_reverse_extruded_type=NORM_ERROR;
_linear_type=NORM_ERROR;
_quadratic_type=NORM_ERROR;
+ _nb_of_little_sons=std::numeric_limits<unsigned>::max();
switch(type)
{
case NORM_POINT1:
_sons_con[1][0]=0; _sons_con[1][1]=3; _sons_con[1][2]=1; _nb_of_sons_con[1]=3;
_sons_con[2][0]=1; _sons_con[2][1]=3; _sons_con[2][2]=2; _nb_of_sons_con[2]=3;
_sons_con[3][0]=2; _sons_con[3][1]=3; _sons_con[3][2]=0; _nb_of_sons_con[3]=3;
+ _little_sons_con[0][0]=0; _little_sons_con[0][1]=1; _nb_of_little_sons=6;
+ _little_sons_con[1][0]=1; _little_sons_con[1][1]=2;
+ _little_sons_con[2][0]=2; _little_sons_con[2][1]=0;
+ _little_sons_con[3][0]=0; _little_sons_con[3][1]=3;
+ _little_sons_con[4][0]=1; _little_sons_con[4][1]=3;
+ _little_sons_con[5][0]=2; _little_sons_con[5][1]=3;
}
break;
case NORM_HEXA8:
_sons_con[3][0]=1; _sons_con[3][1]=5; _sons_con[3][2]=6; _sons_con[3][3]=2; _nb_of_sons_con[3]=4;
_sons_con[4][0]=2; _sons_con[4][1]=6; _sons_con[4][2]=7; _sons_con[4][3]=3; _nb_of_sons_con[4]=4;
_sons_con[5][0]=3; _sons_con[5][1]=7; _sons_con[5][2]=4; _sons_con[5][3]=0; _nb_of_sons_con[5]=4;
+ _little_sons_con[0][0]=0; _little_sons_con[0][1]=1; _nb_of_little_sons=12;
+ _little_sons_con[1][0]=1; _little_sons_con[1][1]=2;
+ _little_sons_con[2][0]=2; _little_sons_con[2][1]=3;
+ _little_sons_con[3][0]=3; _little_sons_con[3][1]=0;
+ _little_sons_con[4][0]=4; _little_sons_con[4][1]=5;
+ _little_sons_con[5][0]=5; _little_sons_con[5][1]=6;
+ _little_sons_con[6][0]=6; _little_sons_con[6][1]=7;
+ _little_sons_con[7][0]=7; _little_sons_con[7][1]=4;
+ _little_sons_con[8][0]=0; _little_sons_con[8][1]=4;
+ _little_sons_con[9][0]=1; _little_sons_con[9][1]=5;
+ _little_sons_con[10][0]=2; _little_sons_con[10][1]=6;
+ _little_sons_con[11][0]=3; _little_sons_con[11][1]=7;
}
break;
case NORM_QUAD4:
_sons_con[2][0]=1; _sons_con[2][1]=4; _sons_con[2][2]=2; _nb_of_sons_con[2]=3;
_sons_con[3][0]=2; _sons_con[3][1]=4; _sons_con[3][2]=3; _nb_of_sons_con[3]=3;
_sons_con[4][0]=3; _sons_con[4][1]=4; _sons_con[4][2]=0; _nb_of_sons_con[4]=3;
+ _little_sons_con[0][0]=0; _little_sons_con[0][1]=1; _nb_of_little_sons=8;
+ _little_sons_con[1][0]=1; _little_sons_con[1][1]=2;
+ _little_sons_con[2][0]=2; _little_sons_con[2][1]=3;
+ _little_sons_con[3][0]=3; _little_sons_con[3][1]=0;
+ _little_sons_con[4][0]=0; _little_sons_con[4][1]=4;
+ _little_sons_con[5][0]=1; _little_sons_con[5][1]=4;
+ _little_sons_con[6][0]=2; _little_sons_con[6][1]=4;
+ _little_sons_con[7][0]=3; _little_sons_con[7][1]=4;
}
break;
case NORM_PENTA6:
_sons_con[2][0]=0; _sons_con[2][1]=3; _sons_con[2][2]=4; _sons_con[2][3]=1; _nb_of_sons_con[2]=4;
_sons_con[3][0]=1; _sons_con[3][1]=4; _sons_con[3][2]=5; _sons_con[3][3]=2; _nb_of_sons_con[3]=4;
_sons_con[4][0]=2; _sons_con[4][1]=5; _sons_con[4][2]=3; _sons_con[4][3]=0; _nb_of_sons_con[4]=4;
+ _little_sons_con[0][0]=0; _little_sons_con[0][1]=1; _nb_of_little_sons=9;
+ _little_sons_con[1][0]=1; _little_sons_con[1][1]=2;
+ _little_sons_con[2][0]=2; _little_sons_con[2][1]=0;
+ _little_sons_con[3][0]=3; _little_sons_con[3][1]=4;
+ _little_sons_con[4][0]=4; _little_sons_con[4][1]=5;
+ _little_sons_con[5][0]=5; _little_sons_con[5][1]=3;
+ _little_sons_con[6][0]=0; _little_sons_con[6][1]=3;
+ _little_sons_con[7][0]=1; _little_sons_con[7][1]=4;
+ _little_sons_con[8][0]=2; _little_sons_con[8][1]=5;
}
break;
case NORM_TETRA10:
_sons_con[1][0]=0; _sons_con[1][1]=3; _sons_con[1][2]=1; _sons_con[1][3]=7; _sons_con[1][4]=8; _sons_con[1][5]=4; _nb_of_sons_con[1]=6;
_sons_con[2][0]=1; _sons_con[2][1]=3; _sons_con[2][2]=2; _sons_con[2][3]=8; _sons_con[2][4]=9; _sons_con[2][5]=5; _nb_of_sons_con[2]=6;
_sons_con[3][0]=2; _sons_con[3][1]=3; _sons_con[3][2]=0; _sons_con[3][3]=9; _sons_con[3][4]=7; _sons_con[3][5]=6; _nb_of_sons_con[3]=6; _quadratic=true;
+ _little_sons_con[0][0]=0; _little_sons_con[0][1]=1; _little_sons_con[0][2]=4; _nb_of_little_sons=6;
+ _little_sons_con[1][0]=1; _little_sons_con[1][1]=2; _little_sons_con[1][2]=5;
+ _little_sons_con[2][0]=2; _little_sons_con[2][1]=0; _little_sons_con[2][2]=6;
+ _little_sons_con[3][0]=0; _little_sons_con[3][1]=3; _little_sons_con[3][2]=7;
+ _little_sons_con[4][0]=1; _little_sons_con[4][1]=3; _little_sons_con[4][2]=8;
+ _little_sons_con[5][0]=2; _little_sons_con[5][1]=3; _little_sons_con[5][2]=9;
}
break;
case NORM_HEXGP12:
_sons_con[2][0]=1; _sons_con[2][1]=4; _sons_con[2][2]=2; _sons_con[2][3]=10; _sons_con[2][4]=11; _sons_con[2][5]=6; _nb_of_sons_con[2]=6;
_sons_con[3][0]=2; _sons_con[3][1]=4; _sons_con[3][2]=3; _sons_con[3][3]=11; _sons_con[3][4]=12; _sons_con[3][5]=7; _nb_of_sons_con[3]=6;
_sons_con[4][0]=3; _sons_con[4][1]=4; _sons_con[4][2]=0; _sons_con[4][3]=12; _sons_con[4][4]=9; _sons_con[4][5]=8; _nb_of_sons_con[4]=6; _quadratic=true;
+ _little_sons_con[0][0]=0; _little_sons_con[0][1]=1; _little_sons_con[0][2]=5; _nb_of_little_sons=8;
+ _little_sons_con[1][0]=1; _little_sons_con[1][1]=2; _little_sons_con[1][2]=6;
+ _little_sons_con[2][0]=2; _little_sons_con[2][1]=3; _little_sons_con[2][2]=7;
+ _little_sons_con[3][0]=3; _little_sons_con[3][1]=0; _little_sons_con[3][2]=8;
+ _little_sons_con[4][0]=0; _little_sons_con[4][1]=4; _little_sons_con[4][2]=9;
+ _little_sons_con[5][0]=1; _little_sons_con[5][1]=4; _little_sons_con[5][2]=10;
+ _little_sons_con[6][0]=2; _little_sons_con[6][1]=4; _little_sons_con[6][2]=11;
+ _little_sons_con[7][0]=3; _little_sons_con[7][1]=4; _little_sons_con[7][2]=12;
}
break;
case NORM_PENTA15:
_sons_con[2][0]=0; _sons_con[2][1]=3; _sons_con[2][2]=4; _sons_con[2][3]=1; _sons_con[2][4]=12; _sons_con[2][5]=9; _sons_con[2][6]=13; _sons_con[2][7]=6; _nb_of_sons_con[2]=8;
_sons_con[3][0]=1; _sons_con[3][1]=4; _sons_con[3][2]=5; _sons_con[3][3]=2; _sons_con[3][4]=13; _sons_con[3][5]=10; _sons_con[3][6]=14; _sons_con[3][7]=7; _nb_of_sons_con[3]=8;
_sons_con[4][0]=2; _sons_con[4][1]=4; _sons_con[4][2]=5; _sons_con[4][3]=0; _sons_con[4][4]=14; _sons_con[4][5]=11; _sons_con[4][6]=12; _sons_con[4][7]=8; _nb_of_sons_con[4]=8; _quadratic=true;
+ _little_sons_con[0][0]=0; _little_sons_con[0][1]=1; _little_sons_con[0][2]=6; _nb_of_little_sons=9;
+ _little_sons_con[1][0]=1; _little_sons_con[1][1]=2; _little_sons_con[1][2]=7;
+ _little_sons_con[2][0]=2; _little_sons_con[2][1]=0; _little_sons_con[2][2]=8;
+ _little_sons_con[3][0]=3; _little_sons_con[3][1]=4; _little_sons_con[3][2]=9;
+ _little_sons_con[4][0]=4; _little_sons_con[4][1]=5; _little_sons_con[4][2]=10;
+ _little_sons_con[5][0]=5; _little_sons_con[5][1]=3; _little_sons_con[5][2]=11;
+ _little_sons_con[6][0]=0; _little_sons_con[6][1]=3; _little_sons_con[6][2]=12;
+ _little_sons_con[7][0]=1; _little_sons_con[7][1]=4; _little_sons_con[7][2]=13;
+ _little_sons_con[8][0]=2; _little_sons_con[8][1]=5; _little_sons_con[8][2]=14;
}
break;
case NORM_HEXA20:
_sons_con[3][0]=1; _sons_con[3][1]=5; _sons_con[3][3]=6; _sons_con[3][3]=2; _sons_con[3][4]=17; _sons_con[3][5]=13; _sons_con[3][6]=18; _sons_con[3][7]=9;_nb_of_sons_con[3]=8;
_sons_con[4][0]=2; _sons_con[4][1]=6; _sons_con[4][3]=7; _sons_con[4][3]=3; _sons_con[4][4]=18; _sons_con[4][5]=14; _sons_con[4][6]=19; _sons_con[4][7]=10; _nb_of_sons_con[4]=8;
_sons_con[5][0]=3; _sons_con[5][1]=7; _sons_con[5][3]=4; _sons_con[5][3]=0; _sons_con[5][4]=19; _sons_con[5][5]=15; _sons_con[5][6]=16; _sons_con[5][7]=11; _nb_of_sons_con[5]=8; _quadratic=true;
+ _little_sons_con[0][0]=0; _little_sons_con[0][1]=1; _little_sons_con[0][2]=8; _nb_of_little_sons=12;
+ _little_sons_con[1][0]=1; _little_sons_con[1][1]=2; _little_sons_con[1][2]=9;
+ _little_sons_con[2][0]=2; _little_sons_con[2][1]=3; _little_sons_con[2][2]=10;
+ _little_sons_con[3][0]=3; _little_sons_con[3][1]=0; _little_sons_con[3][2]=11;
+ _little_sons_con[4][0]=4; _little_sons_con[4][1]=5; _little_sons_con[4][2]=12;
+ _little_sons_con[5][0]=5; _little_sons_con[5][1]=6; _little_sons_con[5][2]=13;
+ _little_sons_con[6][0]=6; _little_sons_con[6][1]=7; _little_sons_con[6][2]=14;
+ _little_sons_con[7][0]=7; _little_sons_con[7][1]=4; _little_sons_con[7][2]=15;
+ _little_sons_con[8][0]=0; _little_sons_con[8][1]=4; _little_sons_con[8][2]=16;
+ _little_sons_con[9][0]=1; _little_sons_con[9][1]=5; _little_sons_con[9][2]=17;
+ _little_sons_con[10][0]=2; _little_sons_con[10][1]=6; _little_sons_con[10][2]=18;
+ _little_sons_con[11][0]=3; _little_sons_con[11][1]=7; _little_sons_con[11][2]=19;
}
break;
case NORM_HEXA27:
return std::count(conn,conn+lgth,-1)+1;
}
+ unsigned CellModel::getNumberOfEdgesIn3D(const int *conn, int lgth) const
+ {
+ if(!isDynamic())
+ return _nb_of_little_sons;
+ else//polyhedron
+ return (lgth-std::count(conn,conn+lgth,-1))/2;
+ }
+
/*!
* Equivalent to getSonType except that this method deals with dynamic type.
*/
}
}
+ unsigned CellModel::fillSonEdgesNodalConnectivity3D(int sonId, const int *nodalConn, int lgth, int *sonNodalConn, NormalizedCellType& typeOfSon) const
+ {
+ if(!isDynamic())
+ {
+ if(!isQuadratic())
+ {
+ typeOfSon=NORM_SEG2;
+ sonNodalConn[0]=nodalConn[_little_sons_con[sonId][0]];
+ sonNodalConn[1]=nodalConn[_little_sons_con[sonId][1]];
+ return 2;
+ }
+ else
+ {
+ typeOfSon=NORM_SEG3;
+ sonNodalConn[0]=nodalConn[_little_sons_con[sonId][0]];
+ sonNodalConn[1]=nodalConn[_little_sons_con[sonId][1]];
+ sonNodalConn[2]=nodalConn[_little_sons_con[sonId][2]];
+ return 3;
+ }
+ }
+ else
+ throw INTERP_KERNEL::Exception("CellModel::fillSonEdgesNodalConnectivity3D : not implemented yet for NORM_POLYHED !");
+ }
+
//================================================================================
/*!
* \brief Return number of nodes in sonId-th son of a Dynamic() cell
public:
static const unsigned MAX_NB_OF_SONS=8;
static const unsigned MAX_NB_OF_NODES_PER_ELEM=30;
+ static const unsigned MAX_NB_OF_LITTLE_SONS=12;
private:
CellModel(NormalizedCellType type);
static void buildUniqueInstance();
INTERPKERNEL_EXPORT unsigned getNumberOfNodes() const { return _nb_of_pts; }
INTERPKERNEL_EXPORT unsigned getNumberOfSons() const { return _nb_of_sons; }
INTERPKERNEL_EXPORT unsigned getNumberOfSons2(const int *conn, int lgth) const;
+ INTERPKERNEL_EXPORT unsigned getNumberOfEdgesIn3D(const int *conn, int lgth) const;
INTERPKERNEL_EXPORT unsigned getNumberOfNodesConstituentTheSon(unsigned sonId) const { return _nb_of_sons_con[sonId]; }
INTERPKERNEL_EXPORT unsigned getNumberOfNodesConstituentTheSon2(unsigned sonId, const int *nodalConn, int lgth) const;
INTERPKERNEL_EXPORT NormalizedCellType getExtrudedType() const { return _extruded_type; }
INTERPKERNEL_EXPORT NormalizedCellType getSonType2(unsigned sonId) const;
INTERPKERNEL_EXPORT unsigned fillSonCellNodalConnectivity(int sonId, const int *nodalConn, int *sonNodalConn) const;
INTERPKERNEL_EXPORT unsigned fillSonCellNodalConnectivity2(int sonId, const int *nodalConn, int lgth, int *sonNodalConn, NormalizedCellType& typeOfSon) const;
+ INTERPKERNEL_EXPORT unsigned fillSonEdgesNodalConnectivity3D(int sonId, const int *nodalConn, int lgth, int *sonNodalConn, NormalizedCellType& typeOfSon) const;
private:
bool _dyn;
bool _quadratic;
unsigned _dim;
unsigned _nb_of_pts;
unsigned _nb_of_sons;
+ unsigned _nb_of_little_sons;
NormalizedCellType _type;
NormalizedCellType _extruded_type;
NormalizedCellType _reverse_extruded_type;
NormalizedCellType _linear_type;
NormalizedCellType _quadratic_type;
unsigned _sons_con[MAX_NB_OF_SONS][MAX_NB_OF_NODES_PER_ELEM];
+ unsigned _little_sons_con[MAX_NB_OF_LITTLE_SONS][3];
unsigned _nb_of_sons_con[MAX_NB_OF_SONS];
NormalizedCellType _sons_type[MAX_NB_OF_SONS];
static std::map<NormalizedCellType,CellModel> _map_of_unique_instance;
if(!mesh1D->isContiguous1D())
throw INTERP_KERNEL::Exception("buildExtrudedMesh : 1D mesh passed in parameter is not contiguous !");
if(getSpaceDimension()!=mesh1D->getSpaceDimension())
- throw INTERP_KERNEL::Exception("Invalid call to buildExtrudedMesh this and mesh1D must have same dimension !");
+ throw INTERP_KERNEL::Exception("Invalid call to buildExtrudedMesh this and mesh1D must have same space dimension !");
if((getMeshDimension()!=2 || getSpaceDimension()!=3) && (getMeshDimension()!=1 || getSpaceDimension()!=2))
throw INTERP_KERNEL::Exception("Invalid 'this' for buildExtrudedMesh method : must be (meshDim==2 and spaceDim==3) or (meshDim==1 and spaceDim==2) !");
if(mesh1D->getMeshDimension()!=1)
const int *cPtr=_nodal_connec->getConstPointer();
const int *icPtr=_nodal_connec_index->getConstPointer();
int lastVal=0;
- for(int i=0;i<nbOfCells;i++,icPtr++)
+ for(int i=0;i<nbOfCells;i++,icPtr++,descIPtr++)
{
INTERP_KERNEL::NormalizedCellType typ=(INTERP_KERNEL::NormalizedCellType)cPtr[*icPtr];
const INTERP_KERNEL::CellModel& cm=INTERP_KERNEL::CellModel::GetCellModel(typ);
INTERP_KERNEL::NormalizedCellType typ2=cm.getQuadraticType();
types.insert(typ2); newConn->pushBackSilent(typ2);
newConn->pushBackValsSilent(cPtr+icPtr[0]+1,cPtr+icPtr[1]);
- for(const int *d=descPtr+descIPtr[i];d!=descPtr+descIPtr[i+1];d++)
+ for(const int *d=descPtr+descIPtr[0];d!=descPtr+descIPtr[1];d++)
newConn->pushBackSilent(c1DPtr[c1DIPtr[*d]+3]);
- lastVal+=2*(icPtr[1]-icPtr[0])-1;
+ lastVal+=(icPtr[1]-icPtr[0])+(descIPtr[1]-descIPtr[0]);
newConnI->pushBackSilent(lastVal);
ret->pushBackSilent(i);
}