#include <gp_Sphere.hxx>
#include <gp_Torus.hxx>
+#include <limits>
+
#undef WITH_TBB
#ifdef WITH_TBB
#include <tbb/parallel_for.h>
// --------------------------------------------------------------------------------
struct _Node //!< node either at a hexahedron corner or at intersection
{
- const SMDS_MeshNode* _node; // mesh node at hexahedron corner
+ const SMDS_MeshNode* _node; // mesh node at hexahedron corner
const B_IntersectPoint* _intPoint;
- bool _isUsedInFace;
+ const _Face* _usedInFace;
_Node(const SMDS_MeshNode* n=0, const B_IntersectPoint* ip=0)
- :_node(n), _intPoint(ip), _isUsedInFace(0) {}
+ :_node(n), _intPoint(ip), _usedInFace(0) {}
const SMDS_MeshNode* Node() const
{ return ( _intPoint && _intPoint->_node ) ? _intPoint->_node : _node; }
- const F_IntersectPoint* FaceIntPnt() const
- { return static_cast< const F_IntersectPoint* >( _intPoint ); }
+ //const F_IntersectPoint* FaceIntPnt() const
+ //{ return static_cast< const F_IntersectPoint* >( _intPoint ); }
const E_IntersectPoint* EdgeIntPnt() const
{ return static_cast< const E_IntersectPoint* >( _intPoint ); }
+ bool IsUsedInFace( const _Face* polygon = 0 )
+ {
+ return polygon ? ( _usedInFace == polygon ) : bool( _usedInFace );
+ }
void Add( const E_IntersectPoint* ip )
{
if ( !_intPoint ) {
struct _Link // link connecting two _Node's
{
_Node* _nodes[2];
- vector< _Node > _intNodes; // _Node's at GridLine intersections
- vector< _Link > _splits;
- vector< _Face*> _faces;
+ _Face* _faces[2]; // polygons sharing a link
+ vector< const F_IntersectPoint* > _fIntPoints; // GridLine intersections with FACEs
+ vector< _Node* > _fIntNodes; // _Node's at _fIntPoints
+ vector< _Link > _splits;
+ _Link() { _faces[0] = 0; }
};
// --------------------------------------------------------------------------------
struct _OrientedLink
return ( dynamic_cast< const E_IntersectPoint* >( _link->_nodes[0]->_intPoint ) ||
dynamic_cast< const E_IntersectPoint* >( _link->_nodes[1]->_intPoint ));
}
+ int NbFaces() const
+ {
+ return !_link->_faces[0] ? 0 : 1 + bool( _link->_faces[1] );
+ }
+ void AddFace( _Face* f )
+ {
+ if ( _link->_faces[0] )
+ {
+ _link->_faces[1] = f;
+ }
+ else
+ {
+ _link->_faces[0] = f;
+ _link->_faces[1] = 0;
+ }
+ }
+ void RemoveFace( _Face* f )
+ {
+ if ( !_link->_faces[0] ) return;
+
+ if ( _link->_faces[1] == f )
+ {
+ _link->_faces[1] = 0;
+ }
+ else if ( _link->_faces[0] == f )
+ {
+ _link->_faces[0];
+ if ( _link->_faces[1] )
+ {
+ _link->_faces[0] = _link->_faces[1];
+ _link->_faces[1] = 0;
+ }
+ }
+ }
};
// --------------------------------------------------------------------------------
struct _Face
{
vector< _OrientedLink > _links; // links on GridLine's
vector< _Link > _polyLinks; // links added to close a polygonal face
- vector< _Node > _edgeNodes; // nodes at intersection with EDGEs
+ vector< _Node* > _eIntNodes; // nodes at intersection with EDGEs
+ bool isPolyLink( const _OrientedLink& ol )
+ {
+ return _polyLinks.empty() ? false :
+ ( &_polyLinks[0] <= ol._link && ol._link <= &_polyLinks.back() );
+ }
};
// --------------------------------------------------------------------------------
struct _volumeDef // holder of nodes of a volume mesh element
{
- //vector< const SMDS_MeshNode* > _nodes;
vector< _Node* > _nodes;
vector< int > _quantities;
typedef boost::shared_ptr<_volumeDef> Ptr;
void set( const vector< _Node* >& nodes,
const vector< int >& quant = vector< int >() )
{ _nodes = nodes; _quantities = quant; }
- // static Ptr New( const vector< const SMDS_MeshNode* >& nodes,
- // const vector< int > quant = vector< int >() )
- // {
- // _volumeDef* def = new _volumeDef;
- // def->_nodes = nodes;
- // def->_quantities = quant;
- // return Ptr( def );
- // }
};
// topology of a hexahedron
vector< _Face > _polygons;
// intresections with EDGEs
- vector< const E_IntersectPoint* > _edgeIntPnts;
+ vector< const E_IntersectPoint* > _eIntPoints;
+
+ // additional nodes created at intersection points
+ vector< _Node > _intNodes;
// nodes inside the hexahedron (at VERTEXes)
- vector< _Node > _vertexNodes;
+ vector< _Node* > _vIntNodes;
// computed volume elements
//vector< _volumeDef::Ptr > _volumeDefs;
Grid* _grid;
double _sizeThreshold, _sideLength[3];
- int _nbCornerNodes, _nbIntNodes, _nbBndNodes;
+ int _nbCornerNodes, _nbFaceIntNodes, _nbBndNodes;
int _origNodeInd; // index of _hexNodes[0] node within the _grid
size_t _i,_j,_k;
bool addPenta();
bool addPyra ();
bool debugDumpLink( _Link* link );
- _Node* FindEqualNode( vector< _Node >& nodes,
+ _Node* FindEqualNode( vector< _Node* >& nodes,
const E_IntersectPoint* ip,
const double tol2 )
{
for ( size_t i = 0; i < nodes.size(); ++i )
- if ( nodes[i].Point().SquareDistance( ip->_point ) <= tol2 )
- return & nodes[i];
+ if ( nodes[i]->EdgeIntPnt() == ip ||
+ nodes[i]->Point().SquareDistance( ip->_point ) <= tol2 )
+ return nodes[i];
return 0;
}
};
* \brief Creates topology of the hexahedron
*/
Hexahedron::Hexahedron(const double sizeThreshold, Grid* grid)
- : _grid( grid ), _sizeThreshold( sizeThreshold ), _nbIntNodes(0)
+ : _grid( grid ), _sizeThreshold( sizeThreshold ), _nbFaceIntNodes(0)
{
_polygons.reserve(100); // to avoid reallocation;
_Link& link = _hexLinks[ SMESH_Block::ShapeIndex( linkID )];
link._nodes[0] = &_hexNodes[ SMESH_Block::ShapeIndex( idVec[0] )];
link._nodes[1] = &_hexNodes[ SMESH_Block::ShapeIndex( idVec[1] )];
- link._intNodes.reserve( 10 ); // to avoid reallocation
- link._splits.reserve( 10 );
}
// set links to faces
* \brief Copy constructor
*/
Hexahedron::Hexahedron( const Hexahedron& other )
- :_grid( other._grid ), _sizeThreshold( other._sizeThreshold ), _nbIntNodes(0)
+ :_grid( other._grid ), _sizeThreshold( other._sizeThreshold ), _nbFaceIntNodes(0)
{
_polygons.reserve(100); // to avoid reallocation;
_Link& tgtLink = this->_hexLinks[ i ];
tgtLink._nodes[0] = _hexNodes + ( srcLink._nodes[0] - other._hexNodes );
tgtLink._nodes[1] = _hexNodes + ( srcLink._nodes[1] - other._hexNodes );
- tgtLink._intNodes.reserve( 10 ); // to avoid reallocation
- tgtLink._splits.reserve( 10 );
}
for ( int i = 0; i < 6; ++i )
_sideLength[1] = _grid->_coords[1][j+1] - _grid->_coords[1][j];
_sideLength[2] = _grid->_coords[2][k+1] - _grid->_coords[2][k];
- if ( _nbIntNodes + _edgeIntPnts.size() > 0 &&
- _nbIntNodes + _nbCornerNodes + _edgeIntPnts.size() > 3)
+ _intNodes.clear();
+ _vIntNodes.clear();
+
+ if ( _nbFaceIntNodes + _eIntPoints.size() > 0 &&
+ _nbFaceIntNodes + _nbCornerNodes + _eIntPoints.size() > 3)
{
+ _intNodes.reserve( 3 * _nbBndNodes + _nbFaceIntNodes + _eIntPoints.size() );
+
_Link split;
- // create sub-links (_splits) by splitting links with _intNodes
+ // create sub-links (_splits) by splitting links with _fIntPoints
for ( int iLink = 0; iLink < 12; ++iLink )
{
_Link& link = _hexLinks[ iLink ];
+ link._fIntNodes.resize( link._fIntPoints.size() );
+ for ( size_t i = 0; i < link._fIntPoints.size(); ++i )
+ {
+ _intNodes.push_back( _Node( 0, link._fIntPoints[i] ));
+ link._fIntNodes[ i ] = & _intNodes.back();
+ }
+
link._splits.clear();
split._nodes[ 0 ] = link._nodes[0];
bool isOut = ( ! link._nodes[0]->Node() ); // is1stNodeOut( iLink );
bool checkTransition;
- for ( size_t i = 0; i < link._intNodes.size(); ++i )
+ for ( size_t i = 0; i < link._fIntNodes.size(); ++i )
{
- if ( link._intNodes[i].Node() ) // intersection non-coinsident with a grid node
+ if ( link._fIntNodes[i]->Node() ) // intersection non-coinsident with a grid node
{
if ( split._nodes[ 0 ]->Node() && !isOut )
{
- split._nodes[ 1 ] = &link._intNodes[i];
+ split._nodes[ 1 ] = link._fIntNodes[i];
link._splits.push_back( split );
}
- split._nodes[ 0 ] = &link._intNodes[i];
+ split._nodes[ 0 ] = link._fIntNodes[i];
checkTransition = true;
}
else // FACE intersection coinsident with a grid node
}
if ( checkTransition )
{
- switch ( link._intNodes[i].FaceIntPnt()->_transition ) {
+ switch ( link._fIntPoints[i]->_transition ) {
case Trans_OUT: isOut = true; break;
case Trans_IN : isOut = false; break;
default:
- if ( !link._intNodes[i].Node() && i == 0 )
+ if ( !link._fIntNodes[i]->Node() && i == 0 )
isOut = is1stNodeOut( link );
else
- ; // isOut remains the same
+ ; // isOut remains the same
}
}
}
const double tol2 = _grid->_tol * _grid->_tol;
int facets[3], nbFacets, subEntity;
- for ( size_t iP = 0; iP < _edgeIntPnts.size(); ++iP )
+ for ( size_t iP = 0; iP < _eIntPoints.size(); ++iP )
{
- nbFacets = getEntity( _edgeIntPnts[iP], facets, subEntity );
+ nbFacets = getEntity( _eIntPoints[iP], facets, subEntity );
_Node* equalNode = 0;
switch( nbFacets ) {
case 1: // in a _Face
{
_Face& quad = _hexQuads[ facets[0] - SMESH_Block::ID_FirstF ];
- equalNode = FindEqualNode( quad._edgeNodes, _edgeIntPnts[ iP ], tol2 );
+ equalNode = FindEqualNode( quad._eIntNodes, _eIntPoints[ iP ], tol2 );
if ( equalNode ) {
- equalNode->Add( _edgeIntPnts[ iP ] );
+ equalNode->Add( _eIntPoints[ iP ] );
}
else {
- quad._edgeNodes.push_back( _Node( 0, _edgeIntPnts[ iP ]));
- ++_nbIntNodes;
+ _intNodes.push_back( _Node( 0, _eIntPoints[ iP ]));
+ quad._eIntNodes.push_back( & _intNodes.back() );
}
break;
}
_Link& link = _hexLinks[ subEntity - SMESH_Block::ID_FirstE ];
if ( link._splits.size() > 0 )
{
- equalNode = FindEqualNode( link._intNodes, _edgeIntPnts[ iP ], tol2 );
+ equalNode = FindEqualNode( link._fIntNodes, _eIntPoints[ iP ], tol2 );
if ( equalNode )
- equalNode->Add( _edgeIntPnts[ iP ] );
+ equalNode->Add( _eIntPoints[ iP ] );
}
else
{
+ _intNodes.push_back( _Node( 0, _eIntPoints[ iP ]));
for ( int iF = 0; iF < 2; ++iF )
{
_Face& quad = _hexQuads[ facets[iF] - SMESH_Block::ID_FirstF ];
- equalNode = FindEqualNode( quad._edgeNodes, _edgeIntPnts[ iP ], tol2 );
+ equalNode = FindEqualNode( quad._eIntNodes, _eIntPoints[ iP ], tol2 );
if ( equalNode ) {
- equalNode->Add( _edgeIntPnts[ iP ] );
+ equalNode->Add( _eIntPoints[ iP ] );
}
else {
- quad._edgeNodes.push_back( _Node( 0, _edgeIntPnts[ iP ]));
- ++_nbIntNodes;
+ quad._eIntNodes.push_back( & _intNodes.back() );
}
}
}
if ( node.Node() > 0 )
{
if ( node._intPoint )
- node._intPoint->Add( _edgeIntPnts[ iP ]->_faceIDs, _edgeIntPnts[ iP ]->_node );
+ node._intPoint->Add( _eIntPoints[ iP ]->_faceIDs, _eIntPoints[ iP ]->_node );
}
else
{
+ _intNodes.push_back( _Node( 0, _eIntPoints[ iP ]));
for ( int iF = 0; iF < 3; ++iF )
{
_Face& quad = _hexQuads[ facets[iF] - SMESH_Block::ID_FirstF ];
- equalNode = FindEqualNode( quad._edgeNodes, _edgeIntPnts[ iP ], tol2 );
+ equalNode = FindEqualNode( quad._eIntNodes, _eIntPoints[ iP ], tol2 );
if ( equalNode ) {
- equalNode->Add( _edgeIntPnts[ iP ] );
+ equalNode->Add( _eIntPoints[ iP ] );
}
else {
- quad._edgeNodes.push_back( _Node( 0, _edgeIntPnts[ iP ]));
- ++_nbIntNodes;
+ quad._eIntNodes.push_back( & _intNodes.back() );
}
}
}
} // switch( nbFacets )
if ( nbFacets == 0 ||
- _grid->_shapes( _edgeIntPnts[ iP ]->_shapeID ).ShapeType() == TopAbs_VERTEX )
+ _grid->_shapes( _eIntPoints[ iP ]->_shapeID ).ShapeType() == TopAbs_VERTEX )
{
- equalNode = FindEqualNode( _vertexNodes, _edgeIntPnts[ iP ], tol2 );
+ equalNode = FindEqualNode( _vIntNodes, _eIntPoints[ iP ], tol2 );
if ( equalNode ) {
- equalNode->Add( _edgeIntPnts[ iP ] );
+ equalNode->Add( _eIntPoints[ iP ] );
}
else {
- _vertexNodes.push_back( _Node( 0, _edgeIntPnts[iP] ));
- ++_nbIntNodes;
+ if ( _intNodes.empty() || _intNodes.back().EdgeIntPnt() != _eIntPoints[ iP ])
+ _intNodes.push_back( _Node( 0, _eIntPoints[ iP ]));
+ _vIntNodes.push_back( & _intNodes.back() );
}
}
- } // loop on _edgeIntPnts
+ } // loop on _eIntPoints
}
- else if ( 3 < _nbCornerNodes && _nbCornerNodes < 8 ) // _nbIntNodes == 0
+ else if ( 3 < _nbCornerNodes && _nbCornerNodes < 8 ) // _nbFaceIntNodes == 0
{
_Link split;
// create sub-links (_splits) of whole links
{
Init();
- if ( _nbCornerNodes + _nbIntNodes < 4 )
+ int nbIntersections = _nbFaceIntNodes + _eIntPoints.size();
+ if ( _nbCornerNodes + nbIntersections < 4 )
return;
- if ( _nbBndNodes == _nbCornerNodes && _nbIntNodes == 0 && isInHole() )
+ if ( _nbBndNodes == _nbCornerNodes && nbIntersections == 0 && isInHole() )
return;
_polygons.clear();
// Create polygons from quadrangles
// --------------------------------
- _Link polyLink;
+ _Link polyLink;
vector< _OrientedLink > splits;
- vector<_Node*> chainNodes;
+ vector<_Node*> chainNodes, usedEdgeNodes;
+ _Face* coplanarPolyg;
- bool hasEdgeIntersections = !_edgeIntPnts.empty();
+ bool hasEdgeIntersections = !_eIntPoints.empty();
for ( int iF = 0; iF < 6; ++iF ) // loop on 6 sides of a hexahedron
{
// polygon's boundary closed
int nbSplits = splits.size();
- if ( nbSplits < 2 && quad._edgeNodes.empty() )
+ if ( nbSplits < 2 && quad._eIntNodes.empty() )
nbSplits = 0;
- if ( nbSplits == 0 && !quad._edgeNodes.empty() )
- {
- // make _vertexNodes from _edgeNodes of an empty quad
- const double tol2 = _grid->_tol * _grid->_tol;
- for ( size_t iP = 0; iP < quad._edgeNodes.size(); ++iP )
- {
- _Node* equalNode =
- FindEqualNode( _vertexNodes, quad._edgeNodes[ iP ].EdgeIntPnt(), tol2 );
- if ( equalNode )
- equalNode->Add( quad._edgeNodes[ iP ].EdgeIntPnt() );
- else
- _vertexNodes.push_back( quad._edgeNodes[ iP ]);
- }
- }
#ifdef _DEBUG_
- for ( size_t iP = 0; iP < quad._edgeNodes.size(); ++iP )
- quad._edgeNodes[ iP ]._isUsedInFace = false;
+ for ( size_t iP = 0; iP < quad._eIntNodes.size(); ++iP )
+ if ( quad._eIntNodes[ iP ]->IsUsedInFace( polygon ))
+ quad._eIntNodes[ iP ]->_usedInFace = 0;
#endif
int nbUsedEdgeNodes = 0;
if ( n1 != n2 )
{
// try to connect to intersections with EDGEs
- if ( quad._edgeNodes.size() > nbUsedEdgeNodes &&
+ if ( quad._eIntNodes.size() > nbUsedEdgeNodes &&
findChain( n2, n1, quad, chainNodes ))
{
for ( size_t i = 1; i < chainNodes.size(); ++i )
polyLink._nodes[1] = chainNodes[i];
polygon->_polyLinks.push_back( polyLink );
polygon->_links.push_back( _OrientedLink( &polygon->_polyLinks.back() ));
- nbUsedEdgeNodes += polyLink._nodes[1]->_isUsedInFace;
+ nbUsedEdgeNodes += ( polyLink._nodes[1]->IsUsedInFace( polygon ));
}
if ( chainNodes.back() != n1 )
{
polyLink._nodes[1] = chainNodes[i];
polygon->_polyLinks.push_back( polyLink );
polygon->_links.push_back( _OrientedLink( &polygon->_polyLinks.back() ));
+ nbUsedEdgeNodes += bool( polyLink._nodes[1]->IsUsedInFace( polygon ));
}
}
}
} // while ( nbSplits > 0 )
- if ( quad._edgeNodes.size() > nbUsedEdgeNodes )
- {
- // make _vertexNodes from not used _edgeNodes
- const double tol = 0.05 * Min( Min( _sideLength[0], _sideLength[1] ), _sideLength[0] );
- for ( size_t iP = 0; iP < quad._edgeNodes.size(); ++iP )
- {
- if ( quad._edgeNodes[ iP ]._isUsedInFace ) continue;
- _Node* equalNode =
- FindEqualNode( _vertexNodes, quad._edgeNodes[ iP ].EdgeIntPnt(), tol*tol );
- if ( equalNode )
- equalNode->Add( quad._edgeNodes[ iP ].EdgeIntPnt() );
- else
- _vertexNodes.push_back( quad._edgeNodes[ iP ]);
- }
- }
+ // if ( quad._eIntNodes.size() > nbUsedEdgeNodes )
+ // {
+ // // make _vIntNodes from not used _eIntNodes
+ // const double tol = 0.05 * Min( Min( _sideLength[0], _sideLength[1] ), _sideLength[0] );
+ // for ( size_t iP = 0; iP < quad._eIntNodes.size(); ++iP )
+ // {
+ // if ( quad._eIntNodes[ iP ]->IsUsedInFace() ) continue;
+ // _Node* equalNode =
+ // FindEqualNode( _vIntNodes, quad._eIntNodes[ iP ].EdgeIntPnt(), tol*tol );
+ // if ( equalNode )
+ // equalNode->Add( quad._eIntNodes[ iP ].EdgeIntPnt() );
+ // else
+ // _vIntNodes.push_back( quad._eIntNodes[ iP ]);
+ // }
+ // }
if ( polygon->_links.size() < 3 )
+ {
_polygons.pop_back();
-
- } // loop on 6 sides of a hexahedron
+ //usedEdgeNodes.resize( usedEdgeNodes.size() - nbUsedEdgeNodes );
+ }
+ } // loop on 6 hexahedron sides
// Create polygons closing holes in a polyhedron
// ----------------------------------------------
- // add polygons to their links
+ // clear _usedInFace
+ for ( size_t iN = 0; iN < _intNodes.size(); ++iN )
+ _intNodes[ iN ]._usedInFace = 0;
+
+ // add polygons to their links and mark used nodes
for ( size_t iP = 0; iP < _polygons.size(); ++iP )
{
_Face& polygon = _polygons[ iP ];
for ( size_t iL = 0; iL < polygon._links.size(); ++iL )
{
- polygon._links[ iL ]._link->_faces.reserve( 2 );
- polygon._links[ iL ]._link->_faces.push_back( &polygon );
+ polygon._links[ iL ].AddFace( &polygon );
+ polygon._links[ iL ].FirstNode()->_usedInFace = &polygon;
}
}
// find free links
{
_Face& polygon = _polygons[ iP ];
for ( size_t iL = 0; iL < polygon._links.size(); ++iL )
- if ( polygon._links[ iL ]._link->_faces.size() < 2 )
+ if ( polygon._links[ iL ].NbFaces() < 2 )
+ {
freeLinks.push_back( & polygon._links[ iL ]);
+ freeLinks.back()->FirstNode()->IsUsedInFace() == true;
+ }
}
int nbFreeLinks = freeLinks.size();
if ( nbFreeLinks > 0 && nbFreeLinks < 3 ) return;
+ // put not used intersection nodes to _vIntNodes
+ int nbVertexNodes = 0; // nb not used vertex nodes
+ {
+ for ( size_t iN = 0; iN < _vIntNodes.size(); ++iN )
+ nbVertexNodes += ( !_vIntNodes[ iN ]->IsUsedInFace() );
+
+ const double tol = 1e-3 * Min( Min( _sideLength[0], _sideLength[1] ), _sideLength[0] );
+ for ( size_t iN = _nbFaceIntNodes; iN < _intNodes.size(); ++iN )
+ {
+ if ( _intNodes[ iN ].IsUsedInFace() ) continue;
+ if ( dynamic_cast< const F_IntersectPoint* >( _intNodes[ iN ]._intPoint )) continue;
+ _Node* equalNode =
+ FindEqualNode( _vIntNodes, _intNodes[ iN ].EdgeIntPnt(), tol*tol );
+ if ( !equalNode /*|| equalNode->IsUsedInFace()*/ )
+ {
+ _vIntNodes.push_back( &_intNodes[ iN ]);
+ ++nbVertexNodes;
+ }
+ }
+ }
+
set<TGeomID> usedFaceIDs;
+ TGeomID curFace = 0;
+ const size_t nbQuadPolygons = _polygons.size();
- // make closed chains of free links
+ // create polygons by making closed chains of free links
+ size_t iPolygon = _polygons.size();
while ( nbFreeLinks > 0 )
{
- _polygons.resize( _polygons.size() + 1 );
- _Face& polygon = _polygons.back();
+ if ( iPolygon == _polygons.size() )
+ _polygons.resize( _polygons.size() + 1 );
+ _Face& polygon = _polygons[ iPolygon ];
polygon._polyLinks.reserve( 20 );
polygon._links.reserve( 20 );
_OrientedLink* curLink = 0;
_Node* curNode;
if (( !hasEdgeIntersections ) ||
- ( nbFreeLinks < 4 && _vertexNodes.empty() ))
+ ( nbFreeLinks < 4 && nbVertexNodes == 0 ))
{
// get a remaining link to start from
for ( size_t iL = 0; iL < freeLinks.size() && !curLink; ++iL )
}
else // there are intersections with EDGEs
{
- TGeomID curFace;
// get a remaining link to start from, one lying on minimal
// nb of FACEs
{
for ( size_t i = 0; i < facesOfLink[2].size() && faceOfLink.first < 1; ++i )
{
curLink = freeLinks[ facesOfLink[2][i].second ];
- faceOfLink.first = curLink->FirstNode()->IsLinked( curLink->FirstNode()->_intPoint );
+ faceOfLink.first = curLink->FirstNode()->IsLinked( curLink->LastNode()->_intPoint );
}
usedFaceIDs.clear();
}
if ( polygon._links[0].LastNode() != curNode )
{
- if ( !_vertexNodes.empty() )
+ if ( nbVertexNodes > 0 )
{
- // add links with _vertexNodes if not already used
- for ( size_t iN = 0; iN < _vertexNodes.size(); ++iN )
- if ( _vertexNodes[ iN ].IsOnFace( curFace ))
+ // add links with _vIntNodes if not already used
+ for ( size_t iN = 0; iN < _vIntNodes.size(); ++iN )
+ if ( !_vIntNodes[ iN ]->IsUsedInFace() &&
+ _vIntNodes[ iN ]->IsOnFace( curFace ))
{
- bool used = ( curNode == &_vertexNodes[ iN ] );
- for ( size_t iL = 0; iL < polygon._links.size() && !used; ++iL )
- used = ( &_vertexNodes[ iN ] == polygon._links[ iL ].LastNode() );
- if ( !used )
- {
- polyLink._nodes[0] = &_vertexNodes[ iN ];
- polyLink._nodes[1] = curNode;
- polygon._polyLinks.push_back( polyLink );
- polygon._links.push_back( _OrientedLink( &polygon._polyLinks.back() ));
- freeLinks.push_back( &polygon._links.back() );
- ++nbFreeLinks;
- curNode = &_vertexNodes[ iN ];
- }
- // TODO: to reorder _vertexNodes within polygon, if there are several ones
+ _vIntNodes[ iN ]->_usedInFace = &polygon;
+ --nbVertexNodes;
+ polyLink._nodes[0] = _vIntNodes[ iN ];
+ polyLink._nodes[1] = curNode;
+ polygon._polyLinks.push_back( polyLink );
+ polygon._links.push_back( _OrientedLink( &polygon._polyLinks.back() ));
+ freeLinks.push_back( &polygon._links.back() );
+ ++nbFreeLinks;
+ curNode = _vIntNodes[ iN ];
+ // TODO: to reorder _vIntNodes within polygon, if there are several ones
}
}
// if ( polygon._links.size() > 1 )
++nbFreeLinks;
}
}
-
} // if there are intersections with EDGEs
if ( polygon._links.size() < 2 ||
{
if ( freeLinks.back() == &polygon._links.back() )
{
- freeLinks.back() = 0;
+ freeLinks.pop_back();
--nbFreeLinks;
}
- vector< _Face*>& polygs1 = polygon._links.front()._link->_faces;
- vector< _Face*>& polygs2 = polygon._links.back()._link->_faces;
- _Face* polyg1 = ( polygs1.empty() ? 0 : polygs1[0] );
- _Face* polyg2 = ( polygs2.empty() ? 0 : polygs2[0] );
- if ( polyg1 ) polygs2.push_back( polyg1 );
- if ( polyg2 ) polygs1.push_back( polyg2 );
+ if ( polygon._links.front().NbFaces() > 0 )
+ polygon._links.back().AddFace( polygon._links.front()._link->_faces[0] );
+ if ( polygon._links.back().NbFaces() > 0 )
+ polygon._links.front().AddFace( polygon._links.back()._link->_faces[0] );
+
_polygons.pop_back();
}
- else
+ else // polygon._links.size() >= 2
{
// add polygon to its links
for ( size_t iL = 0; iL < polygon._links.size(); ++iL )
{
- polygon._links[ iL ]._link->_faces.reserve( 2 );
- polygon._links[ iL ]._link->_faces.push_back( &polygon );
+ polygon._links[ iL ].AddFace( &polygon );
polygon._links[ iL ].Reverse();
}
- }
+ if ( hasEdgeIntersections && iPolygon == _polygons.size() - 1 )
+ {
+ // check that a polygon does not lie in the plane of another polygon
+ coplanarPolyg = 0;
+ for ( size_t iL = 0; iL < polygon._links.size() && !coplanarPolyg; ++iL )
+ {
+ if ( polygon._links[ iL ].NbFaces() < 2 )
+ continue; // it's a just added free link
+ // look for a polygon made on a hexa side and sharing
+ // two or more haxa links
+ size_t iL2;
+ coplanarPolyg = polygon._links[ iL ]._link->_faces[0];
+ for ( iL2 = iL + 1; iL2 < polygon._links.size(); ++iL2 )
+ if ( polygon._links[ iL2 ]._link->_faces[0] == coplanarPolyg &&
+ !coplanarPolyg->isPolyLink( polygon._links[ iL2 ]) &&
+ coplanarPolyg < & _polygons[ nbQuadPolygons ])
+ break;
+ if ( iL2 == polygon._links.size() )
+ coplanarPolyg = 0;
+ }
+ if ( 0 /*coplanarPolyg*/ ) // coplanar polygon found
+ {
+ freeLinks.resize( freeLinks.size() - polygon._polyLinks.size() );
+ nbFreeLinks -= polygon._polyLinks.size();
+
+ // fill freeLinks with links not shared by coplanarPolyg and polygon
+ for ( size_t iL = 0; iL < polygon._links.size(); ++iL )
+ if ( polygon._links[ iL ]._link->_faces[1] &&
+ polygon._links[ iL ]._link->_faces[0] != coplanarPolyg )
+ {
+ _Face* p = polygon._links[ iL ]._link->_faces[0];
+ for ( size_t iL2 = 0; iL2 < p->_links.size(); ++iL2 )
+ if ( p->_links[ iL2 ]._link == polygon._links[ iL ]._link )
+ {
+ freeLinks.push_back( & p->_links[ iL2 ] );
+ ++nbFreeLinks;
+ freeLinks.back()->RemoveFace( &polygon );
+ break;
+ }
+ }
+ for ( size_t iL = 0; iL < coplanarPolyg->_links.size(); ++iL )
+ if ( coplanarPolyg->_links[ iL ]._link->_faces[1] &&
+ coplanarPolyg->_links[ iL ]._link->_faces[1] != &polygon )
+ {
+ _Face* p = coplanarPolyg->_links[ iL ]._link->_faces[0];
+ if ( p == coplanarPolyg )
+ p = coplanarPolyg->_links[ iL ]._link->_faces[1];
+ for ( size_t iL2 = 0; iL2 < p->_links.size(); ++iL2 )
+ if ( p->_links[ iL2 ]._link == coplanarPolyg->_links[ iL ]._link )
+ {
+ freeLinks.push_back( & p->_links[ iL2 ] );
+ ++nbFreeLinks;
+ freeLinks.back()->RemoveFace( coplanarPolyg );
+ break;
+ }
+ }
+ // set coplanarPolyg to be re-created next
+ for ( size_t iP = 0; iP < _polygons.size(); ++iP )
+ if ( coplanarPolyg == & _polygons[ iP ] )
+ {
+ iPolygon = iP;
+ _polygons[ iPolygon ]._links.clear();
+ _polygons[ iPolygon ]._polyLinks.clear();
+ break;
+ }
+ if ( freeLinks.back() == &polygon._links.back() )
+ {
+ freeLinks.pop_back();
+ --nbFreeLinks;
+ }
+ _polygons.pop_back();
+ usedFaceIDs.erase( curFace );
+ continue;
+ } // if ( coplanarPolyg )
+ } // if ( hasEdgeIntersections )
+
+ iPolygon = _polygons.size();
+
+ } // end of case ( polygon._links.size() > 2 )
} // while ( nbFreeLinks > 0 )
if ( ! checkPolyhedronSize() )
}
// create a classic cell if possible
- const int nbNodes = _nbCornerNodes + _nbIntNodes;
+ const int nbNodes = _nbCornerNodes + nbIntersections;
bool isClassicElem = false;
if ( nbNodes == 8 && _polygons.size() == 6 ) isClassicElem = addHexa();
else if ( nbNodes == 4 && _polygons.size() == 4 ) isClassicElem = addTetra();
++nbIntHex;
}
const int iLink = iL + iDir * 4;
- hex->_hexLinks[iLink]._intNodes.push_back( _Node( 0, &(*ip) ));
- hex->_nbIntNodes += bool( ip->_node );
+ hex->_hexLinks[iLink]._fIntPoints.push_back( &(*ip) );
+ //hex->_hexLinks[iLink]._fIntNodes.push_back( _Node( 0, &(*ip) ));
+ hex->_nbFaceIntNodes += bool( ip->_node );
}
}
}
if ( hex )
{
intHexInd[ nbIntHex++ ] = i;
- if ( hex->_nbIntNodes > 0 || ! hex->_edgeIntPnts.empty())
+ if ( hex->_nbFaceIntNodes > 0 || hex->_eIntPoints.size() > 0 )
continue; // treat intersected hex later
this->init( hex->_i, hex->_j, hex->_k );
}
gp_XYZ p2 = discret.Value( iP ).XYZ();
double u2 = discret.Parameter( iP );
double zProj2 = planes._zNorm * ( p2 - _grid->_origin );
- int iZ2 = iZ1;
+ int iZ2 = iZ1;
+ if ( Abs( zProj2 - zProj1 ) <= std::numeric_limits<double>::min() )
+ continue;
locateValue( iZ2, zProj2, planes._zProjs, dIJK[ iDirZ ], tol );
// treat intersections with planes between 2 end points of a segment
// for ( int iF = 0; iF < 6; ++iF )
// {
// _Face& quad = h->_hexQuads[ iF ];
- // for ( size_t iP = 0; iP < quad._edgeNodes.size(); ++iP )
- // if ( !quad._edgeNodes[ iP ]._node )
- // if (( eip = quad._edgeNodes[ iP ].EdgeIntPnt() ))
- // quad._edgeNodes[ iP ]._intPoint->_node = helper.AddNode( eip->_point.X(),
+ // for ( size_t iP = 0; iP < quad._eIntNodes.size(); ++iP )
+ // if ( !quad._eIntNodes[ iP ]._node )
+ // if (( eip = quad._eIntNodes[ iP ].EdgeIntPnt() ))
+ // quad._eIntNodes[ iP ]._intPoint->_node = helper.AddNode( eip->_point.X(),
// eip->_point.Y(),
// eip->_point.Z() );
// }
- // for ( size_t iP = 0; iP < hexes[i]->_vertexNodes.size(); ++iP )
- // if (( eip = h->_vertexNodes[ iP ].EdgeIntPnt() ))
- // h->_vertexNodes[ iP ]._intPoint->_node = helper.AddNode( eip->_point.X(),
+ // for ( size_t iP = 0; iP < hexes[i]->_vIntNodes.size(); ++iP )
+ // if (( eip = h->_vIntNodes[ iP ].EdgeIntPnt() ))
+ // h->_vIntNodes[ iP ]._intPoint->_node = helper.AddNode( eip->_point.X(),
// eip->_point.Y(),
// eip->_point.Z() );
// }
( _grid->_coords[2][ h->_k+1 ] + _grid->_tol < ip._uvw[2] ))
throw SALOME_Exception("ip outside a hex");
#endif
- h->_edgeIntPnts.push_back( & ip );
+ h->_eIntPoints.push_back( & ip );
added = true;
}
}
{
chn.clear();
chn.push_back( n1 );
- for ( size_t iP = 0; iP < quad._edgeNodes.size(); ++iP )
- if ( !quad._edgeNodes[ iP ]._isUsedInFace &&
- n1->IsLinked( quad._edgeNodes[ iP ]._intPoint ) &&
- n2->IsLinked( quad._edgeNodes[ iP ]._intPoint ))
+ for ( size_t iP = 0; iP < quad._eIntNodes.size(); ++iP )
+ if ( !quad._eIntNodes[ iP ]->IsUsedInFace( &quad ) &&
+ n1->IsLinked( quad._eIntNodes[ iP ]->_intPoint ) &&
+ n2->IsLinked( quad._eIntNodes[ iP ]->_intPoint ))
{
- chn.push_back( & quad._edgeNodes[ iP ]);
+ chn.push_back( quad._eIntNodes[ iP ]);
chn.push_back( n2 );
- quad._edgeNodes[ iP ]._isUsedInFace = true;
+ quad._eIntNodes[ iP ]->_usedInFace = &quad;
return true;
}
bool found;
do
{
found = false;
- for ( size_t iP = 0; iP < quad._edgeNodes.size(); ++iP )
- if ( !quad._edgeNodes[ iP ]._isUsedInFace &&
- chn.back()->IsLinked( quad._edgeNodes[ iP ]._intPoint ))
+ for ( size_t iP = 0; iP < quad._eIntNodes.size(); ++iP )
+ if ( !quad._eIntNodes[ iP ]->IsUsedInFace( &quad ) &&
+ chn.back()->IsLinked( quad._eIntNodes[ iP ]->_intPoint ))
{
- chn.push_back( & quad._edgeNodes[ iP ]);
- found = quad._edgeNodes[ iP ]._isUsedInFace = true;
+ chn.push_back( quad._eIntNodes[ iP ]);
+ found = quad._eIntNodes[ iP ]->_usedInFace = &quad;
break;
}
} while ( found && ! chn.back()->IsLinked( n2->_intPoint ) );
{
// new version is for the case: tangent transition at the 1st node
bool isOut = false;
- if ( link._intNodes.size() > 1 )
+ if ( link._fIntNodes.size() > 1 )
{
// check transition at the next intersection
- switch ( link._intNodes[1].FaceIntPnt()->_transition ) {
+ switch ( link._fIntPoints[1]->_transition ) {
case Trans_OUT: return false;
case Trans_IN : return true;
default: ; // tangent transition
gp_Pnt p2 = link._nodes[1]->Point();
gp_Pnt testPnt = 0.8 * p1.XYZ() + 0.2 * p2.XYZ();
- TGeomID faceID = link._intNodes[0]._intPoint->_faceIDs[0];
+ TGeomID faceID = link._fIntPoints[0]->_faceIDs[0];
const TopoDS_Face& face = TopoDS::Face( _grid->_shapes( faceID ));
TopLoc_Location loc;
GeomAPI_ProjectPointOnSurf& proj =
*/
bool Hexahedron::isInHole() const
{
- if ( !_vertexNodes.empty() )
+ if ( !_vIntNodes.empty() )
return false;
const int ijk[3] = { _i, _j, _k };
--ip;
firstIntPnt = &(*ip);
}
- else if ( !link._intNodes.empty() )
+ else if ( !link._fIntPoints.empty() )
{
- firstIntPnt = link._intNodes[0].FaceIntPnt();
+ firstIntPnt = link._fIntPoints[0];
}
if ( firstIntPnt )
// find a top node above the base node
_Link* link = _polygons[0]._links[iL]._link;
//ASSERT( link->_faces.size() > 1 );
- if ( link->_faces.size() < 2 )
+ if ( !link->_faces[0] || !link->_faces[1] )
return debugDumpLink( link );
// a quadrangle sharing <link> with _polygons[0]
_Face* quad = link->_faces[ bool( link->_faces[0] == & _polygons[0] )];
_Link* link = _polygons[0]._links[0]._link;
//ASSERT( link->_faces.size() > 1 );
- if ( link->_faces.size() < 2 )
+ if ( !link->_faces[0] || !link->_faces[1] )
return debugDumpLink( link );
// a triangle sharing <link> with _polygons[0]
// find a top node above the base node
_Link* link = _polygons[ iTri ]._links[iL]._link;
//ASSERT( link->_faces.size() > 1 );
- if ( link->_faces.size() < 2 )
+ if ( !link->_faces[0] || !link->_faces[1] )
return debugDumpLink( link );
// a quadrangle sharing <link> with a base triangle
_Face* quad = link->_faces[ bool( link->_faces[0] == & _polygons[ iTri ] )];
nodes[3] = _polygons[iQuad]._links[3].FirstNode();
_Link* link = _polygons[iQuad]._links[0]._link;
- ASSERT( link->_faces.size() > 1 );
- if ( link->_faces.size() < 2 )
+ //ASSERT( link->_faces.size() > 1 );
+ if ( !link->_faces[0] || !link->_faces[1] )
return debugDumpLink( link );
// a triangle sharing <link> with a base quadrangle