default = [],
typecast = tuple,
message = "Liste de calculs supplémentaires à stocker et/ou effectuer",
- listval = ["APosterioriCovariance", "CostFunctionJ", "Innovation"]
+ listval = ["APosterioriCovariance", "BMA", "Innovation"]
)
self.defineRequiredParameter(
name = "EstimationType",
message = "Estimation d'etat ou de parametres",
listval = ["State", "Parameters"],
)
+ self.defineRequiredParameter(
+ name = "StoreInternalVariables",
+ default = False,
+ typecast = bool,
+ message = "Stockage des variables internes ou intermédiaires du calcul",
+ )
def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
logging.debug("%s Lancement"%self._name)
# ----------------------
self.setParameters(Parameters)
#
+ if self._parameters["EstimationType"] == "Parameters":
+ self._parameters["StoreInternalVariables"] = True
+ #
# Opérateurs
# ----------
if B is None:
#
# Précalcul des inversions de B et R
# ----------------------------------
- if "CostFunctionJ" in self._parameters["StoreSupplementaryCalculations"]:
+ if self._parameters["StoreInternalVariables"]:
if B is not None:
BI = B.I
elif self._parameters["B_scalar"] is not None:
# --------------
Xn = Xb
Pn = B
+ #
self.StoredVariables["Analysis"].store( Xn.A1 )
if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
self.StoredVariables["APosterioriCovariance"].store( Pn )
+ covarianceXa = Pn
+ Xa = Xn
+ previousJMinimum = numpy.finfo(float).max
#
for step in range(duration-1):
if hasattr(Y,"store"):
Pn = Pn_predicted - K * Ht * Pn_predicted
#
self.StoredVariables["Analysis"].store( Xn.A1 )
- #
- if "Innovation" in self._parameters["StoreSupplementaryCalculations"]:
- self.StoredVariables["Innovation"].store( numpy.ravel( d.A1 ) )
if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
self.StoredVariables["APosterioriCovariance"].store( Pn )
- if "CostFunctionJ" in self._parameters["StoreSupplementaryCalculations"]:
+ if "Innovation" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["Innovation"].store( numpy.ravel( d.A1 ) )
+ if self._parameters["StoreInternalVariables"]:
Jb = 0.5 * (Xn - Xb).T * BI * (Xn - Xb)
Jo = 0.5 * d.T * RI * d
J = float( Jb ) + float( Jo )
+ self.StoredVariables["CurrentState"].store( Xn.A1 )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
+ if J < previousJMinimum:
+ previousJMinimum = J
+ Xa = Xn
+ if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+ covarianceXa = Pn
+ else:
+ Xa = Xn
+ #
+ #
+ # Stockage supplementaire de l'optimum en estimation de parametres
+ # ----------------------------------------------------------------
+ if self._parameters["EstimationType"] == "Parameters":
+ self.StoredVariables["Analysis"].store( Xa.A1 )
+ if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["APosterioriCovariance"].store( covarianceXa )
+ #
+ if "BMA" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
#
logging.debug("%s Taille mémoire utilisée de %.1f Mo"%(self._name, m.getUsedMemory("M")))
logging.debug("%s Terminé"%self._name)
default = [],
typecast = tuple,
message = "Liste de calculs supplémentaires à stocker et/ou effectuer",
- listval = ["APosterioriCovariance", "CostFunctionJ", "Innovation"]
+ listval = ["APosterioriCovariance", "BMA", "Innovation"]
)
self.defineRequiredParameter(
name = "EstimationType",
message = "Estimation d'etat ou de parametres",
listval = ["State", "Parameters"],
)
+ self.defineRequiredParameter(
+ name = "StoreInternalVariables",
+ default = False,
+ typecast = bool,
+ message = "Stockage des variables internes ou intermédiaires du calcul",
+ )
def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
logging.debug("%s Lancement"%self._name)
# ----------------------
self.setParameters(Parameters)
#
+ if self._parameters["EstimationType"] == "Parameters":
+ self._parameters["StoreInternalVariables"] = True
+ #
# Opérateurs
# ----------
if B is None:
#
# Précalcul des inversions de B et R
# ----------------------------------
- if "CostFunctionJ" in self._parameters["StoreSupplementaryCalculations"]:
+ if self._parameters["StoreInternalVariables"]:
if B is not None:
BI = B.I
elif self._parameters["B_scalar"] is not None:
# --------------
Xn = Xb
Pn = B
+ #
self.StoredVariables["Analysis"].store( Xn.A1 )
if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
self.StoredVariables["APosterioriCovariance"].store( Pn )
+ covarianceXa = Pn
+ Xa = Xn
+ previousJMinimum = numpy.finfo(float).max
#
for step in range(duration-1):
- Ynpu = numpy.asmatrix(numpy.ravel( Y[step+1] )).T
+ if hasattr(Y,"store"):
+ Ynpu = numpy.asmatrix(numpy.ravel( Y[step+1] )).T
+ else:
+ Ynpu = numpy.asmatrix(numpy.ravel( Y )).T
#
if U is not None:
if hasattr(U,"store") and len(U)>1:
Pn = Pn_predicted - K * Ht * Pn_predicted
#
self.StoredVariables["Analysis"].store( Xn.A1 )
- if "Innovation" in self._parameters["StoreSupplementaryCalculations"]:
- self.StoredVariables["Innovation"].store( numpy.ravel( d.A1 ) )
if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
self.StoredVariables["APosterioriCovariance"].store( Pn )
- if "CostFunctionJ" in self._parameters["StoreSupplementaryCalculations"]:
+ if "Innovation" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["Innovation"].store( numpy.ravel( d.A1 ) )
+ if self._parameters["StoreInternalVariables"]:
Jb = 0.5 * (Xn - Xb).T * BI * (Xn - Xb)
Jo = 0.5 * d.T * RI * d
J = float( Jb ) + float( Jo )
+ self.StoredVariables["CurrentState"].store( Xn.A1 )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
+ if J < previousJMinimum:
+ previousJMinimum = J
+ Xa = Xn
+ if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+ covarianceXa = Pn
+ else:
+ Xa = Xn
+ #
+ #
+ # Stockage supplementaire de l'optimum en estimation de parametres
+ # ----------------------------------------------------------------
+ if self._parameters["EstimationType"] == "Parameters":
+ self.StoredVariables["Analysis"].store( Xa.A1 )
+ if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["APosterioriCovariance"].store( covarianceXa )
+ #
+ if "BMA" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
#
logging.debug("%s Taille mémoire utilisée de %.1f Mo"%(self._name, m.getUsedMemory("M")))
logging.debug("%s Terminé"%self._name)