# Name : Finite Elements simulation of the 2D heat equation -\triangle T = f with Neumann boundary condition
# Author : Michaël Ndjinga
# Copyright : CEA Saclay 2021
-# Description : Test solving the diffusion of the temperature T in a solid (default is Uranium).
-# \rho cp dT/dt-\lambda\Delta T=\Phi(T) + \lambda_{sf} (T_{fluid}-T)
-# Heat capacity cp, density \rho, and conductivity \lambda MUST be defined
-# The solid may be extra refrigerated by a fluid with transfer coefficient \lambda_{sf} (functions setFluidTemperature and setHeatTransfertCoeff)
-# The solid may receive some extra heat power \Phi due to nuclear fissions (function setHeatSource)
#================================================================================================================================
def DiffusionEquation_2DSpherical(FECalculation):
- # Prepare for the mesh
+ """ Description : Test solving the diffusion of the temperature T in a solid (default is Uranium).
+ Equation : Thermal diffusion equation \rho cp dT/dt-\lambda\Delta T=\Phi + \lambda_{sf} (T_{fluid}-T)
+ Heat capacity, density, and conductivity of the solid MUST be defined
+ The solid may be extra refrigerated by a fluid with transfer coefficient using functions setFluidTemperature and setHeatTransfertCoeff
+ The solid may receive some extra heat power due to nuclear fissions using function setHeatSource
+ """
+
+ # Prepare for the mesh and initial data
inputfile="../resources/BoxWithMeshWithTriangularCells";
fieldName="Temperature";
spaceDim=2
# set the numerical method
myProblem.setTimeScheme( solverlab.Explicit);
- myProblem.setLinearSolver(solverlab.GMRES,solverlab.ILU,True);
+ myProblem.setLinearSolver(solverlab.GMRES,solverlab.ILU);
# name of result file
if( FECalculation):