print("-------------------------------------")
print("")
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setBackground( Vector = Xb, Stored=True )
case.setBackgroundError( ScalarSparseMatrix = 1.e6 )
case.setObservation( Vector = Yobs, Stored=True )
#
from numpy import array, eye
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setCheckingPoint( Vector = array([0., 1., 2.]), Stored=True )
case.setObservation( Vector = [10., 11., 12.] )
case.setObservationOperator( Matrix = eye(3), )
#
from numpy import array, ravel
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setBackground( Vector = array([0., 1., 2.]), Stored=True )
case.setBackgroundError( ScalarSparseMatrix = 1. )
case.setObservation( Vector=array([10., 11., 12.]), Stored=True )
print("-------------------------------------")
print("")
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setBackground( Vector = Xb, Stored=True )
case.setBackgroundError( ScalarSparseMatrix = 1.e6 )
case.setObservation( Vector = Yobs, Stored=True )
#
from numpy import array, ravel
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setBackground( Vector = array([0., 1., 2.]), Stored=True )
case.setBackgroundError( ScalarSparseMatrix = 1. )
case.setObservation( Vector=array([10., 11., 12.]), Stored=True )
print(" Noisy measurements acquired on %i time steps"%(len(Yobs)-1,))
print("")
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
#
case.setBackground (Vector = [0.])
case.setBackgroundError (ScalarSparseMatrix = 1.)
print(" Noisy measurements acquired on %i time steps"%(len(Yobs)-1,))
print("")
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
#
case.setBackground (Vector = [0.])
case.setBackgroundError (ScalarSparseMatrix = 1.)
print("-------------------------------------")
print("")
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setBackground( Vector = Xb, Stored=True )
case.setObservation( Vector = Yobs, Stored=True )
case.setObservationError( ScalarSparseMatrix = 1. )
def SomeOperator( x ):
return numpy.dot(numpy.eye(x.size), numpy.ravel(x))
#
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setAlgorithmParameters(
Algorithm='ParallelFunctionTest',
Parameters={
],
"StoreSupplementaryCalculations" : [
"CurrentState",
+ "CostFunctionJ",
],
}
print("--------------------------------")
print("")
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setBackground( Vector = Xb, Stored=True )
case.setBackgroundError( ScalarSparseMatrix = 1.e6 )
case.setObservation( Vector = Yobs, Stored=True )
#
from numpy import array, eye
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setCheckingPoint( Vector = array([0., 1., 2.]), Stored=True )
case.setObservation( Vector = [10., 11., 12.] )
case.setObservationOperator( Matrix = eye(3), )
#
from numpy import array, ravel
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setBackground( Vector = array([0., 1., 2.]), Stored=True )
case.setBackgroundError( ScalarSparseMatrix = 1. )
case.setObservation( Vector = array([10., 11., 12.]), Stored=True )
print("--------------------------------")
print("")
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setBackground( Vector = Xb, Stored=True )
case.setBackgroundError( ScalarSparseMatrix = 1.e6 )
case.setObservation( Vector = Yobs, Stored=True )
#
from numpy import array, ravel
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setBackground( Vector = array([0., 1., 2.]), Stored=True )
case.setBackgroundError( ScalarSparseMatrix = 1. )
case.setObservation( Vector = array([10., 11., 12.]), Stored=True )
print(" Observations bruitées acquises sur %i pas de temps"%(len(Yobs)-1,))
print("")
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
#
case.setBackground (Vector = [0.])
case.setBackgroundError (ScalarSparseMatrix = 1.)
print(" Observations bruitées acquises sur %i pas de temps"%(len(Yobs)-1,))
print("")
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
#
case.setBackground (Vector = [0.])
case.setBackgroundError (ScalarSparseMatrix = 1.)
print("--------------------------------")
print("")
from adao import adaoBuilder
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setBackground( Vector = Xb, Stored=True )
case.setObservation( Vector = Yobs, Stored=True )
case.setObservationError( ScalarSparseMatrix = 1. )
def SomeOperator( x ):
return numpy.dot(numpy.eye(x.size), numpy.ravel(x))
#
-case = adaoBuilder.New('')
+case = adaoBuilder.New()
case.setAlgorithmParameters(
Algorithm='ParallelFunctionTest',
Parameters={
],
"StoreSupplementaryCalculations" : [
"CurrentState",
+ "CostFunctionJ",
],
}
__p = numpy.cumprod(Y.shape())[-1]
else:
duration = 2
- __p = numpy.array(Y).size
+ __p = numpy.size(Y)
#
# Précalcul des inversions de B et R
if selfA._parameters["StoreInternalVariables"] \
__p = numpy.cumprod(Y.shape())[-1]
else:
duration = 2
- __p = numpy.array(Y).size
+ __p = numpy.size(Y)
__n = Xb.size
#
# Précalcul des inversions de B et R
__p = numpy.cumprod(Y.shape())[-1]
else:
duration = 2
- __p = numpy.array(Y).size
+ __p = numpy.size(Y)
#
# Précalcul des inversions de B et R
if selfA._parameters["StoreInternalVariables"] \
__p = numpy.cumprod(Y.shape())[-1]
else:
duration = 2
- __p = numpy.array(Y).size
+ __p = numpy.size(Y)
__n = Xb.size
#
# Précalcul des inversions de B et R
__p = numpy.cumprod(Y.shape())[-1]
else:
duration = 2
- __p = numpy.array(Y).size
+ __p = numpy.size(Y)
#
# Précalcul des inversions de B et R
if selfA._parameters["StoreInternalVariables"] \
__p = numpy.cumprod(Y.shape())[-1]
else:
duration = 2
- __p = numpy.array(Y).size
+ __p = numpy.size(Y)
#
# Précalcul des inversions de B et R
if selfA._parameters["StoreInternalVariables"] \
__p = numpy.cumprod(Y.shape())[-1]
else:
duration = 2
- __p = numpy.array(Y).size
+ __p = numpy.size(Y)
#
# Précalcul des inversions de B et R
if selfA._parameters["StoreInternalVariables"] \
__p = numpy.cumprod(Y.shape())[-1]
else:
duration = 2
- __p = numpy.array(Y).size
+ __p = numpy.size(Y)
#
# Précalcul des inversions de B et R
if selfA._parameters["StoreInternalVariables"] \
message = "Graine fixée pour le générateur aléatoire",
)
self.requireInputArguments(
- mandatory= ("Xb", "HO"),
+ mandatory= ("Xb", "Y", "HO", "R", "B"),
)
self.setAttributes(tags=(
"Checking",
def storeValueInX(self, xValue, HxValue, oName="" ):
"Stocke pour un opérateur o un calcul Hx correspondant à la valeur x"
if self.__lengthOR < 0:
- self.__lengthOR = 2 * min(xValue.size, 50) + 2 # 2 * xValue.size + 2
+ self.__lengthOR = 2 * min(numpy.size(xValue), 50) + 2
self.__initlnOR = self.__lengthOR
self.__seenNames.append(str(oName))
if str(oName) not in self.__seenNames: # Etend la liste si nouveau
- self.__lengthOR += 2 * min(xValue.size, 50) + 2 # 2 * xValue.size + 2
+ self.__lengthOR += 2 * min(numpy.size(xValue), 50) + 2
self.__initlnOR += self.__lengthOR
self.__seenNames.append(str(oName))
while len(self.__listOPCV) > self.__lengthOR: