--- /dev/null
+# -*- coding: utf-8 -*-
+
+"""Definition of the data model used by the integration bench.
+
+Warnings
+--------
+EFICAS will import this file as Python module with the ``__import__`` special
+function so, this module must not use relative import.
+"""
+# TODO: Create a main object that point on the different subobjects and force its name
+
+# EFICAS
+from Accas import OPER, BLOC, FACT, SIMP, ASSD, JDC_CATA, VerifTypeTuple, Matrice # pylint: disable=import-error
+from Accas import Tuple as _Tuple # pylint: disable=import-error
+from Extensions.i18n import tr # pylint: disable=import-error
+
+# Warning: The names of these variables are defined by EFICAS
+JdC = JDC_CATA(code="IB")
+VERSION_CATALOGUE = "V_0"
+
+# Define the minimum and the maximum number of elements (reflectors and fuel
+# assemblies) on the core's side
+NMIN_CORE_FUEL_ELTS = 1
+NMAX_CORE_FUEL_ELTS = 18
+
+# Available absorbing material type in the rod clusters
+ROD_COMPOSITIONS = (
+ "Black", # Full AIC rods
+ "Grey", # Mix between AIC and steel rods
+ "B4C", # Full B4C rods
+)
+
+# Available options for the core elements rotation
+ASSEMBLY_ROTATIONS = (
+ ".", # identity
+ "R1", # 90° counter-clock
+ "R2", # 180°
+ "R3", # 270° counter-clock
+ "UD", # up-down
+ "LR", # left-right
+ "TR", # transpose x/y
+ "RT", # transpose x/-y
+)
+
+class Tuple(_Tuple):
+ """Organize the data into a fixed size tuple.
+
+ Warnings
+ --------
+ This class respect the EFICAS conventions.
+ """
+
+ def __convert__(self, valeur):
+ if len(valeur) != self.ntuple:
+ return None
+ return valeur
+
+
+class VerifPostTreatment(VerifTypeTuple):
+ """Validate the data comming from ``Scenario_data.post_processing``.
+
+ Warnings
+ --------
+ This class respect the EFICAS conventions.
+ """
+ # pylint: disable=invalid-name
+ # pylint: disable=missing-function-docstring
+ # pylint: disable=no-self-use
+
+ PHYSICS = ("Neutronics", "Thermalhydraulics", "System")
+ FORMATS = ("MED", "SUM", "MIN", "MAX", "MEAN", "VALUE")
+
+ def __init__(self):
+ super().__init__(("TXM", "TXM", "TXM"))
+ self.cata_info = ""
+
+ def info(self):
+ return tr(": vérifie les \ntypes dans un tuple")
+
+ def infoErreurListe(self):
+ return tr("Les types entres ne sont pas permis")
+
+ def default(self, valeur):
+ return valeur
+
+ def isList(self):
+ return 1
+
+ def convertItem(self, valeur):
+ if len(valeur) != len(self.typeDesTuples):
+ raise ValueError(
+ tr("%s devrait être de type %s ") % (valeur, self.typeDesTuples))
+ ok = self.verifType(valeur)
+ if ok == 0:
+ raise ValueError(
+ tr("%s devrait être de type %s (%d)") % (valeur, self.typeDesTuples, ok))
+ if ok == -1:
+ raise ValueError(
+ tr("%s devrait être dans %s ") % (valeur[1], self.PHYSICS))
+ if ok == -2:
+ raise ValueError(
+ tr("%s devrait être dans %s ") % (valeur[2], self.FORMATS))
+ return valeur
+
+ def verifItem(self, valeur):
+ try:
+ if len(valeur) != len(self.typeDesTuples):
+ return 0
+ ok = self.verifType(valeur)
+ if ok != 1:
+ return 0
+ except:
+ return 0
+ return 1
+
+ def verifType(self, valeur):
+ ok = 0
+ for v in valeur:
+ if isinstance(v, (bytes, str)):
+ ok += 1
+ if ok == len(self.typeDesTuples):
+ if valeur[1] not in self.PHYSICS:
+ return -1
+ if valeur[2] not in self.FORMATS:
+ return -2
+ return 1
+ return 0
+
+ def verif(self, valeur):
+ if type(valeur) in (list, tuple):
+ liste = list(valeur)
+ for val in liste:
+ if self.verifItem(val) != 1:
+ return 0
+ return 1
+ return 0
+
+
+class _Assembly(ASSD):
+ pass
+
+
+class _TechnoData(ASSD):
+ pass
+
+
+class _RodBank(ASSD):
+ pass
+
+
+class _ModelData(ASSD):
+ pass
+
+
+class _ScenarioData(ASSD):
+ pass
+
+
+class _IandCFunction(ASSD):
+ pass
+
+
+class _Program(ASSD):
+ pass
+
+
+Assembly = OPER(
+ nom="Assembly",
+ sd_prod=_Assembly,
+ fr="Description d'un élément du cœur",
+ ang="Core element description",
+ assembly_type=SIMP(
+ fr="Type d'élément cœur (assemblage combustible ou réflecteur",
+ ang="Type of the core element (fuel assembly or reflector",
+ statut="o",
+ typ="TXM",
+ into=("UOX", "MOX", "REF")),
+ description=BLOC(
+ condition="assembly_type != 'REF'",
+ fr="Description d'un assemblage combustible",
+ ang="Fuel assembly description",
+ assembly_width=SIMP(
+ fr="Pas inter-assemblage dans le cœur",
+ ang="Fuel assembly pitch in the core",
+ unite="m",
+ statut="o",
+ typ="R"),
+ fuel_density=SIMP(
+ fr=("Ratio entre masse volumique nominale et la masse volumique "
+ "théorique des pastilles combustible"),
+ ang=("Ratio between the nominal density and the theoretical "
+ "density of the fuel pellets"),
+ unite="g/cm3",
+ statut="o",
+ typ="R",
+ defaut=0.95),
+ radial_description=FACT(
+ fr="Description radiale de l'assemblage combustible",
+ ang="Fuel assembly radial description",
+ statut="o",
+ clad_outer_radius=SIMP(
+ fr="Rayon externe de la gaine des crayons combustible",
+ ang="Clad external radius of the fuel pins",
+ unite="m",
+ statut="o",
+ typ="R"),
+ guide_tube_outer_radius=SIMP(
+ fr="Rayon externe des tubes guides",
+ ang="Clad external radius of the guide tubes",
+ unite="m",
+ statut="o",
+ typ="R"),
+ fuel_rod_pitch=SIMP(
+ fr="Pas inter-crayon dans l'assemblage",
+ ang="Fuel pin pitch in the assembly",
+ unite="m",
+ statut="o",
+ typ="R"),
+ nfuel_rods=SIMP(
+ fr="Nombre de crayons combustibles dans l'assemblage",
+ ang="Number of fuel pins in the assembly",
+ statut="o",
+ typ="I")),
+ axial_description=FACT(
+ fr="Description axiale de l'assemblage combustible",
+ ang="Fuel assembly axial description",
+ statut="o",
+ active_length_start=SIMP(
+ fr="Altitude basse de la partie active",
+ ang="Lower altitude of the active part",
+ unite="m",
+ statut="o",
+ typ="R"),
+ active_length_end=SIMP(
+ fr="Altitude haute de la partie active",
+ ang="Upper altitude of the active part",
+ unite="m",
+ statut="o",
+ typ="R")),
+ grids=FACT(
+ fr="Description des grilles",
+ ang="Grids description",
+ statut="o",
+ mixing=FACT(
+ fr="Description des grilles de mélange",
+ ang="Mixing grids description",
+ statut="o",
+ positions=SIMP(
+ fr="Altitude basse de la grille",
+ ang="Grid lower altitude",
+ unite="m",
+ statut="f",
+ typ="R",
+ max="**"),
+ size=SIMP(
+ fr="Hauteur de la grille",
+ ang="Grid height",
+ unite="m",
+ statut="o",
+ typ="R")),
+ non_mixing=FACT(
+ fr="Description des grilles de maintien",
+ ang="Holding grids description",
+ statut="o",
+ positions=SIMP(
+ fr="Altitude basse de la grille",
+ ang="Grid lower altitude",
+ unite="m",
+ statut="f",
+ typ="R",
+ max="**"),
+ size=SIMP(
+ fr="Hauteur de la grille",
+ ang="Grid height",
+ unite="m",
+ statut="o",
+ typ="R")))))
+
+
+# TODO: Define the names of the possible compositions (Black, Grey, B4C, Hafnium and Pyrex)
+RodBank = OPER(
+ nom="RodBank",
+ sd_prod=_RodBank,
+ fr="Description d'un groupe de grappes absorbantes",
+ ang="Rod bank description",
+ rod_type=SIMP(
+ fr="Type de grappes absorbantes",
+ ang="Type of rod clusters",
+ statut="o",
+ typ="TXM",
+ into=("homogeneous", "heterogeneous")),
+ description_HOM=BLOC(
+ condition="rod_type == 'homogeneous'",
+ fr="Description d'un groupe de grappes absorbantes homogènes axialement",
+ ang="Axially homogeneous rod bank description",
+ rod_composition=SIMP(
+ fr=("Type de matériau absorbant des grappes absorbantes (Types "
+ "autorisés : {})").format(
+ ", ".join(ROD_COMPOSITIONS)),
+ ang=("Absorbing material type of the rod clusters (Authorized "
+ "types: {})").format(
+ ", ".join(ROD_COMPOSITIONS)),
+ statut="o",
+ typ="TXM",
+ into=ROD_COMPOSITIONS)),
+ description_HET=BLOC(
+ condition="rod_type == 'heterogeneous'",
+ fr="Description d'un groupe de grappes absorbantes hétérogène axialement",
+ ang="Axially heterogeneous rod bank description",
+ bottom_composition=SIMP(
+ fr=("Type de matériau absorbant dans la partie basse des grappes "
+ "absorantes (Types autorisés : {})").format(
+ ", ".join(ROD_COMPOSITIONS)),
+ ang=("Absorbing material type in the lower part of the rod "
+ "clusters (Authorized types: {})").format(
+ ", ".join(ROD_COMPOSITIONS)),
+ statut="o",
+ typ="TXM",
+ into=ROD_COMPOSITIONS),
+ splitting_heigh=SIMP(
+ fr=("Altitude de séparation entre la partie haute et la partie "
+ "basse des grappes absorbantes"),
+ ang=("Splitting height between the upper part and the lower part "
+ "of the rod clusters"),
+ unite="m",
+ statut="o",
+ typ="R"),
+ upper_composition=SIMP(
+ fr=("Type de matériau absorbant dans la partie haute des grappes "
+ "absorantes (Types autorisés : {})").format(
+ ", ".join(ROD_COMPOSITIONS)),
+ ang=("Absorbing material type in the upper part of the rod "
+ "clusters (Authorized types: {})").format(
+ ", ".join(ROD_COMPOSITIONS)),
+ statut="o",
+ typ="TXM",
+ into=ROD_COMPOSITIONS)),
+ step_height=SIMP(
+ fr="Hauteur d'un pas",
+ ang="Step height",
+ unite="m",
+ statut="o",
+ typ="R"),
+ nsteps=SIMP(
+ fr="Nombre de pas du groupe de grappes",
+ ang="Rod bank steps number",
+ statut="o",
+ typ="I"))
+
+
+def gen_assembly_maps():
+ """Generate all the possible maps (one for each possible core size) for the
+ data cointained in ``Techno_data.radial_description.assembly_map``."""
+ # Build the default axes names
+ xsym_list = list("ABCDEFGHJKLNPRSTUVWXYZ")
+ xsym_list.reverse()
+ ysym_list = ["%02d" % i for i in range(NMIN_CORE_FUEL_ELTS, NMAX_CORE_FUEL_ELTS + 1)]
+ ysym_list.reverse()
+ def_xaxis = {}
+ def_yaxis = {}
+ for i in range(NMIN_CORE_FUEL_ELTS, NMAX_CORE_FUEL_ELTS + 1):
+ def_xaxis[i] = ["RW"] + xsym_list[-i:] + ["RE"]
+ def_yaxis[i] = ["RS"] + ysym_list[-i:] + ["RN"]
+
+ dico = {}
+ for i in range(NMIN_CORE_FUEL_ELTS, NMAX_CORE_FUEL_ELTS):
+ dico["assembly_map_%d" % i] = BLOC(
+ condition="nb_assembly == %d" % i,
+ fr="Description radiale du cœur",
+ ang="Core radial description",
+ xaxis=SIMP(
+ fr="Nom des repères radiaux du cœur suivant l'axe ouest-est",
+ ang="Name of core radial marks following the west-east axis",
+ statut="o",
+ typ="TXM",
+ min=i + 2,
+ max=i + 2,
+ defaut=def_xaxis[i]),
+ yaxis=SIMP(
+ fr="Nom des repères radiaux du cœur suivant l'axe nord-sud",
+ ang="Name of core radial marks following the north-south axis",
+ statut="o",
+ typ="TXM",
+ min=i + 2,
+ max=i + 2,
+ defaut=def_yaxis[i]),
+ assembly_map=SIMP(
+ fr=("Répartition radiale des assemblages combustibles et des "
+ "réflecteurs dans le cœur"),
+ ang=("Radial repartition of the fuel assemblies and the "
+ "reflectors in the core"),
+ statut="o",
+ typ=Matrice(
+ nbLigs=i + 2,
+ nbCols=i + 2,
+ typElt=_Assembly,
+ listeHeaders=(
+ ("RW","S","R","P","N","L","K","J","H","G","F","E","D","C","B","A","RE",),
+ ("RS","15","14","13","12","11","10","09","08","07","06","05","04","03","02","01","RN",)), # pylint: disable=line-too-long
+ defaut=(i + 2) * [(i + 2) * ["."]],
+ coloree=True)),
+ rotation_map=SIMP(
+ fr="Rotation des éléments du cœur. Valeur possibles : {}".format(
+ ", ".join([repr(elt) for elt in ASSEMBLY_ROTATIONS])),
+ ang="Core elements rotation. Possible values : {}".format(
+ ", ".join([repr(elt) for elt in ASSEMBLY_ROTATIONS])),
+ statut="o",
+ typ=Matrice(
+ nbLigs=i + 2,
+ nbCols=i + 2,
+ typElt="TXM",
+ typEltInto=ASSEMBLY_ROTATIONS,
+ coloree=True),
+ defaut=(i + 2) * [(i + 2) * ["."]]),
+ rod_map=SIMP(
+ fr="Répartition radiale des groupes de grappes dans le cœur",
+ ang="Rod banks radial repartition in the core",
+ statut="o",
+ typ=Matrice(
+ nbLigs=i + 2,
+ nbCols=i + 2,
+ valSup=1,
+ valMin=-1,
+ typElt="TXM",
+ listeHeaders=None,
+ coloree=True),
+ defaut=(i + 2) * [(i + 2) * ["."]]),
+ BU_map=SIMP(
+ fr="Taux de combustion moyen des assemblages combustibles en GW.j/t",
+ ang="Average burnup of the fuel assemblies in GW.d/t",
+ statut="o",
+ typ=Matrice(
+ nbLigs=i + 2,
+ nbCols=i + 2,
+ valSup=90000.,
+ valMin=0.,
+ typElt="R",
+ listeHeaders=None,
+ coloree=True),
+ defaut=(i + 2) * [(i + 2) * ["."]]))
+ return dico
+
+
+Techno_data = OPER(
+ nom="Techno_data",
+ sd_prod=_TechnoData,
+ fr="Description technologique du cœur",
+ ang="Core technological description",
+ technology=SIMP(
+ statut="o",
+ typ="TXM",
+ into=("DPY", "Other")),
+ assembly_list=SIMP(
+ fr="Sélection des assemblages combustible",
+ ang="Fuel assemblies selection",
+ statut="o",
+ typ=_Assembly,
+ min=1,
+ max="**"),
+ rodbank_list=SIMP(
+ fr="Sélection des groupes de grappes",
+ ang="Rod banks selection",
+ statut="o",
+ typ=_RodBank,
+ min=0,
+ max="**"),
+ radial_description=FACT(
+ fr="Description radiale du cœur",
+ ang="Radial description of the core",
+ statut="o",
+ nb_assembly=SIMP(
+ fr="Nombre d'éléments combustible sur la tranche du cœur",
+ ang="Number of fuel elements on one side of the core",
+ statut="o",
+ typ="I",
+ into=list(range(NMIN_CORE_FUEL_ELTS, NMAX_CORE_FUEL_ELTS))),
+ **(gen_assembly_maps())),
+ axial_description=FACT(
+ fr="Description axiale du cœur",
+ ang="Axial description of the core",
+ statut="o",
+ lower_refl_size=SIMP(
+ fr="Hauteur du réflecteur axial bas",
+ ang="Height of bottom axial reflector",
+ unite="m",
+ statut="o",
+ typ="R"),
+ upper_refl_size=SIMP(
+ fr="Hauteur du réflecteur axial haut",
+ ang="Height of top axial reflector",
+ unite="m",
+ statut="o",
+ typ="R")),
+ nominal_power=SIMP(
+ fr="Puissance thermique nominale du cœur",
+ ang="Nominal thermal power of the core",
+ unite="W",
+ statut="o",
+ typ="R"),
+ Fuel_power_fraction=SIMP(
+ fr="Fraction de la puissance dissipée dans le combustible",
+ ang="Power fraction dissipated in the fuel",
+ statut="o",
+ typ="R",
+ defaut=0.974),
+ by_pass=SIMP(
+ fr="Fraction du débit de bypass cœur",
+ ang="Bypass core flow fraction",
+ statut="o",
+ typ="R",
+ defaut=0.07),
+ core_volumic_flowrate=SIMP(
+ fr="Débit volumique cœur",
+ ang="Core volume flowrate",
+ unite="m3/h",
+ statut="o",
+ typ="R"))
+
+
+class _AssemblyDKLibFile(ASSD):
+ """Manage informations about a fuel assembly DKLib file."""
+
+
+class _ReflectorDKLibFile(ASSD):
+ """Manage informations about a reflector DKLib file."""
+
+
+AssemblyDKLibFile = OPER(
+ nom="AssemblyDKLibFile",
+ sd_prod=_AssemblyDKLibFile,
+ fr="Description d'un fichier DKLib assemblage combustible",
+ ang="Description of a fuel assembly DKLib file",
+ filename=SIMP(
+ fr="Nom du fichier DKLib",
+ ang="DKLib filename",
+ statut="o",
+ typ=("Fichier", "DKLib Files (.dklib);;DKZip Files (.dkzip);;All Files ()", "Sauvegarde")),
+ pattern=SIMP(
+ fr="Nom du pattern à utiliser dans le fichier DKLib",
+ ang="Name of the pattern to use in the DKLib file",
+ statut="o",
+ typ="TXM"),
+ rod_bank_names=SIMP(
+ fr=("Nom de la configuration de grappe dans la DKLib pour chaque type "
+ "de matériaux absorbants disponibles dans le modèle sous la forme "
+ "({{{}}}, nom dans la DKLib)").format(", ".join(ROD_COMPOSITIONS)),
+ ang=("Name of the rod cluster configuration in the DKLib file for any "
+ "type of absorbing materials available in the model under the form "
+ "({{{}}}, name in the DKLib)").format(", ".join(ROD_COMPOSITIONS)),
+ statut="o",
+ typ=Tuple(2),
+ # TODO: Check if the first string is ROD_COMPOSITIONS
+ validators=VerifTypeTuple(("TXM", "TXM")),
+ max="**"))
+
+
+ReflectorDKLibFile = OPER(
+ nom="ReflectorDKLibFile",
+ sd_prod=_ReflectorDKLibFile,
+ fr="Description d'un fichier DKLib réflecteur",
+ ang="Description of a reflector DKLib file",
+ filename=SIMP(
+ fr="Nom du fichier DKLib",
+ ang="DKLib filename",
+ statut="o",
+ typ=("Fichier", "DKLib Files (.dklib);;DKZip Files (.dkzip);;All Files ()","Sauvegarde")),
+ radial_pattern=SIMP(
+ fr="Nom du pattern contenant les données du réflecteur radial",
+ ang="Name of the pattern containing the radial reflector data",
+ statut="o",
+ typ="TXM"),
+ lower_pattern=SIMP(
+ fr="Nom du pattern contenant les données du réflecteur axial bas",
+ ang="Name of the pattern containing the lower reflector data",
+ statut="o",
+ typ="TXM"),
+ upper_pattern=SIMP(
+ fr="Nom du pattern contenant les données du réflecteur axial haut",
+ ang="Name of the pattern containing the upper reflector data",
+ statut="o",
+ typ="TXM"))
+
+
+IandCFunction = OPER(
+ nom="IandCFunction",
+ sd_prod=_IandCFunction,
+ fr="Description d'une fonction de régulation",
+ ang="IandC function description",
+ parameter=SIMP(
+ fr="Paramètre cible de la regulation",
+ ang="Instrumentation and control function target parameter",
+ statut="o",
+ typ="TXM",
+ into=("Core", "Pressurizer level", "Pressurizer pressure")),
+ b_core=BLOC(
+ condition="parameter == 'Core'",
+ steering_mode=SIMP(
+ statut="o",
+ typ="TXM",
+ into=("A", "G", "T"),
+ fr="Mode de pilotage",
+ ang="Steering mode"),
+ b_steer_g=BLOC(
+ condition="steering_mode == 'G'",
+ r_group=SIMP(
+ statut="o",
+ typ=_RodBank,
+ max="**",
+ fr="Définition du groupe R",
+ ang="R group definition"),
+ g1_group=SIMP(
+ statut="o",
+ typ=_RodBank,
+ max="**",
+ fr="Définition du groupe G1",
+ ang="G1 group definition"),
+ g2_group=SIMP(
+ statut="o",
+ typ=_RodBank,
+ max="**",
+ fr="Définition du groupe G2",
+ ang="G2 group definition"),
+ n1_group=SIMP(
+ statut="o",
+ typ=_RodBank,
+ max="**",
+ fr="Définition du groupe N1",
+ ang="N1 group definition"),
+ n2_group=SIMP(
+ statut="o",
+ typ=_RodBank,
+ max="**",
+ fr="Définition du groupe N2",
+ ang="N2 group definition"),
+ limit_insertion=SIMP(
+ statut="o",
+ typ="I",
+ defaut=190,
+ unite="extracted steps"),
+ fr="paramètres mode G",
+ ang="G steering mode parameters"),
+ fr="Paramètres de la régulation coeur",
+ ang="Core iandc functions parameters"))
+
+
+Program = OPER(
+ nom="Program",
+ sd_prod=_Program,
+ labels=SIMP(
+ statut="o",
+ typ="TXM",
+ min=1,
+ max="**"),
+ values=SIMP(
+ statut="o",
+ typ=Tuple(2),
+ validators=VerifTypeTuple(("R", "R")),
+ max="**",
+ fr="Loi de variation du paramètre sous la forme (temps, value)",
+ ang="Parameter variation law in the form (time, value)"))
+
+
+# TODO: Split this class in two: neutronic and thermalhydraulic)
+# TODO: Or split this class in N classes (one for each code)
+Model_data = OPER(
+ nom="Model_data",
+ sd_prod=_ModelData,
+ fr="Description de la modélisation physique",
+ ang="Physical modeling description",
+ physics=SIMP(
+ fr="Sélection de la physique du modèle",
+ ang="Physic model selection",
+ statut="o",
+ typ="TXM",
+ into=("Neutronics", "Thermalhydraulics", "IandC")),
+ scale=SIMP(
+ fr="Sélection de l'échelle du modèle",
+ ang="Scale model selection",
+ statut="o",
+ typ="TXM",
+ into=("system", "component", "local")),
+ b_iandc=BLOC(
+ condition="physics == 'IandC'",
+ functions=SIMP(
+ statut="o",
+ typ=_IandCFunction,
+ min=1,
+ max="**"),
+ fr="Description de la modélisation des fonctions de régulation",
+ ang="Instrumentation and control modeling description"),
+ b_neutro_compo=BLOC(
+ condition="physics == 'Neutronics' and scale == 'component'",
+ fr="Description de la modélisation neutronique à l'échelle du composant",
+ ang="Neutronic modeling description at the component scale",
+ code=SIMP(
+ fr="Sélection du code de neutronique cœur",
+ ang="Core neutronic code selection",
+ statut="o",
+ typ="TXM",
+ into=("COCAGNE", "APOLLO3")),
+ cocagne_bloc=BLOC(
+ condition="code == 'COCAGNE'",
+ cocagne_options=FACT(
+ fr="Options de modélisations spécifiques au code COCAGNE.",
+ ang="COCAGNE specific modeling options",
+ statut="o",
+ n_threads=SIMP(
+ fr="Nombre de threads alloués aux solveurs",
+ ang="Number of threads allocated to the solvers",
+ statut="f",
+ typ="I",
+ val_min=1),
+ nprocs=SIMP(
+ fr="Nombre de processus alloués au solveur",
+ ang="Number of process allocated to the solvers",
+ statut="o",
+ typ="I",
+ defaut = 1,
+ homo='constant'),
+ core_elements_vs_dklib=SIMP(
+ fr=("Association des éléments du cœur aux bibliothèques neutroniques "
+ "sous la forme (assemblage combustible, DKLib)"),
+ ang=("Association between the core elements and the neutronic libraries "
+ "in the form (fuel assembly, DKLib)"),
+ statut="o",
+ typ=Tuple(2),
+ # TODO: Check if the attribute assembly_type of the
+ # Assembly object is 'REF' then the type of the
+ # DKLibFile must be ReflectorDKLibFile and, if not,
+ # the type of the DKLibFile must be AssemblyDKLibFile
+ validators=VerifTypeTuple(
+ (_Assembly, (_AssemblyDKLibFile, _ReflectorDKLibFile))),
+ max="**"))),
+ # TODO: Implement the *4x4* mesh
+ radial_meshing=FACT(
+ fr="Maillage radial du cœur",
+ ang="Core radial meshing",
+ statut="o",
+ flux_solver=SIMP(
+ fr="Type de maillage radial du solveur de flux",
+ ang="Radial mesh type for the flux solver",
+ statut="o",
+ typ="TXM",
+ into=("subdivision", "pin-by-pin")),
+ b_flux_subdivision=BLOC(
+ condition="flux_solver == 'subdivision'",
+ fr=("Paramètres pour les maillages radiaux de type subdivisé "
+ "pour le solveur de flux"),
+ ang=("Parameters for the subdivided radial meshes types for the "
+ "flux solver"),
+ flux_subdivision=SIMP(
+ fr=("Nombre de sous-divisions à appliquer à chaque maille "
+ "radiale pour le solveur de flux"),
+ ang=("Subdivision number to apply to all radial meshes for "
+ "the flux solver"),
+ statut="o",
+ typ="I")),
+ feedback_solver=SIMP(
+ fr="Type de maillage radial du solveur de contre-réaction",
+ ang="Radial mesh type for the feedback solver",
+ statut="o",
+ typ="TXM",
+ into=("subdivision", "pin-by-pin")),
+ b_feedback_subdivision=BLOC(
+ condition="feedback_solver == 'subdivision'",
+ fr=("Paramètres pour les maillages radiaux de type subdivisé "
+ "pour le solveur de contre-réaction"),
+ ang=("Parameters for the subdivided radial meshes types for the "
+ "feedback solver"),
+ feedback_subdivision=SIMP(
+ fr=("Nombre de sous-divisions à appliquer à chaque maille "
+ "radiale pour le solveur de contre-réaction"),
+ ang=("Subdivision number to apply to all radial meshes for "
+ "the feedback solver"),
+ statut="o",
+ typ="I")))),
+ b_thermo_compo=BLOC(
+ condition="physics == 'Thermalhydraulics' and scale == 'component'",
+ fr="Description de la modélisation thermohydraulique à l'échelle du composant",
+ ang="Thermalhydraulic modeling description at the component scale",
+ code=SIMP(
+ fr="Sélection du code de thermohydraulique cœur",
+ ang="Core thermalhydraulic code selection",
+ statut="o",
+ typ="TXM",
+ into=("THYC", "CATHARE3", "FLICA4", "THEDI")),
+ thyc_bloc=BLOC(
+ condition="code == 'THYC'",
+ thyc_options=FACT(
+ fr="Options de modélisations spécifiques au code THYC.",
+ ang="THYC specific modeling options",
+ statut="o",
+ n_threads=SIMP(
+ fr="Nombre de threads alloués aux solveurs",
+ ang="Number of threads allocated to the solvers",
+ statut="f",
+ typ="I",
+ val_min=1))),
+ nprocs=SIMP(
+ fr="Nombre de processus alloués au solveur",
+ ang="Number of process allocated to the solvers",
+ statut="o",
+ typ="I",
+ defaut = 1,
+ homo='constant'),
+ radial_meshing=FACT(
+ fr="Description du maillage radial thermohydraulique à l'échelle du composant",
+ ang="Thermalhydraulic radial meshing description at the component scale",
+ statut="o",
+ fluid=SIMP(
+ fr="Méthode de maillage radial",
+ ang="Radial meshing method",
+ statut="o",
+ typ="TXM",
+ into=("subdivision", "subchannel")),
+ b_fluid_subdivision=BLOC(
+ condition="fluid == 'subdivision'",
+ fr="Données spécifiques au maillage radial par subdivision",
+ ang="Specific data for the radial meshing by subdivision",
+ fluid_subdivision=SIMP(
+ fr="Nombre de mailles radiales dans les assemblages combustibles",
+ ang="Radial mesh number in the fuel assemblies",
+ statut="o",
+ typ="I")),
+ pellet=SIMP(
+ fr="Nombre de mailles radiales dans la pastille combustible",
+ ang="Radial mesh number in the fuel pellet",
+ statut="o",
+ typ="I"),
+ clad=SIMP(
+ fr="Nombre de mailles radiales dans la gaine des crayons combustibles",
+ ang="Radial mesh number in the clad of the fuel pins",
+ statut="o",
+ typ="I"))),
+ b_thermo_sys=BLOC(
+ condition="physics == 'Thermalhydraulics' and scale == 'system'",
+ code_sys=SIMP(
+ statut="o",
+ typ="TXM",
+ into=("CATHARE3",),
+ defaut="CATHARE3",
+ fr="Sélection du code de thermohydraulique système",
+ ang="System thermalhydraulic code selection"),
+ b_cathare3_sys=BLOC(
+ condition="code_sys == 'CATHARE3'",
+ input_type=SIMP(
+ statut="o",
+ typ="TXM",
+ into=("file", "model_data"),
+ fr="Sélection de la mise en donnée CATHARE3",
+ ang="CATHARE3 input data selection"),
+ b_c3_input_file=BLOC(
+ condition="input_type == 'file'",
+ input_file=SIMP(
+ statut='o',
+ typ=("Fichier", "CATHARE3 Input Deck (.dat);;All Files ()", "Sauvegarde"),
+ fr='Chemin vers le jeu de données CATHARE3',
+ ang='Path to CATHARE3 input deck')),
+ meshing=FACT(
+ statut='o',
+ nb_vessel_sectors=SIMP(
+ statut="o",
+ typ="I",
+ defaut=1,
+ fr="Nombre de secteurs pour la cuve",
+ ang="Number of vessel sectors"),
+ nb_core_sectors=SIMP(
+ statut="o",
+ typ="I",
+ defaut=1,
+ fr="Nombre de secteurs pour le coeur",
+ ang="Number of core sectors"))),
+ fr="Description de la modélisation thermohydraulique à l'échelle système",
+ ang="Thermalhydraulic modeling description at system level"),
+ b_scale_compo=BLOC(
+ condition="scale == 'component'",
+ fr="Description de la modélisation à l'échelle du composant",
+ ang="Modeling description at the component scale",
+ axial_meshing=FACT(
+ fr="Maillage axial du cœur",
+ ang="Core axial meshing",
+ statut="o",
+ lower_refl=SIMP(
+ fr="Nombre de mailles axiales dans le réflecteur bas",
+ ang="Axial mesh number in the lower reflector",
+ statut="o",
+ typ="I"),
+ fuel=SIMP(
+ fr="Nombre de mailles axiales dans la partie active de l'assemblage combustible",
+ ang="Axial mesh number in the active part of the fuel assembly",
+ statut="o",
+ typ="I"),
+ upper_refl=SIMP(
+ fr="Nombre de mailles axiales dans le réflecteur haut",
+ ang="Axial mesh number in the upper reflector",
+ statut="o",
+ typ="I"))),
+ b_scale_local=BLOC(
+ condition="scale == 'local'",
+ fr="Description de la modélisation à l'échelle du locale",
+ ang="Modeling description at the local scale",
+ mesh_file=SIMP(
+ fr="Nom du fichier décrivant le maillage",
+ ang="Name of the file describing the mesh",
+ statut="o",
+ typ="Fichier")))
+
+
+Scenario_data = OPER(
+ nom="Scenario_data",
+ sd_prod=_ScenarioData,
+ fr="Description du transitoire",
+ ang="Transient description",
+ initial_power=SIMP(
+ fr="Puissance thermique initiale du cœur",
+ ang="Initial thermal power of the core",
+ statut="o",
+ typ="R",
+ val_min=0.,
+ defaut=100.),
+ initial_power_unit=SIMP(
+ fr="Unité de la puissance thermique initiale du cœur",
+ ang="Unit of the initial thermal power of the core",
+ statut="o",
+ typ="TXM",
+ into=("% Nominal power", "W"),
+ defaut="% Nominal power"),
+ initial_core_inlet_temperature=SIMP(
+ fr="Température initiale de l'eau à l'entrée du cœur",
+ ang="Initial water temperature at the inlet of the core",
+ unite="°C",
+ statut="o",
+ typ="R",
+ val_min=0.,
+ defaut=280.),
+ initial_boron_concentration=SIMP(
+ fr="Concentration en bore initiale",
+ ang="Initial boron concentration",
+ unite="ppm",
+ statut="o",
+ typ="R",
+ val_min=0.,
+ defaut=1300.),
+ initial_inlet_pressure=SIMP(
+ fr="Pression initiale de l'eau à l'entrée du cœur",
+ ang="Initial water pressure at the inlet of the core",
+ unite="bar",
+ statut="o",
+ typ="R",
+ val_min=0.,
+ defaut=160.2),
+ initial_outlet_pressure=SIMP(
+ fr="Pression initiale de l'eau à la sortie du cœur",
+ ang="Initial water pressure at the outlet of the core",
+ unite="bar",
+ statut="o",
+ typ="R",
+ val_min=0.,
+ defaut=157.2),
+ initial_rod_positions=SIMP(
+ fr=("Position initiale des groupes de grappes et des grappes dans le "
+ "cœur sous la forme (type@nom, position) "
+ "(ex. (Rodbank@RB, 62) pour le groupe de grappe RB positionné à 62 "
+ "pas extraits et (Rodcluster@H08, 0) pour la grappe H08 "
+ "complètement insérée)"),
+ ang=("Initial position of the rod banks and the rod clusters in the "
+ "core in the form (type@name, position) "
+ "(e.g. (Rodbank@RB, 62) for the RB rod bank placed at 62 "
+ "extracted steps and (Rodcluster@H08, 0) for the rod cluster H08 "
+ "completely inserted)"),
+ unite="extracted steps",
+ statut="o",
+ typ=Tuple(2), # TODO: Use a triplet (type, name, position) instead of a doublet
+ validators=VerifTypeTuple(("TXM", "I")),
+ max="**"),
+ scenario_type=SIMP(
+ fr="Type de transitoire à modéliser",
+ ang="Type of transient to model",
+ statut="o",
+ typ="TXM",
+ into=("RIA", "HLO")),
+ b_ria=BLOC(
+ condition="scenario_type == 'RIA'",
+ fr="Données du transitoire 'accident de réactivité'",
+ ang="Data of the 'Reactivity-initiated Accident' transient",
+ ejected_rod=SIMP(
+ fr="Nom de la grappe éjectée",
+ ang="Name of the ejected rod cluster",
+ statut="o",
+ typ="TXM"),
+ rod_position_program=SIMP(
+ fr="Loi d'éjection à appliquer à la grappe sous la forme (temps, position)",
+ ang="Ejection law to apply to the ejected rod cluster in the form (time, position)",
+ unite="s, extracted steps",
+ statut="o",
+ typ=Tuple(2),
+ validators=VerifTypeTuple(("R", "I")),
+ max="**"),
+ SCRAM=SIMP(
+ fr="Activation/désactivation de l'arrêt automatique du réacteur",
+ ang="Activation/deactivation of automatic reactor shutdown",
+ statut="o",
+ typ="TXM",
+ into=("YES", "NO")),
+ SCRAM_option=BLOC(
+ condition="SCRAM == 'YES'",
+ fr="Options relatives à l'arrêt automatique du réacteur",
+ ang="Options relative to the automatic reactor shutdown",
+ SCRAM_power=SIMP(
+ fr=("Puissance thermique du cœur déclenchant un arrêt "
+ "automatique du réacteur"),
+ ang="Core thermal power triggering an automatic reactor shutdown",
+ unite="MW",
+ statut="o",
+ typ="R"),
+ complete_SCRAM_time=SIMP(
+ fr="Temps de chute des grappes",
+ ang="Rod cluster fall time",
+ unite="s",
+ statut="o",
+ typ="R"))),
+ b_hlo=BLOC(
+ condition="scenario_type == 'HLO'",
+ programs=SIMP(
+ statut="f",
+ max="**",
+ typ=_Program),
+ fr="Données du transitoire 'ilotage'",
+ ang="Data of the 'house-load operation' transient"),
+ post_processing=SIMP(
+ # TODO: Give all the possible parameters depending of the physics
+ fr=("Données de sortie du calcul sous la forme (paramètre, physique, format). "
+ "'physique' peut valoir {physics!r} et 'format' peut valoir {formats!r}".format(
+ physics=VerifPostTreatment.PHYSICS,
+ formats=VerifPostTreatment.FORMATS)),
+ ang=("Output computed data in function of time in the form (parameter, physic, format). "
+ "'physic' can be {physics!r} and 'format' can be {formats!r})".format(
+ physics=VerifPostTreatment.PHYSICS,
+ formats=VerifPostTreatment.FORMATS)),
+ statut="f",
+ typ=Tuple(3),
+ validators=VerifPostTreatment(),
+ max="**"))