# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#
-from smesh import Mesh_Algorithm, AssureGeomPublished, ParseParameters, IsEqual
+##
+# @package NETGENPluginDC
+# Python API for the NETGEN meshing plug-in module.
+
+from smesh_algorithm import Mesh_Algorithm
+from smesh import AssureGeomPublished, ParseParameters, IsEqual
# import NETGENPlugin module if possible
noNETGENPlugin = 0
noNETGENPlugin = 1
pass
-# Types of algorithms
+#----------------------------
+# Mesh algo type identifiers
+#----------------------------
+
+## Algorithm type: Netgen tetrahedron 3D algorithm, see NETGEN_3D_Algorithm
NETGEN_3D = "NETGEN_3D"
+## Algorithm type: Netgen tetrahedron 1D-2D-3D algorithm, see NETGEN_1D2D3D_Algorithm
NETGEN_1D2D3D = "NETGEN_2D3D"
+## Algorithm type: Netgen triangle 1D-2D algorithm, see NETGEN_1D2D_Algorithm
NETGEN_1D2D = "NETGEN_2D"
+## Algorithm type: Netgen triangle 2D algorithm, see NETGEN_2D_Only_Algorithm
NETGEN_2D = "NETGEN_2D_ONLY"
+## Algorithm type: Synonim of NETGEN_1D2D3D, see NETGEN_1D2D3D_Algorithm
NETGEN_FULL = NETGEN_1D2D3D
+## Algorithm type: Synonim of NETGEN_3D, see NETGEN_3D_Algorithm
NETGEN = NETGEN_3D
+## Algorithm type: Synonim of NETGEN_1D2D3D, see NETGEN_1D2D3D_Algorithm
FULL_NETGEN = NETGEN_FULL
+#----------------------------
+# Hypothesis type enumeration
+#----------------------------
+
+## Hypothesis type enumeration: complex hypothesis
+# (full set of parameters can be specified),
+# see NETGEN_Algorithm.Parameters()
SOLE = 0
+## Hypothesis type enumeration: simple hypothesis
+# (only major parameters are specified),
+# see NETGEN_Algorithm.Parameters()
SIMPLE = 1
+#----------------------
# Fineness enumeration
+#----------------------
+
+## Fineness enumeration: very coarse quality of mesh,
+# see NETGEN_Algorithm.SetFineness()
VeryCoarse = 0
+## Fineness enumeration: coarse quality of mesh,
+# see NETGEN_Algorithm.SetFineness()
Coarse = 1
+## Fineness enumeration: moderate quality of mesh,
+# see NETGEN_Algorithm.SetFineness()
Moderate = 2
+## Fineness enumeration: fine quality of mesh,
+# see NETGEN_Algorithm.SetFineness()
Fine = 3
+## Fineness enumeration: very fine quality of mesh,
+# see NETGEN_Algorithm.SetFineness()
VeryFine = 4
+## Fineness enumeration: custom quality of mesh specified by other parameters),
+# see NETGEN_Algorithm.SetFineness()
Custom = 5
+#----------------------
+# Algorithms
+#----------------------
+
## Base of all NETGEN algorithms.
#
+# This class provides common methods for all algorithms implemented by NETGEN plugin.
+# @note This class must not be instantiated directly.
class NETGEN_Algorithm(Mesh_Algorithm):
+ ## Private constructor
+ # @param mesh parent mesh object algorithm is assigned to
+ # @param geom geometry (shape/sub-shape) algorithm is assigned to;
+ # if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
if noNETGENPlugin: print "Warning: NETGENPlugin module unavailable"
self.Create(mesh, geom, self.algoType, "libNETGENEngine.so")
self.params = None
+ pass
- ## Sets MaxSize
- #
+ ## Sets @c MaxSize parameter
+ # @param theSize new value of the @c MaxSize parameter
def SetMaxSize(self, theSize):
- if self.Parameters():
- self.params.SetMaxSize(theSize)
+ if self.Parameters(): self.params.SetMaxSize(theSize)
+ pass
- ## Sets MinSize
- #
+ ## Sets @c MinSize parameter
+ # @param theSize new value of the @c MinSize parameter
def SetMinSize(self, theSize):
- if self.Parameters():
- self.params.SetMinSize(theSize)
-
+ if self.Parameters(): self.params.SetMinSize(theSize)
+ pass
- ## Sets Optimize flag
- #
+ ## Sets @c Optimize flag
+ # @param theVal new value of the @c Optimize parameter
def SetOptimize(self, theVal):
- if self.Parameters():
- self.params.SetOptimize(theVal)
+ if self.Parameters(): self.params.SetOptimize(theVal)
+ pass
- ## Sets Fineness
- # @param theFineness is:
- # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
- #
+ ## Sets @c Fineness parameter
+ # @param theFineness new value of the @c Fineness parameter; it can be:
+ # @ref VeryCoarse, @ref Coarse, @ref Moderate, @ref Fine, @ref VeryFine or @ref Custom
def SetFineness(self, theFineness):
- if self.Parameters():
- self.params.SetFineness(theFineness)
+ if self.Parameters(): self.params.SetFineness(theFineness)
+ pass
- ## Sets GrowthRate
- #
+ ## Sets @c GrowthRate parameter
+ # @param theRate new value of the @c GrowthRate parameter
def SetGrowthRate(self, theRate):
- if self.Parameters():
- self.params.SetGrowthRate(theRate)
+ if self.Parameters(): self.params.SetGrowthRate(theRate)
+ pass
- ## Defines hypothesis having several parameters
- #
+ ## Creates meshing hypothesis according to the chosen algorithm type
+ # and initializes it with default parameters
+ # @param which hypothesis type; can be either @ref SOLE (default) or @ref SIMPLE
+ # @return hypothesis object
def Parameters(self, which=SOLE):
if self.algoType == NETGEN_1D2D:
if which == SIMPLE:
return self.params
+ pass # end of NETGEN_Algorithm class
-## Defines a tetrahedron 1D-2D-3D algorithm
-# It is created by calling Mesh.Triangle( NETGEN_1D2D3D, geom=0 )
+## Tetrahedron 1D-2D-3D algorithm.
#
+# It can be created by calling smesh.Mesh.Tetrahedron( smesh.NETGEN_1D2D3D, geom=0 ).
+# This algorithm generates all 1D (edges), 2D (faces) and 3D (volumes) elements
+# for given geometrical shape.
class NETGEN_1D2D3D_Algorithm(NETGEN_Algorithm):
+ ## name of the dynamic method in smesh.Mesh class
+ # @internal
meshMethod = "Tetrahedron"
+ ## type of algorithm used with helper function in smesh.Mesh class
+ # @internal
algoType = NETGEN_1D2D3D
+ ## doc string of the method
+ # @internal
+ docHelper = "Creates tetrahedron 3D algorithm for solids"
## Private constructor.
+ # @param mesh parent mesh object algorithm is assigned to
+ # @param geom geometry (shape/sub-shape) algorithm is assigned to;
+ # if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
NETGEN_Algorithm.__init__(self, mesh, geom)
+ pass
- ## Sets SecondOrder flag
- #
+ ## Sets @c SecondOrder flag
+ # @param theVal new value of the @c SecondOrder parameter
def SetSecondOrder(self, theVal):
- if self.Parameters():
- self.params.SetSecondOrder(theVal)
+ if self.Parameters(): self.params.SetSecondOrder(theVal)
+ pass
- ## Sets NbSegPerEdge
- #
+ ## Sets @c NbSegPerEdge parameter
+ # @param theVal new value of the @c NbSegPerEdge parameter
def SetNbSegPerEdge(self, theVal):
- if self.Parameters():
- self.params.SetNbSegPerEdge(theVal)
+ if self.Parameters(): self.params.SetNbSegPerEdge(theVal)
+ pass
- ## Sets NbSegPerRadius
- #
+ ## Sets @c NbSegPerRadius parameter
+ # @param theVal new value of the @c NbSegPerRadius parameter
def SetNbSegPerRadius(self, theVal):
- if self.Parameters():
- self.params.SetNbSegPerRadius(theVal)
+ if self.Parameters(): self.params.SetNbSegPerRadius(theVal)
+ pass
- ## Sets QuadAllowed flag.
+ ## Sets @c QuadAllowed flag
+ # @param toAllow new value of the @c QuadAllowed parameter (@c True by default)
def SetQuadAllowed(self, toAllow=True):
- if self.Parameters():
- self.params.SetQuadAllowed(toAllow)
-
+ if self.Parameters(): self.params.SetQuadAllowed(toAllow)
+ pass
## Sets number of segments overriding the value set by SetLocalLength()
- #
+ # @param theVal new value of number of segments parameter
def SetNumberOfSegments(self, theVal):
self.Parameters(SIMPLE).SetNumberOfSegments(theVal)
+ pass
## Sets number of segments overriding the value set by SetNumberOfSegments()
- #
+ # @param theVal new value of local length parameter
def SetLocalLength(self, theVal):
self.Parameters(SIMPLE).SetLocalLength(theVal)
+ pass
- ## Defines "MaxElementArea" parameter of NETGEN_SimpleParameters_3D hypothesis.
+ ## Defines @c MaxElementArea parameter of @c NETGEN_SimpleParameters_3D hypothesis.
# Overrides value set by LengthFromEdges()
+ # @param area new value of @c MaxElementArea parameter
def MaxElementArea(self, area):
self.Parameters(SIMPLE).SetMaxElementArea(area)
+ pass
- ## Defines "LengthFromEdges" parameter of NETGEN_SimpleParameters_3D hypothesis
+ ## Defines @c LengthFromEdges parameter of @c NETGEN_SimpleParameters_3D hypothesis.
# Overrides value set by MaxElementArea()
def LengthFromEdges(self):
self.Parameters(SIMPLE).LengthFromEdges()
+ pass
- ## Defines "LengthFromFaces" parameter of NETGEN_SimpleParameters_3D hypothesis
+ ## Defines @c LengthFromFaces parameter of @c NETGEN_SimpleParameters_3D hypothesis.
# Overrides value set by MaxElementVolume()
def LengthFromFaces(self):
self.Parameters(SIMPLE).LengthFromFaces()
+ pass
- ## Defines "MaxElementVolume" parameter of NETGEN_SimpleParameters_3D hypothesis
+ ## Defines @c MaxElementVolume parameter of @c NETGEN_SimpleParameters_3D hypothesis.
# Overrides value set by LengthFromFaces()
+ # @param vol new value of @c MaxElementVolume parameter
def MaxElementVolume(self, vol):
self.Parameters(SIMPLE).SetMaxElementVolume(vol)
+ pass
+
+ pass # end of NETGEN_1D2D3D_Algorithm class
## Triangle NETGEN 1D-2D algorithm.
-# It is created by calling Mesh.Triangle( NETGEN_1D2D, geom=0 )
#
+# It can be created by calling smesh.Mesh.Triangle( smesh.NETGEN_1D2D, geom=0 )
+#
+# This algorithm generates 1D (edges) and 2D (faces) elements
+# for given geometrical shape.
class NETGEN_1D2D_Algorithm(NETGEN_1D2D3D_Algorithm):
+ ## name of the dynamic method in smesh.Mesh class
+ # @internal
meshMethod = "Triangle"
+ ## type of algorithm used with helper function in smesh.Mesh class
+ # @internal
algoType = NETGEN_1D2D
+ ## doc string of the method
+ # @internal
+ docHelper = "Creates triangle 2D algorithm for faces"
## Private constructor.
+ # @param mesh parent mesh object algorithm is assigned to
+ # @param geom geometry (shape/sub-shape) algorithm is assigned to;
+ # if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
NETGEN_1D2D3D_Algorithm.__init__(self, mesh, geom)
+ pass
+ pass # end of NETGEN_1D2D_Algorithm class
## Triangle NETGEN 2D algorithm
-# It is created by calling Mesh.Triangle( NETGEN_2D, geom=0 )
#
+# It can be created by calling smesh.Mesh.Triangle( smesh.NETGEN_2D, geom=0 )
+#
+# This algorithm generates only 2D (faces) elements for given geometrical shape
+# and, in contrast to NETGEN_1D2D_Algorithm class, should be used in conjunction
+# with other 1D meshing algorithm.
class NETGEN_2D_Only_Algorithm(NETGEN_Algorithm):
+ ## name of the dynamic method in smesh.Mesh class
+ # @internal
meshMethod = "Triangle"
+ ## type of algorithm used with helper function in smesh.Mesh class
+ # @internal
algoType = NETGEN_2D
+ ## doc string of the method
+ # @internal
+ docHelper = "Creates triangle 2D algorithm for faces"
## Private constructor.
+ # @param mesh parent mesh object algorithm is assigned to
+ # @param geom geometry (shape/sub-shape) algorithm is assigned to;
+ # if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
NETGEN_Algorithm.__init__(self, mesh, geom)
+ pass
- ## Sets QuadAllowed flag.
- def SetQuadAllowed(self, toAllow=True):
- if self.Parameters():
- self.params.SetQuadAllowed(toAllow)
-
- ## Defines "MaxElementArea" hypothesis basing on the definition of the maximum area of each triangle
- # @param area for the maximum area of each triangle
- # @param UseExisting if ==true - searches for an existing hypothesis created with the
+ ## Defines @c MaxElementArea parameter of hypothesis basing on the definition of the
+ # maximum area of each triangle
+ # @param area maximum area value of each triangle
+ # @param UseExisting if \c True - searches for an existing hypothesis created with the
# same parameters, else (default) - creates a new one
- #
+ # @return hypothesis object
def MaxElementArea(self, area, UseExisting=0):
compFun = lambda hyp, args: IsEqual(hyp.GetMaxElementArea(), args[0])
hyp = self.Hypothesis("MaxElementArea", [area], UseExisting=UseExisting,
hyp.SetMaxElementArea(area)
return hyp
- ## Defines "LengthFromEdges" hypothesis to build triangles
+ ## Defines @c LengthFromEdges hypothesis to build triangles
# based on the length of the edges taken from the wire
- #
+ # @return hypothesis object
def LengthFromEdges(self):
hyp = self.Hypothesis("LengthFromEdges", UseExisting=1, CompareMethod=self.CompareEqualHyp)
return hyp
- ## Sets QuadAllowed flag.
+ ## Sets @c QuadAllowed flag.
+ # @param toAllow new value of the @c QuadAllowed parameter (@c True by default)
+ # @return hypothesis object
def SetQuadAllowed(self, toAllow=True):
if not self.params:
# use simple hyps
self.Parameters().SetQuadAllowed( toAllow )
return self.params
-## Defines a tetrahedron 3D algorithm
-# It is created by calling Mesh.Tetrahedron()
+ pass # end of NETGEN_2D_Only_Algorithm class
+
+
+## Tetrahedron 3D algorithm
#
+# It can be created by calling smesh.Mesh.Tetrahedron() or smesh.Mesh.Tetrahedron( smesh.NETGEN, geom=0 )
+#
+# This algorithm generates only 3D (volumes) elements for given geometrical shape
+# and, in contrast to NETGEN_1D2D3D_Algorithm class, should be used in conjunction
+# with other 1D and 2D meshing algorithms.
class NETGEN_3D_Algorithm(NETGEN_Algorithm):
+ ## name of the dynamic method in smesh.Mesh class
+ # @internal
meshMethod = "Tetrahedron"
+ ## type of algorithm used with helper function in smesh.Mesh class
+ # @internal
algoType = NETGEN
+ ## flag pointing either this algorithm should be used by default in dynamic method
+ # of smesh.Mesh class
+ # @internal
isDefault = True
+ ## doc string of the method
+ # @internal
+ docHelper = "Creates tetrahedron 3D algorithm for solids"
## Private constructor.
+ # @param mesh parent mesh object algorithm is assigned to
+ # @param geom geometry (shape/sub-shape) algorithm is assigned to;
+ # if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
NETGEN_Algorithm.__init__(self, mesh, geom)
+ pass
- ## Defines "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedron
- # @param vol for the maximum volume of each tetrahedron
- # @param UseExisting if ==true - searches for the existing hypothesis created with
+ ## Defines @c MaxElementVolume hypothesis to specify the maximum volume value of each tetrahedron
+ # @param vol maximum volume value of each tetrahedron
+ # @param UseExisting if \c True - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
+ # @return hypothesis object
def MaxElementVolume(self, vol, UseExisting=0):
compFun = lambda hyp, args: IsEqual(hyp.GetMaxElementVolume(), args[0])
hyp = self.Hypothesis("MaxElementVolume", [vol], UseExisting=UseExisting,
hyp.SetMaxElementVolume(vol)
return hyp
+ pass # end of NETGEN_3D_Algorithm class
+
-# Class just to create NETGEN_1D2D by calling Mesh.Triangle(NETGEN)
+## Triangle (helper) 1D-2D algorithm
+#
+# This is the helper class that is used just to allow creating of create NETGEN_1D2D algorithm
+# by calling smesh.Mesh.Triangle( smesh.NETGEN, geom=0 ); this is required for backward compatibility
+# with old Python scripts.
+#
+# @note This class (and corresponding smesh.Mesh function) is obsolete;
+# use smesh.Mesh.Triangle( smesh.NETGEN_1D2D, geom=0 ) instead.
class NETGEN_1D2D_Algorithm_2(NETGEN_1D2D_Algorithm):
+ ## name of the dynamic method in smesh.Mesh class
+ # @internal
algoType = NETGEN
## Private constructor.
+ # @param mesh parent mesh object algorithm is assigned to
+ # @param geom geometry (shape/sub-shape) algorithm is assigned to;
+ # if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
self.algoType = NETGEN_1D2D
NETGEN_1D2D_Algorithm.__init__(self,mesh, geom)
+ pass
+
+ pass # end of NETGEN_1D2D_Algorithm_2 class
-# Class just to create NETGEN_1D2D3D by calling Mesh.Netgen()
+## Tetrahedron (helper) 1D-2D-3D algorithm.
+#
+# This is the helper class that is used just to allow creating of create NETGEN_1D2D3D
+# by calling smesh.Mesh.Netgen(); this is required for backward compatibility with old Python scripts.
+#
+# @note This class (and corresponding smesh.Mesh function) is obsolete;
+# use smesh.Mesh.Tetrahedron( smesh.NETGEN_1D2D3D, geom=0 ) instead.
class NETGEN_1D2D3D_Algorithm_2(NETGEN_1D2D3D_Algorithm):
+ ## name of the dynamic method in smesh.Mesh class
+ # @internal
meshMethod = "Netgen"
+ ## doc string of the method
+ # @internal
+ docHelper = "Deprecated, used only for compatibility! See Tetrahedron() method."
## Private constructor.
+ # @param mesh parent mesh object algorithm is assigned to
+ # @param geom geometry (shape/sub-shape) algorithm is assigned to;
+ # if it is @c 0 (default), the algorithm is assigned to the main shape
def __init__(self, mesh, geom=0):
NETGEN_1D2D3D_Algorithm.__init__(self,mesh, geom)
+ pass
+
+ pass # end of NETGEN_1D2D3D_Algorithm_2 class
// Prepare OCC geometry
// -------------------------
netgen::OCCGeometry occgeo;
- PrepareOCCgeometry( occgeo, _shape, *_mesh );
+ list< SMESH_subMesh* > meshedSM[3]; // for 0-2 dimensions
+ NETGENPlugin_Internals internals( *_mesh, _shape, _isVolume );
+ PrepareOCCgeometry( occgeo, _shape, *_mesh, meshedSM, &internals );
bool tooManyElems = false;
const int hugeNb = std::numeric_limits<int>::max() / 100;
// evaluate 1D
// ----------------
// pass 1D simple parameters to NETGEN
- if ( _simpleHyp ) {
- if ( int nbSeg = _simpleHyp->GetNumberOfSegments() ) {
+ if ( _simpleHyp )
+ {
+ // not to RestrictLocalH() according to curvature during MESHCONST_ANALYSE
+ mparams.uselocalh = false;
+ mparams.grading = 0.8; // not limitited size growth
+
+ if ( _simpleHyp->GetNumberOfSegments() )
// nb of segments
- mparams.segmentsperedge = nbSeg + 0.1;
mparams.maxh = occgeo.boundingbox.Diam();
- mparams.minh = GetDefaultMinSize( _shape, mparams.maxh );
- mparams.grading = 0.01;
- }
- else {
+ else
// segment length
- mparams.segmentsperedge = 1;
mparams.maxh = _simpleHyp->GetLocalLength();
- }
}
+
+ if ( mparams.maxh == 0.0 )
+ mparams.maxh = occgeo.boundingbox.Diam();
+ if ( _simpleHyp || ( mparams.minh == 0.0 && _fineness != NETGENPlugin_Hypothesis::UserDefined))
+ mparams.minh = GetDefaultMinSize( _shape, mparams.maxh );
+
// let netgen create ngMesh and calculate element size on not meshed shapes
NETGENPlugin_NetgenLibWrapper ngLib;
netgen::Mesh *ngMesh = NULL;
char *optstr = 0;
int startWith = netgen::MESHCONST_ANALYSE;
- int endWith = netgen::MESHCONST_MESHEDGES;
+ int endWith = netgen::MESHCONST_ANALYSE;
int err = netgen::OCCGenerateMesh(occgeo, ngMesh, startWith, endWith, optstr);
#ifdef WITH_SMESH_CANCEL_COMPUTE
if(netgen::multithread.terminate)
sm->GetComputeError().reset( new SMESH_ComputeError( COMPERR_ALGO_FAILED ));
return false;
}
-
+ if ( _simpleHyp )
+ {
+ // Pass 1D simple parameters to NETGEN
+ // --------------------------------
+ int nbSeg = _simpleHyp->GetNumberOfSegments();
+ double segSize = _simpleHyp->GetLocalLength();
+ for ( int iE = 1; iE <= occgeo.emap.Extent(); ++iE )
+ {
+ const TopoDS_Edge& e = TopoDS::Edge( occgeo.emap(iE));
+ if ( nbSeg )
+ segSize = SMESH_Algo::EdgeLength( e ) / ( nbSeg - 0.4 );
+ setLocalSize( e, segSize, *ngMesh );
+ }
+ }
+ else // if ( ! _simpleHyp )
+ {
+ // Local size on vertices and edges
+ // --------------------------------
+ for(std::map<int,double>::const_iterator it=EdgeId2LocalSize.begin(); it!=EdgeId2LocalSize.end(); it++)
+ {
+ int key = (*it).first;
+ double hi = (*it).second;
+ const TopoDS_Shape& shape = ShapesWithLocalSize.FindKey(key);
+ const TopoDS_Edge& e = TopoDS::Edge(shape);
+ setLocalSize( e, hi, *ngMesh );
+ }
+ for(std::map<int,double>::const_iterator it=VertexId2LocalSize.begin(); it!=VertexId2LocalSize.end(); it++)
+ {
+ int key = (*it).first;
+ double hi = (*it).second;
+ const TopoDS_Shape& shape = ShapesWithLocalSize.FindKey(key);
+ const TopoDS_Vertex& v = TopoDS::Vertex(shape);
+ gp_Pnt p = BRep_Tool::Pnt(v);
+ NETGENPlugin_Mesher::RestrictLocalSize( *ngMesh, p.XYZ(), hi );
+ }
+ for(map<int,double>::const_iterator it=FaceId2LocalSize.begin();
+ it!=FaceId2LocalSize.end(); it++)
+ {
+ int key = (*it).first;
+ double val = (*it).second;
+ const TopoDS_Shape& shape = ShapesWithLocalSize.FindKey(key);
+ int faceNgID = occgeo.fmap.FindIndex(shape);
+ occgeo.SetFaceMaxH(faceNgID, val);
+ for ( TopExp_Explorer edgeExp( shape, TopAbs_EDGE ); edgeExp.More(); edgeExp.Next() )
+ setLocalSize( TopoDS::Edge( edgeExp.Current() ), val, *ngMesh );
+ }
+ }
// calculate total nb of segments and length of edges
double fullLen = 0.0;
int fullNbSeg = 0;