() );
+ SMESH_TNodeXYZ prevPosN( eN->_nodes[0] );
+ for ( size_t i = 0; i < eN->_simplices.size(); ++i )
+ if ( eN->_nodes.size() > 1 &&
+ eN->_simplices[i].Includes( _nodes.back() ) &&
+ !eN->_simplices[i].IsForward( &prevPosN, &curPosN, vol ))
+ {
+ ++nbBad;
+ if ( badNeibors )
+ {
+ badNeibors->push_back( eN );
+ debugMsg("Bad boundary simplex ( "
+ << " "<< eN->_nodes[0]->GetID()
+ << " "<< eN->_nodes.back()->GetID()
+ << " "<< eN->_simplices[i]._nPrev->GetID()
+ << " "<< eN->_simplices[i]._nNext->GetID() << " )" );
+ }
+ else
+ {
+ break;
+ }
+ }
+ }
+ return nbBad;
+}
+
+//================================================================================
+/*!
+ * \brief Perform 'smart' 3D smooth of nodes inflated from FACE
+ * \retval int - nb of bad simplices around this _LayerEdge
+ */
+//================================================================================
+
+int _LayerEdge::Smooth(const int step, bool findBest, vector< _LayerEdge* >& toSmooth )
+{
+ if ( !Is( MOVED ) || Is( SMOOTHED ))
+ return 0; // shape of simplices not changed
+ if ( _simplices.size() < 2 )
+ return 0; // _LayerEdge inflated along EDGE or FACE
+
+ if ( Is( DIFFICULT )) // || Is( ON_CONCAVE_FACE )
+ findBest = true;
+
+ const gp_XYZ& curPos = _pos.back();
+ const gp_XYZ& prevPos = PrevCheckPos();
+
+ // quality metrics (orientation) of tetras around _tgtNode
+ int nbOkBefore = 0;
+ double vol, minVolBefore = 1e100;
+ for ( size_t i = 0; i < _simplices.size(); ++i )
+ {
+ nbOkBefore += _simplices[i].IsForward( &prevPos, &curPos, vol );
+ minVolBefore = Min( minVolBefore, vol );
+ }
+ int nbBad = _simplices.size() - nbOkBefore;
+
+ if ( nbBad == 0 )
+ nbBad = CheckNeiborsOnBoundary();
+ if ( nbBad > 0 )
+ Set( DISTORTED );
+
+ // evaluate min angle
+ if ( nbBad == 0 && !findBest )
+ {
+ size_t nbGoodAngles = _simplices.size();
+ double angle;
+ for ( size_t i = 0; i < _simplices.size(); ++i )
+ {
+ if ( !_simplices[i].IsMinAngleOK( curPos, angle ) && angle > _minAngle )
+ --nbGoodAngles;
+ }
+ if ( nbGoodAngles == _simplices.size() )
+ {
+ Unset( MOVED );
+ return 0;
+ }
+ }
+ if ( Is( ON_CONCAVE_FACE ))
+ findBest = true;
+
+ if ( step % 2 == 0 )
+ findBest = false;
+
+ if ( Is( ON_CONCAVE_FACE ) && !findBest ) // alternate FUN_CENTROIDAL and FUN_LAPLACIAN
+ {
+ if ( _smooFunction == _funs[ FUN_LAPLACIAN ] )
+ _smooFunction = _funs[ FUN_CENTROIDAL ];
+ else
+ _smooFunction = _funs[ FUN_LAPLACIAN ];
+ }
+
+ // compute new position for the last _pos using different _funs
+ gp_XYZ newPos;
+ bool moved = false;
+ for ( int iFun = -1; iFun < theNbSmooFuns; ++iFun )
+ {
+ if ( iFun < 0 )
+ newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction()
+ else if ( _funs[ iFun ] == _smooFunction )
+ continue; // _smooFunction again
+ else if ( step > 1 )
+ newPos = (this->*_funs[ iFun ])(); // try other smoothing fun
+ else
+ break; // let "easy" functions improve elements around distorted ones
+
+ if ( _curvature )
+ {
+ double delta = _curvature->lenDelta( _len );
+ if ( delta > 0 )
+ newPos += _normal * delta;
+ else
+ {
+ double segLen = _normal * ( newPos - prevPos );
+ if ( segLen + delta > 0 )
+ newPos += _normal * delta;
+ }
+ // double segLenChange = _normal * ( curPos - newPos );
+ // newPos += 0.5 * _normal * segLenChange;
+ }
+
+ int nbOkAfter = 0;
+ double minVolAfter = 1e100;
+ for ( size_t i = 0; i < _simplices.size(); ++i )
+ {
+ nbOkAfter += _simplices[i].IsForward( &prevPos, &newPos, vol );
+ minVolAfter = Min( minVolAfter, vol );
+ }
+ // get worse?
+ if ( nbOkAfter < nbOkBefore )
+ continue;
+
+ if (( findBest ) &&
+ ( nbOkAfter == nbOkBefore ) &&
+ ( minVolAfter <= minVolBefore ))
+ continue;
+
+ nbBad = _simplices.size() - nbOkAfter;
+ minVolBefore = minVolAfter;
+ nbOkBefore = nbOkAfter;
+ moved = true;
+
+ SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() );
+ n->setXYZ( newPos.X(), newPos.Y(), newPos.Z());
+ _pos.back() = newPos;
+
+ dumpMoveComm( n, SMESH_Comment( _funNames[ iFun < 0 ? smooFunID() : iFun ] )
+ << (nbBad ? " --BAD" : ""));
- if ( F.IsNull() )
- {
- if ( _2neibors->_plnNorm )
+ if ( iFun > -1 )
{
- // put newPos on the plane defined by source node and _plnNorm
- gp_XYZ new2src = SMESH_TNodeXYZ( _nodes[0] ) - newPos.XYZ();
- double new2srcProj = (*_2neibors->_plnNorm) * new2src;
- newPos.ChangeCoord() += (*_2neibors->_plnNorm) * new2srcProj;
+ continue; // look for a better function
}
- tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
- _pos.back() = newPos.XYZ();
- }
- else
- {
- tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
- gp_XY uv( Precision::Infinite(), 0 );
- helper.CheckNodeUV( F, tgtNode, uv, 1e-10, /*force=*/true );
- _pos.back().SetCoord( uv.X(), uv.Y(), 0 );
- newPos = surface->Value( uv.X(), uv.Y() );
- tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() );
- }
+ if ( !findBest )
+ break;
- // commented for IPAL0052478
- // if ( _curvature && lenDelta < 0 )
- // {
- // gp_Pnt prevPos( _pos[ _pos.size()-2 ]);
- // _len -= prevPos.Distance( oldPos );
- // _len += prevPos.Distance( newPos );
- // }
- bool moved = distNewOld > dist01/50;
- //if ( moved )
- dumpMove( tgtNode ); // debug
+ } // loop on smoothing functions
- return moved;
+ if ( moved ) // notify _neibors
+ {
+ Set( SMOOTHED );
+ for ( size_t i = 0; i < _neibors.size(); ++i )
+ if ( !_neibors[i]->Is( MOVED ))
+ {
+ _neibors[i]->Set( MOVED );
+ toSmooth.push_back( _neibors[i] );
+ }
+ }
+
+ return nbBad;
}
//================================================================================
/*!
- * \brief Perform laplacian smooth in 3D of nodes inflated from FACE
- * \retval bool - true if _tgtNode has been moved
+ * \brief Perform 'smart' 3D smooth of nodes inflated from FACE
+ * \retval int - nb of bad simplices around this _LayerEdge
*/
//================================================================================
-int _LayerEdge::Smooth(const int step, const bool isConcaveFace, const bool findBest )
+int _LayerEdge::Smooth(const int step, const bool isConcaveFace, bool findBest )
{
- if ( _simplices.size() < 2 )
+ if ( !_smooFunction )
return 0; // _LayerEdge inflated along EDGE or FACE
+ if ( Is( BLOCKED ))
+ return 0; // not inflated
- const gp_XYZ& curPos ( _pos.back() );
- const gp_XYZ& prevPos( _pos[ _pos.size()-2 ]);
+ const gp_XYZ& curPos = _pos.back();
+ const gp_XYZ& prevPos = PrevCheckPos();
// quality metrics (orientation) of tetras around _tgtNode
int nbOkBefore = 0;
double vol, minVolBefore = 1e100;
for ( size_t i = 0; i < _simplices.size(); ++i )
{
- nbOkBefore += _simplices[i].IsForward( _nodes[0], &curPos, vol );
+ nbOkBefore += _simplices[i].IsForward( &prevPos, &curPos, vol );
minVolBefore = Min( minVolBefore, vol );
}
int nbBad = _simplices.size() - nbOkBefore;
+ if ( isConcaveFace ) // alternate FUN_CENTROIDAL and FUN_LAPLACIAN
+ {
+ if ( _smooFunction == _funs[ FUN_CENTROIDAL ] && step % 2 )
+ _smooFunction = _funs[ FUN_LAPLACIAN ];
+ else if ( _smooFunction == _funs[ FUN_LAPLACIAN ] && !( step % 2 ))
+ _smooFunction = _funs[ FUN_CENTROIDAL ];
+ }
+
// compute new position for the last _pos using different _funs
gp_XYZ newPos;
for ( int iFun = -1; iFun < theNbSmooFuns; ++iFun )
newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction()
else if ( _funs[ iFun ] == _smooFunction )
continue; // _smooFunction again
- else if ( step > 0 )
+ else if ( step > 1 )
newPos = (this->*_funs[ iFun ])(); // try other smoothing fun
else
break; // let "easy" functions improve elements around distorted ones
double minVolAfter = 1e100;
for ( size_t i = 0; i < _simplices.size(); ++i )
{
- nbOkAfter += _simplices[i].IsForward( _nodes[0], &newPos, vol );
+ nbOkAfter += _simplices[i].IsForward( &prevPos, &newPos, vol );
minVolAfter = Min( minVolAfter, vol );
}
// get worse?
continue;
if (( isConcaveFace || findBest ) &&
( nbOkAfter == nbOkBefore ) &&
- //( iFun > -1 || nbOkAfter < _simplices.size() ) &&
- ( minVolAfter <= minVolBefore ))
+ ( minVolAfter <= minVolBefore )
+ )
continue;
+ nbBad = _simplices.size() - nbOkAfter;
+ minVolBefore = minVolAfter;
+ nbOkBefore = nbOkAfter;
+
SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() );
+ n->setXYZ( newPos.X(), newPos.Y(), newPos.Z());
+ _pos.back() = newPos;
+
+ dumpMoveComm( n, SMESH_Comment( _funNames[ iFun < 0 ? smooFunID() : iFun ] )
+ << ( nbBad ? "--BAD" : ""));
// commented for IPAL0052478
// _len -= prevPos.Distance(SMESH_TNodeXYZ( n ));
// _len += prevPos.Distance(newPos);
- n->setXYZ( newPos.X(), newPos.Y(), newPos.Z());
- _pos.back() = newPos;
- dumpMoveComm( n, _funNames[ iFun < 0 ? smooFunID() : iFun ]);
-
- nbBad = _simplices.size() - nbOkAfter;
-
- if ( iFun > -1 )
+ if ( iFun > -1 ) // findBest || the chosen _fun makes worse
{
//_smooFunction = _funs[ iFun ];
// cout << "# " << _funNames[ iFun ] << "\t N:" << _nodes.back()->GetID()
// << " minVol: " << minVolAfter
// << " " << newPos.X() << " " << newPos.Y() << " " << newPos.Z()
// << endl;
- minVolBefore = minVolAfter;
- nbOkBefore = nbOkAfter;
continue; // look for a better function
}
// use smoothNefPolygon() near concaveVertices
if ( !concaveVertices.empty() )
{
+ _smooFunction = _funs[ FUN_CENTROIDAL ];
+
+ Set( ON_CONCAVE_FACE );
+
for ( size_t i = 0; i < _simplices.size(); ++i )
{
if ( concaveVertices.count( _simplices[i]._nPrev->getshapeId() ))
_smooFunction = _funs[ FUN_NEFPOLY ];
// set FUN_CENTROIDAL to neighbor edges
- TNode2Edge::const_iterator n2e;
- for ( i = 0; i < _simplices.size(); ++i )
+ for ( i = 0; i < _neibors.size(); ++i )
{
- if (( _simplices[i]._nPrev->GetPosition()->GetDim() == 2 ) &&
- (( n2e = n2eMap.find( _simplices[i]._nPrev )) != n2eMap.end() ))
+ if ( _neibors[i]->_nodes[0]->GetPosition()->GetDim() == 2 )
{
- n2e->second->_smooFunction = _funs[ FUN_CENTROIDAL ];
+ _neibors[i]->_smooFunction = _funs[ FUN_CENTROIDAL ];
}
}
return;
}
}
- //}
- // this coice is done only if ( !concaveVertices.empty() ) for Grids/smesh/bugs_19/X1
- // where the nodes are smoothed too far along a sphere thus creating
- // inverted _simplices
- double dist[theNbSmooFuns];
- //double coef[theNbSmooFuns] = { 1., 1.2, 1.4, 1.4 };
- double coef[theNbSmooFuns] = { 1., 1., 1., 1. };
+ // // this coice is done only if ( !concaveVertices.empty() ) for Grids/smesh/bugs_19/X1
+ // // where the nodes are smoothed too far along a sphere thus creating
+ // // inverted _simplices
+ // double dist[theNbSmooFuns];
+ // //double coef[theNbSmooFuns] = { 1., 1.2, 1.4, 1.4 };
+ // double coef[theNbSmooFuns] = { 1., 1., 1., 1. };
- double minDist = Precision::Infinite();
- gp_Pnt p = SMESH_TNodeXYZ( _nodes[0] );
- for ( int i = 0; i < FUN_NEFPOLY; ++i )
- {
- gp_Pnt newP = (this->*_funs[i])();
- dist[i] = p.SquareDistance( newP );
- if ( dist[i]*coef[i] < minDist )
- {
- _smooFunction = _funs[i];
- minDist = dist[i]*coef[i];
- }
- }
+ // double minDist = Precision::Infinite();
+ // gp_Pnt p = SMESH_TNodeXYZ( _nodes[0] );
+ // for ( int i = 0; i < FUN_NEFPOLY; ++i )
+ // {
+ // gp_Pnt newP = (this->*_funs[i])();
+ // dist[i] = p.SquareDistance( newP );
+ // if ( dist[i]*coef[i] < minDist )
+ // {
+ // _smooFunction = _funs[i];
+ // minDist = dist[i]*coef[i];
+ // }
+ // }
}
else
{
gp_XYZ _LayerEdge::smoothAngular()
{
- vector< gp_Vec > edgeDir; edgeDir. reserve( _simplices.size() + 1);
- vector< double > edgeSize; edgeSize.reserve( _simplices.size() );
- vector< gp_XYZ > points; points. reserve( _simplices.size() );
+ vector< gp_Vec > edgeDir; edgeDir. reserve( _simplices.size() + 1 );
+ vector< double > edgeSize; edgeSize.reserve( _simplices.size() );
+ vector< gp_XYZ > points; points. reserve( _simplices.size() + 1 );
gp_XYZ pPrev = SMESH_TNodeXYZ( _simplices.back()._nPrev );
gp_XYZ pN( 0,0,0 );
gp_XYZ p = SMESH_TNodeXYZ( _simplices[i]._nPrev );
edgeDir.push_back( p - pPrev );
edgeSize.push_back( edgeDir.back().Magnitude() );
- //double edgeSize = edgeDir.back().Magnitude();
if ( edgeSize.back() < numeric_limits<double>::min() )
{
edgeDir.pop_back();
pN /= points.size();
gp_XYZ newPos(0,0,0);
- //gp_XYZ pN = SMESH_TNodeXYZ( _nodes.back() );
double sumSize = 0;
for ( size_t i = 0; i < points.size(); ++i )
{
- gp_Vec toN( pN - points[i]);
+ gp_Vec toN = pN - points[i];
double toNLen = toN.Magnitude();
if ( toNLen < numeric_limits<double>::min() )
{
newPos += pN;
continue;
}
- gp_Vec bisec = edgeDir[i] + edgeDir[i+1];
+ gp_Vec bisec = edgeDir[i] + edgeDir[i+1];
double bisecLen = bisec.SquareMagnitude();
if ( bisecLen < numeric_limits<double>::min() )
{
bisec /= bisecLen;
#if 1
- //bisecLen = 1.;
gp_XYZ pNew = ( points[i] + bisec.XYZ() * toNLen ) * bisecLen;
sumSize += bisecLen;
#else
}
newPos /= sumSize;
+ // project newPos to an average plane
+
+ gp_XYZ norm(0,0,0); // plane normal
+ points.push_back( points[0] );
+ for ( size_t i = 1; i < points.size(); ++i )
+ {
+ gp_XYZ vec1 = points[ i-1 ] - pN;
+ gp_XYZ vec2 = points[ i ] - pN;
+ gp_XYZ cross = vec1 ^ vec2;
+ try {
+ cross.Normalize();
+ if ( cross * norm < numeric_limits<double>::min() )
+ norm += cross.Reversed();
+ else
+ norm += cross;
+ }
+ catch (Standard_Failure) { // if |cross| == 0.
+ }
+ }
+ gp_XYZ vec = newPos - pN;
+ double r = ( norm * vec ) / norm.SquareModulus(); // param [0,1] on norm
+ newPos = newPos - r * norm;
+
return newPos;
}
//================================================================================
gp_XYZ _LayerEdge::smoothNefPolygon()
+#ifdef OLD_NEF_POLYGON
{
gp_XYZ newPos(0,0,0);
// get a plane to seach a solution on
- vector< gp_XYZ > vecs( _simplices.size() + 1 );
+ vector< gp_XYZ > vecs( _simplices.size() + 1 );
+ size_t i;
+ const double tol = numeric_limits<double>::min();
+ gp_XYZ center(0,0,0);
+ for ( i = 0; i < _simplices.size(); ++i )
+ {
+ vecs[i] = ( SMESH_TNodeXYZ( _simplices[i]._nNext ) -
+ SMESH_TNodeXYZ( _simplices[i]._nPrev ));
+ center += SMESH_TNodeXYZ( _simplices[i]._nPrev );
+ }
+ vecs.back() = vecs[0];
+ center /= _simplices.size();
+
+ gp_XYZ zAxis(0,0,0);
+ for ( i = 0; i < _simplices.size(); ++i )
+ zAxis += vecs[i] ^ vecs[i+1];
+
+ gp_XYZ yAxis;
+ for ( i = 0; i < _simplices.size(); ++i )
+ {
+ yAxis = vecs[i];
+ if ( yAxis.SquareModulus() > tol )
+ break;
+ }
+ gp_XYZ xAxis = yAxis ^ zAxis;
+ // SMESH_TNodeXYZ p0( _simplices[0]._nPrev );
+ // const double tol = 1e-6 * ( p0.Distance( _simplices[1]._nPrev ) +
+ // p0.Distance( _simplices[2]._nPrev ));
+ // gp_XYZ center = smoothLaplacian();
+ // gp_XYZ xAxis, yAxis, zAxis;
+ // for ( i = 0; i < _simplices.size(); ++i )
+ // {
+ // xAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
+ // if ( xAxis.SquareModulus() > tol*tol )
+ // break;
+ // }
+ // for ( i = 1; i < _simplices.size(); ++i )
+ // {
+ // yAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
+ // zAxis = xAxis ^ yAxis;
+ // if ( zAxis.SquareModulus() > tol*tol )
+ // break;
+ // }
+ // if ( i == _simplices.size() ) return newPos;
+
+ yAxis = zAxis ^ xAxis;
+ xAxis /= xAxis.Modulus();
+ yAxis /= yAxis.Modulus();
+
+ // get half-planes of _simplices
+
+ vector< _halfPlane > halfPlns( _simplices.size() );
+ int nbHP = 0;
+ for ( size_t i = 0; i < _simplices.size(); ++i )
+ {
+ gp_XYZ OP1 = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
+ gp_XYZ OP2 = SMESH_TNodeXYZ( _simplices[i]._nNext ) - center;
+ gp_XY p1( OP1 * xAxis, OP1 * yAxis );
+ gp_XY p2( OP2 * xAxis, OP2 * yAxis );
+ gp_XY vec12 = p2 - p1;
+ double dist12 = vec12.Modulus();
+ if ( dist12 < tol )
+ continue;
+ vec12 /= dist12;
+ halfPlns[ nbHP ]._pos = p1;
+ halfPlns[ nbHP ]._dir = vec12;
+ halfPlns[ nbHP ]._inNorm.SetCoord( -vec12.Y(), vec12.X() );
+ ++nbHP;
+ }
+
+ // intersect boundaries of half-planes, define state of intersection points
+ // in relation to all half-planes and calculate internal point of a 2D polygon
+
+ double sumLen = 0;
+ gp_XY newPos2D (0,0);
+
+ enum { UNDEF = -1, NOT_OUT, IS_OUT, NO_INT };
+ typedef std::pair< gp_XY, int > TIntPntState; // coord and isOut state
+ TIntPntState undefIPS( gp_XY(1e100,1e100), UNDEF );
+
+ vector< vector< TIntPntState > > allIntPnts( nbHP );
+ for ( int iHP1 = 0; iHP1 < nbHP; ++iHP1 )
+ {
+ vector< TIntPntState > & intPnts1 = allIntPnts[ iHP1 ];
+ if ( intPnts1.empty() ) intPnts1.resize( nbHP, undefIPS );
+
+ int iPrev = SMESH_MesherHelper::WrapIndex( iHP1 - 1, nbHP );
+ int iNext = SMESH_MesherHelper::WrapIndex( iHP1 + 1, nbHP );
+
+ int nbNotOut = 0;
+ const gp_XY* segEnds[2] = { 0, 0 }; // NOT_OUT points
+
+ for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 )
+ {
+ if ( iHP1 == iHP2 ) continue;
+
+ TIntPntState & ips1 = intPnts1[ iHP2 ];
+ if ( ips1.second == UNDEF )
+ {
+ // find an intersection point of boundaries of iHP1 and iHP2
+
+ if ( iHP2 == iPrev ) // intersection with neighbors is known
+ ips1.first = halfPlns[ iHP1 ]._pos;
+ else if ( iHP2 == iNext )
+ ips1.first = halfPlns[ iHP2 ]._pos;
+ else if ( !halfPlns[ iHP1 ].FindIntersection( halfPlns[ iHP2 ], ips1.first ))
+ ips1.second = NO_INT;
+
+ // classify the found intersection point
+ if ( ips1.second != NO_INT )
+ {
+ ips1.second = NOT_OUT;
+ for ( int i = 0; i < nbHP && ips1.second == NOT_OUT; ++i )
+ if ( i != iHP1 && i != iHP2 &&
+ halfPlns[ i ].IsOut( ips1.first, tol ))
+ ips1.second = IS_OUT;
+ }
+ vector< TIntPntState > & intPnts2 = allIntPnts[ iHP2 ];
+ if ( intPnts2.empty() ) intPnts2.resize( nbHP, undefIPS );
+ TIntPntState & ips2 = intPnts2[ iHP1 ];
+ ips2 = ips1;
+ }
+ if ( ips1.second == NOT_OUT )
+ {
+ ++nbNotOut;
+ segEnds[ bool(segEnds[0]) ] = & ips1.first;
+ }
+ }
+
+ // find a NOT_OUT segment of boundary which is located between
+ // two NOT_OUT int points
+
+ if ( nbNotOut < 2 )
+ continue; // no such a segment
+
+ if ( nbNotOut > 2 )
+ {
+ // sort points along the boundary
+ map< double, TIntPntState* > ipsByParam;
+ for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 )
+ {
+ TIntPntState & ips1 = intPnts1[ iHP2 ];
+ if ( ips1.second != NO_INT )
+ {
+ gp_XY op = ips1.first - halfPlns[ iHP1 ]._pos;
+ double param = op * halfPlns[ iHP1 ]._dir;
+ ipsByParam.insert( make_pair( param, & ips1 ));
+ }
+ }
+ // look for two neighboring NOT_OUT points
+ nbNotOut = 0;
+ map< double, TIntPntState* >::iterator u2ips = ipsByParam.begin();
+ for ( ; u2ips != ipsByParam.end(); ++u2ips )
+ {
+ TIntPntState & ips1 = *(u2ips->second);
+ if ( ips1.second == NOT_OUT )
+ segEnds[ bool( nbNotOut++ ) ] = & ips1.first;
+ else if ( nbNotOut >= 2 )
+ break;
+ else
+ nbNotOut = 0;
+ }
+ }
+
+ if ( nbNotOut >= 2 )
+ {
+ double len = ( *segEnds[0] - *segEnds[1] ).Modulus();
+ sumLen += len;
+
+ newPos2D += 0.5 * len * ( *segEnds[0] + *segEnds[1] );
+ }
+ }
+
+ if ( sumLen > 0 )
+ {
+ newPos2D /= sumLen;
+ newPos = center + xAxis * newPos2D.X() + yAxis * newPos2D.Y();
+ }
+ else
+ {
+ newPos = center;
+ }
+
+ return newPos;
+}
+#else // OLD_NEF_POLYGON
+{ ////////////////////////////////// NEW
+ gp_XYZ newPos(0,0,0);
+
+ // get a plane to seach a solution on
+
size_t i;
- const double tol = numeric_limits<double>::min();
gp_XYZ center(0,0,0);
for ( i = 0; i < _simplices.size(); ++i )
- {
- vecs[i] = ( SMESH_TNodeXYZ( _simplices[i]._nNext ) -
- SMESH_TNodeXYZ( _simplices[i]._nPrev ));
center += SMESH_TNodeXYZ( _simplices[i]._nPrev );
- }
- vecs.back() = vecs[0];
center /= _simplices.size();
+ vector< gp_XYZ > vecs( _simplices.size() + 1 );
+ for ( i = 0; i < _simplices.size(); ++i )
+ vecs[i] = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
+ vecs.back() = vecs[0];
+
+ const double tol = numeric_limits<double>::min();
gp_XYZ zAxis(0,0,0);
for ( i = 0; i < _simplices.size(); ++i )
- zAxis += vecs[i] ^ vecs[i+1];
+ {
+ gp_XYZ cross = vecs[i] ^ vecs[i+1];
+ try {
+ cross.Normalize();
+ if ( cross * zAxis < tol )
+ zAxis += cross.Reversed();
+ else
+ zAxis += cross;
+ }
+ catch (Standard_Failure) { // if |cross| == 0.
+ }
+ }
gp_XYZ yAxis;
for ( i = 0; i < _simplices.size(); ++i )
int nbHP = 0;
for ( size_t i = 0; i < _simplices.size(); ++i )
{
- gp_XYZ OP1 = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center;
- gp_XYZ OP2 = SMESH_TNodeXYZ( _simplices[i]._nNext ) - center;
+ const gp_XYZ& OP1 = vecs[ i ];
+ const gp_XYZ& OP2 = vecs[ i+1 ];
gp_XY p1( OP1 * xAxis, OP1 * yAxis );
gp_XY p2( OP2 * xAxis, OP2 * yAxis );
gp_XY vec12 = p2 - p1;
ips1.first = halfPlns[ iHP1 ]._pos;
else if ( iHP2 == iNext )
ips1.first = halfPlns[ iHP2 ]._pos;
- else if ( !halfPlns[ iHP1 ].FindInterestion( halfPlns[ iHP2 ], ips1.first ))
+ else if ( !halfPlns[ iHP1 ].FindIntersection( halfPlns[ iHP2 ], ips1.first ))
ips1.second = NO_INT;
// classify the found intersection point
return newPos;
}
+#endif // OLD_NEF_POLYGON
//================================================================================
/*!
void _LayerEdge::SetNewLength( double len, _EdgesOnShape& eos, SMESH_MesherHelper& helper )
{
- if ( _len - len > -1e-6 )
+ if ( Is( BLOCKED ))
+ return;
+
+ if ( len > _maxLen )
+ {
+ len = _maxLen;
+ Block( eos.GetData() );
+ }
+ const double lenDelta = len - _len;
+ if ( lenDelta < len * 1e-3 )
{
- //_pos.push_back( _pos.back() );
+ Block( eos.GetData() );
return;
}
continue;
// translate plane of a face
- gp_XYZ baryCenter = oldXYZ + faceNorm.XYZ() * ( len - _len );
+ gp_XYZ baryCenter = oldXYZ + faceNorm.XYZ() * lenDelta;
// find point of intersection of the face plane located at baryCenter
// and _normal located at newXYZ
double d = -( faceNorm.XYZ() * baryCenter ); // d of plane equation ax+by+cz+d=0
double dot = ( faceNorm.XYZ() * _normal );
if ( dot < std::numeric_limits<double>::min() )
- dot = ( len - _len ) * 1e-3;
+ dot = lenDelta * 1e-3;
double step = -( faceNorm.XYZ() * newXYZ + d ) / dot;
newXYZ += step * _normal;
}
}
else
{
- newXYZ = oldXYZ + _normal * ( len - _len ) * _lenFactor;
+ newXYZ = oldXYZ + _normal * lenDelta * _lenFactor;
}
- n->setXYZ( newXYZ.X(), newXYZ.Y(), newXYZ.Z() );
+ n->setXYZ( newXYZ.X(), newXYZ.Y(), newXYZ.Z() );
_pos.push_back( newXYZ );
- _len = len;
if ( !eos._sWOL.IsNull() )
{
double distXYZ[4];
+ bool uvOK = false;
if ( eos.SWOLType() == TopAbs_EDGE )
{
double u = Precision::Infinite(); // to force projection w/o distance check
- helper.CheckNodeU( TopoDS::Edge( eos._sWOL ), n, u, 1e-10, /*force=*/true, distXYZ );
+ uvOK = helper.CheckNodeU( TopoDS::Edge( eos._sWOL ), n, u,
+ /*tol=*/2*lenDelta, /*force=*/true, distXYZ );
_pos.back().SetCoord( u, 0, 0 );
- if ( _nodes.size() > 1 )
+ if ( _nodes.size() > 1 && uvOK )
{
SMDS_EdgePosition* pos = static_cast<SMDS_EdgePosition*>( n->GetPosition() );
pos->SetUParameter( u );
else // TopAbs_FACE
{
gp_XY uv( Precision::Infinite(), 0 );
- helper.CheckNodeUV( TopoDS::Face( eos._sWOL ), n, uv, 1e-10, /*force=*/true, distXYZ );
+ uvOK = helper.CheckNodeUV( TopoDS::Face( eos._sWOL ), n, uv,
+ /*tol=*/2*lenDelta, /*force=*/true, distXYZ );
_pos.back().SetCoord( uv.X(), uv.Y(), 0 );
- if ( _nodes.size() > 1 )
+ if ( _nodes.size() > 1 && uvOK )
{
SMDS_FacePosition* pos = static_cast<SMDS_FacePosition*>( n->GetPosition() );
pos->SetUParameter( uv.X() );
pos->SetVParameter( uv.Y() );
}
}
- n->setXYZ( distXYZ[1], distXYZ[2], distXYZ[3]);
+ if ( uvOK )
+ {
+ n->setXYZ( distXYZ[1], distXYZ[2], distXYZ[3]);
+ }
+ else
+ {
+ n->setXYZ( oldXYZ.X(), oldXYZ.Y(), oldXYZ.Z() );
+ _pos.pop_back();
+ Block( eos.GetData() );
+ return;
+ }
+ }
+
+ _len = len;
+
+ // notify _neibors
+ if ( eos.ShapeType() != TopAbs_FACE )
+ {
+ for ( size_t i = 0; i < _neibors.size(); ++i )
+ //if ( _len > _neibors[i]->GetSmooLen() )
+ _neibors[i]->Set( MOVED );
+
+ Set( MOVED );
}
dumpMove( n ); //debug
}
//================================================================================
/*!
- * \brief Remove last inflation step
+ * \brief Set BLOCKED flag and propagate limited _maxLen to _neibors
*/
//================================================================================
-void _LayerEdge::InvalidateStep( int curStep, const _EdgesOnShape& eos, bool restoreLength )
+void _LayerEdge::Block( _SolidData& data )
{
- if ( _pos.size() > curStep )
+ if ( Is( BLOCKED )) return;
+ Set( BLOCKED );
+
+ _maxLen = _len;
+ std::queue<_LayerEdge*> queue;
+ queue.push( this );
+
+ gp_Pnt pSrc, pTgt, pSrcN, pTgtN;
+ while ( !queue.empty() )
{
- if ( restoreLength )
- _len -= ( _pos[ curStep-1 ] - _pos.back() ).Modulus();
+ _LayerEdge* edge = queue.front(); queue.pop();
+ pSrc = SMESH_TNodeXYZ( edge->_nodes[0] );
+ pTgt = SMESH_TNodeXYZ( edge->_nodes.back() );
+ for ( size_t iN = 0; iN < edge->_neibors.size(); ++iN )
+ {
+ _LayerEdge* neibor = edge->_neibors[iN];
+ if ( neibor->Is( BLOCKED ) ||
+ neibor->_maxLen < edge->_maxLen )
+ continue;
+ pSrcN = SMESH_TNodeXYZ( neibor->_nodes[0] );
+ pTgtN = SMESH_TNodeXYZ( neibor->_nodes.back() );
+ double minDist = pSrc.SquareDistance( pSrcN );
+ minDist = Min( pTgt.SquareDistance( pTgtN ), minDist );
+ minDist = Min( pSrc.SquareDistance( pTgtN ), minDist );
+ minDist = Min( pTgt.SquareDistance( pSrcN ), minDist );
+ double newMaxLen = edge->_maxLen + 0.5 * Sqrt( minDist );
+ if ( neibor->_maxLen > newMaxLen )
+ {
+ neibor->_maxLen = newMaxLen;
+ if ( neibor->_maxLen < neibor->_len )
+ {
+ _EdgesOnShape* eos = data.GetShapeEdges( neibor );
+ neibor->InvalidateStep( neibor->NbSteps(), *eos, /*restoreLength=*/true );
+ neibor->SetNewLength( neibor->_maxLen, *eos, data.GetHelper() );
+ }
+ queue.push( neibor );
+ }
+ }
+ }
+}
+
+//================================================================================
+/*!
+ * \brief Remove last inflation step
+ */
+//================================================================================
+void _LayerEdge::InvalidateStep( size_t curStep, const _EdgesOnShape& eos, bool restoreLength )
+{
+ if ( _pos.size() > curStep && _nodes.size() > 1 )
+ {
_pos.resize( curStep );
- gp_Pnt nXYZ = _pos.back();
+
+ gp_Pnt nXYZ = _pos.back();
SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() );
+ SMESH_TNodeXYZ curXYZ( n );
if ( !eos._sWOL.IsNull() )
{
TopLoc_Location loc;
}
n->setXYZ( nXYZ.X(), nXYZ.Y(), nXYZ.Z() );
dumpMove( n );
+
+ if ( restoreLength )
+ _len -= ( nXYZ.XYZ() - curXYZ ).Modulus() / _lenFactor;
+ }
+}
+
+//================================================================================
+/*!
+ * \brief Smooth a path formed by _pos of a _LayerEdge smoothed on FACE
+ */
+//================================================================================
+
+void _LayerEdge::SmoothPos( const vector< double >& segLen, const double tol )
+{
+ //return;
+ if ( Is( NORMAL_UPDATED ) || _pos.size() <= 2 )
+ return;
+
+ // find the 1st smoothed _pos
+ int iSmoothed = 0;
+ for ( size_t i = 1; i < _pos.size() && !iSmoothed; ++i )
+ {
+ double normDist = ( _pos[i] - _pos[0] ).Crossed( _normal ).SquareModulus();
+ if ( normDist > tol * tol )
+ iSmoothed = i;
+ }
+ if ( !iSmoothed ) return;
+
+ if ( 1 || Is( DISTORTED ))
+ {
+ // if ( segLen[ iSmoothed ] / segLen.back() < 0.5 )
+ // return;
+ for ( size_t i = Max( 1, iSmoothed-1 ); i < _pos.size()-1; ++i )
+ {
+ gp_XYZ midPos = 0.5 * ( _pos[i-1] + _pos[i+1] );
+ gp_XYZ newPos = 0.5 * ( midPos + _pos[i] );
+ _pos[i] = newPos;
+ double midLen = 0.5 * ( segLen[i-1] + segLen[i+1] );
+ double newLen = 0.5 * ( midLen + segLen[i] );
+ const_cast< double& >( segLen[i] ) = newLen;
+ }
+ }
+ else
+ {
+ for ( size_t i = 1; i < _pos.size()-1; ++i )
+ {
+ if ((int) i < iSmoothed && ( segLen[i] / segLen.back() < 0.5 ))
+ continue;
+
+ double wgt = segLen[i] / segLen.back();
+ gp_XYZ normPos = _pos[0] + _normal * wgt * _len;
+ gp_XYZ tgtPos = ( 1 - wgt ) * _pos[0] + wgt * _pos.back();
+ gp_XYZ newPos = ( 1 - wgt ) * normPos + wgt * tgtPos;
+ _pos[i] = newPos;
+ }
}
}
bool _ViscousBuilder::refine(_SolidData& data)
{
- SMESH_MesherHelper helper( *_mesh );
- helper.SetSubShape( data._solid );
+ SMESH_MesherHelper& helper = data.GetHelper();
helper.SetElementsOnShape(false);
Handle(Geom_Curve) curve;
- Handle(Geom_Surface) surface;
+ Handle(ShapeAnalysis_Surface) surface;
TopoDS_Edge geomEdge;
TopoDS_Face geomFace;
- TopoDS_Shape prevSWOL;
TopLoc_Location loc;
double f,l, u;
gp_XY uv;
+ vector< gp_XYZ > pos3D;
bool isOnEdge;
TGeomID prevBaseId = -1;
TNode2Edge* n2eMap = 0;
if ( eos._edges[0]->_nodes.size() < 2 )
continue; // on _noShrinkShapes
+ // get data of a shrink shape
+ isOnEdge = false;
+ geomEdge.Nullify(); geomFace.Nullify();
+ curve.Nullify(); surface.Nullify();
+ if ( !eos._sWOL.IsNull() )
+ {
+ isOnEdge = ( eos.SWOLType() == TopAbs_EDGE );
+ if ( isOnEdge )
+ {
+ geomEdge = TopoDS::Edge( eos._sWOL );
+ curve = BRep_Tool::Curve( geomEdge, loc, f,l);
+ }
+ else
+ {
+ geomFace = TopoDS::Face( eos._sWOL );
+ surface = helper.GetSurface( geomFace );
+ }
+ }
+ else if ( eos.ShapeType() == TopAbs_FACE && eos._toSmooth )
+ {
+ geomFace = TopoDS::Face( eos._shape );
+ surface = helper.GetSurface( geomFace );
+ // propagate _toSmooth back to _eosC1, which was unset in findShapesToSmooth()
+ for ( size_t i = 0; i < eos._eosC1.size(); ++i )
+ {
+ eos._eosC1[ i ]->_toSmooth = true;
+ for ( size_t j = 0; j < eos._eosC1[i]->_edges.size(); ++j )
+ eos._eosC1[i]->_edges[j]->Set( _LayerEdge::SMOOTHED_C1 );
+ }
+ }
+
+ vector< double > segLen;
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
_LayerEdge& edge = *eos._edges[i];
+ if ( edge._pos.size() < 2 )
+ continue;
// get accumulated length of segments
- vector< double > segLen( edge._pos.size() );
+ segLen.resize( edge._pos.size() );
segLen[0] = 0.0;
- for ( size_t j = 1; j < edge._pos.size(); ++j )
- segLen[j] = segLen[j-1] + (edge._pos[j-1] - edge._pos[j] ).Modulus();
+ if ( eos._sWOL.IsNull() )
+ {
+ bool useNormal = true;
+ bool usePos = false;
+ bool smoothed = false;
+ const double preci = 0.1 * edge._len;
+ if ( eos._toSmooth )
+ {
+ gp_Pnt tgtExpected = edge._pos[0] + edge._normal * edge._len;
+ smoothed = tgtExpected.SquareDistance( edge._pos.back() ) > preci * preci;
+ }
+ if ( smoothed )
+ {
+ if ( !surface.IsNull() &&
+ !data._convexFaces.count( eos._shapeID )) // edge smoothed on FACE
+ {
+ useNormal = usePos = false;
+ gp_Pnt2d uv = helper.GetNodeUV( geomFace, edge._nodes[0] );
+ for ( size_t j = 1; j < edge._pos.size() && !useNormal; ++j )
+ {
+ uv = surface->NextValueOfUV( uv, edge._pos[j], preci );
+ if ( surface->Gap() < 2. * edge._len )
+ segLen[j] = surface->Gap();
+ else
+ useNormal = true;
+ }
+ }
+ }
+ else
+ {
+ useNormal = usePos = false;
+ edge._pos[1] = edge._pos.back();
+ edge._pos.resize( 2 );
+ segLen.resize( 2 );
+ segLen[ 1 ] = edge._len;
+ }
+ if ( useNormal && edge.Is( _LayerEdge::NORMAL_UPDATED ))
+ {
+ useNormal = usePos = false;
+ _LayerEdge tmpEdge; // get original _normal
+ tmpEdge._nodes.push_back( edge._nodes[0] );
+ if ( !setEdgeData( tmpEdge, eos, helper, data ))
+ usePos = true;
+ else
+ for ( size_t j = 1; j < edge._pos.size(); ++j )
+ segLen[j] = ( edge._pos[j] - edge._pos[0] ) * tmpEdge._normal;
+ }
+ if ( useNormal )
+ {
+ for ( size_t j = 1; j < edge._pos.size(); ++j )
+ segLen[j] = ( edge._pos[j] - edge._pos[0] ) * edge._normal;
+ }
+ if ( usePos )
+ {
+ for ( size_t j = 1; j < edge._pos.size(); ++j )
+ segLen[j] = segLen[j-1] + ( edge._pos[j-1] - edge._pos[j] ).Modulus();
+ }
+ else
+ {
+ bool swapped = ( edge._pos.size() > 2 );
+ while ( swapped )
+ {
+ swapped = false;
+ for ( size_t j = 1; j < edge._pos.size(); ++j )
+ if ( segLen[j] < segLen[j-1] )
+ {
+ std::swap( segLen[j], segLen[j-1] );
+ std::swap( edge._pos[j], edge._pos[j-1] );
+ swapped = true;
+ }
+ }
+ }
+ // smooth a path formed by edge._pos
+ if (( smoothed ) &&
+ ( eos.ShapeType() == TopAbs_FACE || edge.Is( _LayerEdge::SMOOTHED_C1 )))
+ edge.SmoothPos( segLen, preci );
+ }
+ else if ( eos._isRegularSWOL ) // usual SWOL
+ {
+ for ( size_t j = 1; j < edge._pos.size(); ++j )
+ segLen[j] = segLen[j-1] + (edge._pos[j-1] - edge._pos[j] ).Modulus();
+ }
+ else if ( !surface.IsNull() ) // SWOL surface with singularities
+ {
+ pos3D.resize( edge._pos.size() );
+ for ( size_t j = 0; j < edge._pos.size(); ++j )
+ pos3D[j] = surface->Value( edge._pos[j].X(), edge._pos[j].Y() ).XYZ();
+
+ for ( size_t j = 1; j < edge._pos.size(); ++j )
+ segLen[j] = segLen[j-1] + ( pos3D[j-1] - pos3D[j] ).Modulus();
+ }
// allocate memory for new nodes if it is not yet refined
const SMDS_MeshNode* tgtNode = edge._nodes.back();
edge._nodes[1] = 0;
edge._nodes.back() = tgtNode;
}
- // get data of a shrink shape
- if ( !eos._sWOL.IsNull() && eos._sWOL != prevSWOL )
- {
- isOnEdge = ( eos.SWOLType() == TopAbs_EDGE );
- if ( isOnEdge )
- {
- geomEdge = TopoDS::Edge( eos._sWOL );
- curve = BRep_Tool::Curve( geomEdge, loc, f,l);
- }
- else
- {
- geomFace = TopoDS::Face( eos._sWOL );
- surface = BRep_Tool::Surface( geomFace, loc );
- }
- prevSWOL = eos._sWOL;
- }
// restore shapePos of the last node by already treated _LayerEdge of another _SolidData
const TGeomID baseShapeId = edge._nodes[0]->getshapeId();
if ( baseShapeId != prevBaseId )
{
map< TGeomID, TNode2Edge* >::iterator s2ne = data._s2neMap.find( baseShapeId );
- n2eMap = ( s2ne == data._s2neMap.end() ) ? 0 : n2eMap = s2ne->second;
+ n2eMap = ( s2ne == data._s2neMap.end() ) ? 0 : s2ne->second;
prevBaseId = baseShapeId;
}
_LayerEdge* edgeOnSameNode = 0;
+ bool useExistingPos = false;
if ( n2eMap && (( n2e = n2eMap->find( edge._nodes[0] )) != n2eMap->end() ))
{
edgeOnSameNode = n2e->second;
+ useExistingPos = ( edgeOnSameNode->_len < edge._len );
const gp_XYZ& otherTgtPos = edgeOnSameNode->_pos.back();
SMDS_PositionPtr lastPos = tgtNode->GetPosition();
if ( isOnEdge )
// compute an intermediate position
hi *= f;
hSum += hi;
- while ( hSum > segLen[iSeg] && iSeg < segLen.size()-1)
+ while ( hSum > segLen[iSeg] && iSeg < segLen.size()-1 )
++iSeg;
int iPrevSeg = iSeg-1;
while ( fabs( segLen[iPrevSeg] - segLen[iSeg]) <= zeroLen && iPrevSeg > 0 )
--iPrevSeg;
- double r = ( segLen[iSeg] - hSum ) / ( segLen[iSeg] - segLen[iPrevSeg] );
+ double r = ( segLen[iSeg] - hSum ) / ( segLen[iSeg] - segLen[iPrevSeg] );
gp_Pnt pos = r * edge._pos[iPrevSeg] + (1-r) * edge._pos[iSeg];
SMDS_MeshNode*& node = const_cast< SMDS_MeshNode*& >( edge._nodes[ iStep ]);
if ( !node )
pos = curve->Value( u ).Transformed(loc);
}
+ else if ( eos._isRegularSWOL )
+ {
+ uv.SetCoord( pos.X(), pos.Y() );
+ if ( !node )
+ pos = surface->Value( pos.X(), pos.Y() );
+ }
else
{
uv.SetCoord( pos.X(), pos.Y() );
+ gp_Pnt p = r * pos3D[ iPrevSeg ] + (1-r) * pos3D[ iSeg ];
+ uv = surface->NextValueOfUV( uv, p, BRep_Tool::Tolerance( geomFace )).XY();
if ( !node )
- pos = surface->Value( pos.X(), pos.Y() ).Transformed(loc);
+ pos = surface->Value( uv );
}
}
// create or update the node
// make average pos from new and current parameters
if ( isOnEdge )
{
- u = 0.5 * ( u + helper.GetNodeU( geomEdge, node ));
+ //u = 0.5 * ( u + helper.GetNodeU( geomEdge, node ));
+ if ( useExistingPos )
+ u = helper.GetNodeU( geomEdge, node );
pos = curve->Value( u ).Transformed(loc);
SMDS_EdgePosition* epos = static_cast<SMDS_EdgePosition*>( node->GetPosition() );
}
else
{
- uv = 0.5 * ( uv + helper.GetNodeUV( geomFace, node ));
- pos = surface->Value( uv.X(), uv.Y()).Transformed(loc);
+ //uv = 0.5 * ( uv + helper.GetNodeUV( geomFace, node ));
+ if ( useExistingPos )
+ uv = helper.GetNodeUV( geomFace, node );
+ pos = surface->Value( uv );
SMDS_FacePosition* fpos = static_cast<SMDS_FacePosition*>( node->GetPosition() );
fpos->SetUParameter( uv.X() );
vector< vector<const SMDS_MeshNode*>* > nnVec;
set< vector<const SMDS_MeshNode*>* > nnSet;
- set< int > degenEdgeInd;
- vector<const SMDS_MeshElement*> degenVols;
+ set< int > degenEdgeInd;
+ vector<const SMDS_MeshElement*> degenVols;
+ vector<int> isRiskySWOL;
TopExp_Explorer exp( data._solid, TopAbs_FACE );
for ( ; exp.More(); exp.Next() )
nnVec.resize( nbNodes );
nnSet.clear();
degenEdgeInd.clear();
- int nbZ = 0;
+ isRiskySWOL.resize( nbNodes );
+ size_t maxZ = 0, minZ = std::numeric_limits<size_t>::max();
SMDS_NodeIteratorPtr nIt = face->nodeIterator();
for ( int iN = 0; iN < nbNodes; ++iN )
{
const SMDS_MeshNode* n = nIt->next();
+ _LayerEdge* edge = data._n2eMap[ n ];
const int i = isReversedFace ? nbNodes-1-iN : iN;
- nnVec[ i ] = & data._n2eMap[ n ]->_nodes;
- if ( nnVec[ i ]->size() < 2 )
- degenEdgeInd.insert( iN );
- else
- nbZ = nnVec[ i ]->size();
+ nnVec[ i ] = & edge->_nodes;
+ maxZ = std::max( maxZ, nnVec[ i ]->size() );
+ minZ = std::min( minZ, nnVec[ i ]->size() );
+ //isRiskySWOL[ i ] = edge->Is( _LayerEdge::RISKY_SWOL );
if ( helper.HasDegeneratedEdges() )
nnSet.insert( nnVec[ i ]);
}
- if ( nbZ == 0 )
+
+ if ( maxZ == 0 )
continue;
if ( 0 < nnSet.size() && nnSet.size() < 3 )
continue;
switch ( nbNodes )
{
- case 3:
- switch ( degenEdgeInd.size() )
- {
- case 0: // PENTA
- {
- for ( int iZ = 1; iZ < nbZ; ++iZ )
- helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1],
- (*nnVec[0])[iZ], (*nnVec[1])[iZ], (*nnVec[2])[iZ]);
- break;
- }
- case 1: // PYRAM
+ case 3: // TRIA
+ {
+ // PENTA
+ for ( size_t iZ = 1; iZ < minZ; ++iZ )
+ helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1],
+ (*nnVec[0])[iZ], (*nnVec[1])[iZ], (*nnVec[2])[iZ]);
+
+ for ( size_t iZ = minZ; iZ < maxZ; ++iZ )
{
- int i2 = *degenEdgeInd.begin();
- int i0 = helper.WrapIndex( i2 - 1, nbNodes );
- int i1 = helper.WrapIndex( i2 + 1, nbNodes );
- for ( int iZ = 1; iZ < nbZ; ++iZ )
+ for ( int iN = 0; iN < nbNodes; ++iN )
+ if ( nnVec[ iN ]->size() < iZ+1 )
+ degenEdgeInd.insert( iN );
+
+ if ( degenEdgeInd.size() == 1 ) // PYRAM
+ {
+ int i2 = *degenEdgeInd.begin();
+ int i0 = helper.WrapIndex( i2 - 1, nbNodes );
+ int i1 = helper.WrapIndex( i2 + 1, nbNodes );
helper.AddVolume( (*nnVec[i0])[iZ-1], (*nnVec[i1])[iZ-1],
- (*nnVec[i1])[iZ], (*nnVec[i0])[iZ], (*nnVec[i2])[0]);
- break;
- }
- case 2: // TETRA
- {
- int i3 = !degenEdgeInd.count(0) ? 0 : !degenEdgeInd.count(1) ? 1 : 2;
- for ( int iZ = 1; iZ < nbZ; ++iZ )
- helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1],
- (*nnVec[i3])[iZ]);
- break;
- }
+ (*nnVec[i1])[iZ ], (*nnVec[i0])[iZ ], (*nnVec[i2]).back());
+ }
+ else // TETRA
+ {
+ int i3 = !degenEdgeInd.count(0) ? 0 : !degenEdgeInd.count(1) ? 1 : 2;
+ helper.AddVolume( (*nnVec[ 0 ])[ i3 == 0 ? iZ-1 : nnVec[0]->size()-1 ],
+ (*nnVec[ 1 ])[ i3 == 1 ? iZ-1 : nnVec[1]->size()-1 ],
+ (*nnVec[ 2 ])[ i3 == 2 ? iZ-1 : nnVec[2]->size()-1 ],
+ (*nnVec[ i3 ])[ iZ ]);
+ }
}
- break;
+ break; // TRIA
+ }
+ case 4: // QUAD
+ {
+ // HEX
+ for ( size_t iZ = 1; iZ < minZ; ++iZ )
+ helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1],
+ (*nnVec[2])[iZ-1], (*nnVec[3])[iZ-1],
+ (*nnVec[0])[iZ], (*nnVec[1])[iZ],
+ (*nnVec[2])[iZ], (*nnVec[3])[iZ]);
- case 4:
- switch ( degenEdgeInd.size() )
- {
- case 0: // HEX
+ for ( size_t iZ = minZ; iZ < maxZ; ++iZ )
{
- for ( int iZ = 1; iZ < nbZ; ++iZ )
- helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1],
- (*nnVec[2])[iZ-1], (*nnVec[3])[iZ-1],
- (*nnVec[0])[iZ], (*nnVec[1])[iZ],
- (*nnVec[2])[iZ], (*nnVec[3])[iZ]);
- break;
- }
- case 2: // PENTA?
- {
- int i2 = *degenEdgeInd.begin();
- int i3 = *degenEdgeInd.rbegin();
- bool ok = ( i3 - i2 == 1 );
- if ( i2 == 0 && i3 == 3 ) { i2 = 3; i3 = 0; ok = true; }
- int i0 = helper.WrapIndex( i3 + 1, nbNodes );
- int i1 = helper.WrapIndex( i0 + 1, nbNodes );
- for ( int iZ = 1; iZ < nbZ; ++iZ )
+ for ( int iN = 0; iN < nbNodes; ++iN )
+ if ( nnVec[ iN ]->size() < iZ+1 )
+ degenEdgeInd.insert( iN );
+
+ switch ( degenEdgeInd.size() )
{
+ case 2: // PENTA
+ {
+ int i2 = *degenEdgeInd.begin();
+ int i3 = *degenEdgeInd.rbegin();
+ bool ok = ( i3 - i2 == 1 );
+ if ( i2 == 0 && i3 == 3 ) { i2 = 3; i3 = 0; ok = true; }
+ int i0 = helper.WrapIndex( i3 + 1, nbNodes );
+ int i1 = helper.WrapIndex( i0 + 1, nbNodes );
+
const SMDS_MeshElement* vol =
- helper.AddVolume( (*nnVec[i3])[0], (*nnVec[i0])[iZ], (*nnVec[i0])[iZ-1],
- (*nnVec[i2])[0], (*nnVec[i1])[iZ], (*nnVec[i1])[iZ-1]);
+ helper.AddVolume( nnVec[i3]->back(), (*nnVec[i0])[iZ], (*nnVec[i0])[iZ-1],
+ nnVec[i2]->back(), (*nnVec[i1])[iZ], (*nnVec[i1])[iZ-1]);
if ( !ok && vol )
degenVols.push_back( vol );
}
break;
- }
- case 3: // degen HEX
- {
- const SMDS_MeshNode* nn[8];
- for ( int iZ = 1; iZ < nbZ; ++iZ )
+
+ default: // degen HEX
{
const SMDS_MeshElement* vol =
- helper.AddVolume( nnVec[0]->size() > 1 ? (*nnVec[0])[iZ-1] : (*nnVec[0])[0],
- nnVec[1]->size() > 1 ? (*nnVec[1])[iZ-1] : (*nnVec[1])[0],
- nnVec[2]->size() > 1 ? (*nnVec[2])[iZ-1] : (*nnVec[2])[0],
- nnVec[3]->size() > 1 ? (*nnVec[3])[iZ-1] : (*nnVec[3])[0],
- nnVec[0]->size() > 1 ? (*nnVec[0])[iZ] : (*nnVec[0])[0],
- nnVec[1]->size() > 1 ? (*nnVec[1])[iZ] : (*nnVec[1])[0],
- nnVec[2]->size() > 1 ? (*nnVec[2])[iZ] : (*nnVec[2])[0],
- nnVec[3]->size() > 1 ? (*nnVec[3])[iZ] : (*nnVec[3])[0]);
+ helper.AddVolume( nnVec[0]->size() > iZ-1 ? (*nnVec[0])[iZ-1] : nnVec[0]->back(),
+ nnVec[1]->size() > iZ-1 ? (*nnVec[1])[iZ-1] : nnVec[1]->back(),
+ nnVec[2]->size() > iZ-1 ? (*nnVec[2])[iZ-1] : nnVec[2]->back(),
+ nnVec[3]->size() > iZ-1 ? (*nnVec[3])[iZ-1] : nnVec[3]->back(),
+ nnVec[0]->size() > iZ ? (*nnVec[0])[iZ] : nnVec[0]->back(),
+ nnVec[1]->size() > iZ ? (*nnVec[1])[iZ] : nnVec[1]->back(),
+ nnVec[2]->size() > iZ ? (*nnVec[2])[iZ] : nnVec[2]->back(),
+ nnVec[3]->size() > iZ ? (*nnVec[3])[iZ] : nnVec[3]->back());
degenVols.push_back( vol );
}
+ }
}
- break;
- }
- break;
-
+ break; // HEX
+ }
default:
return error("Not supported type of element", data._index);
// ===========================
// Collect nodes to smooth, as src nodes are not yet replaced by tgt ones
- // and thus all nodes on a FACE connected to 2d elements are to be smoothed
+ // and hence all nodes on a FACE connected to 2d elements are to be smoothed
vector < const SMDS_MeshNode* > smoothNodes;
{
SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
int badNb, shriStep=0, smooStep=0;
_SmoothNode::SmoothType smoothType
= isConcaveFace ? _SmoothNode::ANGULAR : _SmoothNode::LAPLACIAN;
+ SMESH_Comment errMsg;
while ( shrinked )
{
shriStep++;
dumpFunctionEnd();
}
+
+ errMsg.clear();
if ( badNb > 0 )
- return error(SMESH_Comment("Can't shrink 2D mesh on face ") << f2sd->first );
+ errMsg << "Can't shrink 2D mesh on face " << f2sd->first;
if ( shriStep > 200 )
- return error(SMESH_Comment("Infinite loop at shrinking 2D mesh on face ") << f2sd->first );
+ errMsg << "Infinite loop at shrinking 2D mesh on face " << f2sd->first;
+ if ( !errMsg.empty() )
+ break;
// Fix narrow triangles by swapping diagonals
// ---------------------------------------
// _SmoothNode::LAPLACIAN,/*set3D=*/false);
// }
// }
+
} // while ( shrinked )
- // No wrongly shaped faces remain; final smooth. Set node XYZ.
- bool isStructuredFixed = false;
- if ( SMESH_2D_Algo* algo = dynamic_cast<SMESH_2D_Algo*>( sm->GetAlgo() ))
- isStructuredFixed = algo->FixInternalNodes( *data._proxyMesh, F );
- if ( !isStructuredFixed )
+ if ( !errMsg.empty() ) // Try to re-compute the shrink FACE
{
- if ( isConcaveFace ) // fix narrow faces by swapping diagonals
- fixBadFaces( F, helper, /*is2D=*/false, ++shriStep );
+ // remove faces
+ SMESHDS_SubMesh* psm = data._proxyMesh->getFaceSubM( F );
+ {
+ vector< const SMDS_MeshElement* > facesToRm;
+ if ( psm )
+ {
+ facesToRm.reserve( psm->NbElements() );
+ for ( SMDS_ElemIteratorPtr ite = psm->GetElements(); ite->more(); )
+ facesToRm.push_back( ite->next() );
- for ( int st = 3; st; --st )
+ for ( size_t i = 0 ; i < _sdVec.size(); ++i )
+ if (( psm = _sdVec[i]._proxyMesh->getFaceSubM( F )))
+ psm->Clear();
+ }
+ for ( size_t i = 0; i < facesToRm.size(); ++i )
+ getMeshDS()->RemoveFreeElement( facesToRm[i], smDS, /*fromGroups=*/false );
+ }
+ // remove nodes
{
- switch( st ) {
- case 1: smoothType = _SmoothNode::LAPLACIAN; break;
- case 2: smoothType = _SmoothNode::LAPLACIAN; break;
- case 3: smoothType = _SmoothNode::ANGULAR; break;
+ TIDSortedNodeSet nodesToKeep; // nodes of _LayerEdge to keep
+ for ( size_t iS = 0; iS < subEOS.size(); ++iS ) {
+ for ( size_t i = 0; i < subEOS[iS]->_edges.size(); ++i )
+ nodesToKeep.insert( ++( subEOS[iS]->_edges[i]->_nodes.begin() ),
+ subEOS[iS]->_edges[i]->_nodes.end() );
}
- dumpFunction(SMESH_Comment("shrinkFace")<<f2sd->first<<"_st"<<++smooStep); // debug
- for ( size_t i = 0; i < nodesToSmooth.size(); ++i )
+ SMDS_NodeIteratorPtr itn = smDS->GetNodes();
+ while ( itn->more() ) {
+ const SMDS_MeshNode* n = itn->next();
+ if ( !nodesToKeep.count( n ))
+ getMeshDS()->RemoveFreeNode( n, smDS, /*fromGroups=*/false );
+ }
+ }
+ // restore position and UV of target nodes
+ gp_Pnt p;
+ for ( size_t iS = 0; iS < subEOS.size(); ++iS )
+ for ( size_t i = 0; i < subEOS[iS]->_edges.size(); ++i )
+ {
+ _LayerEdge* edge = subEOS[iS]->_edges[i];
+ SMDS_MeshNode* tgtNode = const_cast< SMDS_MeshNode*& >( edge->_nodes.back() );
+ if ( edge->_pos.empty() ) continue;
+ if ( subEOS[iS]->SWOLType() == TopAbs_FACE )
+ {
+ SMDS_FacePosition* pos = static_cast<SMDS_FacePosition*>( tgtNode->GetPosition() );
+ pos->SetUParameter( edge->_pos[0].X() );
+ pos->SetVParameter( edge->_pos[0].Y() );
+ p = surface->Value( edge->_pos[0].X(), edge->_pos[0].Y() );
+ }
+ else
+ {
+ SMDS_EdgePosition* pos = static_cast<SMDS_EdgePosition*>( tgtNode->GetPosition() );
+ pos->SetUParameter( edge->_pos[0].Coord( U_TGT ));
+ p = BRepAdaptor_Curve( TopoDS::Edge( subEOS[iS]->_sWOL )).Value( pos->GetUParameter() );
+ }
+ tgtNode->setXYZ( p.X(), p.Y(), p.Z() );
+ dumpMove( tgtNode );
+ }
+ // shrink EDGE sub-meshes and set proxy sub-meshes
+ UVPtStructVec uvPtVec;
+ set< _Shrinker1D* >::iterator shrIt = eShri1D.begin();
+ for ( shrIt = eShri1D.begin(); shrIt != eShri1D.end(); ++shrIt )
+ {
+ _Shrinker1D* shr = (*shrIt);
+ shr->Compute( /*set3D=*/true, helper );
+
+ // set proxy mesh of EDGEs w/o layers
+ map< double, const SMDS_MeshNode* > nodes;
+ SMESH_Algo::GetSortedNodesOnEdge( getMeshDS(), shr->GeomEdge(),/*skipMedium=*/true, nodes);
+ // remove refinement nodes
+ const SMDS_MeshNode* sn0 = shr->SrcNode(0), *sn1 = shr->SrcNode(1);
+ const SMDS_MeshNode* tn0 = shr->TgtNode(0), *tn1 = shr->TgtNode(1);
+ map< double, const SMDS_MeshNode* >::iterator u2n = nodes.begin();
+ if ( u2n->second == sn0 || u2n->second == sn1 )
{
- nodesToSmooth[i].Smooth( badNb,surface,helper,refSign,
- smoothType,/*set3D=*/st==1 );
+ while ( u2n->second != tn0 && u2n->second != tn1 )
+ ++u2n;
+ nodes.erase( nodes.begin(), u2n );
}
- dumpFunctionEnd();
+ u2n = --nodes.end();
+ if ( u2n->second == sn0 || u2n->second == sn1 )
+ {
+ while ( u2n->second != tn0 && u2n->second != tn1 )
+ --u2n;
+ nodes.erase( ++u2n, nodes.end() );
+ }
+ // set proxy sub-mesh
+ uvPtVec.resize( nodes.size() );
+ u2n = nodes.begin();
+ BRepAdaptor_Curve2d curve( shr->GeomEdge(), F );
+ for ( size_t i = 0; i < nodes.size(); ++i, ++u2n )
+ {
+ uvPtVec[ i ].node = u2n->second;
+ uvPtVec[ i ].param = u2n->first;
+ uvPtVec[ i ].SetUV( curve.Value( u2n->first ).XY() );
+ }
+ StdMeshers_FaceSide fSide( uvPtVec, F, shr->GeomEdge(), _mesh );
+ StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( fSide );
}
- }
- // Set an event listener to clear FACE sub-mesh together with SOLID sub-mesh
- VISCOUS_3D::ToClearSubWithMain( sm, data._solid );
- if ( !getMeshDS()->IsEmbeddedMode() )
- // Log node movement
- for ( size_t i = 0; i < nodesToSmooth.size(); ++i )
+ // set proxy mesh of EDGEs with layers
+ vector< _LayerEdge* > edges;
+ for ( size_t iS = 0; iS < subEOS.size(); ++iS )
+ {
+ _EdgesOnShape& eos = * subEOS[ iS ];
+ if ( eos.ShapeType() != TopAbs_EDGE ) continue;
+
+ const TopoDS_Edge& E = TopoDS::Edge( eos._shape );
+ data.SortOnEdge( E, eos._edges );
+
+ edges.clear();
+ if ( _EdgesOnShape* eov = data.GetShapeEdges( helper.IthVertex( 0, E, /*CumOri=*/false )))
+ if ( !eov->_edges.empty() )
+ edges.push_back( eov->_edges[0] ); // on 1st VERTEX
+
+ edges.insert( edges.end(), eos._edges.begin(), eos._edges.end() );
+
+ if ( _EdgesOnShape* eov = data.GetShapeEdges( helper.IthVertex( 1, E, /*CumOri=*/false )))
+ if ( !eov->_edges.empty() )
+ edges.push_back( eov->_edges[0] ); // on last VERTEX
+
+ uvPtVec.resize( edges.size() );
+ for ( size_t i = 0; i < edges.size(); ++i )
+ {
+ uvPtVec[ i ].node = edges[i]->_nodes.back();
+ uvPtVec[ i ].param = helper.GetNodeU( E, edges[i]->_nodes[0] );
+ uvPtVec[ i ].SetUV( helper.GetNodeUV( F, edges[i]->_nodes.back() ));
+ }
+ BRep_Tool::Range( E, uvPtVec[0].param, uvPtVec.back().param );
+ StdMeshers_FaceSide fSide( uvPtVec, F, E, _mesh );
+ StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( fSide );
+ }
+ // temporary clear the FACE sub-mesh from faces made by refine()
+ vector< const SMDS_MeshElement* > elems;
+ elems.reserve( smDS->NbElements() + smDS->NbNodes() );
+ for ( SMDS_ElemIteratorPtr ite = smDS->GetElements(); ite->more(); )
+ elems.push_back( ite->next() );
+ for ( SMDS_NodeIteratorPtr ite = smDS->GetNodes(); ite->more(); )
+ elems.push_back( ite->next() );
+ smDS->Clear();
+
+ // compute the mesh on the FACE
+ sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
+ sm->ComputeStateEngine( SMESH_subMesh::COMPUTE_SUBMESH );
+
+ // re-fill proxy sub-meshes of the FACE
+ for ( size_t i = 0 ; i < _sdVec.size(); ++i )
+ if (( psm = _sdVec[i]._proxyMesh->getFaceSubM( F )))
+ for ( SMDS_ElemIteratorPtr ite = smDS->GetElements(); ite->more(); )
+ psm->AddElement( ite->next() );
+
+ // re-fill smDS
+ for ( size_t i = 0; i < elems.size(); ++i )
+ smDS->AddElement( elems[i] );
+
+ if ( sm->GetComputeState() != SMESH_subMesh::COMPUTE_OK )
+ return error( errMsg );
+
+ } // end of re-meshing in case of failed smoothing
+ else
+ {
+ // No wrongly shaped faces remain; final smooth. Set node XYZ.
+ bool isStructuredFixed = false;
+ if ( SMESH_2D_Algo* algo = dynamic_cast<SMESH_2D_Algo*>( sm->GetAlgo() ))
+ isStructuredFixed = algo->FixInternalNodes( *data._proxyMesh, F );
+ if ( !isStructuredFixed )
{
- SMESH_TNodeXYZ p ( nodesToSmooth[i]._node );
- getMeshDS()->MoveNode( nodesToSmooth[i]._node, p.X(), p.Y(), p.Z() );
+ if ( isConcaveFace ) // fix narrow faces by swapping diagonals
+ fixBadFaces( F, helper, /*is2D=*/false, ++shriStep );
+
+ for ( int st = 3; st; --st )
+ {
+ switch( st ) {
+ case 1: smoothType = _SmoothNode::LAPLACIAN; break;
+ case 2: smoothType = _SmoothNode::LAPLACIAN; break;
+ case 3: smoothType = _SmoothNode::ANGULAR; break;
+ }
+ dumpFunction(SMESH_Comment("shrinkFace")<<f2sd->first<<"_st"<<++smooStep); // debug
+ for ( size_t i = 0; i < nodesToSmooth.size(); ++i )
+ {
+ nodesToSmooth[i].Smooth( badNb,surface,helper,refSign,
+ smoothType,/*set3D=*/st==1 );
+ }
+ dumpFunctionEnd();
+ }
}
+ if ( !getMeshDS()->IsEmbeddedMode() )
+ // Log node movement
+ for ( size_t i = 0; i < nodesToSmooth.size(); ++i )
+ {
+ SMESH_TNodeXYZ p ( nodesToSmooth[i]._node );
+ getMeshDS()->MoveNode( nodesToSmooth[i]._node, p.X(), p.Y(), p.Z() );
+ }
+ }
+
+ // Set an event listener to clear FACE sub-mesh together with SOLID sub-mesh
+ VISCOUS_3D::ToClearSubWithMain( sm, data._solid );
} // loop on FACES to srink mesh on
if ( eos.SWOLType() == TopAbs_FACE )
{
+ if ( tgtNode->GetPosition()->GetDim() != 2 ) // not inflated edge
+ {
+ edge._pos.clear();
+ return srcNode == tgtNode;
+ }
gp_XY srcUV ( edge._pos[0].X(), edge._pos[0].Y() ); //helper.GetNodeUV( F, srcNode );
gp_XY tgtUV = edge.LastUV( TopoDS::Face( eos._sWOL ), eos ); //helper.GetNodeUV( F, tgtNode );
gp_Vec2d uvDir( srcUV, tgtUV );
}
else // _sWOL is TopAbs_EDGE
{
+ if ( tgtNode->GetPosition()->GetDim() != 1 ) // not inflated edge
+ {
+ edge._pos.clear();
+ return srcNode == tgtNode;
+ }
const TopoDS_Edge& E = TopoDS::Edge( eos._sWOL );
SMESHDS_SubMesh* edgeSM = getMeshDS()->MeshElements( E );
if ( !edgeSM || edgeSM->NbElements() == 0 )
dumpMove( tgtNode );
#endif
}
+
return true;
}
for ( ; n2e != _n2eMap.end(); ++n2e )
{
_LayerEdge* & e = n2e->second;
- if ( e && e->_2neibors )
+ if ( e )
+ {
+ delete e->_curvature;
+ if ( e->_2neibors )
+ delete e->_2neibors->_plnNorm;
delete e->_2neibors;
+ }
delete e;
- e = NULL;
+ e = 0;
}
_n2eMap.clear();
+
+ delete _helper;
+ _helper = 0;
}
+
//================================================================================
/*!
* \brief Keep a _LayerEdge inflated along the EDGE
// Update _nodes
- const SMDS_MeshNode* tgtNode0 = _edges[0] ? _edges[0]->_nodes.back() : 0;
- const SMDS_MeshNode* tgtNode1 = _edges[1] ? _edges[1]->_nodes.back() : 0;
+ const SMDS_MeshNode* tgtNode0 = TgtNode( 0 );
+ const SMDS_MeshNode* tgtNode1 = TgtNode( 1 );
if ( _nodes.empty() )
{
else
{
// remove target node of the _LayerEdge from _nodes
- int nbFound = 0;
+ size_t nbFound = 0;
for ( size_t i = 0; i < _nodes.size(); ++i )
if ( !_nodes[i] || _nodes[i] == tgtNode0 || _nodes[i] == tgtNode1 )
_nodes[i] = 0, nbFound++;