.. _section_ref_algorithm_KalmanFilter_examples:
.. include:: snippets/Header2Algo09.rst
+.. --------- ..
.. include:: scripts/simple_KalmanFilter1.rst
.. literalinclude:: scripts/simple_KalmanFilter1.py
.. include:: snippets/Header2Algo10.rst
.. literalinclude:: scripts/simple_KalmanFilter1.res
+ :language: none
.. include:: snippets/Header2Algo11.rst
:align: center
:width: 90%
+.. --------- ..
.. include:: scripts/simple_KalmanFilter2.rst
.. literalinclude:: scripts/simple_KalmanFilter2.py
.. include:: snippets/Header2Algo10.rst
.. literalinclude:: scripts/simple_KalmanFilter2.res
+ :language: none
.. include:: snippets/Header2Algo11.rst
case = adaoBuilder.New()
case.setBackground( Vector = array([0., 1., 2.]), Stored=True )
case.setBackgroundError( ScalarSparseMatrix = 1. )
-case.setObservation( Vector=array([10., 11., 12.]), Stored=True )
+case.setObservation( Vector = array([10., 11., 12.]), Stored=True )
case.setObservationError( ScalarSparseMatrix = 1. )
-case.setObservationOperator( Matrix=array([[1., 0., 0.],
- [0., 1., 0.],
- [0., 0., 1.]]), )
+case.setObservationOperator( Matrix = array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]]), )
case.setAlgorithmParameters(
Algorithm='Blue',
Parameters={
case = adaoBuilder.New()
case.setBackground( Vector = array([0., 1., 2.]), Stored=True )
case.setBackgroundError( ScalarSparseMatrix = 1. )
-case.setObservation( Vector=array([10., 11., 12.]), Stored=True )
+case.setObservation( Vector = array([10., 11., 12.]), Stored=True )
case.setObservationError( ScalarSparseMatrix = 1. )
-case.setObservationOperator( Matrix=array([[1., 0., 0.],
- [0., 1., 0.],
- [0., 0., 1.]]), )
+case.setObservationOperator( Matrix = array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]]), )
case.setAlgorithmParameters(
Algorithm='ExtendedBlue',
Parameters={
.. index:: single: KalmanFilter (example)
+First example
+.............
+
The Kalman Filter can be used for a **reanalysis of observations of a given
dynamical model**. It is because the whole set of the observation full history
is already known at the beginning of the time windows that it is called
+Second example
+..............
+
The Kalman filter can also be used for a **running analysis of the observations
of a given dynamic model**. In this case, the analysis is conducted
iteratively, at the arrival of each observation.
.. _section_ref_algorithm_KalmanFilter_examples:
.. include:: snippets/Header2Algo09.rst
+.. --------- ..
.. include:: scripts/simple_KalmanFilter1.rst
.. literalinclude:: scripts/simple_KalmanFilter1.py
:align: center
:width: 90%
+.. --------- ..
.. include:: scripts/simple_KalmanFilter2.rst
.. literalinclude:: scripts/simple_KalmanFilter2.py
.. index:: single: KalmanFilter (exemple)
+Premier exemple
+...............
+
Le filtre de Kalman peut être utilisé pour une **réanalyse des observations
d'un modèle dynamique donné**. C'est parce que l'ensemble de l'historique
complet de l'observation est déjà connu au début des fenêtres temporelles qu'on
+Deuxième exemple
+................
+
Le filtre de Kalman peut aussi être utilisé pour une **analyse courante des
observations d'un modèle dynamique donné**. Dans ce cas, l'analyse est conduite
de manière itérative, lors de l'arrivée de chaque observation.
__isOk = True
elif "_iterator" in type(__sequence).__name__:
__isOk = True
+ elif "itertools" in str(type(__sequence)):
+ __isOk = True
else:
__isOk = False
if __check and not __isOk: