points in the sample and d is the number of parametric variables. This Numpy
array must be stored in a variable named "sample".
+Example of a script that specifies the whole sample::
+
+ import numpy as np
+ sample = np.array(((900.0, 0.5),
+ (800.0, 0.6),
+ (850.0, 0.2),
+ (1032.0, 0.8),
+ (1420.2, 0.5)))
+
+Example of a script building the sample as the cartesian product of two lists::
+
+ import numpy as np
+ import itertools
+
+ F_values = (900.0, 800.0, 850.0, 1032.0, 1420.2)
+ L_values = (0.5, 0.6, 0.2, 0.8, 1.0)
+
+ it = itertools.product(F_values, L_values)
+ sample = np.array(list(it))
+
+
Importation of a sample defined in a CSV file
=============================================
* Each other line must contain a number of values equal to the number of
parametric variables, separated by commas. Each line corresponds to a point
in the sample.
+
+Example of a CSV file containing variables *F* and *L*::
+
+ F,L
+ 900,0.5
+ 800,0.6
+ 850,0.2
+ 1032,0.8
+ 1420.2,0.5