if self._toStore("APosterioriCovariance"):
self.StoredVariables["APosterioriCovariance"].store( Pn.asfullmatrix(Xn.size) )
covarianceXa = Pn
+ if self._parameters["EstimationOf"] == "Parameters":
+ covarianceXaMin = Pn
#
- Xa = Xn
- XaMin = Xn
- previousJMinimum = numpy.finfo(float).max
+ if self._parameters["EstimationOf"] == "Parameters":
+ XaMin = Xn
+ previousJMinimum = numpy.finfo(float).max
#
for step in range(duration-1):
if hasattr(Y,"store"):
if self._toStore("APosterioriCovariance"):
self.StoredVariables["APosterioriCovariance"].store( Pn.asfullmatrix(Xn.size) )
covarianceXa = Pn
+ if self._parameters["EstimationOf"] == "Parameters":
+ covarianceXaMin = Pn
#
- Xa = Xn
- previousJMinimum = numpy.finfo(float).max
+ if self._parameters["EstimationOf"] == "Parameters":
+ XaMin = Xn
+ previousJMinimum = numpy.finfo(float).max
#
for step in range(duration-1):
if hasattr(Y,"store"):
message = "Liste des valeurs de bornes",
)
self.requireInputArguments(
- mandatory= ("Xb", "Y", "HO", "R", "B" ),
+ mandatory= ("Xb", "Y", "HO", "R", "B"),
optional = ("U", "EM", "CM", "Q"),
)
self.setAttributes(tags=(
else: Pn = B
#
if len(self.StoredVariables["Analysis"])==0 or not self._parameters["nextStep"]:
- self.StoredVariables["Analysis"].store( numpy.ravel(Xb) )
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
+ self.StoredVariables["Analysis"].store( numpy.ravel(Xn) )
if self._toStore("APosterioriCovariance"):
self.StoredVariables["APosterioriCovariance"].store( Pn )
covarianceXa = Pn
+ if self._parameters["EstimationOf"] == "Parameters":
+ covarianceXaMin = Pn
#
- Xa = Xb
- XaMin = Xb
- previousJMinimum = numpy.finfo(float).max
+ if self._parameters["EstimationOf"] == "Parameters":
+ XaMin = Xn
+ previousJMinimum = numpy.finfo(float).max
#
for step in range(duration-1):
if hasattr(Y,"store"):