--- /dev/null
+# Shape Proximity
+
+import math
+import salome
+salome.salome_init_without_session()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New()
+
+# create conical and planar faces
+O = geompy.MakeVertex(0, 0, 0)
+OX = geompy.MakeVectorDXDYDZ(1, 0, 0)
+OY = geompy.MakeVectorDXDYDZ(0, 1, 0)
+OZ = geompy.MakeVectorDXDYDZ(0, 0, 1)
+Cone_1 = geompy.MakeConeR1R2H(100, 0, 300)
+Cone_1_face_3 = geompy.GetSubShape(Cone_1, [3])
+Cone_1_wire_4 = geompy.GetSubShape(Cone_1, [4])
+Face_1 = geompy.MakeFaceFromSurface(Cone_1_face_3, Cone_1_wire_4)
+Face_1_edge_5 = geompy.GetSubShape(Face_1, [5])
+Face_2 = geompy.MakeFaceObjHW(Face_1_edge_5, 200, 200)
+geompy.Rotate(Face_2, OY, 90*math.pi/180.0)
+Face_2_vertex_7 = geompy.GetSubShape(Face_2, [7])
+Translation_1 = geompy.MakeTranslationTwoPoints(Face_2, Face_2_vertex_7, O)
+
+shape1 = Face_1
+shape2 = Translation_1
+
+# perform proximity calculation with the default parameters
+p1 = geompy.ShapeProximity()
+proximity1 = p1.proximity(shape1, shape2)
+print("Proximity with default parameters: ", proximity1)
+
+# perform proximity calculation with custom parameters
+p2 = geompy.ShapeProximity()
+p2.setShapes(shape1, shape2)
+p2.setSampling(shape1, 100) # number of sample points for the first shape
+p2.setSampling(shape2, 40) # number of sample points for the second shape
+proximity2_coarse = p2.coarseProximity()
+proximity2_fine = p2.preciseProximity()
+print("Proximity with custom parameters: coarse = ", proximity2_coarse, "; precise = ", proximity2_fine)
working_with_groups_ex06.py
GEOM_Field.py
check_self_intersections_fast.py # OCC > 6.9.0
+ shape_proximity.py
)
--- /dev/null
+/*!
+
+\page shape_proximity_page Shape Proximity
+
+The Shape Proximity operation calculates maximal of all possible distances between two shapes.
+Considering this case :
+
+\image html Shape_proximity_0.png
+
+The proximity of blue shape to the red one is computed like this :
+For each point of blue the distance to the red is computed using perpendicular projection. The proximity value returned is equal to maximal value of all of this distances.
+To do that the implemented algorithm
+
+1 - sampling shapes by points then calculating the distance from each sample point from one shape to another
+
+2 - find the position which gives the maximal distance
+
+3 - improve the proximity value basing on the exact shapes using the points found on step 2 as a start position
+
+It may happen that for some point of blue shape no distance to red shape exist using perpendicular projection.
+This is typically the case here :
+
+\image html Shape_proximity_1.png
+
+In the case of no perpendicular projection of a point on blue shape exists, instead of perpendicular projection the minimal distance to border point of red shape is considered.
+The distance from EndBlue Point is taken using EndRed Point (black line represents the distance for EndBlue).
+
+This is just a TUI functionality. The provided class
+<pre>
+geompy.ShapeProximity()
+</pre>
+has an interface to compute proximity value with default parameters
+<pre>
+p = geompy.ShapeProximity()
+value = p.proximity(shape1, shape2)
+</pre>
+
+Moreover, it also provides the functionality to customize the calculation.
+For example, compute coarse proximity value basing on the number of sampling points for each shape,
+or compute the precise value as a refining operation after the coarse value calculation.
+<pre>
+p = geompy.ShapeProximity()
+p.setShapes(shape1, shape2) # customize calculator with input shapes
+p.setSampling(shape1, 100) # assign number of sample points for the first shape
+p.setSampling(shape2, 25) # assign number of sample points for the second shape
+coarse_proximity = p.coarseProximity() # rough proximity value basing on the shape sampling and tessellation
+fine_proximity = p.preciseProximity() # more precise proximity value using exact shapes
+</pre>
+
+See also a \ref tui_shape_proximity_page "TUI example".
+
+*/
<li>\subpage tui_check_self_intersections_fast_page</li>
<li>\subpage tui_fast_intersection_page</li>
<li>\subpage tui_check_conformity_page</li>
+<li>\subpage tui_shape_proximity_page</li>
</ul>
*/
--- /dev/null
+/*!
+
+\page tui_shape_proximity_page Compute Proximity between Shapes
+\tui_script{shape_proximity.py}
+
+*/
<li>\subpage whatis_page "WhatIs"</li>
<li>\subpage inspect_object_operation_page "Inspect Object"</li>
<li>\subpage shape_statistics_operation_page "Shape Statistics"</li>
+<li>\subpage shape_proximity_page "Shapes Proximity"</li>
</ul>
\n To check their integrity:
* \param theShape Shape for update.
*/
double UpdateTolerance(in GEOM_Object theShape);
+
+ /*!
+ * \brief Get the calculator for the proximity value between the given shapes.
+ * \param theShape1,theShape2 Shapes to find proximity.
+ * \return The calculator object.
+ */
+ GEOM_Object ShapeProximityCalculator(in GEOM_Object theShape1, in GEOM_Object theShape2);
+
+ /*!
+ * \brief Set number sample points to compute the coarse proximity.
+ * \param theCalculator Proximity calculator.
+ * \param theShape Shape to be samples.
+ * \param theNbSamples Number of samples points.
+ */
+ void SetShapeSampling(in GEOM_Object theCalculator,
+ in GEOM_Object theShape,
+ in long theNbSamples);
+
+ /*!
+ * \brief Compute coarse value of the proximity basing on the polygonal representation of shapes.
+ * \param theCalculator Proximity calculator.
+ * \return Proximity value.
+ */
+ double GetCoarseProximity(in GEOM_Object theCalculator);
+
+ /*!
+ * \brief Compute precise value of the proximity basing on the exact shapes.
+ * \param theCalculator Proximity calculator.
+ * \return Proximity value.
+ */
+ double GetPreciseProximity(in GEOM_Object theCalculator);
+
};
// # GEOM_IGroupOperations:
GEOMImpl_ILine.hxx
GEOMImpl_IPatchFace.hxx
GEOMImpl_IPlane.hxx
+ GEOMImpl_IProximity.hxx
GEOMImpl_IMarker.hxx
GEOMImpl_ITranslate.hxx
GEOMImpl_IMirror.hxx
GEOMImpl_FillingDriver.hxx
GEOMImpl_GlueDriver.hxx
GEOMImpl_PatchFaceDriver.hxx
+ GEOMImpl_ShapeProximityDriver.hxx
GEOMImpl_Types.hxx
GEOM_GEOMImpl.hxx
GEOMImpl_ICanonicalRecognition.hxx
GEOMImpl_FillingDriver.cxx
GEOMImpl_GlueDriver.cxx
GEOMImpl_PatchFaceDriver.cxx
+ GEOMImpl_ShapeProximityDriver.cxx
GEOMImpl_FieldDriver.cxx
GEOMImpl_ICanonicalRecognition.cxx
)
#include <GEOMImpl_MeasureDriver.hxx>
#include <GEOMImpl_FieldDriver.hxx>
#include <GEOMImpl_ConformityDriver.hxx>
+#include <GEOMImpl_ShapeProximityDriver.hxx>
//=============================================================================
/*!
TFunction_DriverTable::Get()->AddDriver(GEOMImpl_MeasureDriver::GetID(), new GEOMImpl_MeasureDriver());
TFunction_DriverTable::Get()->AddDriver(GEOMImpl_PatchFaceDriver::GetID(), new GEOMImpl_PatchFaceDriver());
TFunction_DriverTable::Get()->AddDriver(GEOMImpl_ConformityDriver::GetID(), new GEOMImpl_ConformityDriver());
+ TFunction_DriverTable::Get()->AddDriver(GEOMImpl_ShapeProximityDriver::GetID(), new GEOMImpl_ShapeProximityDriver());
// Field
TFunction_DriverTable::Get()->AddDriver(GEOMImpl_FieldDriver::GetID(), new GEOMImpl_FieldDriver());
#include <GEOMImpl_MeasureDriver.hxx>
#include <GEOMImpl_IPatchFace.hxx>
+#include <GEOMImpl_IProximity.hxx>
#include <GEOMImpl_PatchFaceDriver.hxx>
+#include <GEOMImpl_ShapeProximityDriver.hxx>
#include <GEOMImpl_Types.hxx>
}
}
}
+
+//=======================================================================
+//function : ShapeProximityCalculator
+//purpose : returns an object to compute the proximity value
+//=======================================================================
+Handle(GEOM_Object) GEOMImpl_IMeasureOperations::ShapeProximityCalculator
+ (Handle(GEOM_Object) theShape1,
+ Handle(GEOM_Object) theShape2)
+{
+ SetErrorCode(KO);
+
+ if (theShape1.IsNull() || theShape2.IsNull())
+ return NULL;
+
+ Handle(GEOM_Function) aShapeFunc1 = theShape1->GetLastFunction();
+ Handle(GEOM_Function) aShapeFunc2 = theShape2->GetLastFunction();
+ if (aShapeFunc1.IsNull() || aShapeFunc2.IsNull())
+ return NULL;
+
+ Handle(GEOM_Object) aProximityCalc = GetEngine()->AddObject(GEOM_SHAPE_PROXIMITY);
+ if (aProximityCalc.IsNull())
+ return NULL;
+
+ Handle(GEOM_Function) aProximityFuncCoarse =
+ aProximityCalc->AddFunction(GEOMImpl_ShapeProximityDriver::GetID(), PROXIMITY_COARSE);
+ //Check if the function is set correctly
+ if (aProximityFuncCoarse.IsNull() ||
+ aProximityFuncCoarse->GetDriverGUID() != GEOMImpl_ShapeProximityDriver::GetID())
+ return NULL;
+
+ GEOMImpl_IProximity aProximity (aProximityFuncCoarse);
+ aProximity.SetShapes(aShapeFunc1, aShapeFunc2);
+
+ //Make a Python command
+ GEOM::TPythonDump pd (aProximityFuncCoarse);
+ pd << "p = geompy.ShapeProximity()\n";
+ pd << "p.setShapes(" << theShape1 << ", " << theShape2 << ")";
+
+ SetErrorCode(OK);
+ return aProximityCalc;
+}
+
+//=======================================================================
+//function : SetShapeSampling
+//purpose : set number sample points to compute the coarse proximity
+//=======================================================================
+void GEOMImpl_IMeasureOperations::SetShapeSampling(Handle(GEOM_Object) theCalculator,
+ Handle(GEOM_Object) theShape,
+ const Standard_Integer theNbSamples)
+{
+ SetErrorCode(KO);
+ if (theShape.IsNull() ||
+ theCalculator.IsNull() ||
+ theCalculator->GetNbFunctions() <= 0 ||
+ theNbSamples <= 0)
+ return ;
+
+ Handle(GEOM_Function) aProximityFuncCoarse = theCalculator->GetFunction(1);
+ if (aProximityFuncCoarse.IsNull() ||
+ aProximityFuncCoarse->GetDriverGUID() != GEOMImpl_ShapeProximityDriver::GetID())
+ return ;
+
+ Handle(GEOM_Function) aShapeFunc = theShape->GetLastFunction();
+ if (aShapeFunc.IsNull())
+ return ;
+
+ GEOMImpl_IProximity aProximity(aProximityFuncCoarse);
+ Handle(GEOM_Function) aShape1, aShape2;
+ aProximity.GetShapes(aShape1, aShape2);
+ if (aShape1->GetValue() == aShapeFunc->GetValue())
+ aProximity.SetNbSamples(PROXIMITY_ARG_SAMPLES1, theNbSamples);
+ else if (aShape2->GetValue() == aShapeFunc->GetValue())
+ aProximity.SetNbSamples(PROXIMITY_ARG_SAMPLES2, theNbSamples);
+
+ //Make a Python command
+ GEOM::TPythonDump(aProximityFuncCoarse, /*append=*/true) <<
+ "p.setSampling(" << theShape << ", " << theNbSamples << ")";
+
+ SetErrorCode(OK);
+}
+
+//=======================================================================
+//function : GetCoarseProximity
+//purpose : compute coarse proximity
+//=======================================================================
+Standard_Real GEOMImpl_IMeasureOperations::GetCoarseProximity(Handle(GEOM_Object) theCalculator,
+ bool doPythonDump)
+{
+ SetErrorCode(KO);
+ if (theCalculator.IsNull())
+ return -1;
+
+ Handle(GEOM_Function) aProximityFuncCoarse = theCalculator->GetFunction(1);
+ if (aProximityFuncCoarse.IsNull() ||
+ aProximityFuncCoarse->GetDriverGUID() != GEOMImpl_ShapeProximityDriver::GetID() ||
+ aProximityFuncCoarse->GetType() != PROXIMITY_COARSE)
+ return -1;
+
+ // Perform
+ // We have to recompute the function each time,
+ // because the number of samples can be changed
+ try {
+ OCC_CATCH_SIGNALS;
+ if (!GetSolver()->ComputeFunction(aProximityFuncCoarse)) {
+ SetErrorCode("shape proximity driver failed");
+ return -1;
+ }
+ }
+ catch (Standard_Failure& aFail) {
+ SetErrorCode(aFail.GetMessageString());
+ return -1;
+ }
+
+ //Make a Python command
+ if (doPythonDump)
+ GEOM::TPythonDump(aProximityFuncCoarse, /*append=*/true) << "value = p.coarseProximity()";
+
+ SetErrorCode(OK);
+ GEOMImpl_IProximity aProximity (aProximityFuncCoarse);
+ return aProximity.GetValue();
+}
+
+//=======================================================================
+//function : GetPreciseProximity
+//purpose : compute precise proximity
+//=======================================================================
+Standard_Real GEOMImpl_IMeasureOperations::GetPreciseProximity(Handle(GEOM_Object) theCalculator)
+{
+ SetErrorCode(KO);
+ if (theCalculator.IsNull())
+ return -1;
+
+ Handle(GEOM_Function) aProximityFuncCoarse = theCalculator->GetFunction(1);
+ Handle(GEOM_Function) aProximityFuncFine = theCalculator->GetFunction(2);
+ if (aProximityFuncFine.IsNull())
+ aProximityFuncFine = theCalculator->AddFunction
+ (GEOMImpl_ShapeProximityDriver::GetID(), PROXIMITY_PRECISE);
+
+ //Check if the functions are set correctly
+ if (aProximityFuncCoarse.IsNull() ||
+ aProximityFuncCoarse->GetDriverGUID() != GEOMImpl_ShapeProximityDriver::GetID() ||
+ aProximityFuncFine.IsNull() ||
+ aProximityFuncFine->GetDriverGUID() != GEOMImpl_ShapeProximityDriver::GetID())
+ return -1;
+
+ // perform coarse computation beforehand
+ GetCoarseProximity(theCalculator, /*doPythonDump=*/false);
+
+ // transfer parameters from the coarse to precise calculator
+ GEOMImpl_IProximity aCoarseProximity (aProximityFuncCoarse);
+ Handle(GEOM_Function) aShape1, aShape2;
+ aCoarseProximity.GetShapes(aShape1, aShape2);
+ if (aShape1.IsNull() || aShape2.IsNull())
+ return -1;
+ gp_Pnt aProxPnt1, aProxPnt2;
+ Standard_Integer intStatus1, intStatus2;
+ aCoarseProximity.GetProximityPoints(aProxPnt1, aProxPnt2);
+ aCoarseProximity.GetStatusOfPoints(intStatus1, intStatus2);
+ Standard_Real aResultValue = aCoarseProximity.GetValue();
+
+ GEOMImpl_IProximity aFineProximity (aProximityFuncFine);
+ aFineProximity.SetShapes(aShape1, aShape2);
+ aFineProximity.SetProximityPoints(aProxPnt1, aProxPnt2);
+ aFineProximity.SetStatusOfPoints(intStatus1, intStatus2);
+ aFineProximity.SetValue(aResultValue); // in some cases this value cannot be precised
+
+ // Perform
+ try {
+ OCC_CATCH_SIGNALS;
+ if (!GetSolver()->ComputeFunction(aProximityFuncFine)) {
+ SetErrorCode("shape proximity driver failed");
+ return -1;
+ }
+ }
+ catch (Standard_Failure& aFail) {
+ SetErrorCode(aFail.GetMessageString());
+ return -1;
+ }
+
+ aResultValue = aFineProximity.GetValue();
+ aFineProximity.GetProximityPoints(aProxPnt1, aProxPnt2);
+
+ //Make a Python command
+ GEOM::TPythonDump(aProximityFuncCoarse, /*append=*/true) << "value = p.preciseProximity()";
+
+ SetErrorCode(OK);
+ return aResultValue;
+}
Handle(GEOM_Object) thePoint,
Handle(GEOM_Object) theDirection);
+ // Methods to compute proximity between two shapes
+ Standard_EXPORT Handle(GEOM_Object) ShapeProximityCalculator(Handle(GEOM_Object) theShape1,
+ Handle(GEOM_Object) theShape2);
+ Standard_EXPORT Standard_Real GetCoarseProximity(Handle(GEOM_Object) theCalculator,
+ bool doPythonDump = true);
+ Standard_EXPORT Standard_Real GetPreciseProximity(Handle(GEOM_Object) theCalculator);
+ Standard_EXPORT void SetShapeSampling(Handle(GEOM_Object) theCalculator,
+ Handle(GEOM_Object) theShape,
+ const Standard_Integer theNbSamples);
+
private:
void FillErrorsSub
--- /dev/null
+// Copyright (C) 2022-2022 CEA/DEN, EDF R&D, OPEN CASCADE
+//
+// This library is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// Lesser General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License along with this library; if not, write to the Free Software
+// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+//
+// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+//
+
+#include <GEOM_Function.hxx>
+
+#define PROXIMITY_ARG_SHAPE1 1
+#define PROXIMITY_ARG_SHAPE2 2
+#define PROXIMITY_ARG_SAMPLES1 3
+#define PROXIMITY_ARG_SAMPLES2 4
+#define PROXIMITY_ARG_POINT1 5
+#define PROXIMITY_ARG_POINT2 6
+#define PROXIMITY_ARG_VALUE 7
+#define PROXIMITY_ARG_STATUS1 8
+#define PROXIMITY_ARG_STATUS2 9
+
+class GEOMImpl_IProximity
+{
+public:
+
+ GEOMImpl_IProximity(Handle(GEOM_Function) theFunction) : _func(theFunction) {}
+
+ void SetShapes(Handle(GEOM_Function) theShape1, Handle(GEOM_Function) theShape2)
+ {
+ _func->SetReference(PROXIMITY_ARG_SHAPE1, theShape1);
+ _func->SetReference(PROXIMITY_ARG_SHAPE2, theShape2);
+ }
+
+ void GetShapes(Handle(GEOM_Function)& theShape1, Handle(GEOM_Function)& theShape2) const
+ {
+ theShape1 = _func->GetReference(PROXIMITY_ARG_SHAPE1);
+ theShape2 = _func->GetReference(PROXIMITY_ARG_SHAPE2);
+ }
+
+ void SetNbSamples(const Standard_Integer thePosition, const Standard_Integer theNbSamples) const
+ {
+ _func->SetInteger(thePosition, theNbSamples);
+ }
+
+ Standard_Integer GetNbSamples(const Standard_Integer thePosition) const
+ {
+ return _func->GetInteger(thePosition);
+ }
+
+ void SetProximityPoints(const gp_Pnt& thePoint1, const gp_Pnt& thePoint2)
+ {
+ setPoint(PROXIMITY_ARG_POINT1, thePoint1);
+ setPoint(PROXIMITY_ARG_POINT2, thePoint2);
+ }
+
+ void SetStatusOfPoints(const Standard_Integer theStatus1, const Standard_Integer theStatus2)
+ {
+ setStatus(PROXIMITY_ARG_STATUS1, theStatus1);
+ setStatus(PROXIMITY_ARG_STATUS2, theStatus2);
+ }
+
+ void GetProximityPoints(gp_Pnt& thePoint1, gp_Pnt& thePoint2)
+ {
+ thePoint1 = getPoint(PROXIMITY_ARG_POINT1);
+ thePoint2 = getPoint(PROXIMITY_ARG_POINT2);
+ }
+
+ void GetStatusOfPoints(Standard_Integer& theStatus1, Standard_Integer& theStatus2)
+ {
+ theStatus1 = getStatus(PROXIMITY_ARG_STATUS1);
+ theStatus2 = getStatus(PROXIMITY_ARG_STATUS2);
+ }
+
+ void SetValue(const Standard_Real theValue)
+ {
+ _func->SetReal(PROXIMITY_ARG_VALUE, theValue);
+ }
+
+ Standard_Real GetValue() const
+ {
+ return _func->GetReal(PROXIMITY_ARG_VALUE);
+ }
+
+private:
+ void setPoint(const Standard_Integer thePosition, const gp_Pnt& thePoint)
+ {
+ Handle(TColStd_HArray1OfReal) aCoords = new TColStd_HArray1OfReal(1, 3);
+ aCoords->SetValue(1, thePoint.X());
+ aCoords->SetValue(2, thePoint.Y());
+ aCoords->SetValue(3, thePoint.Z());
+ _func->SetRealArray(thePosition, aCoords);
+ }
+
+ void setStatus(const Standard_Integer thePosition, const Standard_Integer theStatus)
+ {
+ _func->SetInteger(thePosition, theStatus);
+ }
+
+ gp_Pnt getPoint(const Standard_Integer thePosition)
+ {
+ Handle(TColStd_HArray1OfReal) aCoords = _func->GetRealArray(thePosition);
+ return gp_Pnt(aCoords->Value(1), aCoords->Value(2), aCoords->Value(3));
+ }
+
+ Standard_Integer getStatus(const Standard_Integer thePosition)
+ {
+ return _func->GetInteger(thePosition);
+ }
+
+private:
+ Handle(GEOM_Function) _func;
+};
--- /dev/null
+// Copyright (C) 2022-2022 CEA/DEN, EDF R&D, OPEN CASCADE
+//
+// This library is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// Lesser General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License along with this library; if not, write to the Free Software
+// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+//
+// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+//
+
+#include <GEOMImpl_ShapeProximityDriver.hxx>
+#include <GEOMImpl_IProximity.hxx>
+#include <GEOMImpl_Types.hxx>
+
+#include <BRep_Tool.hxx>
+#include <BRepAdaptor_Curve.hxx>
+#include <BRepAdaptor_Surface.hxx>
+#include <BRepExtrema_ShapeProximity.hxx>
+#include <BRepMesh_IncrementalMesh.hxx>
+#include <Extrema_ExtPC.hxx>
+#include <Extrema_ExtPS.hxx>
+#include <Extrema_GenLocateExtCS.hxx>
+#include <Extrema_GenLocateExtSS.hxx>
+#include <Extrema_GenLocateExtPS.hxx>
+#include <Extrema_LocateExtCC.hxx>
+#include <Extrema_LocateExtPC.hxx>
+#include <TopExp_Explorer.hxx>
+#include <TopoDS.hxx>
+
+namespace {
+ static void tessellateShape(const TopoDS_Shape& theShape)
+ {
+ Standard_Boolean isTessellate = Standard_False;
+ TopLoc_Location aLoc;
+ for (TopExp_Explorer anExp(theShape, TopAbs_FACE); anExp.More() && !isTessellate; anExp.Next())
+ {
+ Handle(Poly_Triangulation) aTria = BRep_Tool::Triangulation(TopoDS::Face(anExp.Value()), aLoc);
+ isTessellate = aTria.IsNull();
+ }
+ for (TopExp_Explorer anExp(theShape, TopAbs_EDGE); anExp.More() && !isTessellate; anExp.Next())
+ {
+ Handle(Poly_Polygon3D) aPoly = BRep_Tool::Polygon3D(TopoDS::Edge(anExp.Value()), aLoc);
+ isTessellate = aPoly.IsNull();
+ }
+
+ if (isTessellate)
+ {
+ BRepMesh_IncrementalMesh aMesher(theShape, 0.1);
+ Standard_ProgramError_Raise_if(!aMesher.IsDone(), "Meshing failed");
+ }
+ }
+
+ static Standard_Real paramOnCurve(const BRepAdaptor_Curve& theCurve, const gp_Pnt& thePoint, const Standard_Real theTol)
+ {
+ Extrema_ExtPC aParamSearch(thePoint, theCurve, theCurve.FirstParameter(), theCurve.LastParameter());
+ if (aParamSearch.IsDone())
+ {
+ Standard_Integer anIndMin = 0, aNbExt = aParamSearch.NbExt();
+ Standard_Real aSqDistMin = RealLast();
+ for (Standard_Integer i = 1; i <= aNbExt; ++i)
+ {
+ if (aParamSearch.SquareDistance(i) < aSqDistMin)
+ {
+ anIndMin = i;
+ aSqDistMin = aParamSearch.SquareDistance(i);
+ }
+ }
+ if (anIndMin != 0 && aSqDistMin <= theTol * theTol)
+ {
+ return aParamSearch.Point(anIndMin).Parameter();
+ }
+ }
+ return 0.5 * (theCurve.FirstParameter() + theCurve.LastParameter());
+ }
+
+ static void paramsOnSurf(const BRepAdaptor_Surface& theSurf, const gp_Pnt& thePoint, const Standard_Real theTol,
+ Standard_Real& theU, Standard_Real& theV)
+ {
+ Extrema_ExtPS aParamSearch(thePoint, theSurf, Precision::PConfusion(), Precision::PConfusion());
+ if (aParamSearch.IsDone())
+ {
+ Standard_Integer anIndMin = 0, aNbExt = aParamSearch.NbExt();
+ Standard_Real aSqDistMin = RealLast();
+ for (Standard_Integer i = 1; i <= aNbExt; ++i)
+ {
+ if (aParamSearch.SquareDistance(i) < aSqDistMin)
+ {
+ anIndMin = i;
+ aSqDistMin = aParamSearch.SquareDistance(i);
+ }
+ }
+ if (anIndMin != 0 && aSqDistMin <= theTol * theTol)
+ {
+ return aParamSearch.Point(anIndMin).Parameter(theU, theV);
+ }
+ }
+ theU = 0.5 * (theSurf.FirstUParameter() + theSurf.LastUParameter());
+ theV = 0.5 * (theSurf.FirstVParameter() + theSurf.LastVParameter());
+ }
+
+ static Standard_Real extremaEE(const TopoDS_Edge& theEdge1, const TopoDS_Edge& theEdge2,
+ gp_Pnt& thePoint1, gp_Pnt& thePoint2)
+ {
+ BRepAdaptor_Curve aCurve1(theEdge1);
+ BRepAdaptor_Curve aCurve2(theEdge2);
+
+ TopLoc_Location aLoc;
+ Standard_Real aTol1 = BRep_Tool::Tolerance(theEdge1);
+ Handle(Poly_Polygon3D) aPoly1 = BRep_Tool::Polygon3D (theEdge1, aLoc);
+ if (!aPoly1.IsNull())
+ aTol1 = Max (aTol1, aPoly1->Deflection());
+ Standard_Real aTol2 = BRep_Tool::Tolerance(theEdge2);
+ Handle(Poly_Polygon3D) aPoly2 = BRep_Tool::Polygon3D (theEdge2, aLoc);
+ if (!aPoly2.IsNull())
+ aTol2 = Max (aTol2, aPoly2->Deflection());
+
+ Standard_Real aU1 = paramOnCurve(aCurve1, thePoint1, 2*aTol1);
+ Standard_Real aU2 = paramOnCurve(aCurve2, thePoint2, 2*aTol2);
+
+ Standard_Real aValue = -1.0;
+ Extrema_LocateExtCC anExtr(aCurve1, aCurve2, aU1, aU2);
+ if (anExtr.IsDone())
+ {
+ aValue = Sqrt(anExtr.SquareDistance());
+
+ Extrema_POnCurv aP1, aP2;
+ anExtr.Point(aP1, aP2);
+ thePoint1 = aP1.Value();
+ thePoint2 = aP2.Value();
+ }
+ return aValue;
+ }
+
+ static Standard_Real extremaPE(const gp_Pnt& thePoint,
+ const TopoDS_Edge& theEdge,
+ gp_Pnt& thePointOnEdge)
+ {
+ BRepAdaptor_Curve aCurve (theEdge);
+
+ TopLoc_Location aLoc;
+ Standard_Real aTol = BRep_Tool::Tolerance(theEdge);
+ Handle(Poly_Polygon3D) aPoly = BRep_Tool::Polygon3D (theEdge, aLoc);
+ if (!aPoly.IsNull())
+ aTol = Max (aTol, aPoly->Deflection());
+
+ Standard_Real aParam = paramOnCurve (aCurve, thePointOnEdge, 2*aTol);
+
+ Standard_Real aValue = -1.0;
+ Extrema_LocateExtPC anExtr (thePoint, aCurve, aParam, Precision::PConfusion());
+ if (anExtr.IsDone())
+ {
+ aValue = Sqrt(anExtr.SquareDistance());
+
+ Extrema_POnCurv aPointOnCurve = anExtr.Point();
+ thePointOnEdge = aPointOnCurve.Value();
+ }
+ return aValue;
+ }
+
+ static Standard_Real extremaPF(const gp_Pnt& thePoint,
+ const TopoDS_Face& theFace,
+ gp_Pnt& thePointOnFace)
+ {
+ BRepAdaptor_Surface aSurf (theFace);
+
+ TopLoc_Location aLoc;
+ Standard_Real aTol = BRep_Tool::Tolerance(theFace);
+ Handle(Poly_Triangulation) aTria = BRep_Tool::Triangulation (theFace, aLoc);
+ if (!aTria.IsNull())
+ aTol = Max (aTol, aTria->Deflection());
+
+ Standard_Real aU, aV;
+ paramsOnSurf(aSurf, thePointOnFace, 2*aTol, aU, aV);
+
+ Standard_Real aValue = -1.0;
+ Extrema_GenLocateExtPS anExtr (aSurf);
+ anExtr.Perform (thePoint, aU, aV);
+ if (anExtr.IsDone())
+ {
+ aValue = Sqrt(anExtr.SquareDistance());
+
+ Extrema_POnSurf aPointOnSurf = anExtr.Point();
+ thePointOnFace = aPointOnSurf.Value();
+ }
+ return aValue;
+ }
+
+ static Standard_Real extremaEF(const TopoDS_Edge& theEdge, const TopoDS_Face& theFace,
+ gp_Pnt& thePonE, gp_Pnt& thePonF)
+ {
+ BRepAdaptor_Curve aCurve(theEdge);
+ BRepAdaptor_Surface aSurf(theFace);
+
+ TopLoc_Location aLoc;
+ Standard_Real aTolEdge = BRep_Tool::Tolerance(theEdge);
+ Handle(Poly_Polygon3D) aPoly = BRep_Tool::Polygon3D (theEdge, aLoc);
+ if (!aPoly.IsNull())
+ aTolEdge = Max (aTolEdge, aPoly->Deflection());
+ Standard_Real aTolFace = BRep_Tool::Tolerance(theFace);
+ Handle(Poly_Triangulation) aTria = BRep_Tool::Triangulation (theFace, aLoc);
+ if (!aTria.IsNull())
+ aTolFace = Max (aTolFace, aTria->Deflection());
+
+ Standard_Real aP = paramOnCurve(aCurve, thePonE, 2*aTolEdge);
+ Standard_Real aU, aV;
+ paramsOnSurf(aSurf, thePonF, 2*aTolFace, aU, aV);
+
+ Standard_Real aValue = -1.0;
+ Extrema_GenLocateExtCS anExtr(aCurve, aSurf, aP, aU, aV, Precision::PConfusion(), Precision::PConfusion());
+ if (anExtr.IsDone())
+ {
+ aValue = Sqrt(anExtr.SquareDistance());
+ thePonE = anExtr.PointOnCurve().Value();
+ thePonF = anExtr.PointOnSurface().Value();
+ }
+ return aValue;
+ }
+
+ static Standard_Real extremaFF(const TopoDS_Face& theFace1, const TopoDS_Face& theFace2,
+ gp_Pnt& thePoint1, gp_Pnt& thePoint2)
+ {
+ BRepAdaptor_Surface aSurf1(theFace1);
+ BRepAdaptor_Surface aSurf2(theFace2);
+
+ TopLoc_Location aLoc;
+ Standard_Real aTol1 = BRep_Tool::Tolerance(theFace1);
+ Handle(Poly_Triangulation) aTria1 = BRep_Tool::Triangulation (theFace1, aLoc);
+ if (!aTria1.IsNull())
+ aTol1 = Max (aTol1, aTria1->Deflection());
+ Standard_Real aTol2 = BRep_Tool::Tolerance(theFace2);
+ Handle(Poly_Triangulation) aTria2 = BRep_Tool::Triangulation (theFace2, aLoc);
+ if (!aTria2.IsNull())
+ aTol2 = Max (aTol2, aTria2->Deflection());
+
+ Standard_Real aU1, aV1;
+ paramsOnSurf(aSurf1, thePoint1, 2*aTol1, aU1, aV1);
+ Standard_Real aU2, aV2;
+ paramsOnSurf(aSurf2, thePoint2, 2*aTol2, aU2, aV2);
+
+ Standard_Real aValue = -1.0;
+ Extrema_GenLocateExtSS anExtr(aSurf1, aSurf2, aU1, aV1, aU2, aV2, Precision::PConfusion(), Precision::PConfusion());
+ if (anExtr.IsDone())
+ {
+ aValue = Sqrt(anExtr.SquareDistance());
+ thePoint1 = anExtr.PointOnS1().Value();
+ thePoint2 = anExtr.PointOnS2().Value();
+ }
+ return aValue;
+ }
+}
+
+//=======================================================================
+//function : GetID
+//purpose :
+//=======================================================================
+const Standard_GUID& GEOMImpl_ShapeProximityDriver::GetID()
+{
+ static Standard_GUID aShapeProximityDriver("1C3449A6-E4EB-407D-B623-89261C4BA785");
+ return aShapeProximityDriver;
+}
+
+//=======================================================================
+//function : Execute
+//purpose :
+//=======================================================================
+Standard_Integer GEOMImpl_ShapeProximityDriver::Execute(Handle(TFunction_Logbook)& log) const
+{
+ if (Label().IsNull())
+ return 0;
+
+ Handle(GEOM_Function) aFunction = GEOM_Function::GetFunction(Label());
+ GEOMImpl_IProximity aProximity (aFunction);
+
+ Handle(GEOM_Function) aShapeFunc1, aShapeFunc2;
+ aProximity.GetShapes(aShapeFunc1, aShapeFunc2);
+ if (aShapeFunc1.IsNull() || aShapeFunc2.IsNull())
+ return 0;
+
+ TopoDS_Shape aShape1 = aShapeFunc1->GetValue();
+ TopoDS_Shape aShape2 = aShapeFunc2->GetValue();
+
+ Standard_Real aValue = -1.0;
+
+ if (aFunction->GetType() == PROXIMITY_COARSE)
+ {
+ // tessellate shapes if there is no mesh exists
+ tessellateShape(aShape1);
+ tessellateShape(aShape2);
+
+ // compute proximity basing on the tessellation
+ BRepExtrema_ShapeProximity aCalcProx;
+ aCalcProx.LoadShape1(aShape1);
+ aCalcProx.LoadShape2(aShape2);
+ aCalcProx.SetNbSamples1(aProximity.GetNbSamples(PROXIMITY_ARG_SAMPLES1));
+ aCalcProx.SetNbSamples2(aProximity.GetNbSamples(PROXIMITY_ARG_SAMPLES2));
+ aCalcProx.Perform();
+
+ if (aCalcProx.IsDone())
+ {
+ aValue = aCalcProx.Proximity();
+ aProximity.SetProximityPoints(aCalcProx.ProximityPoint1(),
+ aCalcProx.ProximityPoint2());
+ aProximity.SetStatusOfPoints((Standard_Integer)aCalcProx.ProxPntStatus1(),
+ (Standard_Integer)aCalcProx.ProxPntStatus2());
+ }
+ else
+ Standard_ConstructionError::Raise("Failed to compute coarse proximity");
+ }
+ else if (aFunction->GetType() == PROXIMITY_PRECISE)
+ {
+ // coarse proximity value
+ // in some cases this value cannot be precised
+ // it can be precised only if at least one point is in the middle of the shape
+ aValue = aProximity.GetValue();
+
+ TopAbs_ShapeEnum aType1 = aShape1.ShapeType();
+ TopAbs_ShapeEnum aType2 = aShape2.ShapeType();
+
+ gp_Pnt aPnt1, aPnt2;
+ BRepExtrema_ProximityDistTool::ProxPnt_Status aStatus1, aStatus2;
+ Standard_Integer intStatus1, intStatus2;
+ aProximity.GetProximityPoints(aPnt1, aPnt2);
+ aProximity.GetStatusOfPoints(intStatus1, intStatus2);
+ aStatus1 = (BRepExtrema_ProximityDistTool::ProxPnt_Status)intStatus1;
+ aStatus2 = (BRepExtrema_ProximityDistTool::ProxPnt_Status)intStatus2;
+
+ if (aType1 == TopAbs_EDGE)
+ {
+ if (aType2 == TopAbs_EDGE)
+ {
+ if (aStatus1 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE &&
+ aStatus2 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE)
+ {
+ aValue = extremaEE(TopoDS::Edge(aShape1), TopoDS::Edge(aShape2), aPnt1, aPnt2);
+ }
+ else if (aStatus1 == BRepExtrema_ProximityDistTool::ProxPnt_Status_BORDER &&
+ aStatus2 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE)
+ {
+ aValue = extremaPE(aPnt1, TopoDS::Edge(aShape2), aPnt2);
+ }
+ else if (aStatus1 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE &&
+ aStatus2 == BRepExtrema_ProximityDistTool::ProxPnt_Status_BORDER)
+ {
+ aValue = extremaPE(aPnt2, TopoDS::Edge(aShape1), aPnt1);
+ }
+ }
+ else if (aType2 == TopAbs_FACE)
+ {
+ if (aStatus1 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE &&
+ aStatus2 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE)
+ {
+ aValue = extremaEF(TopoDS::Edge(aShape1), TopoDS::Face(aShape2), aPnt1, aPnt2);
+ }
+ else if (aStatus1 == BRepExtrema_ProximityDistTool::ProxPnt_Status_BORDER &&
+ aStatus2 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE)
+ {
+ aValue = extremaPF(aPnt1, TopoDS::Face(aShape2), aPnt2);
+ }
+ else if (aStatus1 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE &&
+ aStatus2 == BRepExtrema_ProximityDistTool::ProxPnt_Status_BORDER)
+ {
+ aValue = extremaPE(aPnt2, TopoDS::Edge(aShape1), aPnt1);
+ }
+ }
+ }
+ else if (aType1 == TopAbs_FACE)
+ {
+ if (aType2 == TopAbs_EDGE)
+ {
+ if (aStatus1 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE &&
+ aStatus2 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE)
+ {
+ aValue = extremaEF(TopoDS::Edge(aShape2), TopoDS::Face(aShape1), aPnt2, aPnt1);
+ }
+ else if (aStatus1 == BRepExtrema_ProximityDistTool::ProxPnt_Status_BORDER &&
+ aStatus2 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE)
+ {
+ aValue = extremaPE(aPnt1, TopoDS::Edge(aShape2), aPnt2);
+ }
+ else if (aStatus1 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE &&
+ aStatus2 == BRepExtrema_ProximityDistTool::ProxPnt_Status_BORDER)
+ {
+ aValue = extremaPF(aPnt2, TopoDS::Face(aShape1), aPnt1);
+ }
+ }
+ else if (aType2 == TopAbs_FACE)
+ {
+ if (aStatus1 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE &&
+ aStatus2 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE)
+ {
+ aValue = extremaFF(TopoDS::Face(aShape1), TopoDS::Face(aShape2), aPnt1, aPnt2);
+ }
+ else if (aStatus1 == BRepExtrema_ProximityDistTool::ProxPnt_Status_BORDER &&
+ aStatus2 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE)
+ {
+ aValue = extremaPF(aPnt1, TopoDS::Face(aShape2), aPnt2);
+ }
+ else if (aStatus1 == BRepExtrema_ProximityDistTool::ProxPnt_Status_MIDDLE &&
+ aStatus2 == BRepExtrema_ProximityDistTool::ProxPnt_Status_BORDER)
+ {
+ aValue = extremaPF(aPnt2, TopoDS::Face(aShape1), aPnt1);
+ }
+ }
+ }
+
+ if (aValue >= 0)
+ aProximity.SetProximityPoints(aPnt1, aPnt2);
+ else
+ Standard_ConstructionError::Raise("Failed to compute precise proximity");
+ }
+ else
+ {
+ Standard_ConstructionError::Raise("incorrect algorithm");
+ }
+
+ aProximity.SetValue(aValue);
+ log->SetTouched(Label());
+ return 1;
+}
+
+//=======================================================================
+//function : GetCreationInformation
+//purpose : Returns a name of creation operation and names and values of creation parameters
+//=======================================================================
+bool GEOMImpl_ShapeProximityDriver::GetCreationInformation(
+ std::string& theOperationName,
+ std::vector<GEOM_Param>& theParams)
+{
+ if (Label().IsNull())
+ return false;
+
+ Handle(GEOM_Function) aFunc = GEOM_Function::GetFunction(Label());
+ GEOMImpl_IProximity aProxFunc(aFunc);
+ Handle(GEOM_Function) aShape1, aShape2;
+ aProxFunc.GetShapes(aShape1, aShape2);
+
+ if (aFunc->GetType() == PROXIMITY_COARSE)
+ theOperationName = "PROXIMITY_COARSE";
+ else if (aFunc->GetType() == PROXIMITY_PRECISE)
+ theOperationName = "PROXIMITY_PRECISE";
+
+ AddParam(theParams, "Shape1", aShape1);
+ AddParam(theParams, "Shape2", aShape2);
+
+ return false;
+}
+
+IMPLEMENT_STANDARD_RTTIEXT(GEOMImpl_ShapeProximityDriver, GEOM_BaseDriver)
--- /dev/null
+// Copyright (C) 2022-2022 CEA/DEN, EDF R&D, OPEN CASCADE
+//
+// This library is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// Lesser General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License along with this library; if not, write to the Free Software
+// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+//
+// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+//
+#ifndef _GEOMImpl_ShapeProximityDriver_HeaderFile
+#define _GEOMImpl_ShapeProximityDriver_HeaderFile
+
+#include <GEOM_BaseDriver.hxx>
+
+DEFINE_STANDARD_HANDLE(GEOMImpl_ShapeProximityDriver, GEOM_BaseDriver)
+
+class GEOMImpl_ShapeProximityDriver : public GEOM_BaseDriver {
+
+public:
+
+ Standard_EXPORT GEOMImpl_ShapeProximityDriver() {}
+ Standard_EXPORT virtual Standard_Integer Execute(Handle(TFunction_Logbook)& log) const;
+ Standard_EXPORT virtual void Validate(Handle(TFunction_Logbook)&) const {}
+ Standard_EXPORT Standard_Boolean MustExecute(const Handle(TFunction_Logbook)&) const { return Standard_True; }
+
+ Standard_EXPORT static const Standard_GUID& GetID();
+ Standard_EXPORT ~GEOMImpl_ShapeProximityDriver() {}
+
+ Standard_EXPORT virtual
+ bool GetCreationInformation(std::string& theOperationName,
+ std::vector<GEOM_Param>& params);
+
+ DEFINE_STANDARD_RTTIEXT(GEOMImpl_ShapeProximityDriver, GEOM_BaseDriver)
+};
+
+#endif
#define GEOM_PATCH_FACE 60
+#define GEOM_SHAPE_PROXIMITY 61
#define GEOM_CHECKCONFORMITY 62
//GEOM_Function types
#define VERTEX_BY_INDEX 5
#define CURVATURE_VEC_MEASURE 6
+// Proximity algorithms
+#define PROXIMITY_COARSE 1
+#define PROXIMITY_PRECISE 2
+
#define GROUP_FUNCTION 1
// Curve constructor type
theListOfResults.push_back(aCheck);
}
}
+
+//=============================================================================
+/*!
+ * ShapeProximityCalculator
+ */
+//=============================================================================
+GEOM::GEOM_Object_ptr GEOM_IMeasureOperations_i::ShapeProximityCalculator(GEOM::GEOM_Object_ptr theShape1,
+ GEOM::GEOM_Object_ptr theShape2)
+{
+ GEOM::GEOM_Object_var anEmptyCalc;
+
+ //Set a not done flag
+ GetOperations()->SetNotDone();
+
+ //Get the reference shape
+ Handle(::GEOM_Object) aShape1 = GetObjectImpl(theShape1);
+ Handle(::GEOM_Object) aShape2 = GetObjectImpl(theShape2);
+ if (aShape1.IsNull() || aShape2.IsNull())
+ return anEmptyCalc._retn();
+
+ Handle(::GEOM_Object) aCalculator = GetOperations()->ShapeProximityCalculator(aShape1, aShape2);
+ if (!GetOperations()->IsDone() || aCalculator.IsNull())
+ return anEmptyCalc._retn();
+
+ return GetObject(aCalculator);
+}
+
+//=============================================================================
+/*!
+ * SetShapeSampling
+ */
+ //=============================================================================
+void GEOM_IMeasureOperations_i::SetShapeSampling(GEOM::GEOM_Object_ptr theCalculator,
+ GEOM::GEOM_Object_ptr theShape,
+ CORBA::Long theNbSamples)
+{
+ //Set a not done flag
+ GetOperations()->SetNotDone();
+
+ //Get the proximity calculator
+ Handle(::GEOM_Object) aCalc = GetObjectImpl(theCalculator);
+ if (aCalc.IsNull())
+ return ;
+ //Get the reference shape
+ Handle(::GEOM_Object) aShape = GetObjectImpl(theShape);
+ if (aShape.IsNull())
+ return ;
+
+ GetOperations()->SetShapeSampling(aCalc, aShape, theNbSamples);
+}
+
+//=============================================================================
+/*!
+ * GetCoarseProximity
+ */
+ //=============================================================================
+CORBA::Double GEOM_IMeasureOperations_i::GetCoarseProximity(GEOM::GEOM_Object_ptr theCalculator)
+{
+ //Set a not done flag
+ GetOperations()->SetNotDone();
+
+ //Get the reference shape
+ Handle(::GEOM_Object) aCalc = GetObjectImpl(theCalculator);
+ if (aCalc.IsNull())
+ return -1.0;
+
+ Standard_Real aProximity = GetOperations()->GetCoarseProximity(aCalc);
+ if (!GetOperations()->IsDone())
+ return -1.0;
+
+ return aProximity;
+}
+
+//=============================================================================
+/*!
+ * GetPreciseProximity
+ */
+ //=============================================================================
+CORBA::Double GEOM_IMeasureOperations_i::GetPreciseProximity(GEOM::GEOM_Object_ptr theCalculator)
+{
+ //Set a not done flag
+ GetOperations()->SetNotDone();
+
+ //Get the reference shape
+ Handle(::GEOM_Object) aCalc = GetObjectImpl(theCalculator);
+ if (aCalc.IsNull())
+ return -1.0;
+
+ Standard_Real aProximity = GetOperations()->GetPreciseProximity(aCalc);
+ if (!GetOperations()->IsDone())
+ return -1.0;
+
+ return aProximity;
+}
CORBA::Double UpdateTolerance(GEOM::GEOM_Object_ptr theShape);
+ // Methods to compute proximity between two shapes
+ GEOM::GEOM_Object_ptr ShapeProximityCalculator (GEOM::GEOM_Object_ptr theShape1,
+ GEOM::GEOM_Object_ptr theShape2);
+ void SetShapeSampling(GEOM::GEOM_Object_ptr theCalculator,
+ GEOM::GEOM_Object_ptr theShape,
+ CORBA::Long theNbSamples);
+ CORBA::Double GetCoarseProximity(GEOM::GEOM_Object_ptr theCalculator);
+ CORBA::Double GetPreciseProximity(GEOM::GEOM_Object_ptr theCalculator);
+
::GEOMImpl_IMeasureOperations* GetOperations()
{ return (::GEOMImpl_IMeasureOperations*)GetImpl(); }
gsketcher.py
canonicalrecognition.py
conformity.py
+ proximity.py
)
# Advanced scripts
from salome.geom.gsketcher import Sketcher3D, Sketcher2D, Polyline2D
from salome.geom.canonicalrecognition import CanonicalRecognition
from salome.geom.conformity import CheckConformity
+from salome.geom.proximity import ShapeProximity
# In case the omniORBpy EnumItem class does not fully support Python 3
# (for instance in version 4.2.1-2), the comparison ordering methods must be
conf = CheckConformity (shape, self)
return conf
+ ## Obtain a shape proximity calculator
+ # @return An instance of @ref proximity.ShapeProximity "ShapeProximity" interface
+ #
+ # @ref tui_proximity_page "Example"
+ def ShapeProximity (self):
+ """
+ Obtain a shape proximity calculator.
+
+ Example of usage:
+ prox = geompy.ShapeProximity()
+ value = prox.proximity(shape1, shape2)
+ """
+ prox = ShapeProximity (self)
+ return prox
+
# end of l2_testing
## @}
--- /dev/null
+# -*- coding: iso-8859-1 -*-
+# Copyright (C) 2022-2022 CEA/DEN, EDF R&D, OPEN CASCADE
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License, or (at your option) any later version.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+
+## @defgroup proximity ShapeProximity - tool to check the proximity distance between two shapes
+# @{
+# @details
+# The tool provides the user a possibility to compute the proximity distance between two shapes:
+# * a minimal diameter of a tube containing both edges (for edge-edge proximity);
+# * a minimal thickness of a shell containing both faces (for face-face proximity).
+#
+# In other words, this tool calculate maximal of all possible distances between pair of objects.
+# It is supported to compute distance between two edges or between two faces.
+# Other combinations of shapes are prohibited.
+# @}
+
+"""
+ \namespace geompy
+ \brief ShapeProximity interface
+"""
+
+## A class to compute proximity value between two shapes.
+# Use geompy.ShapeProximity() method to obtain an instance of this class.
+#
+# @ref tui_proximity_page "Example"
+# @ingroup proximity
+class ShapeProximity():
+ """
+ ShapeProximity interface.
+
+ Example of usage:
+ prox = geompy.ShapeProximity()
+ value = prox.proximity(shape1, shape2)
+ """
+
+ def __init__(self, geompyD):
+ self.myCommand = "ShapeProximity"
+ self.myOp = geompyD.GetIMeasureOperations()
+ pass
+
+ ## Computes proximity between two shapes of the same type
+ def proximity(self, shape1, shape2):
+ self.setShapes(shape1, shape2)
+ #self.coarseProximity()
+ return self.preciseProximity()
+ pass
+
+ ## Customize object with the input shapes
+ def setShapes(self, shape1, shape2):
+ self.myProximityValue = None
+ from salome.geom.geomBuilder import RaiseIfFailed
+ self.myCalc = self.myOp.ShapeProximityCalculator(shape1, shape2)
+ RaiseIfFailed(self.myCommand, self.myOp)
+ pass
+
+ ## Define the minimal number of sample points for the given shape,
+ # which should be used for raw computation of proximity value
+ def setSampling(self, shape, nbSamples):
+ self.myOp.SetShapeSampling(self.myCalc, shape, nbSamples)
+ pass
+
+ ## Find rough proximity value based on polygon/tessellation representation
+ def coarseProximity(self):
+ from salome.geom.geomBuilder import RaiseIfFailed
+ self.myProximityValue = self.myOp.GetCoarseProximity(self.myCalc)
+ RaiseIfFailed(self.myCommand, self.myOp)
+ return self.myProximityValue
+ pass
+
+ ## Find precise proximity value based on exact shapes
+ def preciseProximity(self):
+ from salome.geom.geomBuilder import RaiseIfFailed
+ self.myProximityValue = self.myOp.GetPreciseProximity(self.myCalc)
+ RaiseIfFailed(self.myCommand, self.myOp)
+ return self.myProximityValue
+ pass
--- /dev/null
+# Shape Proximity between edges
+
+import math
+import salome
+salome.salome_init_without_session()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New()
+
+O = geompy.MakeVertex(0, 0, 0)
+OX = geompy.MakeVectorDXDYDZ(1, 0, 0)
+OY = geompy.MakeVectorDXDYDZ(0, 1, 0)
+OZ = geompy.MakeVectorDXDYDZ(0, 0, 1)
+
+# Case 1: two bezier curves (original Cas2_29468.py)
+from math import sqrt
+
+# 283x384
+szY = 384
+listOfPtsRed_gimp = [(10,84), (54,96),(145,146),(167,167),(185,212),(187,234),(176,302)]
+listOfPtsBlue_gimp = [(120,72),(170,87),(227,118),(238,126),(243,157),(203,216),(134,281),(94,324)]
+#
+listOfPtsRed = [(x,szY-y) for x,y in listOfPtsRed_gimp]
+listOfPtsBlue = [(x,szY-y) for x,y in listOfPtsBlue_gimp]
+#
+verticesRed = [geompy.MakeVertex(x,y,0) for x,y in listOfPtsRed]
+verticesBlue = [geompy.MakeVertex(x,y,0) for x,y in listOfPtsBlue]
+for i,(x,y) in enumerate(listOfPtsRed):
+ geompy.addToStudy(geompy.MakeVertex(x,y,0),"red_pt{}".format(i))
+for i,(x,y) in enumerate(listOfPtsBlue):
+ geompy.addToStudy(geompy.MakeVertex(x,y,0),"blue_pt{}".format(i))
+redEdge = geompy.MakeBezier(verticesRed)
+blueEdge = geompy.MakeBezier(verticesBlue)
+#
+geompy.addToStudy(redEdge,"red")
+geompy.addToStudy(blueEdge,"blue")
+
+XY_red = (152,214)
+XY_blue = (215,260)
+exp_red = geompy.MakeVertex(*XY_red,0)
+exp_blue = geompy.MakeVertex(*XY_blue,0)
+geompy.addToStudy(exp_red,"exp_red")
+geompy.addToStudy(exp_blue,"exp_blue")
+
+p = geompy.ShapeProximity()
+p.setShapes(redEdge, blueEdge)
+p.setSampling(redEdge, 1000)
+p.setSampling(blueEdge, 1000)
+p_coarse = p.coarseProximity()
+p_precise = p.preciseProximity()
+print( "coarse = {} ; fine = {}".format(p_coarse,p_precise) )
+print( "Manually obtained value = {}".format( sqrt( (XY_red[0]-XY_blue[0])**2 + (XY_red[1]-XY_blue[1])**2 ) ) )
+
+assert(math.fabs(p_coarse - 223.00892775) < 1.e-7)
+
+prev = geompy.ShapeProximity()
+prev.setShapes(blueEdge, redEdge)
+prev.setSampling(redEdge, 1000)
+prev.setSampling(blueEdge, 1000)
+p_coarse = prev.coarseProximity()
+p_precise = prev.preciseProximity()
+print( "coarse = {} ; fine = {}".format(p_coarse,p_precise) )
+
+assert(math.fabs(p_coarse - 84.89994110) < 1.e-7)
+
+# Case 2: two bezier curves (different coarse and fine proximities)
+V1 = geompy.MakeVertex(10, 10, 0)
+V2 = geompy.MakeVertex(20, -10, 0)
+V3 = geompy.MakeVertex(30, 0, 0)
+V4 = geompy.MakeVertex(0, -3, 0)
+V5 = geompy.MakeVertex(13, -10, 0)
+V6 = geompy.MakeVertex(25, 10, 0)
+V7 = geompy.MakeVertex(30, 5, 0)
+BC1 = geompy.MakeBezier([ O, V1, V2, V3], False, "BC1")
+BC2 = geompy.MakeBezier([V4, V5, V6, V7], False, "BC2")
+
+pcalc = geompy.ShapeProximity()
+pcalc.setShapes(BC1, BC2)
+p_coarse = pcalc.coarseProximity()
+p_fine = pcalc.preciseProximity()
+
+assert(math.fabs(p_coarse - 7.3126564) < 1.e-7)
+assert(math.fabs(p_fine - 7.380468495) < 1.e-7)
+
+# Case 3: arc and segment
+Vertex_1 = geompy.MakeVertex(0, 0, -1)
+Vertex_2 = geompy.MakeVertex(1, 0, 0)
+Vertex_3 = geompy.MakeVertex(0, 0, 1)
+Arc_1 = geompy.MakeArc(Vertex_1, Vertex_2, Vertex_3)
+Arc_1_vertex_2 = geompy.GetSubShape(Arc_1, [2])
+Edge_1 = geompy.MakeEdgeOnCurveByLength(Arc_1, 3, Arc_1_vertex_2)
+Edge_2 = geompy.MakeEdge(Vertex_1, Vertex_3)
+
+shape1 = Edge_1
+shape2 = Edge_2
+
+# perform proximity calculation with the default parameters
+p1 = geompy.ShapeProximity()
+proximity1 = p1.proximity(shape1, shape2)
+
+# perform proximity calculation with custom parameters
+p2 = geompy.ShapeProximity()
+p2.setShapes(shape1, shape2)
+p2.setSampling(shape1, 100) # number of sample points for the first shape
+p2.setSampling(shape2, 40) # number of sample points for the second shape
+proximity2_coarse = p2.coarseProximity()
+proximity2_fine = p2.preciseProximity()
+
+assert(math.fabs(proximity1 - proximity2_fine) < 1.e-7)
+assert(math.fabs(proximity2_coarse - 0.99998769) < 1.e-7)
+assert(math.fabs(proximity2_fine - 1) < 1.e-7)
+
+# move second edge and check proximity
+Translation_1 = geompy.MakeTranslation(Edge_2, 0.3, 0, 0)
+shape2 = Translation_1
+
+# perform proximity calculation with the default parameters
+p1 = geompy.ShapeProximity()
+proximity1 = p1.proximity(shape1, shape2)
+
+# perform proximity calculation with custom parameters
+p2 = geompy.ShapeProximity()
+p2.setShapes(shape1, shape2)
+p2.setSampling(shape1, 100) # number of sample points for the first shape
+p2.setSampling(shape2, 40) # number of sample points for the second shape
+proximity2_coarse = p2.coarseProximity()
+proximity2_fine = p2.preciseProximity()
+
+assert(math.fabs(proximity1 - 0.7) < 1.e-7)
+assert(math.fabs(proximity2_fine - 0.7) < 1.e-7)
--- /dev/null
+# Shape Proximity between faces
+
+import math
+import salome
+salome.salome_init_without_session()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New()
+
+O = geompy.MakeVertex(0, 0, 0)
+OX = geompy.MakeVectorDXDYDZ(1, 0, 0)
+OY = geompy.MakeVectorDXDYDZ(0, 1, 0)
+OZ = geompy.MakeVectorDXDYDZ(0, 0, 1)
+
+# Case 1: cylinder and sphere (different coarse and fine proximities)
+OCyl = geompy.MakeVertex(0, -5, 15)
+Cyl = geompy.MakeCylinder(OCyl, OY, 3, 10, "Cyl")
+AX1 = geompy.MakeTranslation(OX, 0, 0, 15, "AX1")
+geompy.Rotate(Cyl, AX1, -20.0*math.pi/180.0)
+Cyl_face = geompy.SubShapeAllSortedCentres(Cyl, geompy.ShapeType["FACE"], "Face")[1]
+Sph = geompy.MakeSphereR(10, "Sph")
+Box_1 = geompy.MakeBoxDXDYDZ(40, 40, 27.071067)
+Translation_1 = geompy.MakeTranslation(Box_1, -20, -20, -20)
+Cut_1 = geompy.MakeCutList(Sph, [Translation_1], True, "Cut_1")
+Sph_face = geompy.SubShapeAllSortedCentres(Cut_1, geompy.ShapeType["FACE"], "Face")[1]
+
+pcalc = geompy.ShapeProximity()
+#pcalc.setShapes(Cyl_face, Sph_face)
+pcalc.setShapes(Sph_face, Cyl_face)
+p_coarse = pcalc.coarseProximity()
+p_fine = pcalc.preciseProximity()
+
+assert(math.fabs(p_coarse - 9.8649933) < 1.e-7)
+assert(math.fabs(p_fine - 7.6984631) < 1.e-7)
+
+geompy.MakeVertex(0, 2.63303, 17.2342, "p1")
+geompy.MakeVertex(0, 0, 10, "p2")
+
+print("With sampling 0: coarse = {} ; fine = {}".format(p_coarse, p_fine))
+
+pcalc.setSampling(Cyl_face, 100) # number of sample points for the first shape
+pcalc.setSampling(Sph_face, 100) # number of sample points for the second shape
+p_coarse = pcalc.coarseProximity()
+p_fine = pcalc.preciseProximity()
+
+print("With sampling 100: coarse = {} ; fine = {}".format(p_coarse, p_fine))
+
+pcalc.setSampling(Cyl_face, 1000) # number of sample points for the first shape
+pcalc.setSampling(Sph_face, 1000) # number of sample points for the second shape
+p_coarse = pcalc.coarseProximity()
+p_fine = pcalc.preciseProximity()
+
+print("With sampling 1000: coarse = {} ; fine = {}".format(p_coarse, p_fine))
+
+# Case 2: conical and planar faces
+Cone_1 = geompy.MakeConeR1R2H(100, 0, 300)
+Cone_1_face_3 = geompy.GetSubShape(Cone_1, [3])
+Cone_1_wire_4 = geompy.GetSubShape(Cone_1, [4])
+Face_1 = geompy.MakeFaceFromSurface(Cone_1_face_3, Cone_1_wire_4, "Face_1")
+Face_1_edge_5 = geompy.GetSubShape(Face_1, [5])
+Face_2 = geompy.MakeFaceObjHW(Face_1_edge_5, 200, 200)
+geompy.Rotate(Face_2, OY, 90*math.pi/180.0)
+Face_2_vertex_7 = geompy.GetSubShape(Face_2, [7])
+Translation_1 = geompy.MakeTranslationTwoPoints(Face_2, Face_2_vertex_7, O, "Translation_1")
+
+shape1 = Face_1
+shape2 = Translation_1
+
+# perform proximity calculation with the default parameters
+p1 = geompy.ShapeProximity()
+proximity1 = p1.proximity(shape1, shape2)
+
+# perform proximity calculation with custom parameters
+p2 = geompy.ShapeProximity()
+p2.setShapes(shape1, shape2)
+p2.setSampling(shape1, 100) # number of sample points for the first shape
+p2.setSampling(shape2, 40) # number of sample points for the second shape
+proximity2_coarse = p2.coarseProximity()
+proximity2_fine = p2.preciseProximity()
+
+assert(math.fabs(proximity1 - proximity2_fine) < 1.e-7)
+assert(math.fabs(proximity2_coarse - 127.1141386) < 1.e-7)
+#assert(math.fabs(proximity2_fine - 94.8683298) < 1.e-7)
+assert(math.fabs(proximity2_fine - 127.1141386) < 1.e-7)
+
+geompy.MakeVertex(0, 0, 300, "p3")
+geompy.MakeVertex(-63.2456, 0, 189.737, "p4")
test_point_cloud_on_face.py
test_CR.py
test_conformity.py
+ test_proximity_edge_edge.py
+ test_proximity_face_face.py
)
ENDIF()