if debug :print ('indiceDsLeContenu',indiceDsLeContenu)
if debug :print (pyxb.namespace.ExpandedName(self.cata.modeleMetier.Namespace, self.nom))
- #if self.objPyxb ! = None : self.objPyxb.objAccas=self
+ if self.objPyxb != None : self.objPyxb.objAccas=self #ATTENTION TUPLE&MATRICE
elt=pyxb.binding.basis.ElementContent(self.objPyxb, instance=self.perePyxb.objPyxb, tag=pyxb.namespace.ExpandedName(self.cata.modeleMetier.Namespace, self.nom))
self.perePyxb.objPyxb.orderedContent().insert(indiceDsLeContenu,elt)
if (elt.elementDeclaration.isPlural()):
maClasseElt=getattr(self.cata.modeleMetier,self.monNomClasseModeleMetier+'_n'+str(num)+'_tuple')
listeConstruction.append(maClasseElt(v[i]))
self.objPyxb.append(self.maClasseModeleMetier(*listeConstruction))
+ # on fait porter au 1er l objet Accas pour retrouver la definition
+ if self.objPyxb[0] !=None : self.objPyxb[0].objAccas=self
if debug : print (self.objPyxb)
+ if debug : print (self.objPyxb[0].__class__)
+ if debug :
+ for o in self.objPyxb : print ('x_MSIMP', o.toDOM(element_name='RN_EDG').toprettyxml())
return
if self.waitChaineAvecBlancs() and self.definition.max > 1:
self.maClasseModeleMetier=getattr(self.cata.modeleMetier,self.monNomClasseModeleMetier)
if debug : print (self.valeur)
if self.valeur != None and self.valeur != [] : self.objPyxb = self.maClasseModeleMetier(*self.valeur)
else :self.objPyxb = self.maClasseModeleMetier()
+ if self.objPyxb !=None : self.objPyxb.objAccas=self
if debug : print ('X_MCSIMP', self.nom, self.objPyxb, )
if debug : print ('__________ fin X_MCSIMP', self.objPyxb, self.nom, self, self.maClasseModeleMetier,self.valeur)
return
else : self.objPyxb=self.maClasseModeleMetier(_validate_constraints=False)
- #if self.objPyxb !=None : self.objPyxb.objAccas=self
+ if self.objPyxb !=None :
+ # les dict ont une entree objEnPyxb
+ if type(self.objPyxb) is list or type(self.objPyxb) is tuple :
+ porteObjet=self.objPyxb[0]
+ while (type(porteObjet) is list or type(porteObjet) is tuple) : porteObjet=porteObjet[0]
+ if type(porteObjet) is dict: porteObjet=porteObjet['objEnPyxb']
+ porteObjet.objAccas=self
+ elif type(self.objPyxb) is dict:
+ porteObjet = self.objPyxb['objEnPyxb']
+ porteObjet.objAccas=self
+ else : self.objPyxb.objAccas=self
if debug : print ('X_MCSIMP', self.nom, self.objPyxb, )
if debug : print ('__________ fin X_MCSIMP', self.objPyxb, self.nom, self, self.maClasseModeleMetier,self.valeur)
if debug : print ('X_MCCOMPO', self.nom)
deepDebug=False
+ if debug : print ('****************** X_MCCOMPO------------------------', self.nom)
self.listArg=[]
self.dicoArg={}
for objAccas in mc_list :
+ if debug : print ('dans le for', objAccas.nom)
if objAccas.nature == 'MCBLOC' :
self.exploreBLOC(objAccas)
elif objAccas.nature == 'MCList' :
self.listArg.append(objAccas[0].objPyxb)
else :
if objAccas.nom == 'Consigne' : continue
- if debug : print ('ds X_MCCOMPO pour ', objAccas.nom, objAccas.objPyxb)
+ if debug : print ('ds X_MCCOMPO de ', self.nom + ' pour ', objAccas.nom, objAccas.objPyxb)
self.listArg.append(objAccas.objPyxb)
self.dicoArg[objAccas.nom]=objAccas.objPyxb
objAccas.perePyxb=self
if debug : print (self.listArg)
if debug : print (self.maClasseModeleMetier)
# self.objPyxb=self.maClasseModeleMetier(*self.listArg)
- self.objPyxb=self.maClasseModeleMetier(**self.dicoArg)
+ self.objPyxb=self.maClasseModeleMetier(**self.dicoArg) # **1
+ # **1 Attention passer un complex plural element par **kw corrompt
+ # - l'élément content associé qui contient une liste au lieu d'un plural
+ # - l'orderedcontent qui contient une liste de Element Content au lieu des Elements Content directement
if deepDebug :
- print ('debut de __________ new ordered content')
+ print ('debut de __________ ordered content')
for o in self.objPyxb.orderedContent():
print ('o', o)
print ('value', o.value)
print ('type', type(o.value))
print ('id', id(o.value))
- print ('fin __________ new ordered content')
+ print ('fin __________ ordered content')
print ('debut de __________ listArg')
for obj in self.listArg:
print ('obj',obj)
newOrderedContent=[]
if debug : print ('list Arg')
for obj in self.listArg:
- if debug :
- print ('obj',obj)
- print ('type obj', type(obj))
- print ('id(obj)', id(obj))
-
- # on teste le caractere pluriel
if isinstance(obj, list):
- for c in self.objPyxb.orderedContent() :
- if hasattr (c,'value') and c.value == obj :
- newOrderedContent.append(c)
- continue
+ # traitement particulier des tuples
+ if hasattr(obj[0],'objAccas') and obj[0].objAccas.nature == 'MCSIMP' and obj[0].objAccas.waitTuple():
+ badObjPyxb=self.maClasseModeleMetier(**self.dicoArg)
+ for c in badObjPyxb.orderedContent() :
+ if isinstance(c._Content__value,list) and isinstance(c._Content__value[0], type(obj[0])): newOrderedContent.append(c)
+ # **2 En cohérence avec le **1
+ # isinstance(c._Content__value,list) fonctionne par une conséquence de la corruption **1
+ # il faudrait en réalité tester/construire le plural pour avoir les objets pyxb bien construit
+ # et éviter les orphanContentException.
+ continue
+
+ #for c in self.objPyxb.orderedContent() :
+ # if hasattr (c,'value') and c.value == obj :
+ # newOrderedContent.append(c)
+ #continue
if (hasattr(obj, 'nature')) : # attention on a un object Accas et non un pyxb car les MCList n ont pas de objPyxb
max=obj[0].definition.max
else : max = 1
# newOrderedContent.append(self.objPyxb.orderedContent()[list(map(lambda o:type(o.value), self.objPyxb.orderedContent())).index(type(obj))] )
# PN 22 sept 2020 . pourquoi pas toujours l id. le tyoe ne convient pas en cas d union d enum
newOrderedContent.append(self.objPyxb.orderedContent()[list(map(lambda o:id(o.value), self.objPyxb.orderedContent())).index(id(obj))] )
- else : # element Pural
+ else : # element Plural
for c in self.objPyxb.orderedContent() :
if isinstance(c._Content__value,list) and isinstance(c._Content__value[0], type(obj[0].objPyxb)): newOrderedContent.append(c)
-
- for i in range(len(self.listArg)):
+ # **2 En cohérence avec le **1
+ # isinstance(c._Content__value,list) fonctionne par une conséquence de la corruption **1
+ # il faudrait en réalité tester/construire le plural pour avoir les objets pyxb bien construit
+ # et éviter les orphanContentException.
+
+ if debug : print ('construction X_MCCOMPO', self, self.nom, self.objPyxb)
+ i=0
+
+ # a priori on a a len(newOrderedContent) > len(orderedContent())
+ #
+ if debug : print ('X_MCCOMPO newOrderedContent',len(newOrderedContent))
+ if debug : print ('X_MCCOMPO oderedContent',len(self.objPyxb.orderedContent()))
+
+ for i in range(len(newOrderedContent)):
self.objPyxb.orderedContent()[i]=newOrderedContent[i]
+
if debug : print ('X_MCCOMPO', self, self.nom, self.objPyxb)
if debug : print ('X_MCCOMPO', self.listArg)
if debug : print ('X_MCCOMPO', newOrderedContent)
if debug : print ('X_MCCOMPO', self.objPyxb.orderedContent())
+ if deepDebug :
+ for obj in self.objPyxb.orderedContent() :
+ print ('----------------- obj ', obj)
+ print (obj.value)
+ try :
+ for objFils in obj.value.orderedContent():
+ print (objFils.value)
+ except : pass
if debug : print ('X_MCCOMPO', self.objPyxb.orderedContent())
if debug : print ('x_MCCOMPO', self.objPyxb.toDOM(element_name='RN_EDG').toprettyxml())
if debug : print ('X_MCCOMPO', self.objPyxb.orderedContent())
fils[0].perePyxb=self
self.dicoArg[fils.nom]=fils[0].objPyxb
self.listArg.append(fils[0].objPyxb)
+ if debug : print ('ajout dans exploreBLOC ', self.nom + ' de fact ', fils.nom, fils[0].objPyxb)
else :
if fils.nom == "Consigne" : continue
self.listArg.append(fils.objPyxb)
self.dicoArg[fils.nom]=fils.objPyxb
fils.perePyxb=self
- if debug : print (fils.nom ,' est un SIMP a pour pere Pyxb', self, self.nom)
+ if debug : print ('ajout dans exploreBLOC ', self.nom + ' de ', fils.nom, fils.objPyxb)
+ #if debug : print ('ds exploreBLOC de ', self.nom + ' pour ', fils.nom, fils.objPyxb)
+ #if debug : print (fils.nom ,' est un SIMP a pour pere Pyxb', self, self.nom)
if debug : print ('fin ds exploreBLOC', objAccas .nom)
self.maClasseModeleMetier=getattr(self.cata.modeleMetier,self.monNomClasseModeleMetier)
self.objPyxb=self.maClasseModeleMetier()
#self.objPyxb.objAccas=self
- pyxb.GlobalValidationConfig._setContentInfluencesGeneration(pyxb.GlobalValidationConfig.NEVER)
+ pyxb.GlobalValidationConfig._setContentInfluencesGeneration(pyxb.GlobalValidationConfig.ALWAYS)
pyxb.GlobalValidationConfig._setInvalidElementInContent(pyxb.GlobalValidationConfig.RAISE_EXCEPTION)
- pyxb.GlobalValidationConfig._setOrphanElementInContent(pyxb.GlobalValidationConfig.RAISE_EXCEPTION)
+ #pyxb.GlobalValidationConfig._setOrphanElementInContent(pyxb.GlobalValidationConfig.RAISE_EXCEPTION) #TODO: Réactiver après correction cf **1 **2
+ pyxb.GlobalValidationConfig._setOrphanElementInContent(pyxb.GlobalValidationConfig.GIVE_UP)
--- /dev/null
+# -*- coding: utf-8 -*-
+
+"""Definition of the data model used by the integration bench.
+
+Warnings
+--------
+EFICAS will import this file as Python module with the ``__import__`` special
+function so, this module must not use relative import.
+"""
+# pylint: disable=import-error
+# pylint: disable=too-few-public-methods
+
+# TODO: Create a main object that point on the different subobjects and force its name
+
+# EFICAS
+from Accas import OPER, BLOC, FACT, SIMP, ASSD, JDC_CATA, VerifTypeTuple, Matrice
+from Accas import Tuple as _Tuple
+from Extensions.i18n import tr
+
+# Warning: The names of these variables are defined by EFICAS
+JdC = JDC_CATA(code="RN_EDG")
+VERSION_CATALOGUE = "V_0"
+
+# Define the minimum and the maximum number of elements (reflectors and fuel
+# assemblies) on the core's side
+NMIN_CORE_FUEL_ELTS = 1
+NMAX_CORE_FUEL_ELTS = 18
+
+# Available absorbing material type in the rod clusters
+ROD_COMPOSITIONS = (
+ "Black", # Full AIC rods
+ "Grey", # Mix between AIC and steel rods
+ "B4C", # Full B4C rods
+)
+
+# Available options for the core elements rotation
+ASSEMBLY_ROTATIONS = (
+ ".", # identity
+ "R1", # 90° counter-clock
+ "R2", # 180°
+ "R3", # 270° counter-clock
+ "UD", # up-down
+ "LR", # left-right
+ "TR", # transpose x/y
+ "RT", # transpose x/-y
+)
+
+class Tuple(_Tuple):
+ """Organize the data into a fixed size tuple.
+
+ Warnings
+ --------
+ This class respect the EFICAS conventions.
+ """
+
+ def __convert__(self, valeur):
+ if len(valeur) != self.ntuple:
+ return None
+ return valeur
+
+
+class VerifPostTreatment(VerifTypeTuple):
+ """Validate the data comming from ``Scenario_data.post_processing``.
+
+ Warnings
+ --------
+ This class respect the EFICAS conventions.
+ """
+ # pylint: disable=invalid-name
+ # pylint: disable=missing-function-docstring
+ # pylint: disable=no-self-use
+
+ PHYSICS = ("Neutronics", "Thermalhydraulics")
+ FORMATS = ("MED", "SUM", "MIN", "MAX", "MEAN")
+
+ def __init__(self):
+ super().__init__(("TXM", "TXM"))
+ self.cata_info = ""
+
+ def info(self):
+ return tr(": vérifie les \ntypes dans un tuple")
+
+ def infoErreurListe(self):
+ return tr("Les types entres ne sont pas permis")
+
+ def default(self, valeur):
+ return valeur
+
+ def isList(self):
+ return 1
+
+ def convertItem(self, valeur):
+ if len(valeur) != len(self.typeDesTuples):
+ raise ValueError(
+ tr("%s devrait être de type %s ") % (valeur, self.typeDesTuples))
+ ok = self.verifType(valeur)
+ if ok == 0:
+ raise ValueError(
+ tr("%s devrait être de type %s (%d)") % (valeur, self.typeDesTuples, ok))
+ if ok < 0:
+ raise ValueError(
+ tr("%s devrait être dans %s ") % (valeur[1], self.FORMATS))
+ return valeur
+
+ def verifItem(self, valeur):
+ try:
+ if len(valeur) != len(self.typeDesTuples):
+ return 0
+ ok = self.verifType(valeur)
+ if ok != 1:
+ return 0
+ except: # pylint: disable=bare-except
+ return 0
+ return 1
+
+ def verifType(self, valeur): # pylint: disable=arguments-differ
+ ok = 0
+ for v in valeur:
+ if isinstance(v, (bytes, str)):
+ ok += 1
+ if ok == len(self.typeDesTuples):
+ if valeur[1] in self.FORMATS:
+ return 1
+ return -1
+ return 0
+
+ def verif(self, valeur):
+ if type(valeur) in (list, tuple):
+ liste = list(valeur)
+ for val in liste:
+ if self.verifItem(val) != 1:
+ return 0
+ return 1
+ return 0
+
+
+class _Assembly(ASSD):
+ pass
+
+
+class _TechnoData(ASSD):
+ pass
+
+
+class _RodBank(ASSD):
+ pass
+
+
+class _ModelData(ASSD):
+ pass
+
+
+class _ScenarioData(ASSD):
+ pass
+
+
+Assembly = OPER(
+ nom="Assembly",
+ sd_prod=_Assembly,
+ fr="Description d'un élément du cœur",
+ ang="Core element description",
+ assembly_type=SIMP(
+ fr="Type d'élément cœur (assemblage combustible ou réflecteur",
+ ang="Type of the core element (fuel assembly or reflector",
+ statut="o",
+ typ="TXM",
+ into=("UOX", "MOX", "REF")),
+ description=BLOC(
+ condition="assembly_type != 'REF'",
+ fr="Description d'un assemblage combustible",
+ ang="Fuel assembly description",
+ assembly_width=SIMP(
+ fr="Pas inter-assemblage dans le cœur",
+ ang="Fuel assembly pitch in the core",
+ unite="m",
+ statut="o",
+ typ="R"),
+ fuel_density=SIMP(
+ fr=("Ratio entre masse volumique nominale et la masse volumique "
+ "théorique des pastilles combustible"),
+ ang=("Ratio between the nominal density and the theoretical "
+ "density of the fuel pellets"),
+ unite="g/cm3",
+ statut="o",
+ typ="R",
+ defaut=0.95),
+ radial_description=FACT(
+ fr="Description radiale de l'assemblage combustible",
+ ang="Fuel assembly radial description",
+ statut="o",
+ clad_outer_radius=SIMP(
+ fr="Rayon externe de la gaine des crayons combustible",
+ ang="Clad external radius of the fuel pins",
+ unite="m",
+ statut="o",
+ typ="R"),
+ guide_tube_outer_radius=SIMP(
+ fr="Rayon externe des tubes guides",
+ ang="Clad external radius of the guide tubes",
+ unite="m",
+ statut="o",
+ typ="R"),
+ fuel_rod_pitch=SIMP(
+ fr="Pas inter-crayon dans l'assemblage",
+ ang="Fuel pin pitch in the assembly",
+ unite="m",
+ statut="o",
+ typ="R"),
+ nfuel_rods=SIMP(
+ fr="Nombre de crayons combustibles dans l'assemblage",
+ ang="Number of fuel pins in the assembly",
+ statut="o",
+ typ="I")),
+ axial_description=FACT(
+ fr="Description axiale de l'assemblage combustible",
+ ang="Fuel assembly axial description",
+ statut="o",
+ active_length_start=SIMP(
+ fr="Altitude basse de la partie active",
+ ang="Lower altitude of the active part",
+ unite="m",
+ statut="o",
+ typ="R"),
+ active_length_end=SIMP(
+ fr="Altitude haute de la partie active",
+ ang="Upper altitude of the active part",
+ unite="m",
+ statut="o",
+ typ="R")),
+ grids=FACT(
+ fr="Description des grilles",
+ ang="Grids description",
+ statut="o",
+ mixing=FACT(
+ fr="Description des grilles de mélange",
+ ang="Mixing grids description",
+ statut="o",
+ positions=SIMP(
+ fr="Altitude basse de la grille",
+ ang="Grid lower altitude",
+ unite="m",
+ statut="f",
+ typ="R",
+ max="**"),
+ size=SIMP(
+ fr="Hauteur de la grille",
+ ang="Grid height",
+ unite="m",
+ statut="o",
+ typ="R")),
+ non_mixing=FACT(
+ fr="Description des grilles de maintien",
+ ang="Holding grids description",
+ statut="o",
+ positions=SIMP(
+ fr="Altitude basse de la grille",
+ ang="Grid lower altitude",
+ unite="m",
+ statut="f",
+ typ="R",
+ max="**"),
+ size=SIMP(
+ fr="Hauteur de la grille",
+ ang="Grid height",
+ unite="m",
+ statut="o",
+ typ="R")))))
+
+
+# TODO: Define the names of the possible compositions (Black, Grey, B4C, Hafnium and Pyrex)
+RodBank = OPER(
+ nom="RodBank",
+ sd_prod=_RodBank,
+ fr="Description d'un groupe de grappes absorbantes",
+ ang="Rod bank description",
+ rod_type=SIMP(
+ fr="Type de grappes absorbantes",
+ ang="Type of rod clusters",
+ statut="o",
+ typ="TXM",
+ into=("homogeneous", "heterogeneous")),
+ description_HOM=BLOC(
+ condition="rod_type == 'homogeneous'",
+ fr="Description d'un groupe de grappes absorbantes homogènes axialement",
+ ang="Axially homogeneous rod bank description",
+ rod_composition=SIMP(
+ fr=("Type de matériau absorbant des grappes absorbantes (Types "
+ "autorisés : {})").format(
+ ", ".join(ROD_COMPOSITIONS)),
+ ang=("Absorbing material type of the rod clusters (Authorized "
+ "types: {})").format(
+ ", ".join(ROD_COMPOSITIONS)),
+ statut="o",
+ typ="TXM",
+ into=ROD_COMPOSITIONS)),
+ description_HET=BLOC(
+ condition="rod_type == 'heterogeneous'",
+ fr="Description d'un groupe de grappes absorbantes hétérogène axialement",
+ ang="Axially heterogeneous rod bank description",
+ bottom_composition=SIMP(
+ fr=("Type de matériau absorbant dans la partie basse des grappes "
+ "absorantes (Types autorisés : {})").format(
+ ", ".join(ROD_COMPOSITIONS)),
+ ang=("Absorbing material type in the lower part of the rod "
+ "clusters (Authorized types: {})").format(
+ ", ".join(ROD_COMPOSITIONS)),
+ statut="o",
+ typ="TXM",
+ into=ROD_COMPOSITIONS),
+ splitting_heigh=SIMP(
+ fr=("Altitude de séparation entre la partie haute et la partie "
+ "basse des grappes absorbantes"),
+ ang=("Splitting height between the upper part and the lower part "
+ "of the rod clusters"),
+ unite="m",
+ statut="o",
+ typ="R"),
+ upper_composition=SIMP(
+ fr=("Type de matériau absorbant dans la partie haute des grappes "
+ "absorantes (Types autorisés : {})").format(
+ ", ".join(ROD_COMPOSITIONS)),
+ ang=("Absorbing material type in the upper part of the rod "
+ "clusters (Authorized types: {})").format(
+ ", ".join(ROD_COMPOSITIONS)),
+ statut="o",
+ typ="TXM",
+ into=ROD_COMPOSITIONS)),
+ step_height=SIMP(
+ fr="Hauteur d'un pas",
+ ang="Step height",
+ unite="m",
+ statut="o",
+ typ="R"),
+ nsteps=SIMP(
+ fr="Nombre de pas du groupe de grappes",
+ ang="Rod bank steps number",
+ statut="o",
+ typ="I"))
+
+
+def gen_assembly_maps():
+ """Generate all the possible maps (one for each possible core size) for the
+ data cointained in ``Techno_data.radial_description.assembly_map``."""
+ # Build the default axes names
+ xsym_list = list("ABCDEFGHJKLNPRSTUVWXYZ")
+ xsym_list.reverse()
+ ysym_list = ["%02d" % i for i in range(NMIN_CORE_FUEL_ELTS, NMAX_CORE_FUEL_ELTS + 1)]
+ ysym_list.reverse()
+ def_xaxis = {}
+ def_yaxis = {}
+ for i in range(NMIN_CORE_FUEL_ELTS, NMAX_CORE_FUEL_ELTS + 1):
+ def_xaxis[i] = ["RW"] + xsym_list[-i:] + ["RE"]
+ def_yaxis[i] = ["RS"] + ysym_list[-i:] + ["RN"]
+
+ dico = {}
+ for i in range(NMIN_CORE_FUEL_ELTS, NMAX_CORE_FUEL_ELTS):
+ dico["assembly_map_%d" % i] = BLOC(
+ condition="nb_assembly == %d" % i,
+ fr="Description radiale du cœur",
+ ang="Core radial description",
+ xaxis=SIMP(
+ fr="Nom des repères radiaux du cœur suivant l'axe ouest-est",
+ ang="Name of core radial marks following the west-east axis",
+ statut="o",
+ typ="TXM",
+ min=i + 2,
+ max=i + 2,
+ defaut=def_xaxis[i]),
+ yaxis=SIMP(
+ fr="Nom des repères radiaux du cœur suivant l'axe nord-sud",
+ ang="Name of core radial marks following the north-south axis",
+ statut="o",
+ typ="TXM",
+ min=i + 2,
+ max=i + 2,
+ defaut=def_yaxis[i]),
+ assembly_map=SIMP(
+ fr=("Répartition radiale des assemblages combustibles et des "
+ "réflecteurs dans le cœur"),
+ ang=("Radial repartition of the fuel assemblies and the "
+ "reflectors in the core"),
+ statut="o",
+ typ=Matrice(
+ nbLigs=i + 2,
+ nbCols=i + 2,
+ typElt=_Assembly,
+ listeHeaders=(
+ ("RW","S","R","P","N","L","K","J","H","G","F","E","D","C","B","A","RE",),
+ ("RS","15","14","13","12","11","10","09","08","07","06","05","04","03","02","01","RN",)), # pylint: disable=line-too-long
+ defaut=(i + 2) * [(i + 2) * ["."]],
+ coloree=True)),
+ rotation_map=SIMP(
+ fr="Rotation des éléments du cœur. Valeur possibles : {}".format(
+ ", ".join([repr(elt) for elt in ASSEMBLY_ROTATIONS])),
+ ang="Core elements rotation. Possible values : {}".format(
+ ", ".join([repr(elt) for elt in ASSEMBLY_ROTATIONS])),
+ statut="o",
+ typ=Matrice(
+ nbLigs=i + 2,
+ nbCols=i + 2,
+ typElt="TXM",
+ typEltInto=ASSEMBLY_ROTATIONS,
+ coloree=True),
+ defaut=(i + 2) * [(i + 2) * ["."]]),
+ rod_map=SIMP(
+ fr="Répartition radiale des groupes de grappes dans le cœur",
+ ang="Rod banks radial repartition in the core",
+ statut="o",
+ typ=Matrice(
+ nbLigs=i + 2,
+ nbCols=i + 2,
+ valSup=1,
+ valMin=-1,
+ typElt="TXM",
+ listeHeaders=None,
+ coloree=True),
+ defaut=(i + 2) * [(i + 2) * ["."]]),
+ BU_map=SIMP(
+ fr="Taux de combustion moyen des assemblages combustibles en GW.j/t",
+ ang="Average burnup of the fuel assemblies in GW.d/t",
+ statut="o",
+ typ=Matrice(
+ nbLigs=i + 2,
+ nbCols=i + 2,
+ valSup=90000.,
+ valMin=0.,
+ typElt="R",
+ listeHeaders=None,
+ coloree=True),
+ defaut=(i + 2) * [(i + 2) * ["."]]))
+ return dico
+
+
+Techno_data = OPER(
+ nom="Techno_data",
+ sd_prod=_TechnoData,
+ fr="Description technologique du cœur",
+ ang="Core technological description",
+ assembly_list=SIMP(
+ fr="Sélection des assemblages combustible",
+ ang="Fuel assemblies selection",
+ statut="o",
+ typ=_Assembly,
+ min=1,
+ max="**"),
+ rodbank_list=SIMP(
+ fr="Sélection des groupes de grappes",
+ ang="Rod banks selection",
+ statut="o",
+ typ=_RodBank,
+ min=0,
+ max="**"),
+ radial_description=FACT(
+ fr="Description radiale du cœur",
+ ang="Radial description of the core",
+ statut="o",
+ nb_assembly=SIMP(
+ fr="Nombre d'éléments combustible sur la tranche du cœur",
+ ang="Number of fuel elements on one side of the core",
+ statut="o",
+ typ="I",
+ into=list(range(NMIN_CORE_FUEL_ELTS, NMAX_CORE_FUEL_ELTS))),
+ **(gen_assembly_maps())),
+ axial_description=FACT(
+ fr="Description axiale du cœur",
+ ang="Axial description of the core",
+ statut="o",
+ lower_refl_size=SIMP(
+ fr="Hauteur du réflecteur axial bas",
+ ang="Height of bottom axial reflector",
+ unite="m",
+ statut="o",
+ typ="R"),
+ upper_refl_size=SIMP(
+ fr="Hauteur du réflecteur axial haut",
+ ang="Height of top axial reflector",
+ unite="m",
+ statut="o",
+ typ="R")),
+ nominal_power=SIMP(
+ fr="Puissance thermique nominale du cœur",
+ ang="Nominal thermal power of the core",
+ unite="W",
+ statut="o",
+ typ="R"),
+ Fuel_power_fraction=SIMP(
+ fr="Fraction de la puissance dissipée dans le combustible",
+ ang="Power fraction dissipated in the fuel",
+ statut="o",
+ typ="R",
+ defaut=0.974),
+ by_pass=SIMP(
+ fr="Fraction du débit de bypass cœur",
+ ang="Bypass core flow fraction",
+ statut="o",
+ typ="R",
+ defaut=0.07),
+ core_volumic_flowrate=SIMP(
+ fr="Débit volumique cœur",
+ ang="Core volume flowrate",
+ unite="m3/h",
+ statut="o",
+ typ="R"))
+
+
+class _AssemblyDKLibFile(ASSD):
+ """Manage informations about a fuel assembly DKLib file."""
+
+
+class _ReflectorDKLibFile(ASSD):
+ """Manage informations about a reflector DKLib file."""
+
+
+AssemblyDKLibFile = OPER(
+ nom="AssemblyDKLibFile",
+ sd_prod=_AssemblyDKLibFile,
+ fr="Description d'un fichier DKLib assemblage combustible",
+ ang="Description of a fuel assembly DKLib file",
+ filename=SIMP(
+ fr="Nom du fichier DKLib",
+ ang="DKLib filename",
+ statut="o",
+ typ=("Fichier", "DKLib Files (.dklib);;DKZip Files (.dkzip);;All Files ()", "Sauvegarde")),
+ pattern=SIMP(
+ fr="Nom du pattern à utiliser dans le fichier DKLib",
+ ang="Name of the pattern to use in the DKLib file",
+ statut="o",
+ typ="TXM"),
+ rod_bank_names=SIMP(
+ fr=("Nom de la configuration de grappe dans la DKLib pour chaque type "
+ "de matériaux absorbants disponibles dans le modèle sous la forme "
+ "({{{}}}, nom dans la DKLib)").format(", ".join(ROD_COMPOSITIONS)),
+ ang=("Name of the rod cluster configuration in the DKLib file for any "
+ "type of absorbing materials available in the model under the form "
+ "({{{}}}, name in the DKLib)").format(", ".join(ROD_COMPOSITIONS)),
+ statut="o",
+ typ=Tuple(2),
+ # TODO: Check if the first string is ROD_COMPOSITIONS
+ validators=VerifTypeTuple(("TXM", "TXM")),
+ max="**"))
+
+
+ReflectorDKLibFile = OPER(
+ nom="ReflectorDKLibFile",
+ sd_prod=_ReflectorDKLibFile,
+ fr="Description d'un fichier DKLib réflecteur",
+ ang="Description of a reflector DKLib file",
+ filename=SIMP(
+ fr="Nom du fichier DKLib",
+ ang="DKLib filename",
+ statut="o",
+ typ=("Fichier", "DKLib Files (.dklib);;DKZip Files (.dkzip);;All Files ()","Sauvegarde")),
+ radial_pattern=SIMP(
+ fr="Nom du pattern contenant les données du réflecteur radial",
+ ang="Name of the pattern containing the radial reflector data",
+ statut="o",
+ typ="TXM"),
+ lower_pattern=SIMP(
+ fr="Nom du pattern contenant les données du réflecteur axial bas",
+ ang="Name of the pattern containing the lower reflector data",
+ statut="o",
+ typ="TXM"),
+ upper_pattern=SIMP(
+ fr="Nom du pattern contenant les données du réflecteur axial haut",
+ ang="Name of the pattern containing the upper reflector data",
+ statut="o",
+ typ="TXM"))
+
+
+# TODO: Split this class in two: neutronic and thermalhydraulic)
+# TODO: Or split this class in N classes (one for each code)
+Model_data = OPER(
+ nom="Model_data",
+ sd_prod=_ModelData,
+ fr="Description de la modélisation physique",
+ ang="Physical modeling description",
+ physics=SIMP(
+ fr="Sélection de la physique du modèle",
+ ang="Physic model selection",
+ statut="o",
+ typ="TXM",
+ into=("Neutronics", "Thermalhydraulics")),
+ scale=SIMP(
+ fr="Sélection de l'échelle du modèle",
+ ang="Scale model selection",
+ statut="o",
+ typ="TXM",
+ into=("system", "component", "local")),
+ b_neutro_compo=BLOC(
+ condition="physics == 'Neutronics' and scale == 'component'",
+ fr="Description de la modélisation neutronique à l'échelle du composant",
+ ang="Neutronic modeling description at the component scale",
+ code=SIMP(
+ fr="Sélection du code de neutronique cœur",
+ ang="Core neutronic code selection",
+ statut="o",
+ typ="TXM",
+ into=("COCAGNE", "APOLLO3")),
+ cocagne_bloc=BLOC(
+ condition="code == 'COCAGNE'",
+ cocagne_options=FACT(
+ fr="Options de modélisations spécifiques au code COCAGNE.",
+ ang="COCAGNE specific modeling options",
+ statut="o",
+ n_threads=SIMP(
+ fr="Nombre de threads alloués aux solveurs",
+ ang="Number of threads allocated to the solvers",
+ statut="f",
+ typ="I",
+ val_min=1),
+ core_elements_vs_dklib=SIMP(
+ fr=("Association des éléments du cœur aux bibliothèques neutroniques "
+ "sous la forme (assemblage combustible, DKLib)"),
+ ang=("Association between the core elements and the neutronic libraries "
+ "in the form (fuel assembly, DKLib)"),
+ statut="o",
+ typ=Tuple(2),
+ # TODO: Check if the attribute assembly_type of the
+ # Assembly object is 'REF' then the type of the
+ # DKLibFile must be ReflectorDKLibFile and, if not,
+ # the type of the DKLibFile must be AssemblyDKLibFile
+ validators=VerifTypeTuple((_Assembly, (_AssemblyDKLibFile, _ReflectorDKLibFile))),
+ max="**"))),
+ # TODO: Implement the *4x4* mesh
+ radial_meshing=FACT(
+ fr="Maillage radial du cœur",
+ ang="Core radial meshing",
+ statut="o",
+ flux_solver=SIMP(
+ fr="Type de maillage radial du solveur de flux",
+ ang="Radial mesh type for the flux solver",
+ statut="o",
+ typ="TXM",
+ into=("subdivision", "pin-by-pin")),
+ b_flux_subdivision=BLOC(
+ condition="flux_solver == 'subdivision'",
+ fr=("Paramètres pour les maillages radiaux de type subdivisé "
+ "pour le solveur de flux"),
+ ang=("Parameters for the subdivided radial meshes types for the "
+ "flux solver"),
+ flux_subdivision=SIMP(
+ fr=("Nombre de sous-divisions à appliquer à chaque maille "
+ "radiale pour le solveur de flux"),
+ ang=("Subdivision number to apply to all radial meshes for "
+ "the flux solver"),
+ statut="o",
+ typ="I")),
+ feedback_solver=SIMP(
+ fr="Type de maillage radial du solveur de contre-réaction",
+ ang="Radial mesh type for the feedback solver",
+ statut="o",
+ typ="TXM",
+ into=("subdivision", "pin-by-pin")),
+ b_feedback_subdivision=BLOC(
+ condition="feedback_solver == 'subdivision'",
+ fr=("Paramètres pour les maillages radiaux de type subdivisé "
+ "pour le solveur de contre-réaction"),
+ ang=("Parameters for the subdivided radial meshes types for the "
+ "feedback solver"),
+ feedback_subdivision=SIMP(
+ fr=("Nombre de sous-divisions à appliquer à chaque maille "
+ "radiale pour le solveur de contre-réaction"),
+ ang=("Subdivision number to apply to all radial meshes for "
+ "the feedback solver"),
+ statut="o",
+ typ="I")))),
+ b_thermo_compo=BLOC(
+ condition="physics == 'Thermalhydraulics' and scale == 'component'",
+ fr="Description de la modélisation thermohydraulique à l'échelle du composant",
+ ang="Thermalhydraulic modeling description at the component scale",
+ code=SIMP(
+ fr="Sélection du code de thermohydraulique cœur",
+ ang="Core thermalhydraulic code selection",
+ statut="o",
+ typ="TXM",
+ into=("THYC", "CATHARE3", "FLICA4")),
+ thyc_bloc=BLOC(
+ condition="code == 'THYC'",
+ thyc_options=FACT(
+ fr="Options de modélisations spécifiques au code THYC.",
+ ang="THYC specific modeling options",
+ statut="o",
+ n_threads=SIMP(
+ fr="Nombre de threads alloués aux solveurs",
+ ang="Number of threads allocated to the solvers",
+ statut="f",
+ typ="I",
+ val_min=1))),
+ radial_meshing=FACT(
+ fr="Description du maillage radial thermohydraulique à l'échelle du composant",
+ ang="Thermalhydraulic radial meshing description at the component scale",
+ statut="o",
+ fluid=SIMP(
+ fr="Méthode de maillage radial",
+ ang="Radial meshing method",
+ statut="o",
+ typ="TXM",
+ into=("subdivision", "subchannel")),
+ b_fluid_subdivision=BLOC(
+ condition="fluid == 'subdivision'",
+ fr="Données spécifiques au maillage radial par subdivision",
+ ang="Specific data for the radial meshing by subdivision",
+ fluid_subdivision=SIMP(
+ fr="Nombre de mailles radiales dans les assemblages combustibles",
+ ang="Radial mesh number in the fuel assemblies",
+ statut="o",
+ typ="I")),
+ pellet=SIMP(
+ fr="Nombre de mailles radiales dans la pastille combustible",
+ ang="Radial mesh number in the fuel pellet",
+ statut="o",
+ typ="I"),
+ clad=SIMP(
+ fr="Nombre de mailles radiales dans la gaine des crayons combustibles",
+ ang="Radial mesh number in the clad of the fuel pins",
+ statut="o",
+ typ="I"))),
+ b_scale_compo=BLOC(
+ condition="scale == 'component'",
+ fr="Description de la modélisation à l'échelle du composant",
+ ang="Modeling description at the component scale",
+ axial_meshing=FACT(
+ fr="Maillage axial du cœur",
+ ang="Core axial meshing",
+ statut="o",
+ lower_refl=SIMP(
+ fr="Nombre de mailles axiales dans le réflecteur bas",
+ ang="Axial mesh number in the lower reflector",
+ statut="o",
+ typ="I"),
+ fuel=SIMP(
+ fr="Nombre de mailles axiales dans la partie active de l'assemblage combustible",
+ ang="Axial mesh number in the active part of the fuel assembly",
+ statut="o",
+ typ="I"),
+ upper_refl=SIMP(
+ fr="Nombre de mailles axiales dans le réflecteur haut",
+ ang="Axial mesh number in the upper reflector",
+ statut="o",
+ typ="I"))),
+ b_scale_local=BLOC(
+ condition="scale == 'local'",
+ fr="Description de la modélisation à l'échelle du locale",
+ ang="Modeling description at the local scale",
+ mesh_file=SIMP(
+ fr="Nom du fichier décrivant le maillage",
+ ang="Name of the file describing the mesh",
+ statut="o",
+ typ="Fichier")))
+
+
+Scenario_data = OPER(
+ nom="Scenario_data",
+ sd_prod=_ScenarioData,
+ fr="Description du transitoire",
+ ang="Transient description",
+ initial_power=SIMP(
+ fr="Puissance thermique initiale du cœur",
+ ang="Initial thermal power of the core",
+ statut="o",
+ typ="R",
+ val_min=0.,
+ defaut=100.),
+ initial_power_unit=SIMP(
+ fr="Unité de la puissance thermique initiale du cœur",
+ ang="Unit of the initial thermal power of the core",
+ statut="o",
+ typ="TXM",
+ into=("% Nominal power", "W"),
+ defaut="% Nominal power"),
+ initial_core_inlet_temperature=SIMP(
+ fr="Température initiale de l'eau à l'entrée du cœur",
+ ang="Initial water temperature at the inlet of the core",
+ unite="°C",
+ statut="o",
+ typ="R",
+ val_min=0.,
+ defaut=280.),
+ initial_boron_concentration=SIMP(
+ fr="Concentration en bore initiale",
+ ang="Initial boron concentration",
+ unite="ppm",
+ statut="o",
+ typ="R",
+ val_min=0.,
+ defaut=1300.),
+ initial_inlet_pressure=SIMP(
+ fr="Pression initiale de l'eau à l'entrée du cœur",
+ ang="Initial water pressure at the inlet of the core",
+ unite="bar",
+ statut="o",
+ typ="R",
+ val_min=0.,
+ defaut=160.2),
+ initial_outlet_pressure=SIMP(
+ fr="Pression initiale de l'eau à la sortie du cœur",
+ ang="Initial water pressure at the outlet of the core",
+ unite="bar",
+ statut="o",
+ typ="R",
+ val_min=0.,
+ defaut=157.2),
+ initial_rod_positions=SIMP(
+ fr=("Position initiale des groupes de grappes et des grappes dans le "
+ "cœur sous la forme (type@nom, position) "
+ "(ex. (Rodbank@RB, 62) pour le groupe de grappe RB positionné à 62 "
+ "pas extraits et (Rodcluster@H08, 0) pour la grappe H08 "
+ "complètement insérée)"),
+ ang=("Initial position of the rod banks and the rod clusters in the "
+ "core in the form (type@name, position) "
+ "(e.g. (Rodbank@RB, 62) for the RB rod bank placed at 62 "
+ "extracted steps and (Rodcluster@H08, 0) for the rod cluster H08 "
+ "completely inserted)"),
+ unite="extracted steps",
+ statut="o",
+ typ=Tuple(2), # TODO: Use a triplet (type, name, position) instead of a doublet
+ validators=VerifTypeTuple(("TXM", "I")),
+ max="**"),
+ scenario_type=SIMP(
+ fr="Type de transitoire à modéliser",
+ ang="Type of transient to model",
+ statut="o",
+ typ="TXM",
+ into=("RIA", )),
+ b_ria=BLOC(
+ condition="scenario_type == 'RIA'",
+ fr="Données du transitoire 'accident de réactivité'",
+ ang="Data of the 'Reactivity-initiated Accident' transient",
+ ejected_rod=SIMP(
+ fr="Nom de la grappe éjectée",
+ ang="Name of the ejected rod cluster",
+ statut="o",
+ typ="TXM"),
+ rod_position_program=SIMP(
+ fr="Loi d'éjection à appliquer à la grappe sous la forme (temps, position)",
+ ang="Ejection law to apply to the ejected rod cluster in the form (time, position)",
+ unite="s, extracted steps",
+ statut="o",
+ typ=Tuple(2),
+ validators=VerifTypeTuple(("R", "I")),
+ max="**"),
+ SCRAM=SIMP(
+ fr="Activation/désactivation de l'arrêt automatique du réacteur",
+ ang="Activation/deactivation of automatic reactor shutdown",
+ statut="o",
+ typ="TXM",
+ into=("YES", "NO")),
+ SCRAM_option=BLOC(
+ condition="SCRAM == 'YES'",
+ fr="Options relatives à l'arrêt automatique du réacteur",
+ ang="Options relative to the automatic reactor shutdown",
+ SCRAM_power=SIMP(
+ fr=("Puissance thermique du cœur déclenchant un arrêt "
+ "automatique du réacteur"),
+ ang="Core thermal power triggering an automatic reactor shutdown",
+ unite="MW",
+ statut="o",
+ typ="R"),
+ complete_SCRAM_time=SIMP(
+ fr="Temps de chute des grappes",
+ ang="Rod cluster fall time",
+ unite="s",
+ statut="o",
+ typ="R"))),
+ post_processing=SIMP(
+ # TODO: Give all the possible parameters depending of the physics
+ fr=("Données de sortie du calcul sous la forme (paramètre@physique, format). "
+ "'physique' peut valoir {physics!r} et 'format' peut valoir {formats!r}".format(
+ physics=VerifPostTreatment.PHYSICS,
+ formats=VerifPostTreatment.FORMATS)),
+ ang=("Output computed data in function of time in the form (parameter@physic, format). "
+ "'physic' can be {physics!r} and 'format' can be {formats!r})".format(
+ physics=VerifPostTreatment.PHYSICS,
+ formats=VerifPostTreatment.FORMATS)),
+ statut="f",
+ typ=Tuple(2), # TODO: Use a triplet (parameter, physic, format) instead of a doublet
+ validators=VerifPostTreatment(),
+ max="**"))
--- /dev/null
+
+thermo_model=Model_data(physics='Thermalhydraulics',
+ scale='component',
+ code='THYC',
+ thyc_options=_F(n_threads=23,),
+ radial_meshing=_F(fluid='subdivision',
+ fluid_subdivision=1,
+ pellet=8,
+ clad=2,),
+ axial_meshing=_F(lower_refl=1,
+ fuel=40,
+ upper_refl=1,),);
+#VERSION_CATALOGUE:V_0:FIN VERSION_CATALOGUE
+#CHECKSUM:ea75a6791472ab21137d2c91d59f3362:FIN CHECKSUM
\ No newline at end of file
--- /dev/null
+
+REF=Assembly(assembly_type='REF',);
+
+U1=Assembly(assembly_type='UOX',
+ assembly_width=0.21504,
+ fuel_density=0.95,
+ radial_description=_F(clad_outer_radius=0.00475,
+ guide_tube_outer_radius=0.006025,
+ fuel_rod_pitch=0.0126,
+ nfuel_rods=264,),
+ axial_description=_F(active_length_start=0.21,
+ active_length_end=4.4772,),
+ grids=_F(mixing=_F(positions=(0.69216,1.19766,1.70316,2.20866,2.71416,3.20416,3.69416,4.18416,),
+ size=0.033,),
+ non_mixing=_F(positions=(0.026,4.2412,),
+ size=0.033,),),);
+
+UGD=Assembly(assembly_type='UOX',
+ assembly_width=0.21504,
+ fuel_density=0.95,
+ radial_description=_F(clad_outer_radius=0.00475,
+ guide_tube_outer_radius=0.006025,
+ fuel_rod_pitch=0.0126,
+ nfuel_rods=264,),
+ axial_description=_F(active_length_start=0.21,
+ active_length_end=4.4772,),
+ grids=_F(mixing=_F(positions=(0.69216,1.19766,1.70316,2.20866,2.71416,3.20416,3.69416,4.18416,),
+ size=0.033,),
+ non_mixing=_F(positions=(0.026,),
+ size=0.033,),),);
+
+RB=RodBank(rod_type='heterogeneous',
+ bottom_composition='Black',
+ splitting_heigh=1.4224,
+ upper_composition='B4C',
+ step_height=0.016,
+ nsteps=260,);
+
+N1=RodBank(rod_type='heterogeneous',
+ bottom_composition='Black',
+ splitting_heigh=1.4224,
+ upper_composition='B4C',
+ step_height=0.016,
+ nsteps=260,);
+
+N2=RodBank(rod_type='heterogeneous',
+ bottom_composition='Black',
+ splitting_heigh=1.4224,
+ upper_composition='B4C',
+ step_height=0.016,
+ nsteps=260,);
+
+G1=RodBank(rod_type='homogeneous',
+ rod_composition='Grey',
+ step_height=0.016,
+ nsteps=260,);
+
+G2=RodBank(rod_type='homogeneous',
+ rod_composition='Grey',
+ step_height=0.016,
+ nsteps=260,);
+
+techno_data=Techno_data(assembly_list=(REF,U1,UGD,),
+ rodbank_list=(RB,G1,G2,N1,N2,),
+ radial_description=_F(nb_assembly=15,
+ xaxis=('RW','S','R','P','N','L','K','J','H','G','F','E','D','C','B','A','RE',),
+ yaxis=
+ ('RS','15','14','13','12','11',
+ '10','09','08','07','06','05','04','03','02','01','RN',),
+ assembly_map=
+ ([REF,REF,REF,REF,REF,REF,
+ REF,REF,REF,REF,REF,REF,REF,REF,REF,REF,REF,],[REF,REF,
+ REF,REF,REF,U1,U1,U1,U1,U1,U1,U1,REF,REF,REF,REF,REF,],
+ [REF,REF,REF,UGD,U1,UGD,UGD,U1,U1,U1,UGD,UGD,U1,UGD,REF,
+ REF,REF,],[REF,REF,UGD,U1,U1,U1,U1,UGD,U1,UGD,U1,U1,U1,U1,
+ UGD,REF,REF,],[REF,REF,U1,U1,U1,UGD,U1,UGD,U1,UGD,U1,UGD,
+ U1,U1,U1,REF,REF,],[REF,U1,UGD,U1,UGD,U1,U1,UGD,U1,UGD,U1,
+ U1,UGD,U1,UGD,U1,REF,],[REF,U1,UGD,U1,U1,U1,UGD,UGD,U1,
+ UGD,UGD,U1,U1,U1,UGD,U1,REF,],[REF,U1,U1,UGD,UGD,UGD,UGD,
+ U1,UGD,U1,UGD,UGD,UGD,UGD,U1,U1,REF,],[REF,U1,U1,U1,U1,U1,
+ U1,UGD,UGD,UGD,U1,U1,U1,U1,U1,U1,REF,],[REF,U1,U1,UGD,UGD,
+ UGD,UGD,U1,UGD,U1,UGD,UGD,UGD,UGD,U1,U1,REF,],[REF,U1,UGD,
+ U1,U1,U1,UGD,UGD,U1,UGD,UGD,U1,U1,U1,UGD,U1,REF,],[REF,U1,
+ UGD,U1,UGD,U1,U1,UGD,U1,UGD,U1,U1,UGD,U1,UGD,U1,REF,],
+ [REF,REF,U1,U1,U1,UGD,U1,UGD,U1,UGD,U1,UGD,U1,U1,U1,REF,
+ REF,],[REF,REF,UGD,U1,U1,U1,U1,UGD,U1,UGD,U1,U1,U1,U1,UGD,
+ REF,REF,],[REF,REF,REF,UGD,U1,UGD,UGD,U1,U1,U1,UGD,UGD,U1,
+ UGD,REF,REF,REF,],[REF,REF,REF,REF,REF,U1,U1,U1,U1,U1,U1,
+ U1,REF,REF,REF,REF,REF,],[REF,REF,REF,REF,REF,REF,REF,REF,
+ REF,REF,REF,REF,REF,REF,REF,REF,REF,],),
+ rotation_map=
+ (['.','.','.','.','.','.',
+ '.','.','.','.','.','.','.','.','.','.','.'],['.','.','.',
+ '.','.','.','.','.','.','.','.','.','.','.','.','.','.'],
+ ['.','.','.','.','.','.','.','.','.','.','.','.','.','.',
+ '.','.','.'],['.','.','.','.','.','.','.','.','.','.','.',
+ '.','.','.','.','.','.'],['.','.','.','.','.','.','.','.',
+ '.','.','.','.','.','.','.','.','.'],['.','.','.','.','.',
+ '.','.','.','.','.','.','.','.','.','.','.','.'],['.','.',
+ '.','.','.','.','.','.','.','.','.','.','.','.','.','.',
+ '.'],['.','.','.','.','.','.','.','.','.','.','.','.','.',
+ '.','.','.','.'],['.','.','.','.','.','.','.','.','.','.',
+ '.','.','.','.','.','.','.'],['.','.','.','.','.','.','.',
+ '.','.','.','.','.','.','.','.','.','.'],['.','.','.','.',
+ '.','.','.','.','.','.','.','.','.','.','.','.','.'],['.',
+ '.','.','.','.','.','.','.','.','.','.','.','.','.','.',
+ '.','.'],['.','.','.','.','.','.','.','.','.','.','.','.',
+ '.','.','.','.','.'],['.','.','.','.','.','.','.','.','.',
+ '.','.','.','.','.','.','.','.'],['.','.','.','.','.','.',
+ '.','.','.','.','.','.','.','.','.','.','.'],['.','.','.',
+ '.','.','.','.','.','.','.','.','.','.','.','.','.','.'],
+ ['.','.','.','.','.','.','.','.','.','.','.','.','.','.',
+ '.','.','.'],),
+ rod_map=
+ (['#','#','#','#','#','#','#',
+ '#','#','#','#','#','#','#','#','#','#'],['#','#','#','#','#','.',
+ '.','.','.','.','.','.','#','#','#','#','#'],['#','#','#','.','.',
+ '.','.','.','RB','.','.','.','.','.','#','#','#'],['#','#','.','.',
+ '.','G2','.','N2','.','N2','.','G2','.','.','.','#','#'],['#','#',
+ '.','.','N1','.','.','.','G1','.','.','.','N1','.','.','#','#'],
+ ['#','.','.','G2','.','RB','.','.','.','.','.','RB','.','G2','.',
+ '.','#'],['#','.','.','.','.','.','.','.','N1','.','.','.','.','.',
+ '.','.','#'],['#','.','.','N2','.','.','.','.','.','.','.','.','.',
+ 'N2','.','.','#'],['#','.','RB','.','G1','.','N1','.','RB','.','N1',
+ '.','G1','.','RB','.','#'],['#','.','.','N2','.','.','.','.','.',
+ '.','.','.','.','N2','.','.','#'],['#','.','.','.','.','.','.','.',
+ 'N1','.','.','.','.','.','.','.','#'],['#','.','.','G2','.','RB',
+ '.','.','.','.','.','RB','.','G2','.','.','#'],['#','#','.','.',
+ 'N1','.','.','.','G1','.','.','.','N1','.','.','#','#'],['#','#',
+ '.','.','.','G2','.','N2','.','N2','.','G2','.','.','.','#','#'],
+ ['#','#','#','.','.','.','.','.','RB','.','.','.','.','.','#','#',
+ '#'],['#','#','#','#','#','.','.','.','.','.','.','.','#','#','#',
+ '#','#'],['#','#','#','#','#','#','#','#','#','#','#','#','#','#',
+ '#','#','#'],),
+ BU_map=
+ ([0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,40.0,0.0,0.0,
+ 40.0,40.0,20.0,40.0,40.0,0.0,0.0,40.0,0.0,0.0,0.0],[0.0,0.0,40.0,0.0,
+ 40.0,20.0,40.0,0.0,40.0,0.0,40.0,20.0,40.0,0.0,40.0,0.0,0.0],[0.0,0.0,
+ 0.0,40.0,20.0,20.0,20.0,40.0,20.0,40.0,20.0,20.0,20.0,40.0,0.0,0.0,
+ 0.0],[0.0,0.0,0.0,20.0,20.0,20.0,40.0,0.0,40.0,0.0,40.0,20.0,20.0,
+ 20.0,0.0,0.0,0.0],[0.0,0.0,40.0,40.0,20.0,40.0,20.0,40.0,20.0,40.0,
+ 20.0,40.0,20.0,40.0,40.0,0.0,0.0],[0.0,0.0,40.0,0.0,40.0,0.0,40.0,
+ 20.0,20.0,20.0,40.0,0.0,40.0,0.0,40.0,0.0,0.0],[0.0,0.0,20.0,40.0,
+ 20.0,40.0,20.0,20.0,60.0,20.0,20.0,40.0,20.0,40.0,20.0,0.0,0.0],[0.0,
+ 0.0,40.0,0.0,40.0,0.0,40.0,20.0,20.0,20.0,40.0,0.0,40.0,0.0,40.0,0.0,
+ 0.0],[0.0,0.0,40.0,40.0,20.0,40.0,20.0,40.0,20.0,40.0,20.0,40.0,20.0,
+ 40.0,40.0,0.0,0.0],[0.0,0.0,0.0,20.0,20.0,20.0,40.0,0.0,40.0,0.0,40.0,
+ 20.0,20.0,20.0,0.0,0.0,0.0],[0.0,0.0,0.0,40.0,20.0,20.0,20.0,40.0,
+ 20.0,40.0,20.0,20.0,20.0,40.0,0.0,0.0,0.0],[0.0,0.0,40.0,0.0,40.0,
+ 20.0,40.0,0.0,40.0,0.0,40.0,20.0,40.0,0.0,40.0,0.0,0.0],[0.0,0.0,0.0,
+ 40.0,0.0,0.0,40.0,40.0,20.0,40.0,40.0,0.0,0.0,40.0,0.0,0.0,0.0],[0.0,
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],),),
+ axial_description=_F(lower_refl_size=0.21,
+ upper_refl_size=0.21,),
+ nominal_power=4000000000.0,
+ Fuel_power_fraction=0.974,
+ by_pass=0.07,
+ core_volumic_flowrate=90940.0,);
+
+AF3R_400=AssemblyDKLibFile(filename='cocagne_data/dklib/AF3R_400.dklib',
+ pattern='PALU_AF3R_17_4.00_0P_0P_100_100__535_306.5_0.7127__500____________________________P13',
+ rod_bank_names=(('Black','black_rods'),('Grey','grey_rods'),('B4C','b4c_rods')),);
+
+AF3R_400_12G_GD80U071=AssemblyDKLibFile(filename='cocagne_data/dklib/AF3R_400_12G_GD80U071.dklib',
+ pattern=\
+ 'PALU_AF3R_17_4.0012G12G_100_100__535_306.5_0.7127__500___________GD__8_U_0.71_____P13',
+ rod_bank_names=(('Black','black_rods'),('Grey','grey_rods'),('B4C','b4c_rods')),);
+
+REFL_PWR1300=ReflectorDKLibFile(filename='cocagne_data/dklib/Reflecteur_REP1300.dkzip',
+ radial_pattern='R',
+ lower_pattern='lower',
+ upper_pattern='upper',);
+
+neutro_model=Model_data(physics='Neutronics',
+ scale='component',
+ code='COCAGNE',
+ cocagne_options=_F(core_elements_vs_dklib=((REF,REFL_PWR1300),(U1,AF3R_400),(UGD,AF3R_400_12G_GD80U071)),),
+ radial_meshing=_F(flux_solver='subdivision',
+ flux_subdivision=2,
+ feedback_solver='subdivision',
+ feedback_subdivision=1,),
+ axial_meshing=_F(lower_refl=2,
+ fuel=42,
+ upper_refl=2,),);
+
+thermo_model=Model_data(physics='Thermalhydraulics',
+ scale='component',
+ code='THYC',
+ thyc_options=_F(),
+ radial_meshing=_F(fluid='subdivision',
+ fluid_subdivision=1,
+ pellet=8,
+ clad=2,),
+ axial_meshing=_F(lower_refl=1,
+ fuel=40,
+ upper_refl=1,),);
+
+scenario_data=Scenario_data(initial_power=0.1,
+ initial_power_unit='% Nominal power',
+ initial_core_inlet_temperature=290.0,
+ initial_boron_concentration=1300.0,
+ initial_inlet_pressure=160.2,
+ initial_outlet_pressure=157.2,
+ initial_rod_positions=(('Rodbank@RB',201),('Rodbank@N1',96),('Rodbank@N2',260),('Rodbank@G1',260),('Rodbank@G2',260),('Rodcluster@H08',260)),
+ scenario_type='RIA',
+ ejected_rod='H02',
+ rod_position_program=((0.0,0),(0.1,260)),
+ SCRAM='YES',
+ SCRAM_power=1130.0,
+ complete_SCRAM_time=1.0,
+ post_processing=(('Fuel temperature@Thermalhydraulics','MAX'),('Neutronic power@Neutronics','SUM'),('Fuel temperature@Thermalhydraulics','MED'),('Neutronic power@Neutronics','MED')),);
+#VERSION_CATALOGUE:V_0:FIN VERSION_CATALOGUE
+#CHECKSUM:c06d10ac9fa4f4f20cad8266b6f6455d:FIN CHECKSUM