<li><b>X(t)equation, Y(t)equation, Z(t)equation</b> are python
expressions for X, Y and Z coordinates of the basic points of the curve.</li>
<li><b>Min t, Max t</b> are minimum and maximum values of the parameter \b t.</li>
-<li><b>Step</b> is the step of the parameter \b t.</li>
+<li><b>Step</b> is the number of steps of the parameter \b t.</li>
</ul>
-\n <b>TUI Command:</b> <em>geompy.MakeCurveParametric(XExpr, YExpt, ZExpt, tMin, tMax, tStep, curveType)</em>
+\n <b>TUI Command:</b> <em>geompy.MakeCurveParametric(XExpr, YExpt, ZExpt, tMin, tMax, nbSteps, curveType, True)</em>
\n<b>Advanced options</b> \ref preview_anchor "Preview"
interpol = geompy.MakeInterpol([p0, p1, p2, p3, p4], False)
#create a polyline using parametric definition of the basic points
-param_polyline = geompy.MakeCurveParametric("t", "sin(t)", "cos(t)", 0., 100., 5., geompy.GEOM.Polyline)
+param_polyline = geompy.MakeCurveParametric("t", "sin(t)", "cos(t)", 0., 100., 100, geompy.GEOM.Polyline, theNewMethod=True)
# create a bezier curve using parametric definition of the basic points
-param_bezier = geompy.MakeCurveParametric("t", "sin(t)", "cos(t)", 0., 100., 5., geompy.GEOM.Bezier)
+param_bezier = geompy.MakeCurveParametric("t", "sin(t)", "cos(t)", 0., 100., 100, geompy.GEOM.Bezier, theNewMethod=True)
#create a b-spline curve using parametric definition of the basic points
-param_interpol = geompy.MakeCurveParametric("t", "sin(t)", "cos(t)", 0., 100., 5., geompy.GEOM.Interpolation)
+param_interpol = geompy.MakeCurveParametric("t", "sin(t)", "cos(t)", 0., 100., 100, geompy.GEOM.Interpolation, theNewMethod=True)