--- /dev/null
+// Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE
+//
+// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
+// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
+//
+// This library is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 2.1 of the License.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// Lesser General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License along with this library; if not, write to the Free Software
+// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+//
+// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+//
+// File : SMESH_MeshAlgos.hxx
+// Created : Tue Apr 30 18:00:36 2013
+// Author : Edward AGAPOV (eap)
+
+// This file holds some low level algorithms extracted from SMESH_MeshEditor
+// to make them accessible from Controls package
+
+#include "SMESH_MeshAlgos.hxx"
+
+#include "SMDS_LinearEdge.hxx"
+#include "SMDS_VolumeTool.hxx"
+#include "SMDS_Mesh.hxx"
+#include "SMESH_OctreeNode.hxx"
+
+#include <GC_MakeSegment.hxx>
+#include <GeomAPI_ExtremaCurveCurve.hxx>
+#include <Geom_Line.hxx>
+#include <IntAna_IntConicQuad.hxx>
+#include <IntAna_Quadric.hxx>
+#include <gp_Lin.hxx>
+#include <gp_Pln.hxx>
+
+#include <limits>
+#include <numeric>
+
+using namespace std;
+
+//=======================================================================
+/*!
+ * \brief Implementation of search for the node closest to point
+ */
+//=======================================================================
+
+struct SMESH_NodeSearcherImpl: public SMESH_NodeSearcher
+{
+ //---------------------------------------------------------------------
+ /*!
+ * \brief Constructor
+ */
+ SMESH_NodeSearcherImpl( const SMDS_Mesh* theMesh )
+ {
+ myMesh = ( SMDS_Mesh* ) theMesh;
+
+ TIDSortedNodeSet nodes;
+ if ( theMesh ) {
+ SMDS_NodeIteratorPtr nIt = theMesh->nodesIterator(/*idInceasingOrder=*/true);
+ while ( nIt->more() )
+ nodes.insert( nodes.end(), nIt->next() );
+ }
+ myOctreeNode = new SMESH_OctreeNode(nodes) ;
+
+ // get max size of a leaf box
+ SMESH_OctreeNode* tree = myOctreeNode;
+ while ( !tree->isLeaf() )
+ {
+ SMESH_OctreeNodeIteratorPtr cIt = tree->GetChildrenIterator();
+ if ( cIt->more() )
+ tree = cIt->next();
+ }
+ myHalfLeafSize = tree->maxSize() / 2.;
+ }
+
+ //---------------------------------------------------------------------
+ /*!
+ * \brief Move node and update myOctreeNode accordingly
+ */
+ void MoveNode( const SMDS_MeshNode* node, const gp_Pnt& toPnt )
+ {
+ myOctreeNode->UpdateByMoveNode( node, toPnt );
+ myMesh->MoveNode( node, toPnt.X(), toPnt.Y(), toPnt.Z() );
+ }
+
+ //---------------------------------------------------------------------
+ /*!
+ * \brief Do it's job
+ */
+ const SMDS_MeshNode* FindClosestTo( const gp_Pnt& thePnt )
+ {
+ map<double, const SMDS_MeshNode*> dist2Nodes;
+ myOctreeNode->NodesAround( thePnt.Coord(), dist2Nodes, myHalfLeafSize );
+ if ( !dist2Nodes.empty() )
+ return dist2Nodes.begin()->second;
+ list<const SMDS_MeshNode*> nodes;
+ //myOctreeNode->NodesAround( &tgtNode, &nodes, myHalfLeafSize );
+
+ double minSqDist = DBL_MAX;
+ if ( nodes.empty() ) // get all nodes of OctreeNode's closest to thePnt
+ {
+ // sort leafs by their distance from thePnt
+ typedef map< double, SMESH_OctreeNode* > TDistTreeMap;
+ TDistTreeMap treeMap;
+ list< SMESH_OctreeNode* > treeList;
+ list< SMESH_OctreeNode* >::iterator trIt;
+ treeList.push_back( myOctreeNode );
+
+ gp_XYZ pointNode( thePnt.X(), thePnt.Y(), thePnt.Z() );
+ bool pointInside = myOctreeNode->isInside( pointNode, myHalfLeafSize );
+ for ( trIt = treeList.begin(); trIt != treeList.end(); ++trIt)
+ {
+ SMESH_OctreeNode* tree = *trIt;
+ if ( !tree->isLeaf() ) // put children to the queue
+ {
+ if ( pointInside && !tree->isInside( pointNode, myHalfLeafSize )) continue;
+ SMESH_OctreeNodeIteratorPtr cIt = tree->GetChildrenIterator();
+ while ( cIt->more() )
+ treeList.push_back( cIt->next() );
+ }
+ else if ( tree->NbNodes() ) // put a tree to the treeMap
+ {
+ const Bnd_B3d& box = *tree->getBox();
+ double sqDist = thePnt.SquareDistance( 0.5 * ( box.CornerMin() + box.CornerMax() ));
+ pair<TDistTreeMap::iterator,bool> it_in = treeMap.insert( make_pair( sqDist, tree ));
+ if ( !it_in.second ) // not unique distance to box center
+ treeMap.insert( it_in.first, make_pair( sqDist + 1e-13*treeMap.size(), tree ));
+ }
+ }
+ // find distance after which there is no sense to check tree's
+ double sqLimit = DBL_MAX;
+ TDistTreeMap::iterator sqDist_tree = treeMap.begin();
+ if ( treeMap.size() > 5 ) {
+ SMESH_OctreeNode* closestTree = sqDist_tree->second;
+ const Bnd_B3d& box = *closestTree->getBox();
+ double limit = sqrt( sqDist_tree->first ) + sqrt ( box.SquareExtent() );
+ sqLimit = limit * limit;
+ }
+ // get all nodes from trees
+ for ( ; sqDist_tree != treeMap.end(); ++sqDist_tree) {
+ if ( sqDist_tree->first > sqLimit )
+ break;
+ SMESH_OctreeNode* tree = sqDist_tree->second;
+ tree->NodesAround( tree->GetNodeIterator()->next(), &nodes );
+ }
+ }
+ // find closest among nodes
+ minSqDist = DBL_MAX;
+ const SMDS_MeshNode* closestNode = 0;
+ list<const SMDS_MeshNode*>::iterator nIt = nodes.begin();
+ for ( ; nIt != nodes.end(); ++nIt ) {
+ double sqDist = thePnt.SquareDistance( SMESH_TNodeXYZ( *nIt ) );
+ if ( minSqDist > sqDist ) {
+ closestNode = *nIt;
+ minSqDist = sqDist;
+ }
+ }
+ return closestNode;
+ }
+
+ //---------------------------------------------------------------------
+ /*!
+ * \brief Destructor
+ */
+ ~SMESH_NodeSearcherImpl() { delete myOctreeNode; }
+
+ //---------------------------------------------------------------------
+ /*!
+ * \brief Return the node tree
+ */
+ const SMESH_OctreeNode* getTree() const { return myOctreeNode; }
+
+private:
+ SMESH_OctreeNode* myOctreeNode;
+ SMDS_Mesh* myMesh;
+ double myHalfLeafSize; // max size of a leaf box
+};
+
+// ========================================================================
+namespace // Utils used in SMESH_ElementSearcherImpl::FindElementsByPoint()
+{
+ const int MaxNbElemsInLeaf = 10; // maximal number of elements in a leaf of tree
+ const int MaxLevel = 7; // maximal tree height -> nb terminal boxes: 8^7 = 2097152
+ const double NodeRadius = 1e-9; // to enlarge bnd box of element
+
+ //=======================================================================
+ /*!
+ * \brief Octal tree of bounding boxes of elements
+ */
+ //=======================================================================
+
+ class ElementBndBoxTree : public SMESH_Octree
+ {
+ public:
+
+ ElementBndBoxTree(const SMDS_Mesh& mesh,
+ SMDSAbs_ElementType elemType,
+ SMDS_ElemIteratorPtr theElemIt = SMDS_ElemIteratorPtr(),
+ double tolerance = NodeRadius );
+ void getElementsNearPoint( const gp_Pnt& point, TIDSortedElemSet& foundElems );
+ void getElementsNearLine ( const gp_Ax1& line, TIDSortedElemSet& foundElems);
+ void getElementsInSphere ( const gp_XYZ& center,
+ const double radius, TIDSortedElemSet& foundElems);
+ size_t getSize() { return std::max( _size, _elements.size() ); }
+ ~ElementBndBoxTree();
+
+ protected:
+ ElementBndBoxTree():_size(0) {}
+ SMESH_Octree* newChild() const { return new ElementBndBoxTree; }
+ void buildChildrenData();
+ Bnd_B3d* buildRootBox();
+ private:
+ //!< Bounding box of element
+ struct ElementBox : public Bnd_B3d
+ {
+ const SMDS_MeshElement* _element;
+ int _refCount; // an ElementBox can be included in several tree branches
+ ElementBox(const SMDS_MeshElement* elem, double tolerance);
+ };
+ vector< ElementBox* > _elements;
+ size_t _size;
+ };
+
+ //================================================================================
+ /*!
+ * \brief ElementBndBoxTree creation
+ */
+ //================================================================================
+
+ ElementBndBoxTree::ElementBndBoxTree(const SMDS_Mesh& mesh, SMDSAbs_ElementType elemType, SMDS_ElemIteratorPtr theElemIt, double tolerance)
+ :SMESH_Octree( new SMESH_TreeLimit( MaxLevel, /*minSize=*/0. ))
+ {
+ int nbElems = mesh.GetMeshInfo().NbElements( elemType );
+ _elements.reserve( nbElems );
+
+ SMDS_ElemIteratorPtr elemIt = theElemIt ? theElemIt : mesh.elementsIterator( elemType );
+ while ( elemIt->more() )
+ _elements.push_back( new ElementBox( elemIt->next(),tolerance ));
+
+ compute();
+ }
+
+ //================================================================================
+ /*!
+ * \brief Destructor
+ */
+ //================================================================================
+
+ ElementBndBoxTree::~ElementBndBoxTree()
+ {
+ for ( int i = 0; i < _elements.size(); ++i )
+ if ( --_elements[i]->_refCount <= 0 )
+ delete _elements[i];
+ }
+
+ //================================================================================
+ /*!
+ * \brief Return the maximal box
+ */
+ //================================================================================
+
+ Bnd_B3d* ElementBndBoxTree::buildRootBox()
+ {
+ Bnd_B3d* box = new Bnd_B3d;
+ for ( int i = 0; i < _elements.size(); ++i )
+ box->Add( *_elements[i] );
+ return box;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Redistrubute element boxes among children
+ */
+ //================================================================================
+
+ void ElementBndBoxTree::buildChildrenData()
+ {
+ for ( int i = 0; i < _elements.size(); ++i )
+ {
+ for (int j = 0; j < 8; j++)
+ {
+ if ( !_elements[i]->IsOut( *myChildren[j]->getBox() ))
+ {
+ _elements[i]->_refCount++;
+ ((ElementBndBoxTree*)myChildren[j])->_elements.push_back( _elements[i]);
+ }
+ }
+ _elements[i]->_refCount--;
+ }
+ _size = _elements.size();
+ SMESHUtils::FreeVector( _elements ); // = _elements.clear() + free memory
+
+ for (int j = 0; j < 8; j++)
+ {
+ ElementBndBoxTree* child = static_cast<ElementBndBoxTree*>( myChildren[j]);
+ if ( child->_elements.size() <= MaxNbElemsInLeaf )
+ child->myIsLeaf = true;
+
+ if ( child->_elements.capacity() - child->_elements.size() > 1000 )
+ SMESHUtils::CompactVector( child->_elements );
+ }
+ }
+
+ //================================================================================
+ /*!
+ * \brief Return elements which can include the point
+ */
+ //================================================================================
+
+ void ElementBndBoxTree::getElementsNearPoint( const gp_Pnt& point,
+ TIDSortedElemSet& foundElems)
+ {
+ if ( getBox()->IsOut( point.XYZ() ))
+ return;
+
+ if ( isLeaf() )
+ {
+ for ( int i = 0; i < _elements.size(); ++i )
+ if ( !_elements[i]->IsOut( point.XYZ() ))
+ foundElems.insert( _elements[i]->_element );
+ }
+ else
+ {
+ for (int i = 0; i < 8; i++)
+ ((ElementBndBoxTree*) myChildren[i])->getElementsNearPoint( point, foundElems );
+ }
+ }
+
+ //================================================================================
+ /*!
+ * \brief Return elements which can be intersected by the line
+ */
+ //================================================================================
+
+ void ElementBndBoxTree::getElementsNearLine( const gp_Ax1& line,
+ TIDSortedElemSet& foundElems)
+ {
+ if ( getBox()->IsOut( line ))
+ return;
+
+ if ( isLeaf() )
+ {
+ for ( int i = 0; i < _elements.size(); ++i )
+ if ( !_elements[i]->IsOut( line ))
+ foundElems.insert( _elements[i]->_element );
+ }
+ else
+ {
+ for (int i = 0; i < 8; i++)
+ ((ElementBndBoxTree*) myChildren[i])->getElementsNearLine( line, foundElems );
+ }
+ }
+
+ //================================================================================
+ /*!
+ * \brief Return elements from leaves intersecting the sphere
+ */
+ //================================================================================
+
+ void ElementBndBoxTree::getElementsInSphere ( const gp_XYZ& center,
+ const double radius,
+ TIDSortedElemSet& foundElems)
+ {
+ if ( getBox()->IsOut( center, radius ))
+ return;
+
+ if ( isLeaf() )
+ {
+ for ( int i = 0; i < _elements.size(); ++i )
+ if ( !_elements[i]->IsOut( center, radius ))
+ foundElems.insert( _elements[i]->_element );
+ }
+ else
+ {
+ for (int i = 0; i < 8; i++)
+ ((ElementBndBoxTree*) myChildren[i])->getElementsInSphere( center, radius, foundElems );
+ }
+ }
+
+ //================================================================================
+ /*!
+ * \brief Construct the element box
+ */
+ //================================================================================
+
+ ElementBndBoxTree::ElementBox::ElementBox(const SMDS_MeshElement* elem, double tolerance)
+ {
+ _element = elem;
+ _refCount = 1;
+ SMDS_ElemIteratorPtr nIt = elem->nodesIterator();
+ while ( nIt->more() )
+ Add( SMESH_TNodeXYZ( nIt->next() ));
+ Enlarge( tolerance );
+ }
+
+} // namespace
+
+//=======================================================================
+/*!
+ * \brief Implementation of search for the elements by point and
+ * of classification of point in 2D mesh
+ */
+//=======================================================================
+
+struct SMESH_ElementSearcherImpl: public SMESH_ElementSearcher
+{
+ SMDS_Mesh* _mesh;
+ SMDS_ElemIteratorPtr _meshPartIt;
+ ElementBndBoxTree* _ebbTree;
+ SMESH_NodeSearcherImpl* _nodeSearcher;
+ SMDSAbs_ElementType _elementType;
+ double _tolerance;
+ bool _outerFacesFound;
+ set<const SMDS_MeshElement*> _outerFaces; // empty means "no internal faces at all"
+
+ SMESH_ElementSearcherImpl( SMDS_Mesh& mesh, SMDS_ElemIteratorPtr elemIt=SMDS_ElemIteratorPtr())
+ : _mesh(&mesh),_meshPartIt(elemIt),_ebbTree(0),_nodeSearcher(0),_tolerance(-1),_outerFacesFound(false) {}
+ ~SMESH_ElementSearcherImpl()
+ {
+ if ( _ebbTree ) delete _ebbTree; _ebbTree = 0;
+ if ( _nodeSearcher ) delete _nodeSearcher; _nodeSearcher = 0;
+ }
+ virtual int FindElementsByPoint(const gp_Pnt& point,
+ SMDSAbs_ElementType type,
+ vector< const SMDS_MeshElement* >& foundElements);
+ virtual TopAbs_State GetPointState(const gp_Pnt& point);
+ virtual const SMDS_MeshElement* FindClosestTo( const gp_Pnt& point,
+ SMDSAbs_ElementType type );
+
+ void GetElementsNearLine( const gp_Ax1& line,
+ SMDSAbs_ElementType type,
+ vector< const SMDS_MeshElement* >& foundElems);
+ double getTolerance();
+ bool getIntersParamOnLine(const gp_Lin& line, const SMDS_MeshElement* face,
+ const double tolerance, double & param);
+ void findOuterBoundary(const SMDS_MeshElement* anyOuterFace);
+ bool isOuterBoundary(const SMDS_MeshElement* face) const
+ {
+ return _outerFaces.empty() || _outerFaces.count(face);
+ }
+ struct TInters //!< data of intersection of the line and the mesh face (used in GetPointState())
+ {
+ const SMDS_MeshElement* _face;
+ gp_Vec _faceNorm;
+ bool _coincides; //!< the line lays in face plane
+ TInters(const SMDS_MeshElement* face, const gp_Vec& faceNorm, bool coinc=false)
+ : _face(face), _faceNorm( faceNorm ), _coincides( coinc ) {}
+ };
+ struct TFaceLink //!< link and faces sharing it (used in findOuterBoundary())
+ {
+ SMESH_TLink _link;
+ TIDSortedElemSet _faces;
+ TFaceLink( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshElement* face)
+ : _link( n1, n2 ), _faces( &face, &face + 1) {}
+ };
+};
+
+ostream& operator<< (ostream& out, const SMESH_ElementSearcherImpl::TInters& i)
+{
+ return out << "TInters(face=" << ( i._face ? i._face->GetID() : 0)
+ << ", _coincides="<<i._coincides << ")";
+}
+
+//=======================================================================
+/*!
+ * \brief define tolerance for search
+ */
+//=======================================================================
+
+double SMESH_ElementSearcherImpl::getTolerance()
+{
+ if ( _tolerance < 0 )
+ {
+ const SMDS_MeshInfo& meshInfo = _mesh->GetMeshInfo();
+
+ _tolerance = 0;
+ if ( _nodeSearcher && meshInfo.NbNodes() > 1 )
+ {
+ double boxSize = _nodeSearcher->getTree()->maxSize();
+ _tolerance = 1e-8 * boxSize/* / meshInfo.NbNodes()*/;
+ }
+ else if ( _ebbTree && meshInfo.NbElements() > 0 )
+ {
+ double boxSize = _ebbTree->maxSize();
+ _tolerance = 1e-8 * boxSize/* / meshInfo.NbElements()*/;
+ }
+ if ( _tolerance == 0 )
+ {
+ // define tolerance by size of a most complex element
+ int complexType = SMDSAbs_Volume;
+ while ( complexType > SMDSAbs_All &&
+ meshInfo.NbElements( SMDSAbs_ElementType( complexType )) < 1 )
+ --complexType;
+ if ( complexType == SMDSAbs_All ) return 0; // empty mesh
+ double elemSize;
+ if ( complexType == int( SMDSAbs_Node ))
+ {
+ SMDS_NodeIteratorPtr nodeIt = _mesh->nodesIterator();
+ elemSize = 1;
+ if ( meshInfo.NbNodes() > 2 )
+ elemSize = SMESH_TNodeXYZ( nodeIt->next() ).Distance( nodeIt->next() );
+ }
+ else
+ {
+ SMDS_ElemIteratorPtr elemIt =
+ _mesh->elementsIterator( SMDSAbs_ElementType( complexType ));
+ const SMDS_MeshElement* elem = elemIt->next();
+ SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator();
+ SMESH_TNodeXYZ n1( nodeIt->next() );
+ elemSize = 0;
+ while ( nodeIt->more() )
+ {
+ double dist = n1.Distance( static_cast<const SMDS_MeshNode*>( nodeIt->next() ));
+ elemSize = max( dist, elemSize );
+ }
+ }
+ _tolerance = 1e-4 * elemSize;
+ }
+ }
+ return _tolerance;
+}
+
+//================================================================================
+/*!
+ * \brief Find intersection of the line and an edge of face and return parameter on line
+ */
+//================================================================================
+
+bool SMESH_ElementSearcherImpl::getIntersParamOnLine(const gp_Lin& line,
+ const SMDS_MeshElement* face,
+ const double tol,
+ double & param)
+{
+ int nbInts = 0;
+ param = 0;
+
+ GeomAPI_ExtremaCurveCurve anExtCC;
+ Handle(Geom_Curve) lineCurve = new Geom_Line( line );
+
+ int nbNodes = face->IsQuadratic() ? face->NbNodes()/2 : face->NbNodes();
+ for ( int i = 0; i < nbNodes && nbInts < 2; ++i )
+ {
+ GC_MakeSegment edge( SMESH_TNodeXYZ( face->GetNode( i )),
+ SMESH_TNodeXYZ( face->GetNode( (i+1)%nbNodes) ));
+ anExtCC.Init( lineCurve, edge);
+ if ( anExtCC.NbExtrema() > 0 && anExtCC.LowerDistance() <= tol)
+ {
+ Quantity_Parameter pl, pe;
+ anExtCC.LowerDistanceParameters( pl, pe );
+ param += pl;
+ if ( ++nbInts == 2 )
+ break;
+ }
+ }
+ if ( nbInts > 0 ) param /= nbInts;
+ return nbInts > 0;
+}
+//================================================================================
+/*!
+ * \brief Find all faces belonging to the outer boundary of mesh
+ */
+//================================================================================
+
+void SMESH_ElementSearcherImpl::findOuterBoundary(const SMDS_MeshElement* outerFace)
+{
+ if ( _outerFacesFound ) return;
+
+ // Collect all outer faces by passing from one outer face to another via their links
+ // and BTW find out if there are internal faces at all.
+
+ // checked links and links where outer boundary meets internal one
+ set< SMESH_TLink > visitedLinks, seamLinks;
+
+ // links to treat with already visited faces sharing them
+ list < TFaceLink > startLinks;
+
+ // load startLinks with the first outerFace
+ startLinks.push_back( TFaceLink( outerFace->GetNode(0), outerFace->GetNode(1), outerFace));
+ _outerFaces.insert( outerFace );
+
+ TIDSortedElemSet emptySet;
+ while ( !startLinks.empty() )
+ {
+ const SMESH_TLink& link = startLinks.front()._link;
+ TIDSortedElemSet& faces = startLinks.front()._faces;
+
+ outerFace = *faces.begin();
+ // find other faces sharing the link
+ const SMDS_MeshElement* f;
+ while (( f = SMESH_MeshAlgos::FindFaceInSet(link.node1(), link.node2(), emptySet, faces )))
+ faces.insert( f );
+
+ // select another outer face among the found
+ const SMDS_MeshElement* outerFace2 = 0;
+ if ( faces.size() == 2 )
+ {
+ outerFace2 = (outerFace == *faces.begin() ? *faces.rbegin() : *faces.begin());
+ }
+ else if ( faces.size() > 2 )
+ {
+ seamLinks.insert( link );
+
+ // link direction within the outerFace
+ gp_Vec n1n2( SMESH_TNodeXYZ( link.node1()),
+ SMESH_TNodeXYZ( link.node2()));
+ int i1 = outerFace->GetNodeIndex( link.node1() );
+ int i2 = outerFace->GetNodeIndex( link.node2() );
+ bool rev = ( abs(i2-i1) == 1 ? i1 > i2 : i2 > i1 );
+ if ( rev ) n1n2.Reverse();
+ // outerFace normal
+ gp_XYZ ofNorm, fNorm;
+ if ( SMESH_MeshAlgos::FaceNormal( outerFace, ofNorm, /*normalized=*/false ))
+ {
+ // direction from the link inside outerFace
+ gp_Vec dirInOF = gp_Vec( ofNorm ) ^ n1n2;
+ // sort all other faces by angle with the dirInOF
+ map< double, const SMDS_MeshElement* > angle2Face;
+ set< const SMDS_MeshElement*, TIDCompare >::const_iterator face = faces.begin();
+ for ( ; face != faces.end(); ++face )
+ {
+ if ( !SMESH_MeshAlgos::FaceNormal( *face, fNorm, /*normalized=*/false ))
+ continue;
+ gp_Vec dirInF = gp_Vec( fNorm ) ^ n1n2;
+ double angle = dirInOF.AngleWithRef( dirInF, n1n2 );
+ if ( angle < 0 ) angle += 2. * M_PI;
+ angle2Face.insert( make_pair( angle, *face ));
+ }
+ if ( !angle2Face.empty() )
+ outerFace2 = angle2Face.begin()->second;
+ }
+ }
+ // store the found outer face and add its links to continue seaching from
+ if ( outerFace2 )
+ {
+ _outerFaces.insert( outerFace );
+ int nbNodes = outerFace2->NbNodes()/( outerFace2->IsQuadratic() ? 2 : 1 );
+ for ( int i = 0; i < nbNodes; ++i )
+ {
+ SMESH_TLink link2( outerFace2->GetNode(i), outerFace2->GetNode((i+1)%nbNodes));
+ if ( visitedLinks.insert( link2 ).second )
+ startLinks.push_back( TFaceLink( link2.node1(), link2.node2(), outerFace2 ));
+ }
+ }
+ startLinks.pop_front();
+ }
+ _outerFacesFound = true;
+
+ if ( !seamLinks.empty() )
+ {
+ // There are internal boundaries touching the outher one,
+ // find all faces of internal boundaries in order to find
+ // faces of boundaries of holes, if any.
+
+ }
+ else
+ {
+ _outerFaces.clear();
+ }
+}
+
+//=======================================================================
+/*!
+ * \brief Find elements of given type where the given point is IN or ON.
+ * Returns nb of found elements and elements them-selves.
+ *
+ * 'ALL' type means elements of any type excluding nodes, balls and 0D elements
+ */
+//=======================================================================
+
+int SMESH_ElementSearcherImpl::
+FindElementsByPoint(const gp_Pnt& point,
+ SMDSAbs_ElementType type,
+ vector< const SMDS_MeshElement* >& foundElements)
+{
+ foundElements.clear();
+
+ double tolerance = getTolerance();
+
+ // =================================================================================
+ if ( type == SMDSAbs_Node || type == SMDSAbs_0DElement || type == SMDSAbs_Ball)
+ {
+ if ( !_nodeSearcher )
+ _nodeSearcher = new SMESH_NodeSearcherImpl( _mesh );
+
+ const SMDS_MeshNode* closeNode = _nodeSearcher->FindClosestTo( point );
+ if ( !closeNode ) return foundElements.size();
+
+ if ( point.Distance( SMESH_TNodeXYZ( closeNode )) > tolerance )
+ return foundElements.size(); // to far from any node
+
+ if ( type == SMDSAbs_Node )
+ {
+ foundElements.push_back( closeNode );
+ }
+ else
+ {
+ SMDS_ElemIteratorPtr elemIt = closeNode->GetInverseElementIterator( type );
+ while ( elemIt->more() )
+ foundElements.push_back( elemIt->next() );
+ }
+ }
+ // =================================================================================
+ else // elements more complex than 0D
+ {
+ if ( !_ebbTree || _elementType != type )
+ {
+ if ( _ebbTree ) delete _ebbTree;
+ _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type, _meshPartIt, tolerance );
+ }
+ TIDSortedElemSet suspectElems;
+ _ebbTree->getElementsNearPoint( point, suspectElems );
+ TIDSortedElemSet::iterator elem = suspectElems.begin();
+ for ( ; elem != suspectElems.end(); ++elem )
+ if ( !SMESH_MeshAlgos::IsOut( *elem, point, tolerance ))
+ foundElements.push_back( *elem );
+ }
+ return foundElements.size();
+}
+
+//=======================================================================
+/*!
+ * \brief Find an element of given type most close to the given point
+ *
+ * WARNING: Only face search is implemeneted so far
+ */
+//=======================================================================
+
+const SMDS_MeshElement*
+SMESH_ElementSearcherImpl::FindClosestTo( const gp_Pnt& point,
+ SMDSAbs_ElementType type )
+{
+ const SMDS_MeshElement* closestElem = 0;
+
+ if ( type == SMDSAbs_Face )
+ {
+ if ( !_ebbTree || _elementType != type )
+ {
+ if ( _ebbTree ) delete _ebbTree;
+ _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type, _meshPartIt );
+ }
+ TIDSortedElemSet suspectElems;
+ _ebbTree->getElementsNearPoint( point, suspectElems );
+
+ if ( suspectElems.empty() && _ebbTree->maxSize() > 0 )
+ {
+ gp_Pnt boxCenter = 0.5 * ( _ebbTree->getBox()->CornerMin() +
+ _ebbTree->getBox()->CornerMax() );
+ double radius;
+ if ( _ebbTree->getBox()->IsOut( point.XYZ() ))
+ radius = point.Distance( boxCenter ) - 0.5 * _ebbTree->maxSize();
+ else
+ radius = _ebbTree->maxSize() / pow( 2., _ebbTree->getHeight()) / 2;
+ while ( suspectElems.empty() )
+ {
+ _ebbTree->getElementsInSphere( point.XYZ(), radius, suspectElems );
+ radius *= 1.1;
+ }
+ }
+ double minDist = std::numeric_limits<double>::max();
+ multimap< double, const SMDS_MeshElement* > dist2face;
+ TIDSortedElemSet::iterator elem = suspectElems.begin();
+ for ( ; elem != suspectElems.end(); ++elem )
+ {
+ double dist = SMESH_MeshAlgos::GetDistance( dynamic_cast<const SMDS_MeshFace*>(*elem),
+ point );
+ if ( dist < minDist + 1e-10)
+ {
+ minDist = dist;
+ dist2face.insert( dist2face.begin(), make_pair( dist, *elem ));
+ }
+ }
+ if ( !dist2face.empty() )
+ {
+ multimap< double, const SMDS_MeshElement* >::iterator d2f = dist2face.begin();
+ closestElem = d2f->second;
+ // if there are several elements at the same distance, select one
+ // with GC closest to the point
+ typedef SMDS_StdIterator< SMESH_TNodeXYZ, SMDS_ElemIteratorPtr > TXyzIterator;
+ double minDistToGC = 0;
+ for ( ++d2f; d2f != dist2face.end() && fabs( d2f->first - minDist ) < 1e-10; ++d2f )
+ {
+ if ( minDistToGC == 0 )
+ {
+ gp_XYZ gc(0,0,0);
+ gc = accumulate( TXyzIterator(closestElem->nodesIterator()),
+ TXyzIterator(), gc ) / closestElem->NbNodes();
+ minDistToGC = point.SquareDistance( gc );
+ }
+ gp_XYZ gc(0,0,0);
+ gc = accumulate( TXyzIterator( d2f->second->nodesIterator()),
+ TXyzIterator(), gc ) / d2f->second->NbNodes();
+ double d = point.SquareDistance( gc );
+ if ( d < minDistToGC )
+ {
+ minDistToGC = d;
+ closestElem = d2f->second;
+ }
+ }
+ // cout << "FindClosestTo( " <<point.X()<<", "<<point.Y()<<", "<<point.Z()<<" ) FACE "
+ // <<closestElem->GetID() << " DIST " << minDist << endl;
+ }
+ }
+ else
+ {
+ // NOT IMPLEMENTED SO FAR
+ }
+ return closestElem;
+}
+
+
+//================================================================================
+/*!
+ * \brief Classify the given point in the closed 2D mesh
+ */
+//================================================================================
+
+TopAbs_State SMESH_ElementSearcherImpl::GetPointState(const gp_Pnt& point)
+{
+ double tolerance = getTolerance();
+ if ( !_ebbTree || _elementType != SMDSAbs_Face )
+ {
+ if ( _ebbTree ) delete _ebbTree;
+ _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = SMDSAbs_Face, _meshPartIt );
+ }
+ // Algo: analyse transition of a line starting at the point through mesh boundary;
+ // try three lines parallel to axis of the coordinate system and perform rough
+ // analysis. If solution is not clear perform thorough analysis.
+
+ const int nbAxes = 3;
+ gp_Dir axisDir[ nbAxes ] = { gp::DX(), gp::DY(), gp::DZ() };
+ map< double, TInters > paramOnLine2TInters[ nbAxes ];
+ list< TInters > tangentInters[ nbAxes ]; // of faces whose plane includes the line
+ multimap< int, int > nbInt2Axis; // to find the simplest case
+ for ( int axis = 0; axis < nbAxes; ++axis )
+ {
+ gp_Ax1 lineAxis( point, axisDir[axis]);
+ gp_Lin line ( lineAxis );
+
+ TIDSortedElemSet suspectFaces; // faces possibly intersecting the line
+ _ebbTree->getElementsNearLine( lineAxis, suspectFaces );
+
+ // Intersect faces with the line
+
+ map< double, TInters > & u2inters = paramOnLine2TInters[ axis ];
+ TIDSortedElemSet::iterator face = suspectFaces.begin();
+ for ( ; face != suspectFaces.end(); ++face )
+ {
+ // get face plane
+ gp_XYZ fNorm;
+ if ( !SMESH_MeshAlgos::FaceNormal( *face, fNorm, /*normalized=*/false)) continue;
+ gp_Pln facePlane( SMESH_TNodeXYZ( (*face)->GetNode(0)), fNorm );
+
+ // perform intersection
+ IntAna_IntConicQuad intersection( line, IntAna_Quadric( facePlane ));
+ if ( !intersection.IsDone() )
+ continue;
+ if ( intersection.IsInQuadric() )
+ {
+ tangentInters[ axis ].push_back( TInters( *face, fNorm, true ));
+ }
+ else if ( ! intersection.IsParallel() && intersection.NbPoints() > 0 )
+ {
+ gp_Pnt intersectionPoint = intersection.Point(1);
+ if ( !SMESH_MeshAlgos::IsOut( *face, intersectionPoint, tolerance ))
+ u2inters.insert(make_pair( intersection.ParamOnConic(1), TInters( *face, fNorm )));
+ }
+ }
+ // Analyse intersections roughly
+
+ int nbInter = u2inters.size();
+ if ( nbInter == 0 )
+ return TopAbs_OUT;
+
+ double f = u2inters.begin()->first, l = u2inters.rbegin()->first;
+ if ( nbInter == 1 ) // not closed mesh
+ return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN;
+
+ if ( fabs( f ) < tolerance || fabs( l ) < tolerance )
+ return TopAbs_ON;
+
+ if ( (f<0) == (l<0) )
+ return TopAbs_OUT;
+
+ int nbIntBeforePoint = std::distance( u2inters.begin(), u2inters.lower_bound(0));
+ int nbIntAfterPoint = nbInter - nbIntBeforePoint;
+ if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 )
+ return TopAbs_IN;
+
+ nbInt2Axis.insert( make_pair( min( nbIntBeforePoint, nbIntAfterPoint ), axis ));
+
+ if ( _outerFacesFound ) break; // pass to thorough analysis
+
+ } // three attempts - loop on CS axes
+
+ // Analyse intersections thoroughly.
+ // We make two loops maximum, on the first one we only exclude touching intersections,
+ // on the second, if situation is still unclear, we gather and use information on
+ // position of faces (internal or outer). If faces position is already gathered,
+ // we make the second loop right away.
+
+ for ( int hasPositionInfo = _outerFacesFound; hasPositionInfo < 2; ++hasPositionInfo )
+ {
+ multimap< int, int >::const_iterator nb_axis = nbInt2Axis.begin();
+ for ( ; nb_axis != nbInt2Axis.end(); ++nb_axis )
+ {
+ int axis = nb_axis->second;
+ map< double, TInters > & u2inters = paramOnLine2TInters[ axis ];
+
+ gp_Ax1 lineAxis( point, axisDir[axis]);
+ gp_Lin line ( lineAxis );
+
+ // add tangent intersections to u2inters
+ double param;
+ list< TInters >::const_iterator tgtInt = tangentInters[ axis ].begin();
+ for ( ; tgtInt != tangentInters[ axis ].end(); ++tgtInt )
+ if ( getIntersParamOnLine( line, tgtInt->_face, tolerance, param ))
+ u2inters.insert(make_pair( param, *tgtInt ));
+ tangentInters[ axis ].clear();
+
+ // Count intersections before and after the point excluding touching ones.
+ // If hasPositionInfo we count intersections of outer boundary only
+
+ int nbIntBeforePoint = 0, nbIntAfterPoint = 0;
+ double f = numeric_limits<double>::max(), l = -numeric_limits<double>::max();
+ map< double, TInters >::iterator u_int1 = u2inters.begin(), u_int2 = u_int1;
+ bool ok = ! u_int1->second._coincides;
+ while ( ok && u_int1 != u2inters.end() )
+ {
+ double u = u_int1->first;
+ bool touchingInt = false;
+ if ( ++u_int2 != u2inters.end() )
+ {
+ // skip intersections at the same point (if the line passes through edge or node)
+ int nbSamePnt = 0;
+ while ( u_int2 != u2inters.end() && fabs( u_int2->first - u ) < tolerance )
+ {
+ ++nbSamePnt;
+ ++u_int2;
+ }
+
+ // skip tangent intersections
+ int nbTgt = 0;
+ const SMDS_MeshElement* prevFace = u_int1->second._face;
+ while ( ok && u_int2->second._coincides )
+ {
+ if ( SMESH_MeshAlgos::GetCommonNodes(prevFace , u_int2->second._face).empty() )
+ ok = false;
+ else
+ {
+ nbTgt++;
+ u_int2++;
+ ok = ( u_int2 != u2inters.end() );
+ }
+ }
+ if ( !ok ) break;
+
+ // skip intersections at the same point after tangent intersections
+ if ( nbTgt > 0 )
+ {
+ double u2 = u_int2->first;
+ ++u_int2;
+ while ( u_int2 != u2inters.end() && fabs( u_int2->first - u2 ) < tolerance )
+ {
+ ++nbSamePnt;
+ ++u_int2;
+ }
+ }
+ // decide if we skipped a touching intersection
+ if ( nbSamePnt + nbTgt > 0 )
+ {
+ double minDot = numeric_limits<double>::max(), maxDot = -numeric_limits<double>::max();
+ map< double, TInters >::iterator u_int = u_int1;
+ for ( ; u_int != u_int2; ++u_int )
+ {
+ if ( u_int->second._coincides ) continue;
+ double dot = u_int->second._faceNorm * line.Direction();
+ if ( dot > maxDot ) maxDot = dot;
+ if ( dot < minDot ) minDot = dot;
+ }
+ touchingInt = ( minDot*maxDot < 0 );
+ }
+ }
+ if ( !touchingInt )
+ {
+ if ( !hasPositionInfo || isOuterBoundary( u_int1->second._face ))
+ {
+ if ( u < 0 )
+ ++nbIntBeforePoint;
+ else
+ ++nbIntAfterPoint;
+ }
+ if ( u < f ) f = u;
+ if ( u > l ) l = u;
+ }
+
+ u_int1 = u_int2; // to next intersection
+
+ } // loop on intersections with one line
+
+ if ( ok )
+ {
+ if ( fabs( f ) < tolerance || fabs( l ) < tolerance )
+ return TopAbs_ON;
+
+ if ( nbIntBeforePoint == 0 || nbIntAfterPoint == 0)
+ return TopAbs_OUT;
+
+ if ( nbIntBeforePoint + nbIntAfterPoint == 1 ) // not closed mesh
+ return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN;
+
+ if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 )
+ return TopAbs_IN;
+
+ if ( (f<0) == (l<0) )
+ return TopAbs_OUT;
+
+ if ( hasPositionInfo )
+ return nbIntBeforePoint % 2 ? TopAbs_IN : TopAbs_OUT;
+ }
+ } // loop on intersections of the tree lines - thorough analysis
+
+ if ( !hasPositionInfo )
+ {
+ // gather info on faces position - is face in the outer boundary or not
+ map< double, TInters > & u2inters = paramOnLine2TInters[ 0 ];
+ findOuterBoundary( u2inters.begin()->second._face );
+ }
+
+ } // two attempts - with and w/o faces position info in the mesh
+
+ return TopAbs_UNKNOWN;
+}
+
+//=======================================================================
+/*!
+ * \brief Return elements possibly intersecting the line
+ */
+//=======================================================================
+
+void SMESH_ElementSearcherImpl::GetElementsNearLine( const gp_Ax1& line,
+ SMDSAbs_ElementType type,
+ vector< const SMDS_MeshElement* >& foundElems)
+{
+ if ( !_ebbTree || _elementType != type )
+ {
+ if ( _ebbTree ) delete _ebbTree;
+ _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type, _meshPartIt );
+ }
+ TIDSortedElemSet suspectFaces; // elements possibly intersecting the line
+ _ebbTree->getElementsNearLine( line, suspectFaces );
+ foundElems.assign( suspectFaces.begin(), suspectFaces.end());
+}
+
+//=======================================================================
+/*!
+ * \brief Return true if the point is IN or ON of the element
+ */
+//=======================================================================
+
+bool SMESH_MeshAlgos::IsOut( const SMDS_MeshElement* element, const gp_Pnt& point, double tol )
+{
+ if ( element->GetType() == SMDSAbs_Volume)
+ {
+ return SMDS_VolumeTool( element ).IsOut( point.X(), point.Y(), point.Z(), tol );
+ }
+
+ // get ordered nodes
+
+ vector< gp_XYZ > xyz;
+ vector<const SMDS_MeshNode*> nodeList;
+
+ SMDS_ElemIteratorPtr nodeIt = element->nodesIterator();
+ if ( element->IsQuadratic() ) {
+ nodeIt = element->interlacedNodesElemIterator();
+ // if (const SMDS_VtkFace* f=dynamic_cast<const SMDS_VtkFace*>(element))
+ // nodeIt = f->interlacedNodesElemIterator();
+ // else if (const SMDS_VtkEdge* e =dynamic_cast<const SMDS_VtkEdge*>(element))
+ // nodeIt = e->interlacedNodesElemIterator();
+ }
+ while ( nodeIt->more() )
+ {
+ SMESH_TNodeXYZ node = nodeIt->next();
+ xyz.push_back( node );
+ nodeList.push_back(node._node);
+ }
+
+ int i, nbNodes = (int) nodeList.size(); // central node of biquadratic is missing
+
+ if ( element->GetType() == SMDSAbs_Face ) // --------------------------------------------------
+ {
+ // compute face normal
+ gp_Vec faceNorm(0,0,0);
+ xyz.push_back( xyz.front() );
+ nodeList.push_back( nodeList.front() );
+ for ( i = 0; i < nbNodes; ++i )
+ {
+ gp_Vec edge1( xyz[i+1], xyz[i]);
+ gp_Vec edge2( xyz[i+1], xyz[(i+2)%nbNodes] );
+ faceNorm += edge1 ^ edge2;
+ }
+ double normSize = faceNorm.Magnitude();
+ if ( normSize <= tol )
+ {
+ // degenerated face: point is out if it is out of all face edges
+ for ( i = 0; i < nbNodes; ++i )
+ {
+ SMDS_LinearEdge edge( nodeList[i], nodeList[i+1] );
+ if ( !IsOut( &edge, point, tol ))
+ return false;
+ }
+ return true;
+ }
+ faceNorm /= normSize;
+
+ // check if the point lays on face plane
+ gp_Vec n2p( xyz[0], point );
+ if ( fabs( n2p * faceNorm ) > tol )
+ return true; // not on face plane
+
+ // check if point is out of face boundary:
+ // define it by closest transition of a ray point->infinity through face boundary
+ // on the face plane.
+ // First, find normal of a plane perpendicular to face plane, to be used as a cutting tool
+ // to find intersections of the ray with the boundary.
+ gp_Vec ray = n2p;
+ gp_Vec plnNorm = ray ^ faceNorm;
+ normSize = plnNorm.Magnitude();
+ if ( normSize <= tol ) return false; // point coincides with the first node
+ plnNorm /= normSize;
+ // for each node of the face, compute its signed distance to the plane
+ vector<double> dist( nbNodes + 1);
+ for ( i = 0; i < nbNodes; ++i )
+ {
+ gp_Vec n2p( xyz[i], point );
+ dist[i] = n2p * plnNorm;
+ }
+ dist.back() = dist.front();
+ // find the closest intersection
+ int iClosest = -1;
+ double rClosest, distClosest = 1e100;;
+ gp_Pnt pClosest;
+ for ( i = 0; i < nbNodes; ++i )
+ {
+ double r;
+ if ( fabs( dist[i]) < tol )
+ r = 0.;
+ else if ( fabs( dist[i+1]) < tol )
+ r = 1.;
+ else if ( dist[i] * dist[i+1] < 0 )
+ r = dist[i] / ( dist[i] - dist[i+1] );
+ else
+ continue; // no intersection
+ gp_Pnt pInt = xyz[i] * (1.-r) + xyz[i+1] * r;
+ gp_Vec p2int ( point, pInt);
+ if ( p2int * ray > -tol ) // right half-space
+ {
+ double intDist = p2int.SquareMagnitude();
+ if ( intDist < distClosest )
+ {
+ iClosest = i;
+ rClosest = r;
+ pClosest = pInt;
+ distClosest = intDist;
+ }
+ }
+ }
+ if ( iClosest < 0 )
+ return true; // no intesections - out
+
+ // analyse transition
+ gp_Vec edge( xyz[iClosest], xyz[iClosest+1] );
+ gp_Vec edgeNorm = -( edge ^ faceNorm ); // normal to intersected edge pointing out of face
+ gp_Vec p2int ( point, pClosest );
+ bool out = (edgeNorm * p2int) < -tol;
+ if ( rClosest > 0. && rClosest < 1. ) // not node intersection
+ return out;
+
+ // ray pass through a face node; analyze transition through an adjacent edge
+ gp_Pnt p1 = xyz[ (rClosest == 0.) ? ((iClosest+nbNodes-1) % nbNodes) : (iClosest+1) ];
+ gp_Pnt p2 = xyz[ (rClosest == 0.) ? iClosest : ((iClosest+2) % nbNodes) ];
+ gp_Vec edgeAdjacent( p1, p2 );
+ gp_Vec edgeNorm2 = -( edgeAdjacent ^ faceNorm );
+ bool out2 = (edgeNorm2 * p2int) < -tol;
+
+ bool covexCorner = ( edgeNorm * edgeAdjacent * (rClosest==1. ? 1. : -1.)) < 0;
+ return covexCorner ? (out || out2) : (out && out2);
+ }
+ if ( element->GetType() == SMDSAbs_Edge ) // --------------------------------------------------
+ {
+ // point is out of edge if it is NOT ON any straight part of edge
+ // (we consider quadratic edge as being composed of two straight parts)
+ for ( i = 1; i < nbNodes; ++i )
+ {
+ gp_Vec edge( xyz[i-1], xyz[i]);
+ gp_Vec n1p ( xyz[i-1], point);
+ double dist = ( edge ^ n1p ).Magnitude() / edge.Magnitude();
+ if ( dist > tol )
+ continue;
+ gp_Vec n2p( xyz[i], point );
+ if ( fabs( edge.Magnitude() - n1p.Magnitude() - n2p.Magnitude()) > tol )
+ continue;
+ return false; // point is ON this part
+ }
+ return true;
+ }
+ // Node or 0D element -------------------------------------------------------------------------
+ {
+ gp_Vec n2p ( xyz[0], point );
+ return n2p.Magnitude() <= tol;
+ }
+ return true;
+}
+
+//=======================================================================
+namespace
+{
+ // Position of a point relative to a segment
+ // . .
+ // . LEFT .
+ // . .
+ // VERTEX 1 o----ON-----> VERTEX 2
+ // . .
+ // . RIGHT .
+ // . .
+ enum PositionName { POS_LEFT = 1, POS_VERTEX = 2, POS_RIGHT = 4, //POS_ON = 8,
+ POS_ALL = POS_LEFT | POS_RIGHT | POS_VERTEX };
+ struct PointPos
+ {
+ PositionName _name;
+ int _index; // index of vertex or segment
+
+ PointPos( PositionName n, int i=-1 ): _name(n), _index(i) {}
+ bool operator < (const PointPos& other ) const
+ {
+ if ( _name == other._name )
+ return ( _index < 0 || other._index < 0 ) ? false : _index < other._index;
+ return _name < other._name;
+ }
+ };
+
+ //================================================================================
+ /*!
+ * \brief Return of a point relative to a segment
+ * \param point2D - the point to analyze position of
+ * \param xyVec - end points of segments
+ * \param index0 - 0-based index of the first point of segment
+ * \param posToFindOut - flags of positions to detect
+ * \retval PointPos - point position
+ */
+ //================================================================================
+
+ PointPos getPointPosition( const gp_XY& point2D,
+ const gp_XY* segEnds,
+ const int index0 = 0,
+ const int posToFindOut = POS_ALL)
+ {
+ const gp_XY& p1 = segEnds[ index0 ];
+ const gp_XY& p2 = segEnds[ index0+1 ];
+ const gp_XY grad = p2 - p1;
+
+ if ( posToFindOut & POS_VERTEX )
+ {
+ // check if the point2D is at "vertex 1" zone
+ gp_XY pp1[2] = { p1, gp_XY( p1.X() - grad.Y(),
+ p1.Y() + grad.X() ) };
+ if ( getPointPosition( point2D, pp1, 0, POS_LEFT|POS_RIGHT )._name == POS_LEFT )
+ return PointPos( POS_VERTEX, index0 );
+
+ // check if the point2D is at "vertex 2" zone
+ gp_XY pp2[2] = { p2, gp_XY( p2.X() - grad.Y(),
+ p2.Y() + grad.X() ) };
+ if ( getPointPosition( point2D, pp2, 0, POS_LEFT|POS_RIGHT )._name == POS_RIGHT )
+ return PointPos( POS_VERTEX, index0 + 1);
+ }
+ double edgeEquation =
+ ( point2D.X() - p1.X() ) * grad.Y() - ( point2D.Y() - p1.Y() ) * grad.X();
+ return PointPos( edgeEquation < 0 ? POS_LEFT : POS_RIGHT, index0 );
+ }
+}
+
+//=======================================================================
+/*!
+ * \brief Return minimal distance from a point to a face
+ *
+ * Currently we ignore non-planarity and 2nd order of face
+ */
+//=======================================================================
+
+double SMESH_MeshAlgos::GetDistance( const SMDS_MeshFace* face,
+ const gp_Pnt& point )
+{
+ double badDistance = -1;
+ if ( !face ) return badDistance;
+
+ // coordinates of nodes (medium nodes, if any, ignored)
+ typedef SMDS_StdIterator< SMESH_TNodeXYZ, SMDS_ElemIteratorPtr > TXyzIterator;
+ vector<gp_XYZ> xyz( TXyzIterator( face->nodesIterator()), TXyzIterator() );
+ xyz.resize( face->NbCornerNodes()+1 );
+
+ // transformation to get xyz[0] lies on the origin, xyz[1] lies on the Z axis,
+ // and xyz[2] lies in the XZ plane. This is to pass to 2D space on XZ plane.
+ gp_Trsf trsf;
+ gp_Vec OZ ( xyz[0], xyz[1] );
+ gp_Vec OX ( xyz[0], xyz[2] );
+ if ( OZ.Magnitude() < std::numeric_limits<double>::min() )
+ {
+ if ( xyz.size() < 4 ) return badDistance;
+ OZ = gp_Vec ( xyz[0], xyz[2] );
+ OX = gp_Vec ( xyz[0], xyz[3] );
+ }
+ gp_Ax3 tgtCS;
+ try {
+ tgtCS = gp_Ax3( xyz[0], OZ, OX );
+ }
+ catch ( Standard_Failure ) {
+ return badDistance;
+ }
+ trsf.SetTransformation( tgtCS );
+
+ // move all the nodes to 2D
+ vector<gp_XY> xy( xyz.size() );
+ for ( size_t i = 0;i < xyz.size()-1; ++i )
+ {
+ gp_XYZ p3d = xyz[i];
+ trsf.Transforms( p3d );
+ xy[i].SetCoord( p3d.X(), p3d.Z() );
+ }
+ xyz.back() = xyz.front();
+ xy.back() = xy.front();
+
+ // // move the point in 2D
+ gp_XYZ tmpPnt = point.XYZ();
+ trsf.Transforms( tmpPnt );
+ gp_XY point2D( tmpPnt.X(), tmpPnt.Z() );
+
+ // loop on segments of the face to analyze point position ralative to the face
+ set< PointPos > pntPosSet;
+ for ( size_t i = 1; i < xy.size(); ++i )
+ {
+ PointPos pos = getPointPosition( point2D, &xy[0], i-1 );
+ pntPosSet.insert( pos );
+ }
+
+ // compute distance
+ PointPos pos = *pntPosSet.begin();
+ // cout << "Face " << face->GetID() << " DIST: ";
+ switch ( pos._name )
+ {
+ case POS_LEFT: {
+ // point is most close to a segment
+ gp_Vec p0p1( point, xyz[ pos._index ] );
+ gp_Vec p1p2( xyz[ pos._index ], xyz[ pos._index+1 ]); // segment vector
+ p1p2.Normalize();
+ double projDist = p0p1 * p1p2; // distance projected to the segment
+ gp_Vec projVec = p1p2 * projDist;
+ gp_Vec distVec = p0p1 - projVec;
+ // cout << distVec.Magnitude() << ", SEG " << face->GetNode(pos._index)->GetID()
+ // << " - " << face->GetNodeWrap(pos._index+1)->GetID() << endl;
+ return distVec.Magnitude();
+ }
+ case POS_RIGHT: {
+ // point is inside the face
+ double distToFacePlane = tmpPnt.Y();
+ // cout << distToFacePlane << ", INSIDE " << endl;
+ return Abs( distToFacePlane );
+ }
+ case POS_VERTEX: {
+ // point is most close to a node
+ gp_Vec distVec( point, xyz[ pos._index ]);
+ // cout << distVec.Magnitude() << " VERTEX " << face->GetNode(pos._index)->GetID() << endl;
+ return distVec.Magnitude();
+ }
+ }
+ return badDistance;
+}
+
+//=======================================================================
+//function : FindFaceInSet
+//purpose : Return a face having linked nodes n1 and n2 and which is
+// - not in avoidSet,
+// - in elemSet provided that !elemSet.empty()
+// i1 and i2 optionally returns indices of n1 and n2
+//=======================================================================
+
+const SMDS_MeshElement*
+SMESH_MeshAlgos::FindFaceInSet(const SMDS_MeshNode* n1,
+ const SMDS_MeshNode* n2,
+ const TIDSortedElemSet& elemSet,
+ const TIDSortedElemSet& avoidSet,
+ int* n1ind,
+ int* n2ind)
+
+{
+ int i1, i2;
+ const SMDS_MeshElement* face = 0;
+
+ SMDS_ElemIteratorPtr invElemIt = n1->GetInverseElementIterator(SMDSAbs_Face);
+ //MESSAGE("n1->GetInverseElementIterator(SMDSAbs_Face) " << invElemIt);
+ while ( invElemIt->more() && !face ) // loop on inverse faces of n1
+ {
+ //MESSAGE("in while ( invElemIt->more() && !face )");
+ const SMDS_MeshElement* elem = invElemIt->next();
+ if (avoidSet.count( elem ))
+ continue;
+ if ( !elemSet.empty() && !elemSet.count( elem ))
+ continue;
+ // index of n1
+ i1 = elem->GetNodeIndex( n1 );
+ // find a n2 linked to n1
+ int nbN = elem->IsQuadratic() ? elem->NbNodes()/2 : elem->NbNodes();
+ for ( int di = -1; di < 2 && !face; di += 2 )
+ {
+ i2 = (i1+di+nbN) % nbN;
+ if ( elem->GetNode( i2 ) == n2 )
+ face = elem;
+ }
+ if ( !face && elem->IsQuadratic())
+ {
+ // analysis for quadratic elements using all nodes
+ // const SMDS_VtkFace* F = dynamic_cast<const SMDS_VtkFace*>(elem);
+ // if (!F) throw SALOME_Exception(LOCALIZED("not an SMDS_VtkFace"));
+ // use special nodes iterator
+ SMDS_ElemIteratorPtr anIter = elem->interlacedNodesElemIterator();
+ const SMDS_MeshNode* prevN = static_cast<const SMDS_MeshNode*>( anIter->next() );
+ for ( i1 = -1, i2 = 0; anIter->more() && !face; i1++, i2++ )
+ {
+ const SMDS_MeshNode* n = static_cast<const SMDS_MeshNode*>( anIter->next() );
+ if ( n1 == prevN && n2 == n )
+ {
+ face = elem;
+ }
+ else if ( n2 == prevN && n1 == n )
+ {
+ face = elem; swap( i1, i2 );
+ }
+ prevN = n;
+ }
+ }
+ }
+ if ( n1ind ) *n1ind = i1;
+ if ( n2ind ) *n2ind = i2;
+ return face;
+}
+
+//================================================================================
+/*!
+ * \brief Calculate normal of a mesh face
+ */
+//================================================================================
+
+bool SMESH_MeshAlgos::FaceNormal(const SMDS_MeshElement* F, gp_XYZ& normal, bool normalized)
+{
+ if ( !F || F->GetType() != SMDSAbs_Face )
+ return false;
+
+ normal.SetCoord(0,0,0);
+ int nbNodes = F->IsQuadratic() ? F->NbNodes()/2 : F->NbNodes();
+ for ( int i = 0; i < nbNodes-2; ++i )
+ {
+ gp_XYZ p[3];
+ for ( int n = 0; n < 3; ++n )
+ {
+ const SMDS_MeshNode* node = F->GetNode( i + n );
+ p[n].SetCoord( node->X(), node->Y(), node->Z() );
+ }
+ normal += ( p[2] - p[1] ) ^ ( p[0] - p[1] );
+ }
+ double size2 = normal.SquareModulus();
+ bool ok = ( size2 > numeric_limits<double>::min() * numeric_limits<double>::min());
+ if ( normalized && ok )
+ normal /= sqrt( size2 );
+
+ return ok;
+}
+
+//=======================================================================
+//function : GetCommonNodes
+//purpose : Return nodes common to two elements
+//=======================================================================
+
+vector< const SMDS_MeshNode*> SMESH_MeshAlgos::GetCommonNodes(const SMDS_MeshElement* e1,
+ const SMDS_MeshElement* e2)
+{
+ vector< const SMDS_MeshNode*> common;
+ for ( int i = 0 ; i < e1->NbNodes(); ++i )
+ if ( e2->GetNodeIndex( e1->GetNode( i )) >= 0 )
+ common.push_back( e1->GetNode( i ));
+ return common;
+}
+
+//=======================================================================
+/*!
+ * \brief Return SMESH_NodeSearcher
+ */
+//=======================================================================
+
+SMESH_NodeSearcher* SMESH_MeshAlgos::GetNodeSearcher(SMDS_Mesh& mesh)
+{
+ return new SMESH_NodeSearcherImpl( &mesh );
+}
+
+//=======================================================================
+/*!
+ * \brief Return SMESH_ElementSearcher
+ */
+//=======================================================================
+
+SMESH_ElementSearcher* SMESH_MeshAlgos::GetElementSearcher(SMDS_Mesh& mesh)
+{
+ return new SMESH_ElementSearcherImpl( mesh );
+}
+
+//=======================================================================
+/*!
+ * \brief Return SMESH_ElementSearcher acting on a sub-set of elements
+ */
+//=======================================================================
+
+SMESH_ElementSearcher* SMESH_MeshAlgos::GetElementSearcher(SMDS_Mesh& mesh,
+ SMDS_ElemIteratorPtr elemIt)
+{
+ return new SMESH_ElementSearcherImpl( mesh, elemIt );
+}