RI = R.getI()
#
__n = Xb.size
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
#
if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
Xn = Xb
RI = R.getI()
#
__n = Xb.size
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
#
if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
Xn = Xb
#
__n = Xb.size
__m = selfA._parameters["NumberOfMembers"]
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
+ previousJMinimum = numpy.finfo(float).max
#
if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
elif selfA._parameters["nextStep"]:
Xn = selfA._getInternalState("Xn")
#
- previousJMinimum = numpy.finfo(float).max
- #
for step in range(duration-1):
numpy.random.set_state(selfA._getInternalState("seed"))
if hasattr(Y,"store"):
RI = R.getI()
#
__n = Xb.size
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
#
if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
Xn = Xb
#
__n = Xb.size
__m = selfA._parameters["NumberOfMembers"]
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
+ previousJMinimum = numpy.finfo(float).max
#
if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
elif selfA._parameters["nextStep"]:
Xn = selfA._getInternalState("Xn")
#
- previousJMinimum = numpy.finfo(float).max
- #
for step in range(duration-1):
numpy.random.set_state(selfA._getInternalState("seed"))
if hasattr(Y,"store"):
#
__n = Xb.size
__m = selfA._parameters["NumberOfMembers"]
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
+ previousJMinimum = numpy.finfo(float).max
#
if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
elif selfA._parameters["nextStep"]:
Xn = selfA._getInternalState("Xn")
#
- previousJMinimum = numpy.finfo(float).max
- #
for step in range(duration-1):
numpy.random.set_state(selfA._getInternalState("seed"))
if hasattr(Y,"store"):
#
__n = Xb.size
__m = selfA._parameters["NumberOfMembers"]
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
+ previousJMinimum = numpy.finfo(float).max
#
if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
else: Rn = R
elif selfA._parameters["nextStep"]:
Xn = selfA._getInternalState("Xn")
#
- previousJMinimum = numpy.finfo(float).max
- #
for step in range(duration-1):
numpy.random.set_state(selfA._getInternalState("seed"))
if hasattr(Y,"store"):
RI = R.getI()
#
__n = Xb.size
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
#
if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
Xn = Xb
RI = R.getI()
#
__n = Xb.size
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
#
if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
Xn = Xb