]> SALOME platform Git repositories - modules/adao.git/commitdiff
Salome HOME
Source corrections for calculation precision control and comparison
authorJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Fri, 5 Jun 2015 14:12:45 +0000 (16:12 +0200)
committerJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Fri, 5 Jun 2015 14:14:03 +0000 (16:14 +0200)
src/daComposant/daAlgorithms/DerivativesFreeOptimization.py [new file with mode: 0644]
src/daComposant/daAlgorithms/GradientTest.py
src/daComposant/daAlgorithms/LinearityTest.py
src/daComposant/daAlgorithms/TangentTest.py

diff --git a/src/daComposant/daAlgorithms/DerivativesFreeOptimization.py b/src/daComposant/daAlgorithms/DerivativesFreeOptimization.py
new file mode 100644 (file)
index 0000000..d127066
--- /dev/null
@@ -0,0 +1,203 @@
+#-*-coding:iso-8859-1-*-
+#
+#  Copyright (C) 2008-2015 EDF R&D
+#
+#  This library is free software; you can redistribute it and/or
+#  modify it under the terms of the GNU Lesser General Public
+#  License as published by the Free Software Foundation; either
+#  version 2.1 of the License.
+#
+#  This library is distributed in the hope that it will be useful,
+#  but WITHOUT ANY WARRANTY; without even the implied warranty of
+#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+#  Lesser General Public License for more details.
+#
+#  You should have received a copy of the GNU Lesser General Public
+#  License along with this library; if not, write to the Free Software
+#  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
+#
+#  See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+#  Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+import logging
+from daCore import BasicObjects
+import numpy, scipy.optimize
+
+# ==============================================================================
+class ElementaryAlgorithm(BasicObjects.Algorithm):
+    def __init__(self):
+        BasicObjects.Algorithm.__init__(self, "DERIVATIVESFREEOPTIMIZATION")
+        self.defineRequiredParameter(
+            name     = "Minimizer",
+            default  = "POWELL",
+            typecast = str,
+            message  = "Minimiseur utilisé",
+            listval  = ["POWELL", "SIMPLEX"],
+            )
+        self.defineRequiredParameter(
+            name     = "MaximumNumberOfSteps",
+            default  = 15000,
+            typecast = int,
+            message  = "Nombre maximal de pas d'optimisation",
+            minval   = -1,
+            )
+        self.defineRequiredParameter(
+            name     = "MaximumNumberOfFunctionEvaluations",
+            default  = 15000,
+            typecast = int,
+            message  = "Nombre maximal de d'évaluations de la function",
+            minval   = -1,
+            )
+        self.defineRequiredParameter(
+            name     = "StateVariationTolerance",
+            default  = 1.e-4,
+            typecast = float,
+            message  = "Variation relative minimale de l'état lors de l'arrêt",
+            )
+        self.defineRequiredParameter(
+            name     = "CostDecrementTolerance",
+            default  = 1.e-7,
+            typecast = float,
+            message  = "Diminution relative minimale du cout lors de l'arrêt",
+            )
+        self.defineRequiredParameter(
+            name     = "QualityCriterion",
+            default  = "AugmentedWeightedLeastSquares",
+            typecast = str,
+            message  = "Critère de qualité utilisé",
+            listval  = ["AugmentedWeightedLeastSquares","AWLS","DA",
+                        "WeightedLeastSquares","WLS",
+                        "LeastSquares","LS","L2",
+                        "AbsoluteValue","L1",
+                        "MaximumError","ME"],
+            )
+        self.defineRequiredParameter(
+            name     = "StoreInternalVariables",
+            default  = False,
+            typecast = bool,
+            message  = "Stockage des variables internes ou intermédiaires du calcul",
+            )
+        self.defineRequiredParameter(
+            name     = "StoreSupplementaryCalculations",
+            default  = [],
+            typecast = tuple,
+            message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
+            listval  = ["CurrentState", "CostFunctionJ", "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentState", "SimulatedObservationAtOptimum"]
+            )
+
+    def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
+        self._pre_run()
+        if logging.getLogger().level < logging.WARNING:
+            self.__disp = 1
+        else:
+            self.__disp = 0
+        #
+        # Paramètres de pilotage
+        # ----------------------
+        self.setParameters(Parameters)
+#         self.setParameterValue("StoreInternalVariables",True)
+#         print self._parameters["StoreInternalVariables"]
+        #
+        # Opérateurs
+        # ----------
+        Hm = HO["Direct"].appliedTo
+        #
+        # Précalcul des inversions de B et R
+        # ----------------------------------
+        BI = B.getI()
+        RI = R.getI()
+        #
+        # Définition de la fonction-coût
+        # ------------------------------
+        def CostFunction(x, QualityMeasure="AugmentedWeightedLeastSquares"):
+            _X  = numpy.asmatrix(numpy.ravel( x )).T
+            self.StoredVariables["CurrentState"].store( _X )
+            _HX = Hm( _X )
+            _HX = numpy.asmatrix(numpy.ravel( _HX )).T
+            if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
+            #
+            if QualityMeasure in ["AugmentedWeightedLeastSquares","AWLS","DA"]:
+                if BI is None or RI is None:
+                    raise ValueError("Background and Observation error covariance matrix has to be properly defined!")
+                Jb  = 0.5 * (_X - Xb).T * BI * (_X - Xb)
+                Jo  = 0.5 * (Y - _HX).T * RI * (Y - _HX)
+            elif QualityMeasure in ["WeightedLeastSquares","WLS"]:
+                if RI is None:
+                    raise ValueError("Observation error covariance matrix has to be properly defined!")
+                Jb  = 0.
+                Jo  = 0.5 * (Y - _HX).T * RI * (Y - _HX)
+            elif QualityMeasure in ["LeastSquares","LS","L2"]:
+                Jb  = 0.
+                Jo  = 0.5 * (Y - _HX).T * (Y - _HX)
+            elif QualityMeasure in ["AbsoluteValue","L1"]:
+                Jb  = 0.
+                Jo  = numpy.sum( numpy.abs(Y - _HX) )
+            elif QualityMeasure in ["MaximumError","ME"]:
+                Jb  = 0.
+                Jo  = numpy.max( numpy.abs(Y - _HX) )
+            #
+            J   = float( Jb ) + float( Jo )
+            #
+            self.StoredVariables["CostFunctionJb"].store( Jb )
+            self.StoredVariables["CostFunctionJo"].store( Jo )
+            self.StoredVariables["CostFunctionJ" ].store( J )
+            return J
+        #
+        # Point de démarrage de l'optimisation : Xini = Xb
+        # ------------------------------------
+        Xini = numpy.ravel(Xb)
+        #
+        # Minimisation de la fonctionnelle
+        # --------------------------------
+        nbPreviousSteps = self.StoredVariables["CostFunctionJ"].stepnumber()
+        #
+        if self._parameters["Minimizer"] == "POWELL":
+            Minimum, J_optimal, direc, niter, nfeval, rc = scipy.optimize.fmin_powell(
+                func        = CostFunction,
+                x0          = Xini,
+                args        = (self._parameters["QualityCriterion"],),
+                maxiter     = self._parameters["MaximumNumberOfSteps"]-1,
+                maxfun      = self._parameters["MaximumNumberOfFunctionEvaluations"]-1,
+                xtol        = self._parameters["StateVariationTolerance"],
+                ftol        = self._parameters["CostDecrementTolerance"],
+                full_output = True,
+                disp        = self.__disp,
+                )
+        elif self._parameters["Minimizer"] == "SIMPLEX":
+            Minimum, J_optimal, niter, nfeval, rc = scipy.optimize.fmin(
+                func        = CostFunction,
+                x0          = Xini,
+                args        = (self._parameters["QualityCriterion"],),
+                maxiter     = self._parameters["MaximumNumberOfSteps"]-1,
+                maxfun      = self._parameters["MaximumNumberOfFunctionEvaluations"]-1,
+                xtol        = self._parameters["StateVariationTolerance"],
+                ftol        = self._parameters["CostDecrementTolerance"],
+                full_output = True,
+                disp        = self.__disp,
+                )
+        else:
+            raise ValueError("Error in Minimizer name: %s"%self._parameters["Minimizer"])
+        #
+        IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+        MinJ     = self.StoredVariables["CostFunctionJ"][IndexMin]
+        Minimum  = self.StoredVariables["CurrentState"][IndexMin]
+        #
+        # Obtention de l'analyse
+        # ----------------------
+        Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
+        #
+        self.StoredVariables["Analysis"].store( Xa.A1 )
+        #
+        if "SimulatedObservationAtBackground" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(Hm(Xb)) )
+        if "SimulatedObservationAtOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(Hm(Xa)) )
+        #
+        self._post_run()
+        return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+    print '\n AUTODIAGNOSTIC \n'
index b87370e3094e0e954998f27389a873740fdc87e8..fbe30003ba90f9778a85a6e7b0bc12d2f7d131bf 100644 (file)
@@ -55,6 +55,14 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             typecast = float,
             message  = "Amplitude de la direction initiale de la dérivée directionnelle autour du point nominal",
             )
+        self.defineRequiredParameter(
+            name     = "AmplitudeOfTangentPerturbation",
+            default  = 1.e-2,
+            typecast = float,
+            message  = "Amplitude de la perturbation pour le calcul de la forme tangente",
+            minval   = 1.e-10,
+            maxval   = 1.,
+            )
         self.defineRequiredParameter(
             name     = "SetSeed",
             typecast = numpy.random.seed,
@@ -116,8 +124,10 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         dX0 = float(self._parameters["AmplitudeOfInitialDirection"]) * numpy.matrix( dX0 ).T
         #
         if self._parameters["ResiduFormula"] in ["Taylor", "TaylorOnNorm"]:
-            GradFxdX = Ht( (X, dX0) )
+            dX1      = float(self._parameters["AmplitudeOfTangentPerturbation"]) * dX0
+            GradFxdX = Ht( (X, dX1) )
             GradFxdX = numpy.asmatrix(numpy.ravel( GradFxdX )).T
+            GradFxdX = float(1./self._parameters["AmplitudeOfTangentPerturbation"]) * GradFxdX
         #
         # Entete des resultats
         # --------------------
index edea1b2c3974471c4ece327b7252d69076e7782b..d3b3b8171b18159087a27b104f22644d6f1ee8ae 100644 (file)
@@ -55,6 +55,14 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             typecast = float,
             message  = "Amplitude de la direction initiale de la dérivée directionnelle autour du point nominal",
             )
+        self.defineRequiredParameter(
+            name     = "AmplitudeOfTangentPerturbation",
+            default  = 1.e-2,
+            typecast = float,
+            message  = "Amplitude de la perturbation pour le calcul de la forme tangente",
+            minval   = 1.e-10,
+            maxval   = 1.,
+            )
         self.defineRequiredParameter(
             name     = "SetSeed",
             typecast = numpy.random.seed,
@@ -113,8 +121,10 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         # Calcul du gradient au point courant X pour l'incrément dX
         # ---------------------------------------------------------
         if self._parameters["ResiduFormula"] in ["Taylor", "NominalTaylor", "NominalTaylorRMS"]:
-            GradFxdX = Ht( (Xn, dX0) )
+            dX1      = float(self._parameters["AmplitudeOfTangentPerturbation"]) * dX0
+            GradFxdX = Ht( (Xn, dX1) )
             GradFxdX = numpy.asmatrix(numpy.ravel( GradFxdX )).T
+            GradFxdX = float(1./self._parameters["AmplitudeOfTangentPerturbation"]) * GradFxdX
         #
         # Entete des resultats
         # --------------------
index 1b3b162a9b6753d1b8b0736f4b2ddbdbb196df3d..1a4a90f66f774ea3abfbd6fa114f8a42632d0982 100644 (file)
@@ -55,6 +55,14 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             typecast = float,
             message  = "Amplitude de la direction initiale de la dérivée directionnelle autour du point nominal",
             )
+        self.defineRequiredParameter(
+            name     = "AmplitudeOfTangentPerturbation",
+            default  = 1.e-2,
+            typecast = float,
+            message  = "Amplitude de la perturbation pour le calcul de la forme tangente",
+            minval   = 1.e-10,
+            maxval   = 1.,
+            )
         self.defineRequiredParameter(
             name     = "SetSeed",
             typecast = numpy.random.seed,
@@ -108,8 +116,10 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         # Calcul du gradient au point courant X pour l'incrément dX
         # qui est le tangent en X multiplié par dX
         # ---------------------------------------------------------
-        GradFxdX = Ht( (Xn, dX0) )
+        dX1      = float(self._parameters["AmplitudeOfTangentPerturbation"]) * dX0
+        GradFxdX = Ht( (Xn, dX1) )
         GradFxdX = numpy.asmatrix(numpy.ravel( GradFxdX )).T
+        GradFxdX = float(1./self._parameters["AmplitudeOfTangentPerturbation"]) * GradFxdX
         NormeGX  = numpy.linalg.norm( GradFxdX )
         #
         # Entete des resultats