]> SALOME platform Git repositories - modules/adao.git/commitdiff
Salome HOME
Updating documentation by review and snippets (8): EN part
authorJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Sat, 9 Mar 2019 16:57:20 +0000 (17:57 +0100)
committerJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Sat, 9 Mar 2019 16:57:20 +0000 (17:57 +0100)
21 files changed:
doc/en/intro.rst
doc/en/ref_algorithm_3DVAR.rst
doc/en/ref_algorithm_4DVAR.rst
doc/en/ref_algorithm_AdjointTest.rst
doc/en/ref_algorithm_Blue.rst
doc/en/ref_algorithm_DerivativeFreeOptimization.rst
doc/en/ref_algorithm_DifferentialEvolution.rst
doc/en/ref_algorithm_EnsembleBlue.rst
doc/en/ref_algorithm_EnsembleKalmanFilter.rst
doc/en/ref_algorithm_ExtendedBlue.rst
doc/en/ref_algorithm_ExtendedKalmanFilter.rst
doc/en/ref_algorithm_GradientTest.rst
doc/en/ref_algorithm_KalmanFilter.rst
doc/en/ref_algorithm_LinearityTest.rst
doc/en/ref_algorithm_NonLinearLeastSquares.rst
doc/en/ref_algorithm_ObserverTest.rst
doc/en/ref_algorithm_ParticleSwarmOptimization.rst
doc/en/ref_algorithm_QuantileRegression.rst
doc/en/ref_algorithm_SamplingTest.rst
doc/en/ref_output_variables.rst
doc/en/reference.rst

index f45d60da11ad42a13aac089eddb36fee63085c81..fbc368d54152449b9732840846769df5cec2a8d2 100644 (file)
@@ -28,20 +28,26 @@ Introduction to ADAO
 ================================================================================
 
 The aim of the ADAO module is **to help using data assimilation or optimization
-methodology in conjunction with other modules or simulation codes in SALOME**.
-The ADAO module provides interface to some standard algorithms of data
-assimilation or optimization, and allows integration of their use in a SALOME
-study. Calculation or simulation modules have to provide one or more specific
-calling methods in order to be callable in the SALOME/ADAO framework, and all
-the SALOME modules can be used through YACS integration of ADAO.
+methodology in conjunction with other modules or simulation codes in Python
+[Python]_ or SALOME context [Salome]_**. The ADAO module provides a simple
+interface to some standard algorithms of data assimilation or optimization, as
+well as test or verification ones. It allows integration of their use in a
+Python or SALOME study. Calculation or simulation user modules have to provide
+one or more specific calling methods in order to be callable in the Python or
+SALOME framework. All the SALOME modules can be used through Python or YACS
+integration.
 
 Its main objective is **to provide the use of various standard data
-assimilation or optimization methods, while remaining easy to use and providing
-a path to help the implementation**. For an end user, having already gathered
-his physical input information, it's a matter of "point\&click" to build an
-ADAO valid case and to evaluate it.
+assimilation or optimization methods, while remaining easy to setup, and
+providing a simplified path to help the implementation**. For the end user, who
+has previously collected information on his physical problem, the environment
+allows him to have an approach focused on simply declaring this information to
+build a valid ADAO case, to evaluate it, and to draw the physical results he
+needs
 
 The module covers a wide variety of practical applications, in a robust way,
-allowing real engineering applications but also quick experimental methodology
-setup to be performed. Its methodological and numerical scalability gives way to
-extend the application domain.
+allowing real engineering applications, but also quick experimental methodology
+setup to be performed. Its methodological and numerical scalability give way to
+extend its applied domain. It is based on usage of other SALOME modules, namely
+YACS and EFICAS if they are available, and on usage of a generic underlying
+data assimilation library.
index f5709a36b1aa18bdc616930f08085011bed89ac5..28cbe2d55077b1078e3a690337802347a2f6818c 100644 (file)
@@ -27,8 +27,8 @@
 Calculation algorithm "*3DVAR*"
 -------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm performs a state estimation by variational minimization of the
 classical :math:`J` function in static data assimilation:
@@ -38,161 +38,169 @@ classical :math:`J` function in static data assimilation:
 which is usually designed as the "*3D-VAR*" function (see for example
 [Talagrand97]_).
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/Background.rst
 
-  .. include:: snippets/Background.rst
+.. include:: snippets/BackgroundError.rst
 
-  .. include:: snippets/BackgroundError.rst
+.. include:: snippets/Observation.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/ObservationError.rst
 
-  .. include:: snippets/ObservationError.rst
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03AdOp.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allows to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/BoundsWithNone.rst
 
-The options of the algorithm are the following:
+.. include:: snippets/CostDecrementTolerance.rst
 
-  Minimizer
-    .. index:: single: Minimizer
+.. include:: snippets/GradientNormTolerance.rst
 
-    This key allows to choose the optimization minimizer. The default choice is
-    "LBFGSB", and the possible ones are "LBFGSB" (nonlinear constrained
-    minimizer, see [Byrd95]_, [Morales11]_ and [Zhu97]_), "TNC" (nonlinear
-    constrained minimizer), "CG" (nonlinear unconstrained minimizer), "BFGS"
-    (nonlinear unconstrained minimizer), "NCG" (Newton CG minimizer). It is
-    strongly recommended to stay with the default.
+.. include:: snippets/MaximumNumberOfSteps.rst
 
-    Example :
-    ``{"Minimizer":"LBFGSB"}``
+Minimizer
+  .. index:: single: Minimizer
 
-  .. include:: snippets/BoundsWithNone.rst
+  This key allows to choose the optimization minimizer. The default choice is
+  "LBFGSB", and the possible ones are "LBFGSB" (nonlinear constrained
+  minimizer, see [Byrd95]_, [Morales11]_ and [Zhu97]_), "TNC" (nonlinear
+  constrained minimizer), "CG" (nonlinear unconstrained minimizer), "BFGS"
+  (nonlinear unconstrained minimizer), "NCG" (Newton CG minimizer). It is
+  strongly recommended to stay with the default.
 
-  .. include:: snippets/MaximumNumberOfSteps.rst
+  Example :
+  ``{"Minimizer":"LBFGSB"}``
 
-  .. include:: snippets/CostDecrementTolerance.rst
+.. include:: snippets/NumberOfSamplesForQuantiles.rst
 
-  .. include:: snippets/ProjectedGradientTolerance.rst
+.. include:: snippets/ProjectedGradientTolerance.rst
 
-  .. include:: snippets/GradientNormTolerance.rst
+.. include:: snippets/Quantiles.rst
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+.. include:: snippets/SetSeed.rst
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["APosterioriCorrelations",
-    "APosterioriCovariance", "APosterioriStandardDeviations",
-    "APosterioriVariances", "BMA", "CostFunctionJ", "CostFunctionJb",
-    "CostFunctionJo", "CostFunctionJAtCurrentOptimum",
-    "CostFunctionJbAtCurrentOptimum", "CostFunctionJoAtCurrentOptimum",
-    "CurrentOptimum", "CurrentState", "IndexOfOptimum", "Innovation",
-    "InnovationAtCurrentState", "MahalanobisConsistency", "OMA", "OMB",
-    "SigmaObs2", "SimulatedObservationAtBackground",
-    "SimulatedObservationAtCurrentOptimum",
-    "SimulatedObservationAtCurrentState", "SimulatedObservationAtOptimum",
-    "SimulationQuantiles"].
+.. include:: snippets/SimulationForQuantiles.rst
 
-    Example :
-    ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-  .. include:: snippets/Quantiles.rst
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "APosterioriCorrelations",
+  "APosterioriCovariance",
+  "APosterioriStandardDeviations",
+  "APosterioriVariances",
+  "BMA",
+  "CostFunctionJ",
+  "CostFunctionJAtCurrentOptimum",
+  "CostFunctionJb",
+  "CostFunctionJbAtCurrentOptimum",
+  "CostFunctionJo",
+  "CostFunctionJoAtCurrentOptimum",
+  "CurrentOptimum",
+  "CurrentState",
+  "IndexOfOptimum",
+  "Innovation",
+  "InnovationAtCurrentState",
+  "JacobianMatrixAtBackground",
+  "JacobianMatrixAtOptimum",
+  "KalmanGainAtOptimum",
+  "MahalanobisConsistency",
+  "OMA",
+  "OMB",
+  "SigmaObs2",
+  "SimulatedObservationAtBackground",
+  "SimulatedObservationAtCurrentOptimum",
+  "SimulatedObservationAtCurrentState",
+  "SimulatedObservationAtOptimum",
+  "SimulationQuantiles",
+  ].
 
-  .. include:: snippets/SetSeed.rst
+  Example :
+  ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
 
-  .. include:: snippets/NumberOfSamplesForQuantiles.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-  .. include:: snippets/SimulationForQuantiles.rst
+.. include:: snippets/Analysis.rst
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+.. include:: snippets/CostFunctionJ.rst
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. include:: snippets/CostFunctionJb.rst
 
-The unconditional outputs of the algorithm are the following:
+.. include:: snippets/CostFunctionJo.rst
 
-  .. include:: snippets/Analysis.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-  .. include:: snippets/CostFunctionJ.rst
+.. include:: snippets/APosterioriCorrelations.rst
 
-  .. include:: snippets/CostFunctionJb.rst
+.. include:: snippets/APosterioriCovariance.rst
 
-  .. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/APosterioriStandardDeviations.rst
 
-The conditional outputs of the algorithm are the following:
+.. include:: snippets/APosterioriVariances.rst
 
-  .. include:: snippets/APosterioriCorrelations.rst
+.. include:: snippets/BMA.rst
 
-  .. include:: snippets/APosterioriCovariance.rst
+.. include:: snippets/CostFunctionJAtCurrentOptimum.rst
 
-  .. include:: snippets/APosterioriStandardDeviations.rst
+.. include:: snippets/CostFunctionJbAtCurrentOptimum.rst
 
-  .. include:: snippets/APosterioriVariances.rst
+.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
 
-  .. include:: snippets/BMA.rst
+.. include:: snippets/CurrentOptimum.rst
 
-  .. include:: snippets/CostFunctionJAtCurrentOptimum.rst
+.. include:: snippets/CurrentState.rst
 
-  .. include:: snippets/CostFunctionJbAtCurrentOptimum.rst
+.. include:: snippets/IndexOfOptimum.rst
 
-  .. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/Innovation.rst
 
-  .. include:: snippets/CurrentOptimum.rst
+.. include:: snippets/InnovationAtCurrentState.rst
 
-  .. include:: snippets/CurrentState.rst
+.. include:: snippets/JacobianMatrixAtBackground.rst
 
-  .. include:: snippets/IndexOfOptimum.rst
+.. include:: snippets/JacobianMatrixAtOptimum.rst
 
-  .. include:: snippets/Innovation.rst
+.. include:: snippets/KalmanGainAtOptimum.rst
 
-  .. include:: snippets/InnovationAtCurrentState.rst
+.. include:: snippets/MahalanobisConsistency.rst
 
-  .. include:: snippets/MahalanobisConsistency.rst
+.. include:: snippets/OMA.rst
 
-  .. include:: snippets/OMA.rst
+.. include:: snippets/OMB.rst
 
-  .. include:: snippets/OMB.rst
+.. include:: snippets/SigmaObs2.rst
 
-  .. include:: snippets/SigmaObs2.rst
+.. include:: snippets/SimulatedObservationAtBackground.rst
 
-  .. include:: snippets/SimulatedObservationAtBackground.rst
+.. include:: snippets/SimulatedObservationAtCurrentOptimum.rst
 
-  .. include:: snippets/SimulatedObservationAtCurrentOptimum.rst
+.. include:: snippets/SimulatedObservationAtCurrentState.rst
 
-  .. include:: snippets/SimulatedObservationAtCurrentState.rst
+.. include:: snippets/SimulatedObservationAtOptimum.rst
 
-  .. include:: snippets/SimulatedObservationAtOptimum.rst
+.. include:: snippets/SimulationQuantiles.rst
 
-  .. include:: snippets/SimulationQuantiles.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-See also
-++++++++
+- :ref:`section_ref_algorithm_Blue`
+- :ref:`section_ref_algorithm_ExtendedBlue`
+- :ref:`section_ref_algorithm_LinearityTest`
 
-References to other sections:
-  - :ref:`section_ref_algorithm_Blue`
-  - :ref:`section_ref_algorithm_ExtendedBlue`
-  - :ref:`section_ref_algorithm_LinearityTest`
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo07.rst
 
-Bibliographical references:
-  - [Byrd95]_
-  - [Morales11]_
-  - [Talagrand97]_
-  - [Zhu97]_
+- [Byrd95]_
+- [Morales11]_
+- [Talagrand97]_
+- [Zhu97]_
index dba0d8223bd70d8f3e4c3cc5291c309bb0743a0f..d12a2dd376feb50eccdef480a7735a9efc52fb05 100644 (file)
 Calculation algorithm "*4DVAR*"
 -------------------------------
 
-.. warning::
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo00.rst
 
-  in its present version, this algorithm is experimental, and so changes can be
-  required in forthcoming versions.
-
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm realizes an estimation of the state of a dynamic system, by a
 variational minimization method of the classical :math:`J` function in data
@@ -47,124 +45,115 @@ evolution operators, its application domain is similar to the one of Kalman
 filters, specially the :ref:`section_ref_algorithm_ExtendedKalmanFilter` or the
 :ref:`section_ref_algorithm_UnscentedKalmanFilter`.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
-
-
-The general required commands, available in the editing user interface, are the
-following:
-
-  .. include:: snippets/Background.rst
-
-  .. include:: snippets/BackgroundError.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-  .. include:: snippets/EvolutionError.rst
+.. include:: snippets/Background.rst
 
-  .. include:: snippets/EvolutionModel.rst
+.. include:: snippets/BackgroundError.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/EvolutionError.rst
 
-  .. include:: snippets/ObservationError.rst
+.. include:: snippets/EvolutionModel.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. include:: snippets/Observation.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allows to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/ObservationError.rst
 
-The options of the algorithm are the following:
+.. include:: snippets/ObservationOperator.rst
 
-  Minimizer
-    .. index:: single: Minimizer
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03AdOp.rst
 
-    This key allows to choose the optimization minimizer. The default choice is
-    "LBFGSB", and the possible ones are "LBFGSB" (nonlinear constrained
-    minimizer, see [Byrd95]_, [Morales11]_ and [Zhu97]_), "TNC" (nonlinear
-    constrained minimizer), "CG" (nonlinear unconstrained minimizer), "BFGS"
-    (nonlinear unconstrained minimizer), "NCG" (Newton CG minimizer). It is
-    strongly recommended to stay with the default.
+Minimizer
+  .. index:: single: Minimizer
 
-    Example :
-    ``{"Minimizer":"LBFGSB"}``
+  This key allows to choose the optimization minimizer. The default choice is
+  "LBFGSB", and the possible ones are "LBFGSB" (nonlinear constrained
+  minimizer, see [Byrd95]_, [Morales11]_ and [Zhu97]_), "TNC" (nonlinear
+  constrained minimizer), "CG" (nonlinear unconstrained minimizer), "BFGS"
+  (nonlinear unconstrained minimizer), "NCG" (Newton CG minimizer). It is
+  strongly recommended to stay with the default.
 
-  .. include:: snippets/BoundsWithNone.rst
+  Example :
+  ``{"Minimizer":"LBFGSB"}``
 
-  .. include:: snippets/ConstrainedBy.rst
+.. include:: snippets/BoundsWithNone.rst
 
-  .. include:: snippets/MaximumNumberOfSteps.rst
+.. include:: snippets/ConstrainedBy.rst
 
-  .. include:: snippets/CostDecrementTolerance.rst
+.. include:: snippets/MaximumNumberOfSteps.rst
 
-  .. include:: snippets/EstimationOf.rst
+.. include:: snippets/CostDecrementTolerance.rst
 
-  .. include:: snippets/ProjectedGradientTolerance.rst
+.. include:: snippets/EstimationOf.rst
 
-  .. include:: snippets/GradientNormTolerance.rst
+.. include:: snippets/ProjectedGradientTolerance.rst
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+.. include:: snippets/GradientNormTolerance.rst
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["BMA", "CostFunctionJ",
-    "CostFunctionJb", "CostFunctionJo", "CostFunctionJAtCurrentOptimum",
-    "CostFunctionJbAtCurrentOptimum", "CostFunctionJoAtCurrentOptimum",
-    "CurrentOptimum", "CurrentState", "IndexOfOptimum"].
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-    Example : ``{"StoreSupplementaryCalculations":["BMA", "CurrentState"]}``
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "BMA",
+  "CostFunctionJ",
+  "CostFunctionJb",
+  "CostFunctionJo",
+  "CostFunctionJAtCurrentOptimum",
+  "CostFunctionJbAtCurrentOptimum",
+  "CostFunctionJoAtCurrentOptimum",
+  "CurrentOptimum",
+  "CurrentState",
+  "IndexOfOptimum",
+  ].
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+  Example : ``{"StoreSupplementaryCalculations":["BMA", "CurrentState"]}``
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-The unconditional outputs of the algorithm are the following:
+.. include:: snippets/Analysis.rst
 
-  .. include:: snippets/Analysis.rst
+.. include:: snippets/CostFunctionJ.rst
 
-  .. include:: snippets/CostFunctionJ.rst
+.. include:: snippets/CostFunctionJb.rst
 
-  .. include:: snippets/CostFunctionJb.rst
+.. include:: snippets/CostFunctionJo.rst
 
-  .. include:: snippets/CostFunctionJo.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-The conditional outputs of the algorithm are the following:
+.. include:: snippets/BMA.rst
 
-  .. include:: snippets/BMA.rst
+.. include:: snippets/CostFunctionJAtCurrentOptimum.rst
 
-  .. include:: snippets/CostFunctionJAtCurrentOptimum.rst
+.. include:: snippets/CostFunctionJbAtCurrentOptimum.rst
 
-  .. include:: snippets/CostFunctionJbAtCurrentOptimum.rst
+.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
 
-  .. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentOptimum.rst
 
-  .. include:: snippets/CurrentOptimum.rst
+.. include:: snippets/CurrentState.rst
 
-  .. include:: snippets/CurrentState.rst
+.. include:: snippets/IndexOfOptimum.rst
 
-  .. include:: snippets/IndexOfOptimum.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-See also
-++++++++
+- :ref:`section_ref_algorithm_3DVAR`
+- :ref:`section_ref_algorithm_KalmanFilter`
+- :ref:`section_ref_algorithm_ExtendedKalmanFilter`
+- :ref:`section_ref_algorithm_EnsembleKalmanFilter`
 
-References to other sections:
-  - :ref:`section_ref_algorithm_3DVAR`
-  - :ref:`section_ref_algorithm_KalmanFilter`
-  - :ref:`section_ref_algorithm_ExtendedKalmanFilter`
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo07.rst
 
-Bibliographical references:
-  - [Byrd95]_
-  - [Morales11]_
-  - [Talagrand97]_
-  - [Zhu97]_
+- [Byrd95]_
+- [Morales11]_
+- [Talagrand97]_
+- [Zhu97]_
index a904f289db5cdad832a6de7d9aace5337005805f..03763b9ad0a91513461d89746c51da6cbd7d0ecc 100644 (file)
@@ -27,8 +27,8 @@
 Checking algorithm "*AdjointTest*"
 ----------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm allows to check the quality of the adjoint operator, by
 calculating a residue with known theoretical properties.
@@ -44,73 +44,57 @@ that has to remain equal to zero at the calculation precision. One take
 :math:`\mathbf{y}` has to be in the image of :math:`F`. If it is not given, one
 take :math:`\mathbf{y} = F(\mathbf{x})`.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
+.. include:: snippets/CheckingPoint.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/CheckingPoint.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03Chck.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. include:: snippets/AmplitudeOfInitialDirection.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allow to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/EpsilonMinimumExponent.rst
 
-The options of the algorithm are the following:
+.. include:: snippets/InitialDirection.rst
 
-  .. include:: snippets/AmplitudeOfInitialDirection.rst
+.. include:: snippets/SetSeed.rst
 
-  .. include:: snippets/EpsilonMinimumExponent.rst
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-  .. include:: snippets/InitialDirection.rst
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "CurrentState",
+  "Residu",
+  "SimulatedObservationAtCurrentState",
+  ].
 
-  .. include:: snippets/SetSeed.rst
+  Example :
+  ``{"StoreSupplementaryCalculations":["CurrentState"]}``
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["CurrentState", "Residu",
-    "SimulatedObservationAtCurrentState"].
+.. include:: snippets/Residu.rst
 
-    Example :
-    ``{"StoreSupplementaryCalculations":["CurrentState"]}``
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+.. include:: snippets/CurrentState.rst
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. include:: snippets/SimulatedObservationAtCurrentState.rst
 
-The unconditional outputs of the algorithm are the following:
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-  .. include:: snippets/Residu.rst
-
-The conditional outputs of the algorithm are the following:
-
-  .. include:: snippets/CurrentState.rst
-
-  .. include:: snippets/SimulatedObservationAtCurrentState.rst
-
-See also
-++++++++
-
-References to other sections:
-  - :ref:`section_ref_algorithm_FunctionTest`
-  - :ref:`section_ref_algorithm_LinearityTest`
-  - :ref:`section_ref_algorithm_TangentTest`
-  - :ref:`section_ref_algorithm_GradientTest`
+- :ref:`section_ref_algorithm_FunctionTest`
+- :ref:`section_ref_algorithm_LinearityTest`
+- :ref:`section_ref_algorithm_TangentTest`
+- :ref:`section_ref_algorithm_GradientTest`
+- :ref:`section_ref_algorithm_LocalSensitivityTest`
index 16910374c2b34b42efe66b1a19578b162fb2cd40..e379ef110b7df9fde485f23c18fdcd91c75c8c25 100644 (file)
@@ -27,8 +27,8 @@
 Calculation algorithm "*Blue*"
 ------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm realizes a BLUE (Best Linear Unbiased Estimator) type estimation
 of the state of a system. More precisely, it is an Aitken estimator.
@@ -43,117 +43,131 @@ In case of non-linearity, even slightly marked, it will be easily preferred the
 :ref:`section_ref_algorithm_ExtendedBlue` or the
 :ref:`section_ref_algorithm_3DVAR`.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
+.. include:: snippets/Background.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/BackgroundError.rst
 
-  .. include:: snippets/Background.rst
+.. include:: snippets/Observation.rst
 
-  .. include:: snippets/BackgroundError.rst
+.. include:: snippets/ObservationError.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/ObservationError.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03AdOp.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. include:: snippets/NumberOfSamplesForQuantiles.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allows to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/Quantiles.rst
 
-The options of the algorithm are the following:
+.. include:: snippets/SetSeed.rst
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+.. include:: snippets/SimulationForQuantiles.rst
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["APosterioriCorrelations",
-    "APosterioriCovariance", "APosterioriStandardDeviations",
-    "APosterioriVariances", "BMA", "OMA", "OMB", "CurrentState",
-    "CostFunctionJ", "CostFunctionJb", "CostFunctionJo", "Innovation",
-    "SigmaBck2", "SigmaObs2", "MahalanobisConsistency", "SimulationQuantiles",
-    "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentState",
-    "SimulatedObservationAtOptimum"].
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-    Example :
-    ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "APosterioriCorrelations",
+  "APosterioriCovariance",
+  "APosterioriStandardDeviations",
+  "APosterioriVariances",
+  "BMA",
+  "CostFunctionJ",
+  "CostFunctionJAtCurrentOptimum",
+  "CostFunctionJb",
+  "CostFunctionJbAtCurrentOptimum",
+  "CostFunctionJo",
+  "CostFunctionJoAtCurrentOptimum",
+  "CurrentOptimum",
+  "CurrentState",
+  "Innovation",
+  "MahalanobisConsistency",
+  "OMA",
+  "OMB",
+  "SigmaBck2",
+  "SigmaObs2",
+  "SimulatedObservationAtBackground",
+  "SimulatedObservationAtCurrentOptimum",
+  "SimulatedObservationAtCurrentState",
+  "SimulatedObservationAtOptimum",
+  "SimulationQuantiles",
+  ].
 
-  .. include:: snippets/Quantiles.rst
+  Example :
+  ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
 
-  .. include:: snippets/SetSeed.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-  .. include:: snippets/NumberOfSamplesForQuantiles.rst
+.. include:: snippets/Analysis.rst
 
-  .. include:: snippets/SimulationForQuantiles.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+.. include:: snippets/APosterioriCorrelations.rst
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. include:: snippets/APosterioriCovariance.rst
 
-The unconditional outputs of the algorithm are the following:
+.. include:: snippets/APosterioriStandardDeviations.rst
 
-  .. include:: snippets/Analysis.rst
+.. include:: snippets/APosterioriVariances.rst
 
-The conditional outputs of the algorithm are the following:
+.. include:: snippets/BMA.rst
 
-  .. include:: snippets/APosterioriCorrelations.rst
+.. include:: snippets/CostFunctionJ.rst
 
-  .. include:: snippets/APosterioriCovariance.rst
+.. include:: snippets/CostFunctionJAtCurrentOptimum.rst
 
-  .. include:: snippets/APosterioriStandardDeviations.rst
+.. include:: snippets/CostFunctionJb.rst
 
-  .. include:: snippets/APosterioriVariances.rst
+.. include:: snippets/CostFunctionJbAtCurrentOptimum.rst
 
-  .. include:: snippets/BMA.rst
+.. include:: snippets/CostFunctionJo.rst
 
-  .. include:: snippets/CostFunctionJ.rst
+.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
 
-  .. include:: snippets/CostFunctionJb.rst
+.. include:: snippets/CurrentOptimum.rst
 
-  .. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CurrentState.rst
 
-  .. include:: snippets/Innovation.rst
+.. include:: snippets/Innovation.rst
 
-  .. include:: snippets/MahalanobisConsistency.rst
+.. include:: snippets/MahalanobisConsistency.rst
 
-  .. include:: snippets/OMA.rst
+.. include:: snippets/OMA.rst
 
-  .. include:: snippets/OMB.rst
+.. include:: snippets/OMB.rst
 
-  .. include:: snippets/SigmaBck2.rst
+.. include:: snippets/SigmaBck2.rst
 
-  .. include:: snippets/SigmaObs2.rst
+.. include:: snippets/SigmaObs2.rst
 
-  .. include:: snippets/SimulatedObservationAtBackground.rst
+.. include:: snippets/SimulatedObservationAtBackground.rst
 
-  .. include:: snippets/SimulatedObservationAtOptimum.rst
+.. include:: snippets/SimulatedObservationAtOptimum.rst
 
-  .. include:: snippets/SimulationQuantiles.rst
+.. include:: snippets/SimulatedObservationAtCurrentState.rst
 
+.. include:: snippets/SimulatedObservationAtOptimum.rst
 
-See also
-++++++++
+.. include:: snippets/SimulationQuantiles.rst
 
-References to other sections:
-  - :ref:`section_ref_algorithm_ExtendedBlue`
-  - :ref:`section_ref_algorithm_3DVAR`
-  - :ref:`section_ref_algorithm_LinearityTest`
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-Bibliographical references:
-  - [Bouttier99]_
+- :ref:`section_ref_algorithm_ExtendedBlue`
+- :ref:`section_ref_algorithm_3DVAR`
+- :ref:`section_ref_algorithm_LinearityTest`
+
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo07.rst
+
+- [Bouttier99]_
index 0e2dd0178f155ee377253b6966a1c3fb3038b91f..2c970dbc82edf9e897280373c03d15a79b165243 100644 (file)
 Calculation algorithm "*DerivativeFreeOptimization*"
 ----------------------------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm realizes an estimation of the state of a system by minimization
 of a cost function :math:`J` without gradient. It is a method that does not use
 the derivatives of the cost function. It falls in the same category than the
-:ref:`section_ref_algorithm_ParticleSwarmOptimization` or the
-:ref:`section_ref_algorithm_DifferentialEvolution`.
+:ref:`section_ref_algorithm_ParticleSwarmOptimization`, the
+:ref:`section_ref_algorithm_DifferentialEvolution` or the
+:ref:`section_ref_algorithm_TabuSearch`.
 
 This is an optimization method allowing for global minimum search of a general
 error function :math:`J` of type :math:`L^1`, :math:`L^2` or :math:`L^{\infty}`,
 with or without weights. The default error function is the augmented weighted
 least squares function, classically used in data assimilation.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/Background.rst
 
-  .. include:: snippets/Background.rst
+.. include:: snippets/BackgroundError.rst
 
-  .. include:: snippets/BackgroundError.rst
+.. include:: snippets/Observation.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/ObservationError.rst
 
-  .. include:: snippets/ObservationError.rst
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03AdOp.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allows to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/Minimizer_DFO.rst
 
-The options of the algorithm are the following:
+.. include:: snippets/BoundsWithNone.rst
 
-  .. include:: snippets/Minimizer_DFO.rst
+.. include:: snippets/MaximumNumberOfSteps.rst
 
-  .. include:: snippets/BoundsWithNone.rst
+.. include:: snippets/MaximumNumberOfFunctionEvaluations.rst
 
-  .. include:: snippets/MaximumNumberOfSteps.rst
+.. include:: snippets/StateVariationTolerance.rst
 
-  .. include:: snippets/MaximumNumberOfFunctionEvaluations.rst
+.. include:: snippets/CostDecrementTolerance.rst
 
-  .. include:: snippets/StateVariationTolerance.rst
+.. include:: snippets/QualityCriterion.rst
 
-  .. include:: snippets/CostDecrementTolerance.rst
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-  .. include:: snippets/QualityCriterion.rst
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "BMA",
+  "CostFunctionJ",
+  "CostFunctionJAtCurrentOptimum",
+  "CostFunctionJb",
+  "CostFunctionJbAtCurrentOptimum",
+  "CostFunctionJo",
+  "CostFunctionJoAtCurrentOptimum",
+  "CurrentOptimum",
+  "CurrentState",
+  "IndexOfOptimum",
+  "Innovation",
+  "InnovationAtCurrentState",
+  "OMA",
+  "OMB",
+  "SimulatedObservationAtBackground",
+  "SimulatedObservationAtCurrentOptimum",
+  "SimulatedObservationAtCurrentState",
+  "SimulatedObservationAtOptimum",
+  ].
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+  Example :
+  ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["BMA", "CostFunctionJ",
-    "CostFunctionJAtCurrentOptimum", "CostFunctionJb",
-    "CostFunctionJbAtCurrentOptimum", "CostFunctionJo",
-    "CostFunctionJoAtCurrentOptimum", "CurrentOptimum", "CurrentState",
-    "IndexOfOptimum", "Innovation", "InnovationAtCurrentState", "OMA", "OMB",
-    "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentOptimum",
-    "SimulatedObservationAtCurrentState", "SimulatedObservationAtOptimum"].
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-    Example :
-    ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
+.. include:: snippets/Analysis.rst
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+.. include:: snippets/CostFunctionJ.rst
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. include:: snippets/CostFunctionJb.rst
 
-The unconditional outputs of the algorithm are the following:
+.. include:: snippets/CostFunctionJo.rst
 
-  .. include:: snippets/Analysis.rst
+.. include:: snippets/CurrentState.rst
 
-  .. include:: snippets/CostFunctionJ.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-  .. include:: snippets/CostFunctionJb.rst
+.. include:: snippets/BMA.rst
 
-  .. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CostFunctionJAtCurrentOptimum.rst
 
-  .. include:: snippets/CurrentState.rst
+.. include:: snippets/CostFunctionJbAtCurrentOptimum.rst
 
-The conditional outputs of the algorithm are the following:
+.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
 
-  .. include:: snippets/BMA.rst
+.. include:: snippets/CurrentOptimum.rst
 
-  .. include:: snippets/CostFunctionJAtCurrentOptimum.rst
+.. include:: snippets/IndexOfOptimum.rst
 
-  .. include:: snippets/CostFunctionJbAtCurrentOptimum.rst
+.. include:: snippets/Innovation.rst
 
-  .. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/InnovationAtCurrentState.rst
 
-  .. include:: snippets/CurrentOptimum.rst
+.. include:: snippets/OMA.rst
 
-  .. include:: snippets/IndexOfOptimum.rst
+.. include:: snippets/OMB.rst
 
-  .. include:: snippets/Innovation.rst
+.. include:: snippets/SimulatedObservationAtBackground.rst
 
-  .. include:: snippets/InnovationAtCurrentState.rst
+.. include:: snippets/SimulatedObservationAtCurrentOptimum.rst
 
-  .. include:: snippets/OMA.rst
+.. include:: snippets/SimulatedObservationAtCurrentState.rst
 
-  .. include:: snippets/OMB.rst
+.. include:: snippets/SimulatedObservationAtOptimum.rst
 
-  .. include:: snippets/SimulatedObservationAtBackground.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-  .. include:: snippets/SimulatedObservationAtCurrentOptimum.rst
+- :ref:`section_ref_algorithm_ParticleSwarmOptimization`
+- :ref:`section_ref_algorithm_DifferentialEvolution`
+- :ref:`section_ref_algorithm_TabuSearch`
 
-  .. include:: snippets/SimulatedObservationAtCurrentState.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo07.rst
 
-  .. include:: snippets/SimulatedObservationAtOptimum.rst
-
-See also
-++++++++
-
-References to other sections:
-  - :ref:`section_ref_algorithm_ParticleSwarmOptimization`
-  - :ref:`section_ref_algorithm_DifferentialEvolution`
-
-Bibliographical references:
-  - [Johnson08]_
-  - [Nelder65]_
-  - [Powell64]_
-  - [Powell94]_
-  - [Powell98]_
-  - [Powell04]_
-  - [Powell07]_
-  - [Powell09]_
-  - [Rowan90]_
+- [Johnson08]_
+- [Nelder65]_
+- [Powell64]_
+- [Powell94]_
+- [Powell98]_
+- [Powell04]_
+- [Powell07]_
+- [Powell09]_
+- [Rowan90]_
index b489cc7baa9d7d137b644e792be05c5436841df5..235aa1cd2177f8527e6fafc6e908cce2c82cd176 100644 (file)
 Calculation algorithm "*DifferentialEvolution*"
 ----------------------------------------------------
 
-.. warning::
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo00.rst
 
-  in its present version, this algorithm is experimental, and so changes can be
-  required in forthcoming versions.
-
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm realizes an estimation of the state of a system by minimization
 of a cost function :math:`J` by using an evolutionary strategy of differential
 evolution. It is a method that does not use the derivatives of the cost
 function. It falls in the same category than the
-:ref:`section_ref_algorithm_DerivativeFreeOptimization` or the
-:ref:`section_ref_algorithm_ParticleSwarmOptimization`.
+:ref:`section_ref_algorithm_DerivativeFreeOptimization`, the
+:ref:`section_ref_algorithm_ParticleSwarmOptimization` or the
+:ref:`section_ref_algorithm_TabuSearch`.
 
 This is an optimization method allowing for global minimum search of a general
 error function :math:`J` of type :math:`L^1`, :math:`L^2` or :math:`L^{\infty}`,
 with or without weights. The default error function is the augmented weighted
 least squares function, classically used in data assimilation.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
-
-The general required commands, available in the editing user interface, are the
-following:
-
-  .. include:: snippets/Background.rst
-
-  .. include:: snippets/BackgroundError.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/Background.rst
 
-  .. include:: snippets/ObservationError.rst
+.. include:: snippets/BackgroundError.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. include:: snippets/Observation.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allows to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/ObservationError.rst
 
-The options of the algorithm are the following:
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/Minimizer_DE.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03AdOp.rst
 
-  .. include:: snippets/BoundsWithExtremes.rst
+.. include:: snippets/Minimizer_DE.rst
 
-  .. include:: snippets/CrossOverProbability_CR.rst
+.. include:: snippets/BoundsWithExtremes.rst
 
-  .. include:: snippets/MaximumNumberOfSteps.rst
+.. include:: snippets/CrossOverProbability_CR.rst
 
-  .. include:: snippets/MaximumNumberOfFunctionEvaluations.rst
+.. include:: snippets/MaximumNumberOfSteps.rst
 
-  .. include:: snippets/MutationDifferentialWeight_F.rst
+.. include:: snippets/MaximumNumberOfFunctionEvaluations.rst
 
-  .. include:: snippets/PopulationSize.rst
+.. include:: snippets/MutationDifferentialWeight_F.rst
 
-  .. include:: snippets/QualityCriterion.rst
+.. include:: snippets/PopulationSize.rst
 
-  .. include:: snippets/SetSeed.rst
+.. include:: snippets/QualityCriterion.rst
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+.. include:: snippets/SetSeed.rst
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["BMA", "CostFunctionJ",
-    "CostFunctionJAtCurrentOptimum", "CostFunctionJb",
-    "CostFunctionJbAtCurrentOptimum", "CostFunctionJo",
-    "CostFunctionJoAtCurrentOptimum", "CurrentOptimum", "CurrentState",
-    "IndexOfOptimum", "Innovation", "InnovationAtCurrentState", "OMA", "OMB",
-    "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentOptimum",
-    "SimulatedObservationAtCurrentState", "SimulatedObservationAtOptimum"].
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-    Example :
-    ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "BMA",
+  "CostFunctionJ",
+  "CostFunctionJAtCurrentOptimum",
+  "CostFunctionJb",
+  "CostFunctionJbAtCurrentOptimum",
+  "CostFunctionJo",
+  "CostFunctionJoAtCurrentOptimum",
+  "CurrentOptimum",
+  "CurrentState",
+  "IndexOfOptimum",
+  "Innovation",
+  "InnovationAtCurrentState",
+  "OMA",
+  "OMB",
+  "SimulatedObservationAtBackground",
+  "SimulatedObservationAtCurrentOptimum",
+  "SimulatedObservationAtCurrentState",
+  "SimulatedObservationAtOptimum",
+  ].
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+  Example :
+  ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-The unconditional outputs of the algorithm are the following:
+.. include:: snippets/Analysis.rst
 
-  .. include:: snippets/Analysis.rst
+.. include:: snippets/CostFunctionJ.rst
 
-  .. include:: snippets/CostFunctionJ.rst
+.. include:: snippets/CostFunctionJb.rst
 
-  .. include:: snippets/CostFunctionJb.rst
+.. include:: snippets/CostFunctionJo.rst
 
-  .. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CurrentState.rst
 
-  .. include:: snippets/CurrentState.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-The conditional outputs of the algorithm are the following:
+.. include:: snippets/BMA.rst
 
-  .. include:: snippets/BMA.rst
+.. include:: snippets/CostFunctionJAtCurrentOptimum.rst
 
-  .. include:: snippets/CostFunctionJAtCurrentOptimum.rst
+.. include:: snippets/CostFunctionJbAtCurrentOptimum.rst
 
-  .. include:: snippets/CostFunctionJbAtCurrentOptimum.rst
+.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
 
-  .. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentOptimum.rst
 
-  .. include:: snippets/CurrentOptimum.rst
+.. include:: snippets/IndexOfOptimum.rst
 
-  .. include:: snippets/IndexOfOptimum.rst
+.. include:: snippets/Innovation.rst
 
-  .. include:: snippets/Innovation.rst
+.. include:: snippets/InnovationAtCurrentState.rst
 
-  .. include:: snippets/InnovationAtCurrentState.rst
+.. include:: snippets/OMA.rst
 
-  .. include:: snippets/OMA.rst
+.. include:: snippets/OMB.rst
 
-  .. include:: snippets/OMB.rst
+.. include:: snippets/SimulatedObservationAtBackground.rst
 
-  .. include:: snippets/SimulatedObservationAtBackground.rst
+.. include:: snippets/SimulatedObservationAtCurrentOptimum.rst
 
-  .. include:: snippets/SimulatedObservationAtCurrentOptimum.rst
+.. include:: snippets/SimulatedObservationAtCurrentState.rst
 
-  .. include:: snippets/SimulatedObservationAtCurrentState.rst
+.. include:: snippets/SimulatedObservationAtOptimum.rst
 
-  .. include:: snippets/SimulatedObservationAtOptimum.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-See also
-++++++++
+- :ref:`section_ref_algorithm_DerivativeFreeOptimization`
+- :ref:`section_ref_algorithm_ParticleSwarmOptimization`
+- :ref:`section_ref_algorithm_TabuSearch`
 
-References to other sections:
-  - :ref:`section_ref_algorithm_DerivativeFreeOptimization`
-  - :ref:`section_ref_algorithm_ParticleSwarmOptimization`
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo07.rst
 
-Bibliographical references:
-  - [Chakraborty08]_
-  - [Price05]_
-  - [Storn97]_
+- [Chakraborty08]_
+- [Price05]_
+- [Storn97]_
index 6044ed8d0f473caea5e31ca54479e8add08ea561..c15d62ca79a55ca530651af5cc8e06064b27563c 100644 (file)
@@ -27,8 +27,8 @@
 Calculation algorithm "*EnsembleBlue*"
 --------------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm realizes a BLUE (Best Linear Unbiased Estimator, which is here an
 Aitken estimator) type estimation of the state of a system by an ensemble
@@ -40,69 +40,53 @@ but has to work also in "slightly" non-linear cases. One can verify the
 linearity of the observation operator with the help of the
 :ref:`section_ref_algorithm_LinearityTest`.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
+.. include:: snippets/Background.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/BackgroundError.rst
 
-  .. include:: snippets/Background.rst
+.. include:: snippets/Observation.rst
 
-  .. include:: snippets/BackgroundError.rst
+.. include:: snippets/ObservationError.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/ObservationError.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03AdOp.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. include:: snippets/SetSeed.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allows to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-The options of the algorithm are the following:
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "CurrentState",
+  "Innovation",
+  "SimulatedObservationAtBackground",
+  "SimulatedObservationAtCurrentState",
+  "SimulatedObservationAtOptimum",
+  ].
 
-  .. include:: snippets/SetSeed.rst
+  Example :
+  ``{"StoreSupplementaryCalculations":["CurrentState", "Innovation"]}``
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["CurrentState", "Innovation",
-    "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentState",
-    "SimulatedObservationAtOptimum"].
+.. include:: snippets/Analysis.rst
 
-    Example :
-    ``{"StoreSupplementaryCalculations":["CurrentState", "Innovation"]}``
+.. include:: snippets/CurrentState.rst
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+.. include:: snippets/Innovation.rst
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-The unconditional outputs of the algorithm are the following:
-
-  .. include:: snippets/Analysis.rst
-
-  .. include:: snippets/CurrentState.rst
-
-  .. include:: snippets/Innovation.rst
-
-See also
-++++++++
-
-References to other sections:
-  - :ref:`section_ref_algorithm_Blue`
+- :ref:`section_ref_algorithm_Blue`
+- :ref:`section_ref_algorithm_EnsembleKalmanFilter`
index 55dba1a73c3d4f333abfa8f80ac9b5a3da71c4c0..c6010f059f710b58643f920c70b7638c2b354a87 100644 (file)
 Calculation algorithm "*EnsembleKalmanFilter*"
 ----------------------------------------------
 
-.. warning::
-
-  in its present version, this algorithm is experimental, and so changes can be
-  required in forthcoming versions.
-
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm realizes an estimation of the state of a dynamic system by a
 Ensemble Kalman Filter (EnKF), avoiding to have to perform the tangent and
@@ -51,103 +46,93 @@ In case of linear of "slightly" non-linear operators, one can easily use the
 to evaluate on small systems. One can verify the linearity of the operators
 with the help of the :ref:`section_ref_algorithm_LinearityTest`.
 
-Commandes requises et optionnelles
-++++++++++++++++++++++++++++++++++
-
-The general required commands, available in the editing user interface, are the
-following:
-
-  .. include:: snippets/Background.rst
-
-  .. include:: snippets/BackgroundError.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-  .. include:: snippets/EvolutionError.rst
+.. include:: snippets/Background.rst
 
-  .. include:: snippets/EvolutionModel.rst
+.. include:: snippets/BackgroundError.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/EvolutionError.rst
 
-  .. include:: snippets/ObservationError.rst
+.. include:: snippets/EvolutionModel.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. include:: snippets/Observation.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allows to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/ObservationError.rst
 
-The options of the algorithm are the following:
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/NumberOfMembers.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03AdOp.rst
 
-  .. include:: snippets/EstimationOf.rst
+.. include:: snippets/EstimationOf.rst
 
-  .. include:: snippets/SetSeed.rst
+.. include:: snippets/NumberOfMembers.rst
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+.. include:: snippets/SetSeed.rst
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["APosterioriCorrelations",
-    "APosterioriCovariance", "APosterioriStandardDeviations",
-    "APosterioriVariances", "BMA", "CostFunctionJ", "CostFunctionJb",
-    "CostFunctionJo", "CurrentState"].
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-    Example :
-    ``{"StoreSupplementaryCalculations":["CurrentState"]}``
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "APosterioriCorrelations",
+  "APosterioriCovariance",
+  "APosterioriStandardDeviations",
+  "APosterioriVariances",
+  "BMA",
+  "CostFunctionJ",
+  "CostFunctionJb",
+  "CostFunctionJo",
+  "CurrentState",
+  ].
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+  Example :
+  ``{"StoreSupplementaryCalculations":["CurrentState"]}``
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-The unconditional outputs of the algorithm are the following:
+.. include:: snippets/Analysis.rst
 
-  .. include:: snippets/Analysis.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-The conditional outputs of the algorithm are the following:
+.. include:: snippets/APosterioriCorrelations.rst
 
-  .. include:: snippets/APosterioriCorrelations.rst
+.. include:: snippets/APosterioriCovariance.rst
 
-  .. include:: snippets/APosterioriCovariance.rst
+.. include:: snippets/APosterioriStandardDeviations.rst
 
-  .. include:: snippets/APosterioriStandardDeviations.rst
+.. include:: snippets/APosterioriVariances.rst
 
-  .. include:: snippets/APosterioriVariances.rst
+.. include:: snippets/BMA.rst
 
-  .. include:: snippets/BMA.rst
+.. include:: snippets/CostFunctionJ.rst
 
-  .. include:: snippets/CostFunctionJ.rst
+.. include:: snippets/CostFunctionJb.rst
 
-  .. include:: snippets/CostFunctionJb.rst
+.. include:: snippets/CostFunctionJo.rst
 
-  .. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CurrentState.rst
 
-  .. include:: snippets/CurrentState.rst
+.. include:: snippets/Innovation.rst
 
-  .. include:: snippets/Innovation.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-See also
-++++++++
+- :ref:`section_ref_algorithm_KalmanFilter`
+- :ref:`section_ref_algorithm_ExtendedKalmanFilter`
+- :ref:`section_ref_algorithm_UnscentedKalmanFilter`
 
-References to other sections:
-  - :ref:`section_ref_algorithm_KalmanFilter`
-  - :ref:`section_ref_algorithm_ExtendedKalmanFilter`
-  - :ref:`section_ref_algorithm_UnscentedKalmanFilter`
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo07.rst
 
-Bibliographical references:
-  - [Evensen94]_
-  - [Burgers98]_
-  - [Evensen03]_
-  - [WikipediaEnKF]_
+- [Evensen94]_
+- [Burgers98]_
+- [Evensen03]_
+- [WikipediaEnKF]_
index 5b6ff71b86933c7fe1594898ab5e04cdd61e8d03..aa461d59f7f1f3367334dcda2c1713a3de82e546 100644 (file)
@@ -27,8 +27,8 @@
 Calculation algorithm "*ExtendedBlue*"
 --------------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm realizes an extended BLUE (Best Linear Unbiased Estimator) type
 estimation of the state of a system.
@@ -41,112 +41,107 @@ of the :ref:`section_ref_algorithm_LinearityTest`.
 In case of non-linearity, it is close to the :ref:`section_ref_algorithm_3DVAR`,
 without being entirely equivalent.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/Background.rst
 
-  .. include:: snippets/Background.rst
+.. include:: snippets/BackgroundError.rst
 
-  .. include:: snippets/BackgroundError.rst
+.. include:: snippets/Observation.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/ObservationError.rst
 
-  .. include:: snippets/ObservationError.rst
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03AdOp.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allows to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/NumberOfSamplesForQuantiles.rst
 
-The options of the algorithm are the following:
+.. include:: snippets/Quantiles.rst
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+.. include:: snippets/SetSeed.rst
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["APosterioriCorrelations",
-    "APosterioriCovariance", "APosterioriStandardDeviations",
-    "APosterioriVariances", "BMA", "OMA", "OMB", "CurrentState",
-    "CostFunctionJ", "CostFunctionJb", "CostFunctionJo", "Innovation",
-    "SigmaBck2", "SigmaObs2", "MahalanobisConsistency", "SimulationQuantiles",
-    "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentState",
-    "SimulatedObservationAtOptimum"].
+.. include:: snippets/SimulationForQuantiles.rst
 
-    Example :
-    ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-  .. include:: snippets/Quantiles.rst
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "APosterioriCorrelations",
+  "APosterioriCovariance",
+  "APosterioriStandardDeviations",
+  "APosterioriVariances",
+  "BMA",
+  "OMA",
+  "OMB",
+  "CurrentState",
+  "CostFunctionJ",
+  "CostFunctionJb",
+  "CostFunctionJo",
+  "Innovation",
+  "SigmaBck2",
+  "SigmaObs2",
+  "MahalanobisConsistency",
+  "SimulationQuantiles",
+  "SimulatedObservationAtBackground",
+  "SimulatedObservationAtCurrentState",
+  "SimulatedObservationAtOptimum",
+  ].
 
-  .. include:: snippets/SetSeed.rst
+  Example :
+  ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
 
-  .. include:: snippets/NumberOfSamplesForQuantiles.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-  .. include:: snippets/SimulationForQuantiles.rst
+.. include:: snippets/Analysis.rst
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. include:: snippets/APosterioriCorrelations.rst
 
-The unconditional outputs of the algorithm are the following:
+.. include:: snippets/APosterioriCovariance.rst
 
-  .. include:: snippets/Analysis.rst
+.. include:: snippets/APosterioriStandardDeviations.rst
 
-The conditional outputs of the algorithm are the following:
+.. include:: snippets/APosterioriVariances.rst
 
-  .. include:: snippets/APosterioriCorrelations.rst
+.. include:: snippets/BMA.rst
 
-  .. include:: snippets/APosterioriCovariance.rst
+.. include:: snippets/CostFunctionJ.rst
 
-  .. include:: snippets/APosterioriStandardDeviations.rst
+.. include:: snippets/CostFunctionJb.rst
 
-  .. include:: snippets/APosterioriVariances.rst
+.. include:: snippets/CostFunctionJo.rst
 
-  .. include:: snippets/BMA.rst
+.. include:: snippets/Innovation.rst
 
-  .. include:: snippets/CostFunctionJ.rst
+.. include:: snippets/MahalanobisConsistency.rst
 
-  .. include:: snippets/CostFunctionJb.rst
+.. include:: snippets/OMA.rst
 
-  .. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/OMB.rst
 
-  .. include:: snippets/Innovation.rst
+.. include:: snippets/SigmaBck2.rst
 
-  .. include:: snippets/MahalanobisConsistency.rst
+.. include:: snippets/SigmaObs2.rst
 
-  .. include:: snippets/OMA.rst
+.. include:: snippets/SimulatedObservationAtBackground.rst
 
-  .. include:: snippets/OMB.rst
+.. include:: snippets/SimulatedObservationAtOptimum.rst
 
-  .. include:: snippets/SigmaBck2.rst
+.. include:: snippets/SimulationQuantiles.rst
 
-  .. include:: snippets/SigmaObs2.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-  .. include:: snippets/SimulatedObservationAtBackground.rst
-
-  .. include:: snippets/SimulatedObservationAtOptimum.rst
-
-  .. include:: snippets/SimulationQuantiles.rst
-
-See also
-++++++++
-
-References to other sections:
-  - :ref:`section_ref_algorithm_Blue`
-  - :ref:`section_ref_algorithm_3DVAR`
-  - :ref:`section_ref_algorithm_LinearityTest`
+- :ref:`section_ref_algorithm_Blue`
+- :ref:`section_ref_algorithm_3DVAR`
+- :ref:`section_ref_algorithm_LinearityTest`
index 4c15dac8f995f4ef885b9e58577c7a2fc6b315ff..836c3138c0ed50090d32b3b86e650fb6f8eb828a 100644 (file)
@@ -27,8 +27,8 @@
 Calculation algorithm "*ExtendedKalmanFilter*"
 ----------------------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm realizes an estimation of the state of a dynamic system by a
 extended Kalman Filter, using a non-linear calculation of the state and the
@@ -40,97 +40,86 @@ In case of really non-linear operators, one can easily use the
 adapted to non-linear behavior but more costly. One can verify the linearity of
 the operators with the help of the :ref:`section_ref_algorithm_LinearityTest`.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/Background.rst
 
-  .. include:: snippets/Background.rst
+.. include:: snippets/BackgroundError.rst
 
-  .. include:: snippets/BackgroundError.rst
+.. include:: snippets/EvolutionError.rst
 
-  .. include:: snippets/EvolutionError.rst
+.. include:: snippets/EvolutionModel.rst
 
-  .. include:: snippets/EvolutionModel.rst
+.. include:: snippets/Observation.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/ObservationError.rst
 
-  .. include:: snippets/ObservationError.rst
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03AdOp.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allows to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/BoundsWithExtremes.rst
 
-The options of the algorithm are the following:
+.. include:: snippets/ConstrainedBy.rst
 
-  .. include:: snippets/BoundsWithExtremes.rst
+.. include:: snippets/EstimationOf.rst
 
-  .. include:: snippets/ConstrainedBy.rst
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-  .. include:: snippets/EstimationOf.rst
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "APosterioriCorrelations",
+  "APosterioriCovariance",
+  "APosterioriStandardDeviations",
+  "APosterioriVariances",
+  "BMA",
+  "CostFunctionJ",
+  "CostFunctionJb",
+  "CostFunctionJo",
+  "CurrentState",
+  "Innovation",
+  ].
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+  Example :
+  ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["APosterioriCorrelations",
-    "APosterioriCovariance", "APosterioriStandardDeviations",
-    "APosterioriVariances", "BMA", "CostFunctionJ", "CostFunctionJb",
-    "CostFunctionJo", "CurrentState", "Innovation"].
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-    Example :
-    ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
+.. include:: snippets/Analysis.rst
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. include:: snippets/APosterioriCorrelations.rst
 
-The unconditional outputs of the algorithm are the following:
+.. include:: snippets/APosterioriCovariance.rst
 
-  .. include:: snippets/Analysis.rst
+.. include:: snippets/APosterioriStandardDeviations.rst
 
-The conditional outputs of the algorithm are the following:
+.. include:: snippets/APosterioriVariances.rst
 
-  .. include:: snippets/APosterioriCorrelations.rst
+.. include:: snippets/BMA.rst
 
-  .. include:: snippets/APosterioriCovariance.rst
+.. include:: snippets/CostFunctionJ.rst
 
-  .. include:: snippets/APosterioriStandardDeviations.rst
+.. include:: snippets/CostFunctionJb.rst
 
-  .. include:: snippets/APosterioriVariances.rst
+.. include:: snippets/CostFunctionJo.rst
 
-  .. include:: snippets/BMA.rst
+.. include:: snippets/CurrentState.rst
 
-  .. include:: snippets/CostFunctionJ.rst
+.. include:: snippets/Innovation.rst
 
-  .. include:: snippets/CostFunctionJb.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-  .. include:: snippets/CostFunctionJo.rst
-
-  .. include:: snippets/CurrentState.rst
-
-  .. include:: snippets/Innovation.rst
-
-See also
-++++++++
-
-References to other sections:
-  - :ref:`section_ref_algorithm_KalmanFilter`
-  - :ref:`section_ref_algorithm_EnsembleKalmanFilter`
-  - :ref:`section_ref_algorithm_UnscentedKalmanFilter`
+- :ref:`section_ref_algorithm_KalmanFilter`
+- :ref:`section_ref_algorithm_EnsembleKalmanFilter`
+- :ref:`section_ref_algorithm_UnscentedKalmanFilter`
index a66a8e626071b5743b0f5bc590a1007f8197290d..ba6821ebbcbbdcb47f841c917476b1925b2dd988 100644 (file)
@@ -27,8 +27,8 @@
 Checking algorithm "*GradientTest*"
 -----------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm allows to check the quality of the adjoint operator, by
 calculating a residue with known theoretical properties. Different residue
@@ -88,97 +88,72 @@ One observe the residue based on the gradient approximation:
 
 which has to remain stable until the calculation precision is reached.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-.. index:: single: AlgorithmParameters
-.. index:: single: CheckingPoint
-.. index:: single: ObservationOperator
-.. index:: single: AmplitudeOfInitialDirection
-.. index:: single: EpsilonMinimumExponent
-.. index:: single: InitialDirection
-.. index:: single: ResiduFormula
-.. index:: single: SetSeed
-.. index:: single: StoreSupplementaryCalculations
+.. include:: snippets/CheckingPoint.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/CheckingPoint.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03Chck.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. include:: snippets/AmplitudeOfInitialDirection.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allow to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/EpsilonMinimumExponent.rst
 
-The options of the algorithm are the following:
+.. include:: snippets/InitialDirection.rst
 
-  .. include:: snippets/AmplitudeOfInitialDirection.rst
+.. include:: snippets/SetSeed.rst
 
-  .. include:: snippets/EpsilonMinimumExponent.rst
+ResiduFormula
+  .. index:: single: ResiduFormula
 
-  .. include:: snippets/InitialDirection.rst
+  This key indicates the residue formula that has to be used for the test. The
+  default choice is "Taylor", and the possible ones are "Taylor" (normalized
+  residue of the Taylor development of the operator, which has to decrease
+  with the square power of the perturbation), "TaylorOnNorm" (residue of the
+  Taylor development of the operator with respect to the perturbation to the
+  square, which has to remain constant) and "Norm" (residue obtained by taking
+  the norm of the Taylor development at zero order approximation, which
+  approximate the gradient, and which has to remain constant).
 
-  .. include:: snippets/SetSeed.rst
+  Example :
+  ``{"ResiduFormula":"Taylor"}``
 
-  ResiduFormula
-    .. index:: single: ResiduFormula
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-    This key indicates the residue formula that has to be used for the test. The
-    default choice is "Taylor", and the possible ones are "Taylor" (normalized
-    residue of the Taylor development of the operator, which has to decrease
-    with the square power of the perturbation), "TaylorOnNorm" (residue of the
-    Taylor development of the operator with respect to the perturbation to the
-    square, which has to remain constant) and "Norm" (residue obtained by taking
-    the norm of the Taylor development at zero order approximation, which
-    approximate the gradient, and which has to remain constant).
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "CurrentState",
+  "Residu",
+  "SimulatedObservationAtCurrentState",
+  ].
 
-    Example :
-    ``{"ResiduFormula":"Taylor"}``
+  Example :
+  ``{"StoreSupplementaryCalculations":["CurrentState"]}``
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["CurrentState", "Residu",
-    "SimulatedObservationAtCurrentState"].
+.. include:: snippets/Residu.rst
 
-    Example :
-    ``{"StoreSupplementaryCalculations":["CurrentState"]}``
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+.. include:: snippets/CurrentState.rst
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. include:: snippets/SimulatedObservationAtCurrentState.rst
 
-The unconditional outputs of the algorithm are the following:
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-  .. include:: snippets/Residu.rst
-
-The conditional outputs of the algorithm are the following:
-
-  .. include:: snippets/CurrentState.rst
-
-  .. include:: snippets/SimulatedObservationAtCurrentState.rst
-
-See also
-++++++++
-
-References to other sections:
-  - :ref:`section_ref_algorithm_FunctionTest`
-  - :ref:`section_ref_algorithm_LinearityTest`
-  - :ref:`section_ref_algorithm_TangentTest`
-  - :ref:`section_ref_algorithm_AdjointTest`
+- :ref:`section_ref_algorithm_FunctionTest`
+- :ref:`section_ref_algorithm_LinearityTest`
+- :ref:`section_ref_algorithm_TangentTest`
+- :ref:`section_ref_algorithm_AdjointTest`
+- :ref:`section_ref_algorithm_LocalSensitivityTest`
index f76401447d172703182f4e4b81830cdef75848ea..70015566e4e94aa1e95843067cf092945a62cf39 100644 (file)
@@ -27,8 +27,8 @@
 Calculation algorithm "*KalmanFilter*"
 --------------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm realizes an estimation of the state of a dynamic system by a
 Kalman Filter.
@@ -43,91 +43,81 @@ In case of non-linearity, even slightly marked, it will be preferred the
 :ref:`section_ref_algorithm_UnscentedKalmanFilter` and the
 :ref:`section_ref_algorithm_UnscentedKalmanFilter` that are more powerful.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/Background.rst
 
-  .. include:: snippets/Background.rst
+.. include:: snippets/BackgroundError.rst
 
-  .. include:: snippets/BackgroundError.rst
+.. include:: snippets/EvolutionError.rst
 
-  .. include:: snippets/EvolutionError.rst
+.. include:: snippets/EvolutionModel.rst
 
-  .. include:: snippets/EvolutionModel.rst
+.. include:: snippets/Observation.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/ObservationError.rst
 
-  .. include:: snippets/ObservationError.rst
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03AdOp.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allows to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/EstimationOf.rst
 
-The options of the algorithm are the following:
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-  .. include:: snippets/EstimationOf.rst
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "APosterioriCorrelations",
+  "APosterioriCovariance",
+  "APosterioriStandardDeviations",
+  "APosterioriVariances",
+  "BMA",
+  "CostFunctionJ",
+  "CostFunctionJb",
+  "CostFunctionJo",
+  "CurrentState",
+  "Innovation",
+  ].
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+  Example : ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["APosterioriCorrelations",
-    "APosterioriCovariance", "APosterioriStandardDeviations",
-    "APosterioriVariances", "BMA", "CostFunctionJ", "CostFunctionJb",
-    "CostFunctionJo", "CurrentState", "Innovation"].
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-    Example : ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
+.. include:: snippets/Analysis.rst
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. include:: snippets/APosterioriCorrelations.rst
 
-The unconditional outputs of the algorithm are the following:
+.. include:: snippets/APosterioriCovariance.rst
 
-  .. include:: snippets/Analysis.rst
+.. include:: snippets/APosterioriStandardDeviations.rst
 
-The conditional outputs of the algorithm are the following:
+.. include:: snippets/APosterioriVariances.rst
 
-  .. include:: snippets/APosterioriCorrelations.rst
+.. include:: snippets/BMA.rst
 
-  .. include:: snippets/APosterioriCovariance.rst
+.. include:: snippets/CostFunctionJ.rst
 
-  .. include:: snippets/APosterioriStandardDeviations.rst
+.. include:: snippets/CostFunctionJb.rst
 
-  .. include:: snippets/APosterioriVariances.rst
+.. include:: snippets/CostFunctionJo.rst
 
-  .. include:: snippets/BMA.rst
+.. include:: snippets/CurrentState.rst
 
-  .. include:: snippets/CostFunctionJ.rst
+.. include:: snippets/Innovation.rst
 
-  .. include:: snippets/CostFunctionJb.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-  .. include:: snippets/CostFunctionJo.rst
-
-  .. include:: snippets/CurrentState.rst
-
-  .. include:: snippets/Innovation.rst
-
-See also
-++++++++
-
-References to other sections:
-  - :ref:`section_ref_algorithm_ExtendedKalmanFilter`
-  - :ref:`section_ref_algorithm_UnscentedKalmanFilter`
+- :ref:`section_ref_algorithm_ExtendedKalmanFilter`
+- :ref:`section_ref_algorithm_EnsembleKalmanFilter`
+- :ref:`section_ref_algorithm_UnscentedKalmanFilter`
index a3f8b9f5964f37b0acca8717b9490b1bb4efde0b..c9bff1756bab361c0722fff496c4941e8ad82bd6 100644 (file)
@@ -27,8 +27,8 @@
 Checking algorithm "*LinearityTest*"
 ------------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm allows to check the linear quality of the operator, by
 calculating a residue with known theoretical properties. Different residue
@@ -109,86 +109,70 @@ If it is equal to 0 only on part of the variation domain of increment
 :math:`\alpha`, it is on this sub-domain that the linearity hypothesis of
 :math:`F` is verified.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/CheckingPoint.rst
 
-  .. include:: snippets/CheckingPoint.rst
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03Chck.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allow to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/AmplitudeOfInitialDirection.rst
 
-The options of the algorithm are the following:
+.. include:: snippets/EpsilonMinimumExponent.rst
 
-  .. include:: snippets/AmplitudeOfInitialDirection.rst
+.. include:: snippets/InitialDirection.rst
 
-  .. include:: snippets/EpsilonMinimumExponent.rst
+.. include:: snippets/SetSeed.rst
 
-  .. include:: snippets/InitialDirection.rst
+ResiduFormula
+  .. index:: single: ResiduFormula
 
-  .. include:: snippets/SetSeed.rst
+  This key indicates the residue formula that has to be used for the test. The
+  default choice is "CenteredDL", and the possible ones are "CenteredDL"
+  (residue of the difference between the function at nominal point and the
+  values with positive and negative increments, which has to stay very small),
+  "Taylor" (residue of the Taylor development of the operator normalized by
+  the nominal value, which has to stay very small), "NominalTaylor" (residue
+  of the order 1 approximations of the operator, normalized to the nominal
+  point, which has to stay close to 1), and "NominalTaylorRMS" (residue of the
+  order 1 approximations of the operator, normalized by RMS to the nominal
+  point, which has to stay close to 0).
 
-  ResiduFormula
-    .. index:: single: ResiduFormula
+  Example :
+  ``{"ResiduFormula":"CenteredDL"}``
 
-    This key indicates the residue formula that has to be used for the test. The
-    default choice is "CenteredDL", and the possible ones are "CenteredDL"
-    (residue of the difference between the function at nominal point and the
-    values with positive and negative increments, which has to stay very small),
-    "Taylor" (residue of the Taylor development of the operator normalized by
-    the nominal value, which has to stay very small), "NominalTaylor" (residue
-    of the order 1 approximations of the operator, normalized to the nominal
-    point, which has to stay close to 1), and "NominalTaylorRMS" (residue of the
-    order 1 approximations of the operator, normalized by RMS to the nominal
-    point, which has to stay close to 0).
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-    Example :
-    ``{"ResiduFormula":"CenteredDL"}``
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "CurrentState",
+  "Residu",
+  "SimulatedObservationAtCurrentState",
+  ].
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+  Example :
+  ``{"StoreSupplementaryCalculations":["CurrentState"]}``
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["CurrentState", "Residu",
-    "SimulatedObservationAtCurrentState"].
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-    Example :
-    ``{"StoreSupplementaryCalculations":["CurrentState"]}``
+.. include:: snippets/Residu.rst
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. include:: snippets/CurrentState.rst
 
-The unconditional outputs of the algorithm are the following:
+.. include:: snippets/SimulatedObservationAtCurrentState.rst
 
-  .. include:: snippets/Residu.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-The conditional outputs of the algorithm are the following:
-
-  .. include:: snippets/CurrentState.rst
-
-  .. include:: snippets/SimulatedObservationAtCurrentState.rst
-
-See also
-++++++++
-
-References to other sections:
-  - :ref:`section_ref_algorithm_FunctionTest`
+- :ref:`section_ref_algorithm_FunctionTest`
index e35e5670af9ccdfbe7bae940fc46926d1113762a..07e90d9cca634cba5d3223a121ce57a71df11421 100644 (file)
@@ -27,8 +27,8 @@
 Calculation algorithm "*NonLinearLeastSquares*"
 -----------------------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm realizes a state estimation by variational minimization of the
 classical :math:`J` function of weighted "Least Squares":
@@ -42,69 +42,60 @@ point for the variational minimization.
 In all cases, it is recommended to prefer the :ref:`section_ref_algorithm_3DVAR`
 for its stability as for its behavior during optimization.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/Background.rst
 
-  .. include:: snippets/Background.rst
+.. include:: snippets/Observation.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/ObservationError.rst
 
-  .. include:: snippets/ObservationError.rst
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03AdOp.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allows to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+Minimizer
+  .. index:: single: Minimizer
 
-The options of the algorithm are the following:
+  This key allows to choose the optimization minimizer. The default choice is
+  "LBFGSB", and the possible ones are "LBFGSB" (nonlinear constrained
+  minimizer, see [Byrd95]_, [Morales11]_ and [Zhu97]_), "TNC" (nonlinear
+  constrained minimizer), "CG" (nonlinear unconstrained minimizer), "BFGS"
+  (nonlinear unconstrained minimizer), "NCG" (Newton CG minimizer). It is
+  strongly recommended to stay with the default.
 
-  Minimizer
-    .. index:: single: Minimizer
+  Example :
+  ``{"Minimizer":"LBFGSB"}``
 
-    This key allows to choose the optimization minimizer. The default choice is
-    "LBFGSB", and the possible ones are "LBFGSB" (nonlinear constrained
-    minimizer, see [Byrd95]_, [Morales11]_ and [Zhu97]_), "TNC" (nonlinear
-    constrained minimizer), "CG" (nonlinear unconstrained minimizer), "BFGS"
-    (nonlinear unconstrained minimizer), "NCG" (Newton CG minimizer). It is
-    strongly recommended to stay with the default.
+.. include:: snippets/BoundsWithNone.rst
 
-    Example :
-    ``{"Minimizer":"LBFGSB"}``
+.. include:: snippets/MaximumNumberOfSteps.rst
 
-  .. include:: snippets/BoundsWithNone.rst
+.. include:: snippets/CostDecrementTolerance.rst
 
-  .. include:: snippets/MaximumNumberOfSteps.rst
+.. include:: snippets/ProjectedGradientTolerance.rst
 
-  .. include:: snippets/CostDecrementTolerance.rst
+.. include:: snippets/GradientNormTolerance.rst
 
-  .. include:: snippets/ProjectedGradientTolerance.rst
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-  .. include:: snippets/GradientNormTolerance.rst
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: ["BMA", "CostFunctionJ",
+  "CostFunctionJb", "CostFunctionJo", "CostFunctionJAtCurrentOptimum",
+  "CostFunctionJbAtCurrentOptimum", "CostFunctionJoAtCurrentOptimum",
+  "CurrentState", "CurrentOptimum", "IndexOfOptimum", "Innovation",
+  "InnovationAtCurrentState", "OMA", "OMB",
+  "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentState",
+  "SimulatedObservationAtOptimum", "SimulatedObservationAtCurrentOptimum"].
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
-
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["BMA", "CostFunctionJ",
-    "CostFunctionJb", "CostFunctionJo", "CostFunctionJAtCurrentOptimum",
-    "CostFunctionJbAtCurrentOptimum", "CostFunctionJoAtCurrentOptimum",
-    "CurrentState", "CurrentOptimum", "IndexOfOptimum", "Innovation",
-    "InnovationAtCurrentState", "OMA", "OMB",
-    "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentState",
-    "SimulatedObservationAtOptimum", "SimulatedObservationAtCurrentOptimum"].
-
-    Example :
-    ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
+  Example :
+  ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
 
 *Tips for this algorithm:*
 
@@ -113,66 +104,58 @@ The options of the algorithm are the following:
     command is not required for this algorithm, and will not be used. The
     simplest way is to give "1" as a STRING.
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-The unconditional outputs of the algorithm are the following:
+.. include:: snippets/Analysis.rst
 
-  .. include:: snippets/Analysis.rst
+.. include:: snippets/CostFunctionJ.rst
 
-  .. include:: snippets/CostFunctionJ.rst
+.. include:: snippets/CostFunctionJb.rst
 
-  .. include:: snippets/CostFunctionJb.rst
+.. include:: snippets/CostFunctionJo.rst
 
-  .. include:: snippets/CostFunctionJo.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-The conditional outputs of the algorithm are the following:
+.. include:: snippets/BMA.rst
 
-  .. include:: snippets/BMA.rst
+.. include:: snippets/CostFunctionJAtCurrentOptimum.rst
 
-  .. include:: snippets/CostFunctionJAtCurrentOptimum.rst
+.. include:: snippets/CostFunctionJbAtCurrentOptimum.rst
 
-  .. include:: snippets/CostFunctionJbAtCurrentOptimum.rst
+.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
 
-  .. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentOptimum.rst
 
-  .. include:: snippets/CurrentOptimum.rst
+.. include:: snippets/CurrentState.rst
 
-  .. include:: snippets/CurrentState.rst
+.. include:: snippets/IndexOfOptimum.rst
 
-  .. include:: snippets/IndexOfOptimum.rst
+.. include:: snippets/Innovation.rst
 
-  .. include:: snippets/Innovation.rst
+.. include:: snippets/InnovationAtCurrentState.rst
 
-  .. include:: snippets/InnovationAtCurrentState.rst
+.. include:: snippets/OMA.rst
 
-  .. include:: snippets/OMA.rst
+.. include:: snippets/OMB.rst
 
-  .. include:: snippets/OMB.rst
+.. include:: snippets/SimulatedObservationAtBackground.rst
 
-  .. include:: snippets/SimulatedObservationAtBackground.rst
+.. include:: snippets/SimulatedObservationAtCurrentOptimum.rst
 
-  .. include:: snippets/SimulatedObservationAtCurrentOptimum.rst
+.. include:: snippets/SimulatedObservationAtCurrentState.rst
 
-  .. include:: snippets/SimulatedObservationAtCurrentState.rst
+.. include:: snippets/SimulatedObservationAtOptimum.rst
 
-  .. include:: snippets/SimulatedObservationAtOptimum.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-See also
-++++++++
+- :ref:`section_ref_algorithm_3DVAR`
 
-References to other sections:
-  - :ref:`section_ref_algorithm_3DVAR`
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo07.rst
 
-Bibliographical references:
-  - [Byrd95]_
-  - [Morales11]_
-  - [Zhu97]_
+- [Byrd95]_
+- [Morales11]_
+- [Zhu97]_
index 67d88fb18ee36666cb4537c8ced9b56ddb91863e..c4aceb6e5ef5c640eb4b7832153a8c265851b36c 100644 (file)
 Checking algorithm "*ObserverTest*"
 -----------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm allows to verify an external function, given by the user, used as
 an *observer*. This external function can be applied to every of the variables
 that can be potentially observed. It is activated only on those who are
 explicitly associated with the *observer* in the interface.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-The general required commands, available in the editing user interface, are the
-following:
-
-  .. include:: snippets/Observers.rst
+.. include:: snippets/Observers.rst
 
 The general optional commands, available in the editing user interface, are
 indicated in :ref:`section_ref_assimilation_keywords`.
index 6b8680d5bf4650aa1e75d9aea32e642ead93ab7f..25141f6bee605411c6bacfdaeff7ca95fd00832a 100644 (file)
 Calculation algorithm "*ParticleSwarmOptimization*"
 ---------------------------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm realizes an estimation of the state of a system by minimization
 of a cost function :math:`J` by using an evolutionary strategy of particle
 swarm. It is a method that does not use the derivatives of the cost function.
 It falls in the same category than the
-:ref:`section_ref_algorithm_DerivativeFreeOptimization` or the
-:ref:`section_ref_algorithm_DifferentialEvolution`.
+:ref:`section_ref_algorithm_DerivativeFreeOptimization`, the
+:ref:`section_ref_algorithm_DifferentialEvolution` or the
+:ref:`section_ref_algorithm_TabuSearch`.
 
 This is an optimization method allowing for global minimum search of a general
 error function :math:`J` of type :math:`L^1`, :math:`L^2` or :math:`L^{\infty}`,
 with or without weights. The default error function is the augmented weighted
 least squares function, classically used in data assimilation.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/Background.rst
 
-  .. include:: snippets/Background.rst
+.. include:: snippets/BackgroundError.rst
 
-  .. include:: snippets/BackgroundError.rst
+.. include:: snippets/Observation.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/ObservationError.rst
 
-  .. include:: snippets/ObservationError.rst
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03AdOp.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allows to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
-
-The options of the algorithm are the following:
 .. index:: single: NumberOfInsects
 .. index:: single: SwarmVelocity
 .. index:: single: GroupRecallRate
 .. index:: single: QualityCriterion
 .. index:: single: BoxBounds
 
-  .. include:: snippets/MaximumNumberOfSteps_50.rst
-
-  .. include:: snippets/MaximumNumberOfFunctionEvaluations.rst
+.. include:: snippets/MaximumNumberOfSteps_50.rst
 
-  .. include:: snippets/QualityCriterion.rst
+.. include:: snippets/MaximumNumberOfFunctionEvaluations.rst
 
-  NumberOfInsects
-    This key indicates the number of insects or particles in the swarm. The
-    default is 100, which is a usual default for this algorithm.
+.. include:: snippets/QualityCriterion.rst
 
-    Example :
-    ``{"NumberOfInsects":100}``
+NumberOfInsects
+  This key indicates the number of insects or particles in the swarm. The
+  default is 100, which is a usual default for this algorithm.
 
-  SwarmVelocity
-    This key indicates the part of the insect velocity which is imposed by the
-    swarm. It is a positive floating point value. The default value is 1.
+  Example :
+  ``{"NumberOfInsects":100}``
 
-    Example :
-    ``{"SwarmVelocity":1.}``
+SwarmVelocity
+  This key indicates the part of the insect velocity which is imposed by the
+  swarm. It is a positive floating point value. The default value is 1.
 
-  GroupRecallRate
-    This key indicates the recall rate at the best swarm insect. It is a
-    floating point value between 0 and 1. The default value is 0.5.
+  Example :
+  ``{"SwarmVelocity":1.}``
 
-    Example :
-    ``{"GroupRecallRate":0.5}``
+GroupRecallRate
+  This key indicates the recall rate at the best swarm insect. It is a
+  floating point value between 0 and 1. The default value is 0.5.
 
-  BoxBounds
-    This key allows to define upper and lower bounds for *increments* on every
-    state variable being optimized (and not on state variables themselves).
-    Bounds have to be given by a list of list of pairs of lower/upper bounds for
-    each increment on variable, with extreme values every time there is no bound
-    (``None`` is not allowed when there is no bound). This key is required and
-    there is no default values.
+  Example :
+  ``{"GroupRecallRate":0.5}``
 
-    Example :
-    ``{"BoxBounds":[[-0.5,0.5], [0.01,2.], [0.,1.e99], [-1.e99,1.e99]]}``
+BoxBounds
+  This key allows to define upper and lower bounds for *increments* on every
+  state variable being optimized (and not on state variables themselves).
+  Bounds have to be given by a list of list of pairs of lower/upper bounds for
+  each increment on variable, with extreme values every time there is no bound
+  (``None`` is not allowed when there is no bound). This key is required and
+  there is no default values.
 
-  .. include:: snippets/SetSeed.rst
+  Example :
+  ``{"BoxBounds":[[-0.5,0.5], [0.01,2.], [0.,1.e99], [-1.e99,1.e99]]}``
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+.. include:: snippets/SetSeed.rst
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["BMA", "CostFunctionJ", "CostFunctionJb",
-    "CostFunctionJo", "CurrentState", "OMA", "OMB", "Innovation",
-    "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentState",
-    "SimulatedObservationAtOptimum"].
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-    Example :
-    ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "BMA",
+  "CostFunctionJ",
+  "CostFunctionJb",
+  "CostFunctionJo",
+  "CurrentState",
+  "OMA",
+  "OMB",
+  "Innovation",
+  "SimulatedObservationAtBackground",
+  "SimulatedObservationAtCurrentState",
+  "SimulatedObservationAtOptimum",
+  ].
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+  Example :
+  ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-The unconditional outputs of the algorithm are the following:
+.. include:: snippets/Analysis.rst
 
-  .. include:: snippets/Analysis.rst
+.. include:: snippets/CostFunctionJ.rst
 
-  .. include:: snippets/CostFunctionJ.rst
+.. include:: snippets/CostFunctionJb.rst
 
-  .. include:: snippets/CostFunctionJb.rst
+.. include:: snippets/CostFunctionJo.rst
 
-  .. include:: snippets/CostFunctionJo.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-The conditional outputs of the algorithm are the following:
+.. include:: snippets/BMA.rst
 
-  .. include:: snippets/BMA.rst
+.. include:: snippets/CurrentState.rst
 
-  .. include:: snippets/CurrentState.rst
+.. include:: snippets/Innovation.rst
 
-  .. include:: snippets/Innovation.rst
+.. include:: snippets/OMA.rst
 
-  .. include:: snippets/OMA.rst
+.. include:: snippets/OMB.rst
 
-  .. include:: snippets/OMB.rst
+.. include:: snippets/SimulatedObservationAtBackground.rst
 
-  .. include:: snippets/SimulatedObservationAtBackground.rst
+.. include:: snippets/SimulatedObservationAtCurrentState.rst
 
-  .. include:: snippets/SimulatedObservationAtCurrentState.rst
+.. include:: snippets/SimulatedObservationAtOptimum.rst
 
-  .. include:: snippets/SimulatedObservationAtOptimum.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-See also
-++++++++
+- :ref:`section_ref_algorithm_DerivativeFreeOptimization`
+- :ref:`section_ref_algorithm_DifferentialEvolution`
+- :ref:`section_ref_algorithm_TabuSearch`
 
-References to other sections:
-  - :ref:`section_ref_algorithm_DerivativeFreeOptimization`
-  - :ref:`section_ref_algorithm_DifferentialEvolution`
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo07.rst
 
-Bibliographical references:
-  - [WikipediaPSO]_
+- [WikipediaPSO]_
index 2e78fab5e780547d13d4ac1a9c54e217c834285b..6949aad2a1cbb84c31d848c567bc5841f74c90e4 100644 (file)
 Calculation algorithm "*QuantileRegression*"
 --------------------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm allows to estimate the conditional quantiles of the state
 parameters distribution, expressed with a model of the observed variables. These
 are then the quantiles on the observed variables which will allow to determine
 the model parameters that satisfy to the quantiles conditions.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/Background.rst
 
-  .. include:: snippets/Background.rst
+.. include:: snippets/Observation.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03AdOp.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allows to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/Quantile.rst
 
-The options of the algorithm are the following:
+.. include:: snippets/MaximumNumberOfSteps.rst
 
-  .. include:: snippets/Quantile.rst
+.. include:: snippets/CostDecrementTolerance_6.rst
 
-  .. include:: snippets/MaximumNumberOfSteps.rst
+.. include:: snippets/BoundsWithNone.rst
 
-  .. include:: snippets/CostDecrementTolerance_6.rst
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-  .. include:: snippets/BoundsWithNone.rst
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "BMA",
+  "CostFunctionJ",
+  "CostFunctionJb",
+  "CostFunctionJo",
+  "CurrentState",
+  "OMA",
+  "OMB",
+  "Innovation",
+  "SimulatedObservationAtBackground",
+  "SimulatedObservationAtCurrentState",
+  "SimulatedObservationAtOptimum",
+  ].
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
-
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["BMA", "CostFunctionJ", "CostFunctionJb",
-    "CostFunctionJo", "CurrentState", "OMA", "OMB", "Innovation",
-    "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentState",
-    "SimulatedObservationAtOptimum"].
-
-    Example :
-    ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
+  Example :
+  ``{"StoreSupplementaryCalculations":["BMA", "Innovation"]}``
 
 *Tips for this algorithm:*
 
@@ -86,51 +86,44 @@ The options of the algorithm are the following:
     value, even if these commands are not required for this algorithm, and will
     not be used. The simplest way is to give "1" as a STRING for both.
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-The unconditional outputs of the algorithm are the following:
+.. include:: snippets/Analysis.rst
 
-  .. include:: snippets/Analysis.rst
+.. include:: snippets/CostFunctionJ.rst
 
-  .. include:: snippets/CostFunctionJ.rst
+.. include:: snippets/CostFunctionJb.rst
 
-  .. include:: snippets/CostFunctionJb.rst
+.. include:: snippets/CostFunctionJo.rst
 
-  .. include:: snippets/CostFunctionJo.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-The conditional outputs of the algorithm are the following:
+.. include:: snippets/BMA.rst
 
-  .. include:: snippets/BMA.rst
+.. include:: snippets/CurrentState.rst
 
-  .. include:: snippets/CurrentState.rst
+.. include:: snippets/Innovation.rst
 
-  .. include:: snippets/Innovation.rst
+.. include:: snippets/OMA.rst
 
-  .. include:: snippets/OMA.rst
+.. include:: snippets/OMB.rst
 
-  .. include:: snippets/OMB.rst
+.. include:: snippets/SimulatedObservationAtBackground.rst
 
-  .. include:: snippets/SimulatedObservationAtBackground.rst
+.. include:: snippets/SimulatedObservationAtCurrentState.rst
 
-  .. include:: snippets/SimulatedObservationAtCurrentState.rst
+.. include:: snippets/SimulatedObservationAtOptimum.rst
 
-  .. include:: snippets/SimulatedObservationAtOptimum.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-See also
-++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo07.rst
 
-Bibliographical references:
-  - [Buchinsky98]_
-  - [Cade03]_
-  - [Koenker00]_
-  - [Koenker01]_
-  - [WikipediaQR]_
+- [Buchinsky98]_
+- [Cade03]_
+- [Koenker00]_
+- [Koenker01]_
+- [WikipediaQR]_
index 412d1fdc3b0cda79e10d9c557b2e66cec5b0a760..7103f0a9ab31b1c2016c3fe1e43795adec190124 100644 (file)
@@ -27,8 +27,8 @@
 Checking algorithm "*SamplingTest*"
 -----------------------------------
 
-Description
-+++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo01.rst
 
 This algorithm allows to calculate the values, linked to a :math:`\mathbf{x}`
 state, of a general error function :math:`J` of type :math:`L^1`, :math:`L^2` or
@@ -52,123 +52,80 @@ for. One use for that, on the desired variable, the final saving through
 To perform distributed or more complex sampling, see OPENTURNS module available
 in SALOME.
 
-Optional and required commands
-++++++++++++++++++++++++++++++
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo02.rst
 
-The general required commands, available in the editing user interface, are the
-following:
+.. include:: snippets/CheckingPoint.rst
 
-  .. include:: snippets/CheckingPoint.rst
+.. include:: snippets/BackgroundError.rst
 
-  .. include:: snippets/BackgroundError.rst
+.. include:: snippets/Observation.rst
 
-  .. include:: snippets/Observation.rst
+.. include:: snippets/ObservationError.rst
 
-  .. include:: snippets/ObservationError.rst
+.. include:: snippets/ObservationOperator.rst
 
-  .. include:: snippets/ObservationOperator.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo03Chck.rst
 
-The general optional commands, available in the editing user interface, are
-indicated in :ref:`section_ref_assimilation_keywords`. Moreover, the parameters
-of the command "*AlgorithmParameters*" allow to choose the specific options,
-described hereafter, of the algorithm. See
-:ref:`section_ref_options_Algorithm_Parameters` for the good use of this
-command.
+.. include:: snippets/QualityCriterion.rst
 
-The options of the algorithm are the following:
-.. index:: single: SampleAsnUplet
-.. index:: single: SampleAsExplicitHyperCube
-.. index:: single: SampleAsMinMaxStepHyperCube
-.. index:: single: SampleAsIndependantRandomVariables
+.. include:: snippets/SampleAsExplicitHyperCube.rst
 
-  SampleAsnUplet
-    This key describes the calculations points as a list of n-uplets, each
-    n-uplet being a state.
+.. include:: snippets/SampleAsIndependantRandomVariables.rst
 
-    Example :
-    ``{"SampleAsnUplet":[[0,1,2,3],[4,3,2,1],[-2,3,-4,5]]}`` for 3 points in a state space of dimension 4
+.. include:: snippets/SampleAsMinMaxStepHyperCube.rst
 
-  SampleAsExplicitHyperCube
-    This key describes the calculations points as an hyper-cube, from a given
-    list of explicit sampling of each variable as a list. That is then a list of
-    lists, each of them being potentially of different size.
+.. include:: snippets/SampleAsnUplet.rst
 
-    Example : ``{"SampleAsExplicitHyperCube":[[0.,0.25,0.5,0.75,1.], [-2,2,1]]}`` for a state space of dimension 2
+.. include:: snippets/SetDebug.rst
 
-  SampleAsMinMaxStepHyperCube
-    This key describes the calculations points as an hyper-cube, from a given
-    list of implicit sampling of each variable by a triplet *[min,max,step]*.
-    That is then a list of the same size than the one of the state. The bounds
-    are included.
+.. include:: snippets/SetSeed.rst
 
-    Example :
-    ``{"SampleAsMinMaxStepHyperCube":[[0.,1.,0.25],[-1,3,1]]}`` for a state space of dimension 2
+StoreSupplementaryCalculations
+  .. index:: single: StoreSupplementaryCalculations
 
-  SampleAsIndependantRandomVariables
-    This key describes the calculations points as an hyper-cube, for which the
-    points on each axis come from a independent random sampling of the axis
-    variable, under the specification of the distribution, its parameters and
-    the number of points in the sample, as a list ``['distribution',
-    [parameters], number]`` for each axis. The possible distributions are
-    'normal' of parameters (mean,std), 'lognormal' of parameters (mean,sigma),
-    'uniform' of parameters (low,high), or 'weibull' of parameter (shape). That
-    is then a list of the same size than the one of the state.
+  This list indicates the names of the supplementary variables that can be
+  available at the end of the algorithm. It involves potentially costly
+  calculations or memory consumptions. The default is a void list, none of
+  these variables being calculated and stored by default. The possible names
+  are in the following list: [
+  "CostFunctionJ",
+  "CostFunctionJb",
+  "CostFunctionJo",
+  "CurrentState",
+  "InnovationAtCurrentState",
+  "SimulatedObservationAtCurrentState",
+  ].
 
-    Example :
-    ``{"SampleAsIndependantRandomVariables":[ ['normal',[0.,1.],3], ['uniform',[-2,2],4]]`` for a state space of dimension 2
+  Example :
+  ``{"StoreSupplementaryCalculations":["CostFunctionJ", "SimulatedObservationAtCurrentState"]}``
 
-  .. include:: snippets/QualityCriterion.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo04.rst
 
-  .. include:: snippets/SetDebug.rst
+.. include:: snippets/CostFunctionJ.rst
 
-  .. include:: snippets/SetSeed.rst
+.. include:: snippets/CostFunctionJb.rst
 
-  StoreSupplementaryCalculations
-    .. index:: single: StoreSupplementaryCalculations
+.. include:: snippets/CostFunctionJo.rst
 
-    This list indicates the names of the supplementary variables that can be
-    available at the end of the algorithm. It involves potentially costly
-    calculations or memory consumptions. The default is a void list, none of
-    these variables being calculated and stored by default. The possible names
-    are in the following list: ["CostFunctionJ", "CostFunctionJb",
-    "CostFunctionJo", "CurrentState", "InnovationAtCurrentState",
-    "SimulatedObservationAtCurrentState"].
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo05.rst
 
-    Example :
-    ``{"StoreSupplementaryCalculations":["CostFunctionJ", "SimulatedObservationAtCurrentState"]}``
+.. include:: snippets/CurrentState.rst
 
-Information and variables available at the end of the algorithm
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+.. include:: snippets/InnovationAtCurrentState.rst
 
-At the output, after executing the algorithm, there are variables and
-information originating from the calculation. The description of
-:ref:`section_ref_output_variables` show the way to obtain them by the method
-named ``get`` of the variable "*ADD*" of the post-processing. The input
-variables, available to the user at the output in order to facilitate the
-writing of post-processing procedures, are described in the
-:ref:`subsection_r_o_v_Inventaire`.
+.. include:: snippets/SimulatedObservationAtCurrentState.rst
 
-The unconditional outputs of the algorithm are the following:
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo06.rst
 
-  .. include:: snippets/CostFunctionJ.rst
+- :ref:`section_ref_algorithm_FunctionTest`
+- :ref:`section_ref_algorithm_LocalSensitivityTest`
 
-  .. include:: snippets/CostFunctionJb.rst
+.. ------------------------------------ ..
+.. include:: snippets/Header2Algo08.rst
 
-  .. include:: snippets/CostFunctionJo.rst
-
-The conditional outputs of the algorithm are the following:
-
-  .. include:: snippets/CurrentState.rst
-
-  .. include:: snippets/InnovationAtCurrentState.rst
-
-  .. include:: snippets/SimulatedObservationAtCurrentState.rst
-
-See also
-++++++++
-
-References to other sections:
-  - :ref:`section_ref_algorithm_FunctionTest`
-
-References to other SALOME modules:
-  - OPENTURNS, see the *User guide of OPENTURNS module* in the main "*Help*" menu of SALOME platform
+- OPENTURNS, see the *User guide of OPENTURNS module* in the main "*Help*" menu of SALOME platform
index 5a4fa7426475fee9ed2772f03d0a179422037a48..fad7a413d9396ede6c130b2f35119369c0c0ee82 100644 (file)
@@ -128,7 +128,7 @@ other modules, for computing operations driven by YACS [#]_ or an another
 module, etc.
 
 Other usage examples are also given for :ref:`section_u_step4` of the
-:ref:`section_using` section, or in part :ref:`section_examples`.
+:ref:`section_gui_in_salome` section, or in part :ref:`section_tutorials_in_salome`.
 
 Cross compliance of the information available at the output
 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
index ecef0cb171d9713e89c6b7304fb4a396a77265ca..5f2664ace8df6894e672187c45801abb6a3ccfac 100644 (file)
 ================================================================================
 
 The following sections present the reference description of the ADAO commands
-and keywords available through the GUI or through scripts. Two first common
-sections present the :ref:`section_reference_entry` and the
-:ref:`section_reference_special_entry`. After that, one describes successively
-the :ref:`section_reference_assimilation` and the
+and keywords available through the textual interface (TUI), the graphical
+interface (GUI) or through scripts. Two first common sections present the
+:ref:`section_reference_entry` and the :ref:`section_reference_special_entry`.
+After that, one describes successively the
+:ref:`section_reference_assimilation` and the
 :ref:`section_reference_checking`.
 
-Each command or keyword to be defined through the ADAO GUI has some properties.
-The first property is to be *required*, *optional* or only factual, describing a
-type of input. The second property is to be an "open" variable with a fixed type
-but with any value allowed by the type, or a "restricted" variable, limited to
-some specified values. The embedded case editor GUI having build-in validating
-capacities, the properties of the commands or keywords given through this GUI
-are automatically correct.
+Each command or keyword to be defined through the ADAO TUI or GUI has some
+properties. The first property is to be *required*, *optional* or only factual,
+describing a type of input. The second property is to be an "open" variable
+with a fixed type but with any value allowed by the type, or a "restricted"
+variable, limited to some specified values. The embedded case editor GUI having
+build-in validating capacities, the properties of the commands or keywords
+given through this interface are automatically correct.
 
 .. _section_reference_entry:
 
@@ -86,14 +87,14 @@ This section describes the data assimilation or optimization algorithms
 available in ADAO, detailing their usage characteristics and their options.
 
 Some examples on these commands usage are available in the section
-:ref:`section_examples` and in the sample files installed with the ADAO module.
+:ref:`section_tutorials_in_salome`, in the section
+:ref:`section_tutorials_in_python` and in the sample files installed with ADAO.
 The mathematical notations used afterward are explained in the section
 :ref:`section_theory`.
 
 .. toctree::
    :maxdepth: 1
 
-   ref_assimilation_keywords
    ref_algorithm_3DVAR
    ref_algorithm_4DVAR
    ref_algorithm_Blue
@@ -108,7 +109,9 @@ The mathematical notations used afterward are explained in the section
    ref_algorithm_NonLinearLeastSquares
    ref_algorithm_ParticleSwarmOptimization
    ref_algorithm_QuantileRegression
+   ref_algorithm_TabuSearch
    ref_algorithm_UnscentedKalmanFilter
+   ref_assimilation_keywords
 
 .. _section_reference_checking:
 
@@ -120,18 +123,20 @@ This section describes the checking algorithms available in ADAO, detailing
 their usage characteristics and their options.
 
 Some examples on these commands usage are available in the section
-:ref:`section_examples` and in the sample files installed with the ADAO module.
+:ref:`section_tutorials_in_salome`, in the section
+:ref:`section_tutorials_in_python` and in the sample files installed with ADAO.
 The mathematical notations used afterward are explained in the section
 :ref:`section_theory`.
 
 .. toctree::
    :maxdepth: 1
 
-   ref_checking_keywords
    ref_algorithm_AdjointTest
    ref_algorithm_FunctionTest
    ref_algorithm_GradientTest
    ref_algorithm_LinearityTest
+   ref_algorithm_LocalSensitivityTest
    ref_algorithm_ObserverTest
    ref_algorithm_SamplingTest
    ref_algorithm_TangentTest
+   ref_checking_keywords