]> SALOME platform Git repositories - modules/adao.git/commitdiff
Salome HOME
Adding DE algorithm, and small DFO coherency correction
authorJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Sat, 21 Jul 2018 19:05:18 +0000 (21:05 +0200)
committerJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Sat, 21 Jul 2018 19:05:18 +0000 (21:05 +0200)
src/daComposant/daAlgorithms/DerivativeFreeOptimization.py
src/daComposant/daAlgorithms/DifferentialEvolution.py [new file with mode: 0644]

index 4734eefc8e1b7855bbab60fc49156a0adf81f051..e46d9c4b74674ba4c5f0622c6a05ffc74a956b63 100644 (file)
@@ -376,6 +376,8 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         #
         self.StoredVariables["Analysis"].store( Xa.A1 )
         #
+        # Calculs et/ou stockages supplémentaires
+        # ---------------------------------------
         if "OMA"                           in self._parameters["StoreSupplementaryCalculations"] or \
            "SimulatedObservationAtOptimum" in self._parameters["StoreSupplementaryCalculations"]:
             if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
@@ -384,7 +386,9 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
                 HXa = self.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
             else:
                 HXa = Hm(Xa)
-        #
+        if "Innovation" in self._parameters["StoreSupplementaryCalculations"] or \
+            "OMB" in self._parameters["StoreSupplementaryCalculations"]:
+            d  = Y - HXb
         if "Innovation" in self._parameters["StoreSupplementaryCalculations"]:
             self.StoredVariables["Innovation"].store( numpy.ravel(d) )
         if "OMB" in self._parameters["StoreSupplementaryCalculations"]:
diff --git a/src/daComposant/daAlgorithms/DifferentialEvolution.py b/src/daComposant/daAlgorithms/DifferentialEvolution.py
new file mode 100644 (file)
index 0000000..e4a978d
--- /dev/null
@@ -0,0 +1,280 @@
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2018 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+import logging
+from daCore import BasicObjects
+import numpy, scipy.optimize
+
+# ==============================================================================
+class ElementaryAlgorithm(BasicObjects.Algorithm):
+    def __init__(self):
+        BasicObjects.Algorithm.__init__(self, "DIFFERENTIALEVOLUTION")
+        self.defineRequiredParameter(
+            name     = "Minimizer",
+            default  = "BEST1BIN",
+            typecast = str,
+            message  = "Stratégie de minimisation utilisée",
+            listval  = [
+                "BEST1BIN",
+                "BEST1EXP",
+                "RAND1EXP",
+                "RANDTOBEST1EXP",
+                "CURRENTTOBEST1EXP",
+                "BEST2EXP",
+                "RAND2EXP",
+                "RANDTOBEST1BIN",
+                "CURRENTTOBEST1BIN",
+                "BEST2BIN",
+                "RAND2BIN",
+                "RAND1BIN",
+                ],
+            )
+        self.defineRequiredParameter(
+            name     = "MaximumNumberOfSteps",
+            default  = 15000,
+            typecast = int,
+            message  = "Nombre maximal de générations",
+            minval   = 0,
+            )
+        self.defineRequiredParameter(
+            name     = "MaximumNumberOfFunctionEvaluations",
+            default  = 15000,
+            typecast = int,
+            message  = "Nombre maximal d'évaluations de la fonction",
+            minval   = -1,
+            )
+        self.defineRequiredParameter(
+            name     = "PopulationSize",
+            default  = 100,
+            typecast = int,
+            message  = "Taille approximative de la population à chaque génération",
+            minval   = 1,
+            )
+        self.defineRequiredParameter(
+            name     = "MutationDifferentialWeight_F",
+            default  = (0.5, 1),
+            typecast = tuple,
+            message  = "Poids différentiel de mutation, constant ou aléatoire dans l'intervalle, noté F",
+            minval   = 0.,
+            maxval   = 2.,
+            )
+        self.defineRequiredParameter(
+            name     = "CrossOverProbability_CR",
+            default  = 0.7,
+            typecast = float,
+            message  = "Probabilité de recombinaison ou de croisement, notée CR",
+            minval   = 0.,
+            maxval   = 1.,
+            )
+        self.defineRequiredParameter(
+            name     = "QualityCriterion",
+            default  = "AugmentedWeightedLeastSquares",
+            typecast = str,
+            message  = "Critère de qualité utilisé",
+            listval  = ["AugmentedWeightedLeastSquares","AWLS","DA",
+                        "WeightedLeastSquares","WLS",
+                        "LeastSquares","LS","L2",
+                        "AbsoluteValue","L1",
+                        "MaximumError","ME"],
+            )
+        self.defineRequiredParameter(
+            name     = "StoreInternalVariables",
+            default  = False,
+            typecast = bool,
+            message  = "Stockage des variables internes ou intermédiaires du calcul",
+            )
+        self.defineRequiredParameter(
+            name     = "StoreSupplementaryCalculations",
+            default  = [],
+            typecast = tuple,
+            message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
+            listval  = [
+                "CurrentState",
+                "CostFunctionJ",
+                "CostFunctionJb",
+                "CostFunctionJo",
+                "CostFunctionJAtCurrentOptimum",
+                "CostFunctionJbAtCurrentOptimum",
+                "CostFunctionJoAtCurrentOptimum",
+                "CurrentOptimum",
+                "IndexOfOptimum",
+                "InnovationAtCurrentState",
+                "BMA",
+                "OMA",
+                "OMB",
+                "SimulatedObservationAtBackground",
+                "SimulatedObservationAtCurrentOptimum",
+                "SimulatedObservationAtCurrentState",
+                "SimulatedObservationAtOptimum",
+                ]
+            )
+        self.defineRequiredParameter(
+            name     = "SetSeed",
+            typecast = numpy.random.seed,
+            message  = "Graine fixée pour le générateur aléatoire",
+            )
+        self.defineRequiredParameter( # Pas de type
+            name     = "Bounds",
+            message  = "Liste des valeurs de bornes",
+            )
+        self.requireInputArguments(
+            mandatory= ("Xb", "Y", "HO", "R", "B" ),
+            )
+
+    def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
+        self._pre_run(Parameters, Xb, Y, R, B, Q)
+        #
+        len_X = numpy.asarray(Xb).size
+        popsize = round(self._parameters["PopulationSize"]/len_X)
+        maxiter = min(self._parameters["MaximumNumberOfSteps"],round(self._parameters["MaximumNumberOfFunctionEvaluations"]/(popsize*len_X) - 1))
+        logging.debug("%s Nombre maximal de générations = %i, taille de la population à chaque génération = %i"%(self._name, maxiter, popsize*len_X))
+        #
+        # Opérateurs
+        # ----------
+        Hm = HO["Direct"].appliedTo
+        #
+        # Précalcul des inversions de B et R
+        # ----------------------------------
+        BI = B.getI()
+        RI = R.getI()
+        #
+        # Définition de la fonction-coût
+        # ------------------------------
+        def CostFunction(x, QualityMeasure="AugmentedWeightedLeastSquares"):
+            _X  = numpy.asmatrix(numpy.ravel( x )).T
+            self.StoredVariables["CurrentState"].store( _X )
+            _HX = Hm( _X )
+            _HX = numpy.asmatrix(numpy.ravel( _HX )).T
+            _Innovation = Y - _HX
+            if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"] or \
+               "SimulatedObservationAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
+            if "InnovationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
+            #
+            if QualityMeasure in ["AugmentedWeightedLeastSquares","AWLS","DA"]:
+                if BI is None or RI is None:
+                    raise ValueError("Background and Observation error covariance matrix has to be properly defined!")
+                Jb  = 0.5 * (_X - Xb).T * BI * (_X - Xb)
+                Jo  = 0.5 * (_Innovation).T * RI * (_Innovation)
+            elif QualityMeasure in ["WeightedLeastSquares","WLS"]:
+                if RI is None:
+                    raise ValueError("Observation error covariance matrix has to be properly defined!")
+                Jb  = 0.
+                Jo  = 0.5 * (_Innovation).T * RI * (_Innovation)
+            elif QualityMeasure in ["LeastSquares","LS","L2"]:
+                Jb  = 0.
+                Jo  = 0.5 * (_Innovation).T * (_Innovation)
+            elif QualityMeasure in ["AbsoluteValue","L1"]:
+                Jb  = 0.
+                Jo  = numpy.sum( numpy.abs(_Innovation) )
+            elif QualityMeasure in ["MaximumError","ME"]:
+                Jb  = 0.
+                Jo  = numpy.max( numpy.abs(_Innovation) )
+            #
+            J   = float( Jb ) + float( Jo )
+            #
+            self.StoredVariables["CostFunctionJb"].store( Jb )
+            self.StoredVariables["CostFunctionJo"].store( Jo )
+            self.StoredVariables["CostFunctionJ" ].store( J )
+            if "IndexOfOptimum" in self._parameters["StoreSupplementaryCalculations"] or \
+               "CurrentOptimum" in self._parameters["StoreSupplementaryCalculations"] or \
+               "CostFunctionJAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"] or \
+               "CostFunctionJbAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"] or \
+               "CostFunctionJoAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"] or \
+               "SimulatedObservationAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+                IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+            if "IndexOfOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["IndexOfOptimum"].store( IndexMin )
+            if "CurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["CurrentOptimum"].store( self.StoredVariables["CurrentState"][IndexMin] )
+            if "SimulatedObservationAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
+            if "CostFunctionJAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( self.StoredVariables["CostFunctionJ" ][IndexMin] )
+            if "CostFunctionJbAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJb"][IndexMin] )
+            if "CostFunctionJoAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJo"][IndexMin] )
+            return J
+        #
+        # Point de démarrage de l'optimisation : Xini = Xb
+        # ------------------------------------
+        Xini = numpy.ravel(Xb)
+        #
+        # Minimisation de la fonctionnelle
+        # --------------------------------
+        nbPreviousSteps = self.StoredVariables["CostFunctionJ"].stepnumber()
+        #
+        optResults = scipy.optimize.differential_evolution(
+            CostFunction,
+            self._parameters["Bounds"],
+            strategy      = str(self._parameters["Minimizer"]).lower(),
+            maxiter       = maxiter,
+            popsize       = popsize,
+            mutation      = self._parameters["MutationDifferentialWeight_F"],
+            recombination = self._parameters["CrossOverProbability_CR"],
+            disp          = self._parameters["optdisp"],
+            )
+        #
+        IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+        MinJ     = self.StoredVariables["CostFunctionJ"][IndexMin]
+        Minimum  = self.StoredVariables["CurrentState"][IndexMin]
+        #
+        # Obtention de l'analyse
+        # ----------------------
+        Xa = numpy.ravel( Minimum )
+        #
+        self.StoredVariables["Analysis"].store( Xa )
+        #
+        # Calculs et/ou stockages supplémentaires
+        # ---------------------------------------
+        if "OMA"                           in self._parameters["StoreSupplementaryCalculations"] or \
+           "SimulatedObservationAtOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+                HXa = self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
+            elif "SimulatedObservationAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+                HXa = self.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
+            else:
+                HXa = Hm(Xa)
+        if "Innovation" in self._parameters["StoreSupplementaryCalculations"] or \
+            "OMB" in self._parameters["StoreSupplementaryCalculations"]:
+            d  = Y - HXb
+        if "Innovation" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["Innovation"].store( numpy.ravel(d) )
+        if "OMB" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["OMB"].store( numpy.ravel(d) )
+        if "BMA" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+        if "OMA" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
+        if "SimulatedObservationAtBackground" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(Hm(Xb)) )
+        if "SimulatedObservationAtOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
+        #
+        self._post_run()
+        return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+    print('\n AUTODIAGNOSTIC \n')