import logging
import copy
import numpy
+from functools import partial
from daCore import Persistence
from daCore import PlatformInfo
from daCore import Interfaces
NbCallsOfCached = 0
CM = CacheManager()
#
- def __init__(self, fromMethod=None, fromMatrix=None, avoidingRedundancy = True):
+ def __init__(self, fromMethod=None, fromMatrix=None, avoidingRedundancy = True, inputAsMultiFunction = False):
"""
- On construit un objet de ce type en fournissant à l'aide de l'un des
- deux mots-clé, soit une fonction python, soit une matrice.
+ On construit un objet de ce type en fournissant, à l'aide de l'un des
+ deux mots-clé, soit une fonction ou un multi-fonction python, soit une
+ matrice.
Arguments :
- fromMethod : argument de type fonction Python
- fromMatrix : argument adapté au constructeur numpy.matrix
- avoidingRedundancy : évite ou pas les calculs redondants
+ - inputAsMultiFunction : fonction explicitement définie ou pas en multi-fonction
"""
self.__NbCallsAsMatrix, self.__NbCallsAsMethod, self.__NbCallsOfCached = 0, 0, 0
self.__AvoidRC = bool( avoidingRedundancy )
- if fromMethod is not None:
+ self.__inputAsMF = bool( inputAsMultiFunction )
+ if fromMethod is not None and self.__inputAsMF:
self.__Method = fromMethod # logtimer(fromMethod)
self.__Matrix = None
self.__Type = "Method"
+ elif fromMethod is not None and not self.__inputAsMF:
+ self.__Method = partial( MultiFonction, _sFunction=fromMethod)
+ self.__Matrix = None
+ self.__Type = "Method"
elif fromMatrix is not None:
self.__Method = None
self.__Matrix = numpy.matrix( fromMatrix, numpy.float )
asDict = None, # Parameters
appliedInX = None,
avoidRC = True,
+ inputAsMF = False,# Fonction(s) as Multi-Functions
scheduledBy = None,
toBeChecked = False,
):
if "withLenghtOfRedundancy" not in __Function: __Function["withLenghtOfRedundancy"] = -1
if "withmpEnabled" not in __Function: __Function["withmpEnabled"] = False
if "withmpWorkers" not in __Function: __Function["withmpWorkers"] = None
+ if "withmfEnabled" not in __Function: __Function["withmfEnabled"] = inputAsMF
from daNumerics.ApproximatedDerivatives import FDApproximation
FDA = FDApproximation(
Function = __Function["Direct"],
lenghtOfRedundancy = __Function["withLenghtOfRedundancy"],
mpEnabled = __Function["withmpEnabled"],
mpWorkers = __Function["withmpWorkers"],
+ mfEnabled = __Function["withmfEnabled"],
)
- self.__FO["Direct"] = Operator( fromMethod = FDA.DirectOperator, avoidingRedundancy = avoidRC )
- self.__FO["Tangent"] = Operator( fromMethod = FDA.TangentOperator, avoidingRedundancy = avoidRC )
- self.__FO["Adjoint"] = Operator( fromMethod = FDA.AdjointOperator, avoidingRedundancy = avoidRC )
+ self.__FO["Direct"] = Operator( fromMethod = FDA.DirectOperator, avoidingRedundancy = avoidRC, inputAsMultiFunction = inputAsMF)
+ self.__FO["Tangent"] = Operator( fromMethod = FDA.TangentOperator, avoidingRedundancy = avoidRC, inputAsMultiFunction = inputAsMF )
+ self.__FO["Adjoint"] = Operator( fromMethod = FDA.AdjointOperator, avoidingRedundancy = avoidRC, inputAsMultiFunction = inputAsMF )
elif isinstance(__Function, dict) and \
("Direct" in __Function) and ("Tangent" in __Function) and ("Adjoint" in __Function) and \
(__Function["Direct"] is not None) and (__Function["Tangent"] is not None) and (__Function["Adjoint"] is not None):
- self.__FO["Direct"] = Operator( fromMethod = __Function["Direct"], avoidingRedundancy = avoidRC )
- self.__FO["Tangent"] = Operator( fromMethod = __Function["Tangent"], avoidingRedundancy = avoidRC )
- self.__FO["Adjoint"] = Operator( fromMethod = __Function["Adjoint"], avoidingRedundancy = avoidRC )
+ self.__FO["Direct"] = Operator( fromMethod = __Function["Direct"], avoidingRedundancy = avoidRC, inputAsMultiFunction = inputAsMF )
+ self.__FO["Tangent"] = Operator( fromMethod = __Function["Tangent"], avoidingRedundancy = avoidRC, inputAsMultiFunction = inputAsMF )
+ self.__FO["Adjoint"] = Operator( fromMethod = __Function["Adjoint"], avoidingRedundancy = avoidRC, inputAsMultiFunction = inputAsMF )
elif asMatrix is not None:
__matrice = numpy.matrix( __Matrix, numpy.float )
- self.__FO["Direct"] = Operator( fromMatrix = __matrice, avoidingRedundancy = avoidRC )
- self.__FO["Tangent"] = Operator( fromMatrix = __matrice, avoidingRedundancy = avoidRC )
- self.__FO["Adjoint"] = Operator( fromMatrix = __matrice.T, avoidingRedundancy = avoidRC )
+ self.__FO["Direct"] = Operator( fromMatrix = __matrice, avoidingRedundancy = avoidRC, inputAsMultiFunction = inputAsMF )
+ self.__FO["Tangent"] = Operator( fromMatrix = __matrice, avoidingRedundancy = avoidRC, inputAsMultiFunction = inputAsMF )
+ self.__FO["Adjoint"] = Operator( fromMatrix = __matrice.T, avoidingRedundancy = avoidRC, inputAsMultiFunction = inputAsMF )
del __matrice
else:
raise ValueError("Improperly defined observation operator, it requires at minima either a matrix, a Direct for approximate derivatives or a Tangent/Adjoint pair.")