--- /dev/null
+# Modification de la version 1.13.0
+# flake8: noqa
+"""
+Functions
+---------
+.. autosummary::
+ :toctree: generated/
+
+ fmin_l_bfgs_b
+
+"""
+
+## License for the Python wrapper
+## ==============================
+
+## Copyright (c) 2004 David M. Cooke <cookedm@physics.mcmaster.ca>
+
+## Permission is hereby granted, free of charge, to any person obtaining a
+## copy of this software and associated documentation files (the "Software"),
+## to deal in the Software without restriction, including without limitation
+## the rights to use, copy, modify, merge, publish, distribute, sublicense,
+## and/or sell copies of the Software, and to permit persons to whom the
+## Software is furnished to do so, subject to the following conditions:
+
+## The above copyright notice and this permission notice shall be included in
+## all copies or substantial portions of the Software.
+
+## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+## IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+## FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+## AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+## LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+## FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+## DEALINGS IN THE SOFTWARE.
+
+## Modifications by Travis Oliphant and Enthought, Inc. for inclusion in SciPy
+
+import numpy as np
+from numpy import array, asarray, float64, zeros
+from scipy.optimize import _lbfgsb
+from scipy.optimize._optimize import (MemoizeJac, OptimizeResult, _call_callback_maybe_halt,
+ _wrap_callback, _check_unknown_options,
+ _prepare_scalar_function)
+from scipy.optimize._constraints import old_bound_to_new
+
+from scipy.sparse.linalg import LinearOperator
+
+__all__ = ['fmin_l_bfgs_b', 'LbfgsInvHessProduct']
+
+
+def fmin_l_bfgs_b(func, x0, fprime=None, args=(),
+ approx_grad=0,
+ bounds=None, m=10, factr=1e7, pgtol=1e-5,
+ epsilon=1e-8,
+ iprint=-1, maxfun=15000, maxiter=15000, disp=None,
+ callback=None, maxls=20):
+ """
+ Minimize a function func using the L-BFGS-B algorithm.
+
+ Parameters
+ ----------
+ func : callable f(x,*args)
+ Function to minimize.
+ x0 : ndarray
+ Initial guess.
+ fprime : callable fprime(x,*args), optional
+ The gradient of `func`. If None, then `func` returns the function
+ value and the gradient (``f, g = func(x, *args)``), unless
+ `approx_grad` is True in which case `func` returns only ``f``.
+ args : sequence, optional
+ Arguments to pass to `func` and `fprime`.
+ approx_grad : bool, optional
+ Whether to approximate the gradient numerically (in which case
+ `func` returns only the function value).
+ bounds : list, optional
+ ``(min, max)`` pairs for each element in ``x``, defining
+ the bounds on that parameter. Use None or +-inf for one of ``min`` or
+ ``max`` when there is no bound in that direction.
+ m : int, optional
+ The maximum number of variable metric corrections
+ used to define the limited memory matrix. (The limited memory BFGS
+ method does not store the full hessian but uses this many terms in an
+ approximation to it.)
+ factr : float, optional
+ The iteration stops when
+ ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps``,
+ where ``eps`` is the machine precision, which is automatically
+ generated by the code. Typical values for `factr` are: 1e12 for
+ low accuracy; 1e7 for moderate accuracy; 10.0 for extremely
+ high accuracy. See Notes for relationship to `ftol`, which is exposed
+ (instead of `factr`) by the `scipy.optimize.minimize` interface to
+ L-BFGS-B.
+ pgtol : float, optional
+ The iteration will stop when
+ ``max{|proj g_i | i = 1, ..., n} <= pgtol``
+ where ``proj g_i`` is the i-th component of the projected gradient.
+ epsilon : float, optional
+ Step size used when `approx_grad` is True, for numerically
+ calculating the gradient
+ iprint : int, optional
+ Controls the frequency of output. ``iprint < 0`` means no output;
+ ``iprint = 0`` print only one line at the last iteration;
+ ``0 < iprint < 99`` print also f and ``|proj g|`` every iprint iterations;
+ ``iprint = 99`` print details of every iteration except n-vectors;
+ ``iprint = 100`` print also the changes of active set and final x;
+ ``iprint > 100`` print details of every iteration including x and g.
+ disp : int, optional
+ If zero, then no output. If a positive number, then this over-rides
+ `iprint` (i.e., `iprint` gets the value of `disp`).
+ maxfun : int, optional
+ Maximum number of function evaluations. Note that this function
+ may violate the limit because of evaluating gradients by numerical
+ differentiation.
+ maxiter : int, optional
+ Maximum number of iterations.
+ callback : callable, optional
+ Called after each iteration, as ``callback(xk)``, where ``xk`` is the
+ current parameter vector.
+ maxls : int, optional
+ Maximum number of line search steps (per iteration). Default is 20.
+
+ Returns
+ -------
+ x : array_like
+ Estimated position of the minimum.
+ f : float
+ Value of `func` at the minimum.
+ d : dict
+ Information dictionary.
+
+ * d['warnflag'] is
+
+ - 0 if converged,
+ - 1 if too many function evaluations or too many iterations,
+ - 2 if stopped for another reason, given in d['task']
+
+ * d['grad'] is the gradient at the minimum (should be 0 ish)
+ * d['funcalls'] is the number of function calls made.
+ * d['nit'] is the number of iterations.
+
+ See also
+ --------
+ minimize: Interface to minimization algorithms for multivariate
+ functions. See the 'L-BFGS-B' `method` in particular. Note that the
+ `ftol` option is made available via that interface, while `factr` is
+ provided via this interface, where `factr` is the factor multiplying
+ the default machine floating-point precision to arrive at `ftol`:
+ ``ftol = factr * numpy.finfo(float).eps``.
+
+ Notes
+ -----
+ License of L-BFGS-B (FORTRAN code):
+
+ The version included here (in fortran code) is 3.0
+ (released April 25, 2011). It was written by Ciyou Zhu, Richard Byrd,
+ and Jorge Nocedal <nocedal@ece.nwu.edu>. It carries the following
+ condition for use:
+
+ This software is freely available, but we expect that all publications
+ describing work using this software, or all commercial products using it,
+ quote at least one of the references given below. This software is released
+ under the BSD License.
+
+ References
+ ----------
+ * R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound
+ Constrained Optimization, (1995), SIAM Journal on Scientific and
+ Statistical Computing, 16, 5, pp. 1190-1208.
+ * C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B,
+ FORTRAN routines for large scale bound constrained optimization (1997),
+ ACM Transactions on Mathematical Software, 23, 4, pp. 550 - 560.
+ * J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B,
+ FORTRAN routines for large scale bound constrained optimization (2011),
+ ACM Transactions on Mathematical Software, 38, 1.
+
+ Examples
+ --------
+ Solve a linear regression problem via `fmin_l_bfgs_b`. To do this, first we define
+ an objective function ``f(m, b) = (y - y_model)**2``, where `y` describes the
+ observations and `y_model` the prediction of the linear model as
+ ``y_model = m*x + b``. The bounds for the parameters, ``m`` and ``b``, are arbitrarily
+ chosen as ``(0,5)`` and ``(5,10)`` for this example.
+
+ >>> import numpy as np
+ >>> from scipy.optimize import fmin_l_bfgs_b
+ >>> X = np.arange(0, 10, 1)
+ >>> M = 2
+ >>> B = 3
+ >>> Y = M * X + B
+ >>> def func(parameters, *args):
+ ... x = args[0]
+ ... y = args[1]
+ ... m, b = parameters
+ ... y_model = m*x + b
+ ... error = sum(np.power((y - y_model), 2))
+ ... return error
+
+ >>> initial_values = np.array([0.0, 1.0])
+
+ >>> x_opt, f_opt, info = fmin_l_bfgs_b(func, x0=initial_values, args=(X, Y),
+ ... approx_grad=True)
+ >>> x_opt, f_opt
+ array([1.99999999, 3.00000006]), 1.7746231151323805e-14 # may vary
+
+ The optimized parameters in ``x_opt`` agree with the ground truth parameters
+ ``m`` and ``b``. Next, let us perform a bound contrained optimization using the `bounds`
+ parameter.
+
+ >>> bounds = [(0, 5), (5, 10)]
+ >>> x_opt, f_op, info = fmin_l_bfgs_b(func, x0=initial_values, args=(X, Y),
+ ... approx_grad=True, bounds=bounds)
+ >>> x_opt, f_opt
+ array([1.65990508, 5.31649385]), 15.721334516453945 # may vary
+ """
+ # handle fprime/approx_grad
+ if approx_grad:
+ fun = func
+ jac = None
+ elif fprime is None:
+ fun = MemoizeJac(func)
+ jac = fun.derivative
+ else:
+ fun = func
+ jac = fprime
+
+ # build options
+ if disp is None:
+ disp = iprint
+ callback = _wrap_callback(callback)
+ opts = {'disp': disp,
+ 'iprint': iprint,
+ 'maxcor': m,
+ 'ftol': factr * np.finfo(float).eps,
+ 'gtol': pgtol,
+ 'eps': epsilon,
+ 'maxfun': maxfun,
+ 'maxiter': maxiter,
+ 'callback': callback,
+ 'maxls': maxls}
+
+ res = _minimize_lbfgsb(fun, x0, args=args, jac=jac, bounds=bounds,
+ **opts)
+ d = {'grad': res['jac'],
+ 'task': res['message'],
+ 'funcalls': res['nfev'],
+ 'nit': res['nit'],
+ 'warnflag': res['status']}
+ f = res['fun']
+ x = res['x']
+
+ return x, f, d
+
+
+def _minimize_lbfgsb(fun, x0, args=(), jac=None, bounds=None,
+ disp=None, maxcor=10, ftol=2.2204460492503131e-09,
+ gtol=1e-5, eps=1e-8, maxfun=15000, maxiter=15000,
+ iprint=-1, callback=None, maxls=20,
+ finite_diff_rel_step=None, **unknown_options):
+ """
+ Minimize a scalar function of one or more variables using the L-BFGS-B
+ algorithm.
+
+ Options
+ -------
+ disp : None or int
+ If `disp is None` (the default), then the supplied version of `iprint`
+ is used. If `disp is not None`, then it overrides the supplied version
+ of `iprint` with the behaviour you outlined.
+ maxcor : int
+ The maximum number of variable metric corrections used to
+ define the limited memory matrix. (The limited memory BFGS
+ method does not store the full hessian but uses this many terms
+ in an approximation to it.)
+ ftol : float
+ The iteration stops when ``(f^k -
+ f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol``.
+ gtol : float
+ The iteration will stop when ``max{|proj g_i | i = 1, ..., n}
+ <= gtol`` where ``proj g_i`` is the i-th component of the
+ projected gradient.
+ eps : float or ndarray
+ If `jac is None` the absolute step size used for numerical
+ approximation of the jacobian via forward differences.
+ maxfun : int
+ Maximum number of function evaluations. Note that this function
+ may violate the limit because of evaluating gradients by numerical
+ differentiation.
+ maxiter : int
+ Maximum number of iterations.
+ iprint : int, optional
+ Controls the frequency of output. ``iprint < 0`` means no output;
+ ``iprint = 0`` print only one line at the last iteration;
+ ``0 < iprint < 99`` print also f and ``|proj g|`` every iprint iterations;
+ ``iprint = 99`` print details of every iteration except n-vectors;
+ ``iprint = 100`` print also the changes of active set and final x;
+ ``iprint > 100`` print details of every iteration including x and g.
+ callback : callable, optional
+ Called after each iteration, as ``callback(xk)``, where ``xk`` is the
+ current parameter vector.
+ maxls : int, optional
+ Maximum number of line search steps (per iteration). Default is 20.
+ finite_diff_rel_step : None or array_like, optional
+ If `jac in ['2-point', '3-point', 'cs']` the relative step size to
+ use for numerical approximation of the jacobian. The absolute step
+ size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``,
+ possibly adjusted to fit into the bounds. For ``method='3-point'``
+ the sign of `h` is ignored. If None (default) then step is selected
+ automatically.
+
+ Notes
+ -----
+ The option `ftol` is exposed via the `scipy.optimize.minimize` interface,
+ but calling `scipy.optimize.fmin_l_bfgs_b` directly exposes `factr`. The
+ relationship between the two is ``ftol = factr * numpy.finfo(float).eps``.
+ I.e., `factr` multiplies the default machine floating-point precision to
+ arrive at `ftol`.
+
+ """
+ _check_unknown_options(unknown_options)
+ m = maxcor
+ pgtol = gtol
+ factr = ftol / np.finfo(float).eps
+
+ x0 = asarray(x0).ravel()
+ n, = x0.shape
+
+ # historically old-style bounds were/are expected by lbfgsb.
+ # That's still the case but we'll deal with new-style from here on,
+ # it's easier
+ if bounds is None:
+ pass
+ elif len(bounds) != n:
+ raise ValueError('length of x0 != length of bounds')
+ else:
+ bounds = np.array(old_bound_to_new(bounds))
+
+ # check bounds
+ if (bounds[0] > bounds[1]).any():
+ raise ValueError(
+ "LBFGSB - one of the lower bounds is greater than an upper bound."
+ )
+
+ # initial vector must lie within the bounds. Otherwise ScalarFunction and
+ # approx_derivative will cause problems
+ x0 = np.clip(x0, bounds[0], bounds[1])
+
+ if disp is not None:
+ if disp == 0:
+ iprint = -1
+ else:
+ iprint = disp
+
+ # _prepare_scalar_function can use bounds=None to represent no bounds
+ sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps,
+ bounds=bounds,
+ finite_diff_rel_step=finite_diff_rel_step)
+
+ func_and_grad = sf.fun_and_grad
+
+ fortran_int = _lbfgsb.types.intvar.dtype
+
+ nbd = zeros(n, fortran_int)
+ low_bnd = zeros(n, float64)
+ upper_bnd = zeros(n, float64)
+ bounds_map = {(-np.inf, np.inf): 0,
+ (1, np.inf): 1,
+ (1, 1): 2,
+ (-np.inf, 1): 3}
+
+ if bounds is not None:
+ for i in range(0, n):
+ l, u = bounds[0, i], bounds[1, i]
+ if not np.isinf(l):
+ low_bnd[i] = l
+ l = 1
+ if not np.isinf(u):
+ upper_bnd[i] = u
+ u = 1
+ nbd[i] = bounds_map[l, u]
+
+ if not maxls > 0:
+ raise ValueError('maxls must be positive.')
+
+ x = array(x0, float64)
+ f = array(0.0, float64)
+ g = zeros((n,), float64)
+ wa = zeros(2*m*n + 5*n + 11*m*m + 8*m, float64)
+ iwa = zeros(3*n, fortran_int)
+ task = zeros(1, 'S60')
+ csave = zeros(1, 'S60')
+ lsave = zeros(4, fortran_int)
+ isave = zeros(44, fortran_int)
+ dsave = zeros(29, float64)
+
+ task[:] = 'START'
+
+ n_iterations = 0
+
+ while 1:
+ # g may become float32 if a user provides a function that calculates
+ # the Jacobian in float32 (see gh-18730). The underlying Fortran code
+ # expects float64, so upcast it
+ g = g.astype(np.float64)
+ # x, f, g, wa, iwa, task, csave, lsave, isave, dsave = \
+ _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr,
+ pgtol, wa, iwa, task, iprint, csave, lsave,
+ isave, dsave, maxls)
+ task_str = task.tobytes()
+ if task_str.startswith(b'FG'):
+ # The minimization routine wants f and g at the current x.
+ # Note that interruptions due to maxfun are postponed
+ # until the completion of the current minimization iteration.
+ # Overwrite f and g:
+ f, g = func_and_grad(x)
+ if sf.nfev > maxfun:
+ task[:] = ('STOP: TOTAL NO. of f AND g EVALUATIONS '
+ 'EXCEEDS LIMIT')
+ elif task_str.startswith(b'NEW_X'):
+ # new iteration
+ n_iterations += 1
+
+ intermediate_result = OptimizeResult(x=x, fun=f)
+ if _call_callback_maybe_halt(callback, intermediate_result):
+ task[:] = 'STOP: CALLBACK REQUESTED HALT'
+ if n_iterations >= maxiter:
+ task[:] = 'STOP: TOTAL NO. of ITERATIONS REACHED LIMIT'
+ elif sf.nfev > maxfun:
+ task[:] = ('STOP: TOTAL NO. of f AND g EVALUATIONS '
+ 'EXCEEDS LIMIT')
+ else:
+ break
+
+ task_str = task.tobytes().strip(b'\x00').strip()
+ if task_str.startswith(b'CONV'):
+ warnflag = 0
+ elif sf.nfev > maxfun or n_iterations >= maxiter:
+ warnflag = 1
+ else:
+ warnflag = 2
+
+ # These two portions of the workspace are described in the mainlb
+ # subroutine in lbfgsb.f. See line 363.
+ s = wa[0: m*n].reshape(m, n)
+ y = wa[m*n: 2*m*n].reshape(m, n)
+
+ # See lbfgsb.f line 160 for this portion of the workspace.
+ # isave(31) = the total number of BFGS updates prior the current iteration;
+ n_bfgs_updates = isave[30]
+
+ n_corrs = min(n_bfgs_updates, maxcor)
+ hess_inv = LbfgsInvHessProduct(s[:n_corrs], y[:n_corrs])
+
+ task_str = task_str.decode()
+ return OptimizeResult(fun=f, jac=g, nfev=sf.nfev,
+ njev=sf.ngev,
+ nit=n_iterations, status=warnflag, message=task_str,
+ x=x, success=(warnflag == 0), hess_inv=hess_inv)
+
+
+class LbfgsInvHessProduct(LinearOperator):
+ """Linear operator for the L-BFGS approximate inverse Hessian.
+
+ This operator computes the product of a vector with the approximate inverse
+ of the Hessian of the objective function, using the L-BFGS limited
+ memory approximation to the inverse Hessian, accumulated during the
+ optimization.
+
+ Objects of this class implement the ``scipy.sparse.linalg.LinearOperator``
+ interface.
+
+ Parameters
+ ----------
+ sk : array_like, shape=(n_corr, n)
+ Array of `n_corr` most recent updates to the solution vector.
+ (See [1]).
+ yk : array_like, shape=(n_corr, n)
+ Array of `n_corr` most recent updates to the gradient. (See [1]).
+
+ References
+ ----------
+ .. [1] Nocedal, Jorge. "Updating quasi-Newton matrices with limited
+ storage." Mathematics of computation 35.151 (1980): 773-782.
+
+ """
+
+ def __init__(self, sk, yk):
+ """Construct the operator."""
+ if sk.shape != yk.shape or sk.ndim != 2:
+ raise ValueError('sk and yk must have matching shape, (n_corrs, n)')
+ n_corrs, n = sk.shape
+
+ super().__init__(dtype=np.float64, shape=(n, n))
+
+ self.sk = sk
+ self.yk = yk
+ self.n_corrs = n_corrs
+ self.rho = 1 / np.einsum('ij,ij->i', sk, yk)
+
+ def _matvec(self, x):
+ """Efficient matrix-vector multiply with the BFGS matrices.
+
+ This calculation is described in Section (4) of [1].
+
+ Parameters
+ ----------
+ x : ndarray
+ An array with shape (n,) or (n,1).
+
+ Returns
+ -------
+ y : ndarray
+ The matrix-vector product
+
+ """
+ s, y, n_corrs, rho = self.sk, self.yk, self.n_corrs, self.rho
+ q = np.array(x, dtype=self.dtype, copy=True)
+ if q.ndim == 2 and q.shape[1] == 1:
+ q = q.reshape(-1)
+
+ alpha = np.empty(n_corrs)
+
+ for i in range(n_corrs-1, -1, -1):
+ alpha[i] = rho[i] * np.dot(s[i], q)
+ q = q - alpha[i]*y[i]
+
+ r = q
+ for i in range(n_corrs):
+ beta = rho[i] * np.dot(y[i], r)
+ r = r + s[i] * (alpha[i] - beta)
+
+ return r
+
+ def todense(self):
+ """Return a dense array representation of this operator.
+
+ Returns
+ -------
+ arr : ndarray, shape=(n, n)
+ An array with the same shape and containing
+ the same data represented by this `LinearOperator`.
+
+ """
+ s, y, n_corrs, rho = self.sk, self.yk, self.n_corrs, self.rho
+ I = np.eye(*self.shape, dtype=self.dtype)
+ Hk = I
+
+ for i in range(n_corrs):
+ A1 = I - s[i][:, np.newaxis] * y[i][np.newaxis, :] * rho[i]
+ A2 = I - y[i][:, np.newaxis] * s[i][np.newaxis, :] * rho[i]
+
+ Hk = np.dot(A1, np.dot(Hk, A2)) + (rho[i] * s[i][:, np.newaxis] *
+ s[i][np.newaxis, :])
+ return Hk