#
# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
-import logging, numpy
+import numpy
from daCore import BasicObjects, NumericObjects
+from daAlgorithms.Atoms import std3dvar, van3dvar, incr3dvar, psas3dvar
# ==============================================================================
class ElementaryAlgorithm(BasicObjects.Algorithm):
def __init__(self):
BasicObjects.Algorithm.__init__(self, "3DVAR")
- self.defineRequiredParameter(
- name = "Minimizer",
- default = "LBFGSB",
- typecast = str,
- message = "Minimiseur utilisé",
- listval = [
- "LBFGSB",
- "TNC",
- "CG",
- "NCG",
- "BFGS",
- ],
- )
self.defineRequiredParameter(
name = "Variant",
default = "3DVAR",
"3DVAR-VAN",
"3DVAR-Incr",
"3DVAR-PSAS",
+ "OneCorrection",
],
listadv = [
"3DVAR-Std",
"Incr3DVAR",
- "OneCycle3DVAR-Std",
+ "OneCorrection3DVAR-Std",
+ ],
+ )
+ self.defineRequiredParameter(
+ name = "Minimizer",
+ default = "LBFGSB",
+ typecast = str,
+ message = "Minimiseur utilisé",
+ listval = [
+ "LBFGSB",
+ "TNC",
+ "CG",
+ "NCG",
+ "BFGS",
],
)
self.defineRequiredParameter(
"ForecastState",
"IndexOfOptimum",
"Innovation",
+ "InnovationAtCurrentAnalysis",
"InnovationAtCurrentState",
"JacobianMatrixAtBackground",
"JacobianMatrixAtOptimum",
)
self.requireInputArguments(
mandatory= ("Xb", "Y", "HO", "R", "B" ),
+ optional = ("U", "EM", "CM", "Q"),
)
self.setAttributes(tags=(
"DataAssimilation",
self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
#
#--------------------------
- # Default 3DVAR
if self._parameters["Variant"] in ["3DVAR", "3DVAR-Std"]:
- NumericObjects.multi3dvar(self, Xb, Y, U, HO, EM, CM, R, B, Q, NumericObjects.std3dvar)
+ NumericObjects.multiXOsteps(self, Xb, Y, U, HO, EM, CM, R, B, Q, std3dvar.std3dvar)
#
elif self._parameters["Variant"] == "3DVAR-VAN":
- NumericObjects.multi3dvar(self, Xb, Y, U, HO, EM, CM, R, B, Q, NumericObjects.van3dvar)
+ NumericObjects.multiXOsteps(self, Xb, Y, U, HO, EM, CM, R, B, Q, van3dvar.van3dvar)
#
elif self._parameters["Variant"] in ["3DVAR-Incr", "Incr3DVAR"]:
- NumericObjects.multi3dvar(self, Xb, Y, U, HO, EM, CM, R, B, Q, NumericObjects.incr3dvar)
+ NumericObjects.multiXOsteps(self, Xb, Y, U, HO, EM, CM, R, B, Q, incr3dvar.incr3dvar)
#
elif self._parameters["Variant"] == "3DVAR-PSAS":
- NumericObjects.multi3dvar(self, Xb, Y, U, HO, EM, CM, R, B, Q, NumericObjects.psas3dvar)
+ NumericObjects.multiXOsteps(self, Xb, Y, U, HO, EM, CM, R, B, Q, psas3dvar.psas3dvar)
#
#--------------------------
- elif self._parameters["Variant"] == "OneCycle3DVAR-Std":
- NumericObjects.std3dvar(self, Xb, Y, U, HO, EM, CM, R, B, Q)
+ elif self._parameters["Variant"] in ["OneCorrection", "OneCorrection3DVAR-Std"]:
+ std3dvar.std3dvar(self, Xb, Y, HO, R, B)
#
#--------------------------
else:
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ Contrained Extended Kalman Filter
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import numpy
+from daCore.NumericObjects import ForceNumericBounds
+from daCore.NumericObjects import ApplyBounds
+from daCore.PlatformInfo import PlatformInfo
+mpr = PlatformInfo().MachinePrecision()
+mfp = PlatformInfo().MaximumPrecision()
+
+# ==============================================================================
+def cekf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+ """
+ Contrained Extended Kalman Filter
+ """
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA._parameters["StoreInternalVariables"] = True
+ selfA._parameters["Bounds"] = ForceNumericBounds( selfA._parameters["Bounds"] )
+ #
+ # Opérateurs
+ H = HO["Direct"].appliedControledFormTo
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ M = EM["Direct"].appliedControledFormTo
+ #
+ if CM is not None and "Tangent" in CM and U is not None:
+ Cm = CM["Tangent"].asMatrix(Xb)
+ else:
+ Cm = None
+ #
+ # Durée d'observation et tailles
+ if hasattr(Y,"stepnumber"):
+ duration = Y.stepnumber()
+ __p = numpy.cumprod(Y.shape())[-1]
+ else:
+ duration = 2
+ __p = numpy.array(Y).size
+ #
+ # Précalcul des inversions de B et R
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ BI = B.getI()
+ RI = R.getI()
+ #
+ __n = Xb.size
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
+ #
+ if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+ Xn = Xb
+ Pn = B
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ selfA.StoredVariables["Analysis"].store( Xb )
+ if selfA._toStore("APosterioriCovariance"):
+ if hasattr(B,"asfullmatrix"):
+ selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
+ else:
+ selfA.StoredVariables["APosterioriCovariance"].store( B )
+ selfA._setInternalState("seed", numpy.random.get_state())
+ elif selfA._parameters["nextStep"]:
+ Xn = selfA._getInternalState("Xn")
+ Pn = selfA._getInternalState("Pn")
+ #
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ XaMin = Xn
+ previousJMinimum = numpy.finfo(float).max
+ #
+ for step in range(duration-1):
+ if hasattr(Y,"store"):
+ Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+ else:
+ Ynpu = numpy.ravel( Y ).reshape((__p,1))
+ #
+ Ht = HO["Tangent"].asMatrix(ValueForMethodForm = Xn)
+ Ht = Ht.reshape(Ynpu.size,Xn.size) # ADAO & check shape
+ Ha = HO["Adjoint"].asMatrix(ValueForMethodForm = Xn)
+ Ha = Ha.reshape(Xn.size,Ynpu.size) # ADAO & check shape
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ Mt = EM["Tangent"].asMatrix(ValueForMethodForm = Xn)
+ Mt = Mt.reshape(Xn.size,Xn.size) # ADAO & check shape
+ Ma = EM["Adjoint"].asMatrix(ValueForMethodForm = Xn)
+ Ma = Ma.reshape(Xn.size,Xn.size) # ADAO & check shape
+ #
+ if U is not None:
+ if hasattr(U,"store") and len(U)>1:
+ Un = numpy.ravel( U[step] ).reshape((-1,1))
+ elif hasattr(U,"store") and len(U)==1:
+ Un = numpy.ravel( U[0] ).reshape((-1,1))
+ else:
+ Un = numpy.ravel( U ).reshape((-1,1))
+ else:
+ Un = None
+ #
+ if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
+ Xn = ApplyBounds( Xn, selfA._parameters["Bounds"] )
+ #
+ if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
+ Xn_predicted = numpy.ravel( M( (Xn, Un) ) ).reshape((__n,1))
+ if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+ Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+ Xn_predicted = Xn_predicted + Cm @ Un
+ Pn_predicted = Q + Mt * (Pn * Ma)
+ elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
+ # --- > Par principe, M = Id, Q = 0
+ Xn_predicted = Xn
+ Pn_predicted = Pn
+ #
+ if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
+ Xn_predicted = ApplyBounds( Xn_predicted, selfA._parameters["Bounds"] )
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ HX_predicted = numpy.ravel( H( (Xn_predicted, None) ) ).reshape((__p,1))
+ _Innovation = Ynpu - HX_predicted
+ elif selfA._parameters["EstimationOf"] == "Parameters":
+ HX_predicted = numpy.ravel( H( (Xn_predicted, Un) ) ).reshape((__p,1))
+ _Innovation = Ynpu - HX_predicted
+ if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
+ _Innovation = _Innovation - Cm @ Un
+ #
+ Kn = Pn_predicted * Ha * numpy.linalg.inv(R + numpy.dot(Ht, Pn_predicted * Ha))
+ Xn = Xn_predicted + Kn * _Innovation
+ Pn = Pn_predicted - Kn * Ht * Pn_predicted
+ #
+ if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
+ Xn = ApplyBounds( Xn, selfA._parameters["Bounds"] )
+ #
+ Xa = Xn # Pointeurs
+ #--------------------------
+ selfA._setInternalState("Xn", Xn)
+ selfA._setInternalState("Pn", Pn)
+ #--------------------------
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ # ---> avec analysis
+ selfA.StoredVariables["Analysis"].store( Xa )
+ if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( H((Xa, Un)) )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+ # ---> avec current state
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CurrentState"):
+ selfA.StoredVariables["CurrentState"].store( Xn )
+ if selfA._toStore("ForecastState"):
+ selfA.StoredVariables["ForecastState"].store( Xn_predicted )
+ if selfA._toStore("ForecastCovariance"):
+ selfA.StoredVariables["ForecastCovariance"].store( Pn_predicted )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( Xn_predicted - Xa )
+ if selfA._toStore("InnovationAtCurrentState"):
+ selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
+ if selfA._toStore("SimulatedObservationAtCurrentState") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
+ # ---> autres
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ Jb = float( 0.5 * (Xa - Xb).T @ (BI @ (Xa - Xb)) )
+ Jo = float( 0.5 * _Innovation.T @ (RI @ _Innovation) )
+ J = Jb + Jo
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ #
+ if selfA._toStore("IndexOfOptimum") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+ if selfA._parameters["EstimationOf"] == "Parameters" \
+ and J < previousJMinimum:
+ previousJMinimum = J
+ XaMin = Xa
+ if selfA._toStore("APosterioriCovariance"):
+ covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
+ #
+ # Stockage final supplémentaire de l'optimum en estimation de paramètres
+ # ----------------------------------------------------------------------
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ selfA.StoredVariables["Analysis"].store( XaMin )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ BLUE
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import logging, numpy
+from daCore.NumericObjects import QuantilesEstimations
+from daCore.PlatformInfo import PlatformInfo
+mpr = PlatformInfo().MachinePrecision()
+
+# ==============================================================================
+def ecwblue(selfA, Xb, Y, HO, R, B):
+ """
+ BLUE
+ """
+ #
+ # Initialisations
+ # ---------------
+ Hm = HO["Tangent"].asMatrix(Xb)
+ Hm = Hm.reshape(Y.size,Xb.size) # ADAO & check shape
+ Ha = HO["Adjoint"].asMatrix(Xb)
+ Ha = Ha.reshape(Xb.size,Y.size) # ADAO & check shape
+ #
+ if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
+ HXb = numpy.asarray(HO["AppliedInX"]["HXb"])
+ else:
+ HXb = Hm @ Xb
+ HXb = HXb.reshape((-1,1))
+ if Y.size != HXb.size:
+ raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
+ if max(Y.shape) != max(HXb.shape):
+ raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
+ #
+ BI = B.getI()
+ RI = R.getI()
+ #
+ Innovation = Y - HXb
+ #
+ # Calcul de la matrice de gain et de l'analyse
+ # --------------------------------------------
+ if Y.size <= Xb.size:
+ _A = R + numpy.dot(Hm, B * Ha)
+ _u = numpy.linalg.solve( _A , Innovation )
+ Xa = Xb + B * Ha * _u
+ else:
+ _A = BI + numpy.dot(Ha, RI * Hm)
+ _u = numpy.linalg.solve( _A , numpy.dot(Ha, RI * Innovation) )
+ Xa = Xb + _u
+ selfA.StoredVariables["Analysis"].store( Xa )
+ #
+ # Calcul de la fonction coût
+ # --------------------------
+ if selfA._parameters["StoreInternalVariables"] or \
+ selfA._toStore("CostFunctionJ") or selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJb") or selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJo") or selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+ selfA._toStore("OMA") or \
+ selfA._toStore("InnovationAtCurrentAnalysis") or \
+ selfA._toStore("SigmaObs2") or \
+ selfA._toStore("MahalanobisConsistency") or \
+ selfA._toStore("SimulatedObservationAtCurrentOptimum") or \
+ selfA._toStore("SimulatedObservationAtCurrentState") or \
+ selfA._toStore("SimulatedObservationAtOptimum") or \
+ selfA._toStore("SimulationQuantiles"):
+ HXa = Hm @ Xa
+ oma = Y - HXa.reshape((-1,1))
+ if selfA._parameters["StoreInternalVariables"] or \
+ selfA._toStore("CostFunctionJ") or selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJb") or selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJo") or selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+ selfA._toStore("MahalanobisConsistency"):
+ Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
+ Jo = float( 0.5 * oma.T * (RI * oma) )
+ J = Jb + Jo
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( Jb )
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( Jo )
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( J )
+ #
+ # Calcul de la covariance d'analyse
+ # ---------------------------------
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles"):
+ if (Y.size <= Xb.size): K = B * Ha * (R + numpy.dot(Hm, B * Ha)).I
+ elif (Y.size > Xb.size): K = (BI + numpy.dot(Ha, RI * Hm)).I * Ha * RI
+ A = B - K * Hm * B
+ A = (A + A.T) * 0.5 # Symétrie
+ A = A + mpr*numpy.trace( A ) * numpy.identity(Xa.size) # Positivité
+ if min(A.shape) != max(A.shape):
+ raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
+ if (numpy.diag(A) < 0).any():
+ raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
+ if logging.getLogger().level < logging.WARNING: # La vérification n'a lieu qu'en debug
+ try:
+ numpy.linalg.cholesky( A )
+ except:
+ raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
+ selfA.StoredVariables["APosterioriCovariance"].store( A )
+ #
+ # Calculs et/ou stockages supplémentaires
+ # ---------------------------------------
+ if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+ selfA.StoredVariables["CurrentState"].store( Xa )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( Xa )
+ if selfA._toStore("Innovation"):
+ selfA.StoredVariables["Innovation"].store( Innovation )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+ if selfA._toStore("OMA"):
+ selfA.StoredVariables["OMA"].store( oma )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( oma )
+ if selfA._toStore("OMB"):
+ selfA.StoredVariables["OMB"].store( Innovation )
+ if selfA._toStore("SigmaObs2"):
+ TraceR = R.trace(Y.size)
+ selfA.StoredVariables["SigmaObs2"].store( float( Innovation.T @ oma ) / TraceR )
+ if selfA._toStore("SigmaBck2"):
+ selfA.StoredVariables["SigmaBck2"].store( float( (Innovation.T @ (Hm @ (numpy.ravel(Xa) - numpy.ravel(Xb))))/(Hm * (B * Hm.T)).trace() ) )
+ if selfA._toStore("MahalanobisConsistency"):
+ selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*J/Innovation.size ) )
+ if selfA._toStore("SimulationQuantiles"):
+ H = HO["Direct"].appliedTo
+ QuantilesEstimations(selfA, A, Xa, HXa, H, Hm)
+ if selfA._toStore("SimulatedObservationAtBackground"):
+ selfA.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
+ if selfA._toStore("SimulatedObservationAtCurrentState"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HXa )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( HXa )
+ if selfA._toStore("SimulatedObservationAtOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ Extended BLUE
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import logging, numpy
+from daCore.NumericObjects import QuantilesEstimations
+from daCore.PlatformInfo import PlatformInfo
+mpr = PlatformInfo().MachinePrecision()
+
+# ==============================================================================
+def ecwexblue(selfA, Xb, Y, HO, R, B):
+ """
+ Extended BLUE
+ """
+ #
+ # Initialisations
+ # ---------------
+ Hm = HO["Tangent"].asMatrix(Xb)
+ Hm = Hm.reshape(Y.size,Xb.size) # ADAO & check shape
+ Ha = HO["Adjoint"].asMatrix(Xb)
+ Ha = Ha.reshape(Xb.size,Y.size) # ADAO & check shape
+ H = HO["Direct"].appliedTo
+ #
+ if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
+ HXb = numpy.asarray(H( Xb, HO["AppliedInX"]["HXb"]))
+ else:
+ HXb = numpy.asarray(H( Xb ))
+ HXb = HXb.reshape((-1,1))
+ if Y.size != HXb.size:
+ raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
+ if max(Y.shape) != max(HXb.shape):
+ raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
+ #
+ BI = B.getI()
+ RI = R.getI()
+ #
+ Innovation = Y - HXb
+ #
+ # Calcul de la matrice de gain et de l'analyse
+ # --------------------------------------------
+ if Y.size <= Xb.size:
+ _A = R + numpy.dot(Hm, B * Ha)
+ _u = numpy.linalg.solve( _A , Innovation )
+ Xa = Xb + B * Ha * _u
+ else:
+ _A = BI + numpy.dot(Ha, RI * Hm)
+ _u = numpy.linalg.solve( _A , numpy.dot(Ha, RI * Innovation) )
+ Xa = Xb + _u
+ selfA.StoredVariables["Analysis"].store( Xa )
+ #
+ # Calcul de la fonction coût
+ # --------------------------
+ if selfA._parameters["StoreInternalVariables"] or \
+ selfA._toStore("CostFunctionJ") or selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJb") or selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJo") or selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+ selfA._toStore("OMA") or \
+ selfA._toStore("InnovationAtCurrentAnalysis") or \
+ selfA._toStore("SigmaObs2") or \
+ selfA._toStore("MahalanobisConsistency") or \
+ selfA._toStore("SimulatedObservationAtCurrentOptimum") or \
+ selfA._toStore("SimulatedObservationAtCurrentState") or \
+ selfA._toStore("SimulatedObservationAtOptimum") or \
+ selfA._toStore("SimulationQuantiles"):
+ HXa = H( Xa )
+ oma = Y - HXa.reshape((-1,1))
+ if selfA._parameters["StoreInternalVariables"] or \
+ selfA._toStore("CostFunctionJ") or selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJb") or selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJo") or selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+ selfA._toStore("MahalanobisConsistency"):
+ Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
+ Jo = float( 0.5 * oma.T * (RI * oma) )
+ J = Jb + Jo
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( Jb )
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( Jo )
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( J )
+ #
+ # Calcul de la covariance d'analyse
+ # ---------------------------------
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles"):
+ if (Y.size <= Xb.size): K = B * Ha * (R + numpy.dot(Hm, B * Ha)).I
+ elif (Y.size > Xb.size): K = (BI + numpy.dot(Ha, RI * Hm)).I * Ha * RI
+ A = B - K * Hm * B
+ A = (A + A.T) * 0.5 # Symétrie
+ A = A + mpr*numpy.trace( A ) * numpy.identity(Xa.size) # Positivité
+ if min(A.shape) != max(A.shape):
+ raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
+ if (numpy.diag(A) < 0).any():
+ raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
+ if logging.getLogger().level < logging.WARNING: # La vérification n'a lieu qu'en debug
+ try:
+ numpy.linalg.cholesky( A )
+ except:
+ raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
+ selfA.StoredVariables["APosterioriCovariance"].store( A )
+ #
+ # Calculs et/ou stockages supplémentaires
+ # ---------------------------------------
+ if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+ selfA.StoredVariables["CurrentState"].store( Xa )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( Xa )
+ if selfA._toStore("Innovation"):
+ selfA.StoredVariables["Innovation"].store( Innovation )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+ if selfA._toStore("OMA"):
+ selfA.StoredVariables["OMA"].store( oma )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( oma )
+ if selfA._toStore("OMB"):
+ selfA.StoredVariables["OMB"].store( Innovation )
+ if selfA._toStore("SigmaObs2"):
+ TraceR = R.trace(Y.size)
+ selfA.StoredVariables["SigmaObs2"].store( float( Innovation.T @ oma ) / TraceR )
+ if selfA._toStore("SigmaBck2"):
+ selfA.StoredVariables["SigmaBck2"].store( float( (Innovation.T @ (Hm @ (numpy.ravel(Xa) - numpy.ravel(Xb))))/(Hm * (B * Hm.T)).trace() ) )
+ if selfA._toStore("MahalanobisConsistency"):
+ selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*J/Innovation.size ) )
+ if selfA._toStore("SimulationQuantiles"):
+ HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
+ HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
+ QuantilesEstimations(selfA, A, Xa, HXa, H, HtM)
+ if selfA._toStore("SimulatedObservationAtBackground"):
+ selfA.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
+ if selfA._toStore("SimulatedObservationAtCurrentState"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HXa )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( HXa )
+ if selfA._toStore("SimulatedObservationAtOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ Linear Least Squares
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+# ==============================================================================
+def ecwlls(selfA, Xb, Y, HO, R, B):
+ """
+ Linear Least Squares
+ """
+ #
+ # Initialisations
+ # ---------------
+ Hm = HO["Tangent"].asMatrix(Xb)
+ Hm = Hm.reshape(Y.size,-1) # ADAO & check shape
+ Ha = HO["Adjoint"].asMatrix(Xb)
+ Ha = Ha.reshape(-1,Y.size) # ADAO & check shape
+ #
+ if R is None:
+ RI = 1.
+ else:
+ RI = R.getI()
+ #
+ # Calcul de la matrice de gain et de l'analyse
+ # --------------------------------------------
+ K = (Ha * (RI * Hm)).I * Ha * RI
+ Xa = K * Y
+ selfA.StoredVariables["Analysis"].store( Xa )
+ #
+ # Calcul de la fonction coût
+ # --------------------------
+ if selfA._parameters["StoreInternalVariables"] or \
+ selfA._toStore("CostFunctionJ") or selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJb") or selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJo") or selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+ selfA._toStore("OMA") or \
+ selfA._toStore("InnovationAtCurrentAnalysis") or \
+ selfA._toStore("SimulatedObservationAtCurrentOptimum") or \
+ selfA._toStore("SimulatedObservationAtCurrentState") or \
+ selfA._toStore("SimulatedObservationAtOptimum"):
+ HXa = Hm @ Xa
+ oma = Y - HXa.reshape((-1,1))
+ if selfA._parameters["StoreInternalVariables"] or \
+ selfA._toStore("CostFunctionJ") or selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJb") or selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJo") or selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ Jb = 0.
+ Jo = float( 0.5 * oma.T * (RI * oma) )
+ J = Jb + Jo
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( Jb )
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( Jo )
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( J )
+ #
+ # Calculs et/ou stockages supplémentaires
+ # ---------------------------------------
+ if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+ selfA.StoredVariables["CurrentState"].store( Xa )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( Xa )
+ if selfA._toStore("OMA"):
+ selfA.StoredVariables["OMA"].store( oma )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( oma )
+ if selfA._toStore("SimulatedObservationAtCurrentState"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HXa )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( HXa )
+ if selfA._toStore("SimulatedObservationAtOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ Non Linear Least Squares
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import numpy, scipy, scipy.optimize, scipy.version
+
+# ==============================================================================
+def ecwnlls(selfA, Xb, Y, HO, R, B):
+ """
+ Non Linear Least Squares
+ """
+ #
+ # Initialisations
+ # ---------------
+ Hm = HO["Direct"].appliedTo
+ Ha = HO["Adjoint"].appliedInXTo
+ #
+ if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
+ HXb = numpy.asarray(Hm( Xb, HO["AppliedInX"]["HXb"] ))
+ else:
+ HXb = numpy.asarray(Hm( Xb ))
+ HXb = HXb.reshape((-1,1))
+ if Y.size != HXb.size:
+ raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
+ if max(Y.shape) != max(HXb.shape):
+ raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
+ #
+ RI = R.getI()
+ if selfA._parameters["Minimizer"] == "LM":
+ RdemiI = R.choleskyI()
+ #
+ Xini = selfA._parameters["InitializationPoint"]
+ #
+ # Définition de la fonction-coût
+ # ------------------------------
+ def CostFunction(x):
+ _X = numpy.asarray(x).reshape((-1,1))
+ if selfA._parameters["StoreInternalVariables"] or \
+ selfA._toStore("CurrentState") or \
+ selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentState"].store( _X )
+ _HX = numpy.asarray(Hm( _X )).reshape((-1,1))
+ _Innovation = Y - _HX
+ if selfA._toStore("SimulatedObservationAtCurrentState") or \
+ selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
+ if selfA._toStore("InnovationAtCurrentState"):
+ selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
+ #
+ Jb = 0.
+ Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
+ J = Jb + Jo
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ if selfA._toStore("IndexOfOptimum") or \
+ selfA._toStore("CurrentOptimum") or \
+ selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+ selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ return J
+ #
+ def GradientOfCostFunction(x):
+ _X = numpy.asarray(x).reshape((-1,1))
+ _HX = numpy.asarray(Hm( _X )).reshape((-1,1))
+ GradJb = 0.
+ GradJo = - Ha( (_X, RI * (Y - _HX)) )
+ GradJ = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
+ return GradJ
+ #
+ def CostFunctionLM(x):
+ _X = numpy.ravel( x ).reshape((-1,1))
+ _HX = Hm( _X ).reshape((-1,1))
+ _Innovation = Y - _HX
+ Jb = 0.
+ Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
+ J = Jb + Jo
+ if selfA._parameters["StoreInternalVariables"] or \
+ selfA._toStore("CurrentState"):
+ selfA.StoredVariables["CurrentState"].store( _X )
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ #
+ return numpy.ravel( RdemiI*_Innovation )
+ #
+ def GradientOfCostFunctionLM(x):
+ _X = x.reshape((-1,1))
+ return - RdemiI*HO["Tangent"].asMatrix( _X )
+ #
+ # Minimisation de la fonctionnelle
+ # --------------------------------
+ nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
+ #
+ if selfA._parameters["Minimizer"] == "LBFGSB":
+ if "0.19" <= scipy.version.version <= "1.1.0":
+ import daAlgorithms.Atoms.lbfgsbhlt as optimiseur
+ else:
+ import scipy.optimize as optimiseur
+ Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
+ func = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ bounds = selfA._parameters["Bounds"],
+ maxfun = selfA._parameters["MaximumNumberOfSteps"]-1,
+ factr = selfA._parameters["CostDecrementTolerance"]*1.e14,
+ pgtol = selfA._parameters["ProjectedGradientTolerance"],
+ iprint = selfA._parameters["optiprint"],
+ )
+ # nfeval = Informations['funcalls']
+ # rc = Informations['warnflag']
+ elif selfA._parameters["Minimizer"] == "TNC":
+ Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
+ func = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ bounds = selfA._parameters["Bounds"],
+ maxfun = selfA._parameters["MaximumNumberOfSteps"],
+ pgtol = selfA._parameters["ProjectedGradientTolerance"],
+ ftol = selfA._parameters["CostDecrementTolerance"],
+ messages = selfA._parameters["optmessages"],
+ )
+ elif selfA._parameters["Minimizer"] == "CG":
+ Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ gtol = selfA._parameters["GradientNormTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ elif selfA._parameters["Minimizer"] == "NCG":
+ Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ avextol = selfA._parameters["CostDecrementTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ elif selfA._parameters["Minimizer"] == "BFGS":
+ Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ gtol = selfA._parameters["GradientNormTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ elif selfA._parameters["Minimizer"] == "LM":
+ Minimum, cov_x, infodict, mesg, rc = scipy.optimize.leastsq(
+ func = CostFunctionLM,
+ x0 = Xini,
+ Dfun = GradientOfCostFunctionLM,
+ args = (),
+ ftol = selfA._parameters["CostDecrementTolerance"],
+ maxfev = selfA._parameters["MaximumNumberOfSteps"],
+ gtol = selfA._parameters["GradientNormTolerance"],
+ full_output = True,
+ )
+ # nfeval = infodict['nfev']
+ else:
+ raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
+ #
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ #
+ # Correction pour pallier a un bug de TNC sur le retour du Minimum
+ # ----------------------------------------------------------------
+ if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+ Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
+ #
+ Xa = Minimum
+ #--------------------------
+ #
+ selfA.StoredVariables["Analysis"].store( Xa )
+ #
+ if selfA._toStore("OMA") or \
+ selfA._toStore("InnovationAtCurrentAnalysis") or \
+ selfA._toStore("SimulatedObservationAtOptimum"):
+ if selfA._toStore("SimulatedObservationAtCurrentState"):
+ HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
+ elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
+ else:
+ HXa = Hm( Xa )
+ oma = Y - HXa.reshape((-1,1))
+ #
+ # Calculs et/ou stockages supplémentaires
+ # ---------------------------------------
+ if selfA._toStore("Innovation") or \
+ selfA._toStore("OMB"):
+ Innovation = Y - HXb
+ if selfA._toStore("Innovation"):
+ selfA.StoredVariables["Innovation"].store( Innovation )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+ if selfA._toStore("OMA"):
+ selfA.StoredVariables["OMA"].store( oma )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( oma )
+ if selfA._toStore("OMB"):
+ selfA.StoredVariables["OMB"].store( Innovation )
+ if selfA._toStore("SimulatedObservationAtBackground"):
+ selfA.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
+ if selfA._toStore("SimulatedObservationAtOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ Ensemble Kalman Smoother
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import copy, math, numpy, scipy, scipy.optimize, scipy.version
+from daCore.NumericObjects import EnsembleErrorCovariance
+from daCore.NumericObjects import EnsembleOfAnomalies
+from daCore.NumericObjects import EnsembleOfBackgroundPerturbations
+from daCore.NumericObjects import EnsemblePerturbationWithGivenCovariance
+from daAlgorithms.Atoms import etkf
+from daCore.PlatformInfo import PlatformInfo
+mpr = PlatformInfo().MachinePrecision()
+mfp = PlatformInfo().MaximumPrecision()
+
+# ==============================================================================
+def enks(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="EnKS16-KalmanFilterFormula"):
+ """
+ Ensemble Kalman Smoother
+ """
+ #
+ # Opérateurs
+ H = HO["Direct"].appliedControledFormTo
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ M = EM["Direct"].appliedControledFormTo
+ #
+ if CM is not None and "Tangent" in CM and U is not None:
+ Cm = CM["Tangent"].asMatrix(Xb)
+ else:
+ Cm = None
+ #
+ # Précalcul des inversions de B et R
+ RIdemi = R.sqrtmI()
+ #
+ # Durée d'observation et tailles
+ LagL = selfA._parameters["SmootherLagL"]
+ if (not hasattr(Y,"store")) or (not hasattr(Y,"stepnumber")):
+ raise ValueError("Fixed-lag smoother requires a series of observation")
+ if Y.stepnumber() < LagL:
+ raise ValueError("Fixed-lag smoother requires a series of observation greater then the lag L")
+ duration = Y.stepnumber()
+ __p = numpy.cumprod(Y.shape())[-1]
+ __n = Xb.size
+ __m = selfA._parameters["NumberOfMembers"]
+ #
+ if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+ selfA.StoredVariables["Analysis"].store( Xb )
+ if selfA._toStore("APosterioriCovariance"):
+ if hasattr(B,"asfullmatrix"):
+ selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
+ else:
+ selfA.StoredVariables["APosterioriCovariance"].store( B )
+ #
+ # Calcul direct initial (on privilégie la mémorisation au recalcul)
+ __seed = numpy.random.get_state()
+ selfB = copy.deepcopy(selfA)
+ selfB._parameters["StoreSupplementaryCalculations"] = ["CurrentEnsembleState"]
+ if VariantM == "EnKS16-KalmanFilterFormula":
+ etkf.etkf(selfB, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM = "KalmanFilterFormula")
+ else:
+ raise ValueError("VariantM has to be chosen in the authorized methods list.")
+ if LagL > 0:
+ EL = selfB.StoredVariables["CurrentEnsembleState"][LagL-1]
+ else:
+ EL = EnsembleOfBackgroundPerturbations( Xb, None, __m ) # Cf. etkf
+ selfA._parameters["SetSeed"] = numpy.random.set_state(__seed)
+ #
+ for step in range(LagL,duration-1):
+ #
+ sEL = selfB.StoredVariables["CurrentEnsembleState"][step+1-LagL:step+1]
+ sEL.append(None)
+ #
+ if hasattr(Y,"store"):
+ Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+ else:
+ Ynpu = numpy.ravel( Y ).reshape((__p,1))
+ #
+ if U is not None:
+ if hasattr(U,"store") and len(U)>1:
+ Un = numpy.ravel( U[step] ).reshape((-1,1))
+ elif hasattr(U,"store") and len(U)==1:
+ Un = numpy.ravel( U[0] ).reshape((-1,1))
+ else:
+ Un = numpy.ravel( U ).reshape((-1,1))
+ else:
+ Un = None
+ #
+ #--------------------------
+ if VariantM == "EnKS16-KalmanFilterFormula":
+ if selfA._parameters["EstimationOf"] == "State": # Forecast
+ EL = M( [(EL[:,i], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ EL = EnsemblePerturbationWithGivenCovariance( EL, Q )
+ EZ = H( [(EL[:,i], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+ Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+ EZ = EZ + Cm @ Un
+ elif selfA._parameters["EstimationOf"] == "Parameters":
+ # --- > Par principe, M = Id, Q = 0
+ EZ = H( [(EL[:,i], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ #
+ vEm = EL.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+ vZm = EZ.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
+ #
+ mS = RIdemi @ EnsembleOfAnomalies( EZ, vZm, 1./math.sqrt(__m-1) )
+ mS = mS.reshape((-1,__m)) # Pour dimension 1
+ delta = RIdemi @ ( Ynpu - vZm )
+ mT = numpy.linalg.inv( numpy.identity(__m) + mS.T @ mS )
+ vw = mT @ mS.T @ delta
+ #
+ Tdemi = numpy.real(scipy.linalg.sqrtm(mT))
+ mU = numpy.identity(__m)
+ wTU = (vw.reshape((__m,1)) + math.sqrt(__m-1) * Tdemi @ mU)
+ #
+ EX = EnsembleOfAnomalies( EL, vEm, 1./math.sqrt(__m-1) )
+ EL = vEm + EX @ wTU
+ #
+ sEL[LagL] = EL
+ for irl in range(LagL): # Lissage des L précédentes analysis
+ vEm = sEL[irl].mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+ EX = EnsembleOfAnomalies( sEL[irl], vEm, 1./math.sqrt(__m-1) )
+ sEL[irl] = vEm + EX @ wTU
+ #
+ # Conservation de l'analyse retrospective d'ordre 0 avant rotation
+ Xa = sEL[0].mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+ if selfA._toStore("APosterioriCovariance"):
+ EXn = sEL[0]
+ #
+ for irl in range(LagL):
+ sEL[irl] = sEL[irl+1]
+ sEL[LagL] = None
+ #--------------------------
+ else:
+ raise ValueError("VariantM has to be chosen in the authorized methods list.")
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ # ---> avec analysis
+ selfA.StoredVariables["Analysis"].store( Xa )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(EXn) )
+ #
+ # Stockage des dernières analyses incomplètement remises à jour
+ for irl in range(LagL):
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ Xa = sEL[irl].mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+ selfA.StoredVariables["Analysis"].store( Xa )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ Ensemble-Transform Kalman Filter
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import math, numpy, scipy, scipy.optimize, scipy.version
+from daCore.NumericObjects import Apply3DVarRecentringOnEnsemble
+from daCore.NumericObjects import CovarianceInflation
+from daCore.NumericObjects import EnsembleErrorCovariance
+from daCore.NumericObjects import EnsembleMean
+from daCore.NumericObjects import EnsembleOfAnomalies
+from daCore.NumericObjects import EnsembleOfBackgroundPerturbations
+from daCore.NumericObjects import EnsemblePerturbationWithGivenCovariance
+
+# ==============================================================================
+def etkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q,
+ VariantM="KalmanFilterFormula",
+ Hybrid=None,
+ ):
+ """
+ Ensemble-Transform Kalman Filter
+ """
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA._parameters["StoreInternalVariables"] = True
+ #
+ # Opérateurs
+ H = HO["Direct"].appliedControledFormTo
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ M = EM["Direct"].appliedControledFormTo
+ #
+ if CM is not None and "Tangent" in CM and U is not None:
+ Cm = CM["Tangent"].asMatrix(Xb)
+ else:
+ Cm = None
+ #
+ # Durée d'observation et tailles
+ if hasattr(Y,"stepnumber"):
+ duration = Y.stepnumber()
+ __p = numpy.cumprod(Y.shape())[-1]
+ else:
+ duration = 2
+ __p = numpy.array(Y).size
+ #
+ # Précalcul des inversions de B et R
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ BI = B.getI()
+ RI = R.getI()
+ elif VariantM != "KalmanFilterFormula":
+ RI = R.getI()
+ if VariantM == "KalmanFilterFormula":
+ RIdemi = R.sqrtmI()
+ #
+ __n = Xb.size
+ __m = selfA._parameters["NumberOfMembers"]
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
+ previousJMinimum = numpy.finfo(float).max
+ #
+ if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+ Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
+ selfA.StoredVariables["Analysis"].store( Xb )
+ if selfA._toStore("APosterioriCovariance"):
+ if hasattr(B,"asfullmatrix"):
+ selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
+ else:
+ selfA.StoredVariables["APosterioriCovariance"].store( B )
+ selfA._setInternalState("seed", numpy.random.get_state())
+ elif selfA._parameters["nextStep"]:
+ Xn = selfA._getInternalState("Xn")
+ #
+ for step in range(duration-1):
+ numpy.random.set_state(selfA._getInternalState("seed"))
+ if hasattr(Y,"store"):
+ Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+ else:
+ Ynpu = numpy.ravel( Y ).reshape((__p,1))
+ #
+ if U is not None:
+ if hasattr(U,"store") and len(U)>1:
+ Un = numpy.ravel( U[step] ).reshape((-1,1))
+ elif hasattr(U,"store") and len(U)==1:
+ Un = numpy.ravel( U[0] ).reshape((-1,1))
+ else:
+ Un = numpy.ravel( U ).reshape((-1,1))
+ else:
+ Un = None
+ #
+ if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
+ Xn = CovarianceInflation( Xn,
+ selfA._parameters["InflationType"],
+ selfA._parameters["InflationFactor"],
+ )
+ #
+ if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
+ EMX = M( [(Xn[:,i], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ Xn_predicted = EnsemblePerturbationWithGivenCovariance( EMX, Q )
+ HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+ Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+ Xn_predicted = Xn_predicted + Cm @ Un
+ elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
+ # --- > Par principe, M = Id, Q = 0
+ Xn_predicted = EMX = Xn
+ HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ #
+ # Mean of forecast and observation of forecast
+ Xfm = EnsembleMean( Xn_predicted )
+ Hfm = EnsembleMean( HX_predicted )
+ #
+ # Anomalies
+ EaX = EnsembleOfAnomalies( Xn_predicted, Xfm )
+ EaHX = EnsembleOfAnomalies( HX_predicted, Hfm)
+ #
+ #--------------------------
+ if VariantM == "KalmanFilterFormula":
+ mS = RIdemi * EaHX / math.sqrt(__m-1)
+ mS = mS.reshape((-1,__m)) # Pour dimension 1
+ delta = RIdemi * ( Ynpu - Hfm )
+ mT = numpy.linalg.inv( numpy.identity(__m) + mS.T @ mS )
+ vw = mT @ mS.T @ delta
+ #
+ Tdemi = numpy.real(scipy.linalg.sqrtm(mT))
+ mU = numpy.identity(__m)
+ #
+ EaX = EaX / math.sqrt(__m-1)
+ Xn = Xfm + EaX @ ( vw.reshape((__m,1)) + math.sqrt(__m-1) * Tdemi @ mU )
+ #--------------------------
+ elif VariantM == "Variational":
+ HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
+ def CostFunction(w):
+ _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+ _Jo = 0.5 * _A.T @ (RI * _A)
+ _Jb = 0.5 * (__m-1) * w.T @ w
+ _J = _Jo + _Jb
+ return float(_J)
+ def GradientOfCostFunction(w):
+ _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+ _GardJo = - EaHX.T @ (RI * _A)
+ _GradJb = (__m-1) * w.reshape((__m,1))
+ _GradJ = _GardJo + _GradJb
+ return numpy.ravel(_GradJ)
+ vw = scipy.optimize.fmin_cg(
+ f = CostFunction,
+ x0 = numpy.zeros(__m),
+ fprime = GradientOfCostFunction,
+ args = (),
+ disp = False,
+ )
+ #
+ Hto = EaHX.T @ (RI * EaHX).reshape((-1,__m))
+ Htb = (__m-1) * numpy.identity(__m)
+ Hta = Hto + Htb
+ #
+ Pta = numpy.linalg.inv( Hta )
+ EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
+ #
+ Xn = Xfm + EaX @ (vw[:,None] + EWa)
+ #--------------------------
+ elif VariantM == "FiniteSize11": # Jauge Boc2011
+ HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
+ def CostFunction(w):
+ _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+ _Jo = 0.5 * _A.T @ (RI * _A)
+ _Jb = 0.5 * __m * math.log(1 + 1/__m + w.T @ w)
+ _J = _Jo + _Jb
+ return float(_J)
+ def GradientOfCostFunction(w):
+ _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+ _GardJo = - EaHX.T @ (RI * _A)
+ _GradJb = __m * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w)
+ _GradJ = _GardJo + _GradJb
+ return numpy.ravel(_GradJ)
+ vw = scipy.optimize.fmin_cg(
+ f = CostFunction,
+ x0 = numpy.zeros(__m),
+ fprime = GradientOfCostFunction,
+ args = (),
+ disp = False,
+ )
+ #
+ Hto = EaHX.T @ (RI * EaHX).reshape((-1,__m))
+ Htb = __m * \
+ ( (1 + 1/__m + vw.T @ vw) * numpy.identity(__m) - 2 * vw @ vw.T ) \
+ / (1 + 1/__m + vw.T @ vw)**2
+ Hta = Hto + Htb
+ #
+ Pta = numpy.linalg.inv( Hta )
+ EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
+ #
+ Xn = Xfm + EaX @ (vw.reshape((__m,1)) + EWa)
+ #--------------------------
+ elif VariantM == "FiniteSize15": # Jauge Boc2015
+ HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
+ def CostFunction(w):
+ _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+ _Jo = 0.5 * _A.T * (RI * _A)
+ _Jb = 0.5 * (__m+1) * math.log(1 + 1/__m + w.T @ w)
+ _J = _Jo + _Jb
+ return float(_J)
+ def GradientOfCostFunction(w):
+ _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+ _GardJo = - EaHX.T @ (RI * _A)
+ _GradJb = (__m+1) * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w)
+ _GradJ = _GardJo + _GradJb
+ return numpy.ravel(_GradJ)
+ vw = scipy.optimize.fmin_cg(
+ f = CostFunction,
+ x0 = numpy.zeros(__m),
+ fprime = GradientOfCostFunction,
+ args = (),
+ disp = False,
+ )
+ #
+ Hto = EaHX.T @ (RI * EaHX).reshape((-1,__m))
+ Htb = (__m+1) * \
+ ( (1 + 1/__m + vw.T @ vw) * numpy.identity(__m) - 2 * vw @ vw.T ) \
+ / (1 + 1/__m + vw.T @ vw)**2
+ Hta = Hto + Htb
+ #
+ Pta = numpy.linalg.inv( Hta )
+ EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
+ #
+ Xn = Xfm + EaX @ (vw.reshape((__m,1)) + EWa)
+ #--------------------------
+ elif VariantM == "FiniteSize16": # Jauge Boc2016
+ HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
+ def CostFunction(w):
+ _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+ _Jo = 0.5 * _A.T @ (RI * _A)
+ _Jb = 0.5 * (__m+1) * math.log(1 + 1/__m + w.T @ w / (__m-1))
+ _J = _Jo + _Jb
+ return float(_J)
+ def GradientOfCostFunction(w):
+ _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+ _GardJo = - EaHX.T @ (RI * _A)
+ _GradJb = ((__m+1) / (__m-1)) * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w / (__m-1))
+ _GradJ = _GardJo + _GradJb
+ return numpy.ravel(_GradJ)
+ vw = scipy.optimize.fmin_cg(
+ f = CostFunction,
+ x0 = numpy.zeros(__m),
+ fprime = GradientOfCostFunction,
+ args = (),
+ disp = False,
+ )
+ #
+ Hto = EaHX.T @ (RI * EaHX).reshape((-1,__m))
+ Htb = ((__m+1) / (__m-1)) * \
+ ( (1 + 1/__m + vw.T @ vw / (__m-1)) * numpy.identity(__m) - 2 * vw @ vw.T / (__m-1) ) \
+ / (1 + 1/__m + vw.T @ vw / (__m-1))**2
+ Hta = Hto + Htb
+ #
+ Pta = numpy.linalg.inv( Hta )
+ EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
+ #
+ Xn = Xfm + EaX @ (vw[:,None] + EWa)
+ #--------------------------
+ else:
+ raise ValueError("VariantM has to be chosen in the authorized methods list.")
+ #
+ if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
+ Xn = CovarianceInflation( Xn,
+ selfA._parameters["InflationType"],
+ selfA._parameters["InflationFactor"],
+ )
+ #
+ if Hybrid == "E3DVAR":
+ betaf = selfA._parameters["HybridCovarianceEquilibrium"]
+ Xn = Apply3DVarRecentringOnEnsemble(Xn, EMX, Ynpu, HO, R, B, betaf)
+ #
+ Xa = EnsembleMean( Xn )
+ #--------------------------
+ selfA._setInternalState("Xn", Xn)
+ selfA._setInternalState("seed", numpy.random.get_state())
+ #--------------------------
+ #
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("APosterioriCovariance") \
+ or selfA._toStore("InnovationAtCurrentAnalysis") \
+ or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ _HXa = numpy.ravel( H((Xa, Un)) ).reshape((-1,1))
+ _Innovation = Ynpu - _HXa
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ # ---> avec analysis
+ selfA.StoredVariables["Analysis"].store( Xa )
+ if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+ # ---> avec current state
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CurrentState"):
+ selfA.StoredVariables["CurrentState"].store( Xn )
+ if selfA._toStore("ForecastState"):
+ selfA.StoredVariables["ForecastState"].store( EMX )
+ if selfA._toStore("ForecastCovariance"):
+ selfA.StoredVariables["ForecastCovariance"].store( EnsembleErrorCovariance(EMX) )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( EMX - Xa )
+ if selfA._toStore("InnovationAtCurrentState"):
+ selfA.StoredVariables["InnovationAtCurrentState"].store( - HX_predicted + Ynpu )
+ if selfA._toStore("SimulatedObservationAtCurrentState") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
+ # ---> autres
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
+ Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
+ J = Jb + Jo
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ #
+ if selfA._toStore("IndexOfOptimum") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
+ if selfA._parameters["EstimationOf"] == "Parameters" \
+ and J < previousJMinimum:
+ previousJMinimum = J
+ XaMin = Xa
+ if selfA._toStore("APosterioriCovariance"):
+ covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
+ # ---> Pour les smoothers
+ if selfA._toStore("CurrentEnsembleState"):
+ selfA.StoredVariables["CurrentEnsembleState"].store( Xn )
+ #
+ # Stockage final supplémentaire de l'optimum en estimation de paramètres
+ # ----------------------------------------------------------------------
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ selfA.StoredVariables["Analysis"].store( XaMin )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ Extended Kalman Filter
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import numpy
+from daCore.PlatformInfo import PlatformInfo
+mpr = PlatformInfo().MachinePrecision()
+mfp = PlatformInfo().MaximumPrecision()
+
+# ==============================================================================
+def exkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+ """
+ Extended Kalman Filter
+ """
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA._parameters["StoreInternalVariables"] = True
+ #
+ # Opérateurs
+ H = HO["Direct"].appliedControledFormTo
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ M = EM["Direct"].appliedControledFormTo
+ #
+ if CM is not None and "Tangent" in CM and U is not None:
+ Cm = CM["Tangent"].asMatrix(Xb)
+ else:
+ Cm = None
+ #
+ # Durée d'observation et tailles
+ if hasattr(Y,"stepnumber"):
+ duration = Y.stepnumber()
+ __p = numpy.cumprod(Y.shape())[-1]
+ else:
+ duration = 2
+ __p = numpy.array(Y).size
+ #
+ # Précalcul des inversions de B et R
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ BI = B.getI()
+ RI = R.getI()
+ #
+ __n = Xb.size
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
+ #
+ if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+ Xn = Xb
+ Pn = B
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ selfA.StoredVariables["Analysis"].store( Xb )
+ if selfA._toStore("APosterioriCovariance"):
+ if hasattr(B,"asfullmatrix"):
+ selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
+ else:
+ selfA.StoredVariables["APosterioriCovariance"].store( B )
+ selfA._setInternalState("seed", numpy.random.get_state())
+ elif selfA._parameters["nextStep"]:
+ Xn = selfA._getInternalState("Xn")
+ Pn = selfA._getInternalState("Pn")
+ #
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ XaMin = Xn
+ previousJMinimum = numpy.finfo(float).max
+ #
+ for step in range(duration-1):
+ if hasattr(Y,"store"):
+ Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+ else:
+ Ynpu = numpy.ravel( Y ).reshape((__p,1))
+ #
+ Ht = HO["Tangent"].asMatrix(ValueForMethodForm = Xn)
+ Ht = Ht.reshape(Ynpu.size,Xn.size) # ADAO & check shape
+ Ha = HO["Adjoint"].asMatrix(ValueForMethodForm = Xn)
+ Ha = Ha.reshape(Xn.size,Ynpu.size) # ADAO & check shape
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ Mt = EM["Tangent"].asMatrix(ValueForMethodForm = Xn)
+ Mt = Mt.reshape(Xn.size,Xn.size) # ADAO & check shape
+ Ma = EM["Adjoint"].asMatrix(ValueForMethodForm = Xn)
+ Ma = Ma.reshape(Xn.size,Xn.size) # ADAO & check shape
+ #
+ if U is not None:
+ if hasattr(U,"store") and len(U)>1:
+ Un = numpy.ravel( U[step] ).reshape((-1,1))
+ elif hasattr(U,"store") and len(U)==1:
+ Un = numpy.ravel( U[0] ).reshape((-1,1))
+ else:
+ Un = numpy.ravel( U ).reshape((-1,1))
+ else:
+ Un = None
+ #
+ if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
+ Xn_predicted = numpy.ravel( M( (Xn, Un) ) ).reshape((__n,1))
+ if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+ Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+ Xn_predicted = Xn_predicted + Cm @ Un
+ Pn_predicted = Q + Mt * (Pn * Ma)
+ elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
+ # --- > Par principe, M = Id, Q = 0
+ Xn_predicted = Xn
+ Pn_predicted = Pn
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ HX_predicted = numpy.ravel( H( (Xn_predicted, None) ) ).reshape((__p,1))
+ _Innovation = Ynpu - HX_predicted
+ elif selfA._parameters["EstimationOf"] == "Parameters":
+ HX_predicted = numpy.ravel( H( (Xn_predicted, Un) ) ).reshape((__p,1))
+ _Innovation = Ynpu - HX_predicted
+ if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
+ _Innovation = _Innovation - Cm @ Un
+ #
+ Kn = Pn_predicted * Ha * numpy.linalg.inv(R + numpy.dot(Ht, Pn_predicted * Ha))
+ Xn = Xn_predicted + Kn * _Innovation
+ Pn = Pn_predicted - Kn * Ht * Pn_predicted
+ #
+ Xa = Xn # Pointeurs
+ #--------------------------
+ selfA._setInternalState("Xn", Xn)
+ selfA._setInternalState("Pn", Pn)
+ #--------------------------
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ # ---> avec analysis
+ selfA.StoredVariables["Analysis"].store( Xa )
+ if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( H((Xa, Un)) )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+ # ---> avec current state
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CurrentState"):
+ selfA.StoredVariables["CurrentState"].store( Xn )
+ if selfA._toStore("ForecastState"):
+ selfA.StoredVariables["ForecastState"].store( Xn_predicted )
+ if selfA._toStore("ForecastCovariance"):
+ selfA.StoredVariables["ForecastCovariance"].store( Pn_predicted )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( Xn_predicted - Xa )
+ if selfA._toStore("InnovationAtCurrentState"):
+ selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
+ if selfA._toStore("SimulatedObservationAtCurrentState") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
+ # ---> autres
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ Jb = float( 0.5 * (Xa - Xb).T @ (BI @ (Xa - Xb)) )
+ Jo = float( 0.5 * _Innovation.T @ (RI @ _Innovation) )
+ J = Jb + Jo
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ #
+ if selfA._toStore("IndexOfOptimum") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+ if selfA._parameters["EstimationOf"] == "Parameters" \
+ and J < previousJMinimum:
+ previousJMinimum = J
+ XaMin = Xa
+ if selfA._toStore("APosterioriCovariance"):
+ covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
+ #
+ # Stockage final supplémentaire de l'optimum en estimation de paramètres
+ # ----------------------------------------------------------------------
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ selfA.StoredVariables["Analysis"].store( XaMin )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ Iterative Ensemble Kalman Filter
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import math, numpy, scipy, scipy.optimize, scipy.version
+from daCore.NumericObjects import EnsembleOfBackgroundPerturbations
+from daCore.NumericObjects import EnsembleOfAnomalies
+from daCore.NumericObjects import CovarianceInflation
+from daCore.NumericObjects import EnsembleMean
+from daCore.NumericObjects import EnsembleErrorCovariance
+from daCore.PlatformInfo import PlatformInfo
+mpr = PlatformInfo().MachinePrecision()
+mfp = PlatformInfo().MaximumPrecision()
+
+# ==============================================================================
+def ienkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="IEnKF12",
+ BnotT=False, _epsilon=1.e-3, _e=1.e-7, _jmax=15000):
+ """
+ Iterative Ensemble Kalman Filter
+ """
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA._parameters["StoreInternalVariables"] = True
+ #
+ # Opérateurs
+ H = HO["Direct"].appliedControledFormTo
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ M = EM["Direct"].appliedControledFormTo
+ #
+ if CM is not None and "Tangent" in CM and U is not None:
+ Cm = CM["Tangent"].asMatrix(Xb)
+ else:
+ Cm = None
+ #
+ # Durée d'observation et tailles
+ if hasattr(Y,"stepnumber"):
+ duration = Y.stepnumber()
+ __p = numpy.cumprod(Y.shape())[-1]
+ else:
+ duration = 2
+ __p = numpy.array(Y).size
+ #
+ # Précalcul des inversions de B et R
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ BI = B.getI()
+ RI = R.getI()
+ #
+ __n = Xb.size
+ __m = selfA._parameters["NumberOfMembers"]
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
+ previousJMinimum = numpy.finfo(float).max
+ #
+ if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+ if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
+ else: Pn = B
+ Xn = EnsembleOfBackgroundPerturbations( Xb, Pn, __m )
+ selfA.StoredVariables["Analysis"].store( Xb )
+ if selfA._toStore("APosterioriCovariance"):
+ if hasattr(B,"asfullmatrix"):
+ selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
+ else:
+ selfA.StoredVariables["APosterioriCovariance"].store( B )
+ selfA._setInternalState("seed", numpy.random.get_state())
+ elif selfA._parameters["nextStep"]:
+ Xn = selfA._getInternalState("Xn")
+ #
+ for step in range(duration-1):
+ numpy.random.set_state(selfA._getInternalState("seed"))
+ if hasattr(Y,"store"):
+ Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+ else:
+ Ynpu = numpy.ravel( Y ).reshape((__p,1))
+ #
+ if U is not None:
+ if hasattr(U,"store") and len(U)>1:
+ Un = numpy.ravel( U[step] ).reshape((-1,1))
+ elif hasattr(U,"store") and len(U)==1:
+ Un = numpy.ravel( U[0] ).reshape((-1,1))
+ else:
+ Un = numpy.ravel( U ).reshape((-1,1))
+ else:
+ Un = None
+ #
+ if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
+ Xn = CovarianceInflation( Xn,
+ selfA._parameters["InflationType"],
+ selfA._parameters["InflationFactor"],
+ )
+ #
+ #--------------------------
+ if VariantM == "IEnKF12":
+ Xfm = numpy.ravel(Xn.mean(axis=1, dtype=mfp).astype('float'))
+ EaX = EnsembleOfAnomalies( Xn ) / math.sqrt(__m-1)
+ __j = 0
+ Deltaw = 1
+ if not BnotT:
+ Ta = numpy.identity(__m)
+ vw = numpy.zeros(__m)
+ while numpy.linalg.norm(Deltaw) >= _e and __j <= _jmax:
+ vx1 = (Xfm + EaX @ vw).reshape((__n,1))
+ #
+ if BnotT:
+ E1 = vx1 + _epsilon * EaX
+ else:
+ E1 = vx1 + math.sqrt(__m-1) * EaX @ Ta
+ #
+ if selfA._parameters["EstimationOf"] == "State": # Forecast + Q
+ E2 = M( [(E1[:,i,numpy.newaxis], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ elif selfA._parameters["EstimationOf"] == "Parameters":
+ # --- > Par principe, M = Id
+ E2 = Xn
+ vx2 = E2.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+ vy1 = H((vx2, Un)).reshape((__p,1))
+ #
+ HE2 = H( [(E2[:,i,numpy.newaxis], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ vy2 = HE2.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
+ #
+ if BnotT:
+ EaY = (HE2 - vy2) / _epsilon
+ else:
+ EaY = ( (HE2 - vy2) @ numpy.linalg.inv(Ta) ) / math.sqrt(__m-1)
+ #
+ GradJ = numpy.ravel(vw[:,None] - EaY.transpose() @ (RI * ( Ynpu - vy1 )))
+ mH = numpy.identity(__m) + EaY.transpose() @ (RI * EaY).reshape((-1,__m))
+ Deltaw = - numpy.linalg.solve(mH,GradJ)
+ #
+ vw = vw + Deltaw
+ #
+ if not BnotT:
+ Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
+ #
+ __j = __j + 1
+ #
+ A2 = EnsembleOfAnomalies( E2 )
+ #
+ if BnotT:
+ Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
+ A2 = math.sqrt(__m-1) * A2 @ Ta / _epsilon
+ #
+ Xn = vx2 + A2
+ #--------------------------
+ else:
+ raise ValueError("VariantM has to be chosen in the authorized methods list.")
+ #
+ if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
+ Xn = CovarianceInflation( Xn,
+ selfA._parameters["InflationType"],
+ selfA._parameters["InflationFactor"],
+ )
+ #
+ Xa = EnsembleMean( Xn )
+ #--------------------------
+ selfA._setInternalState("Xn", Xn)
+ selfA._setInternalState("seed", numpy.random.get_state())
+ #--------------------------
+ #
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("APosterioriCovariance") \
+ or selfA._toStore("InnovationAtCurrentAnalysis") \
+ or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ _HXa = numpy.ravel( H((Xa, Un)) ).reshape((-1,1))
+ _Innovation = Ynpu - _HXa
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ # ---> avec analysis
+ selfA.StoredVariables["Analysis"].store( Xa )
+ if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+ # ---> avec current state
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CurrentState"):
+ selfA.StoredVariables["CurrentState"].store( Xn )
+ if selfA._toStore("ForecastState"):
+ selfA.StoredVariables["ForecastState"].store( E2 )
+ if selfA._toStore("ForecastCovariance"):
+ selfA.StoredVariables["ForecastCovariance"].store( EnsembleErrorCovariance(E2) )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( E2 - Xa )
+ if selfA._toStore("InnovationAtCurrentState"):
+ selfA.StoredVariables["InnovationAtCurrentState"].store( - HE2 + Ynpu )
+ if selfA._toStore("SimulatedObservationAtCurrentState") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HE2 )
+ # ---> autres
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
+ Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
+ J = Jb + Jo
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ #
+ if selfA._toStore("IndexOfOptimum") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
+ if selfA._parameters["EstimationOf"] == "Parameters" \
+ and J < previousJMinimum:
+ previousJMinimum = J
+ XaMin = Xa
+ if selfA._toStore("APosterioriCovariance"):
+ covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
+ # ---> Pour les smoothers
+ if selfA._toStore("CurrentEnsembleState"):
+ selfA.StoredVariables["CurrentEnsembleState"].store( Xn )
+ #
+ # Stockage final supplémentaire de l'optimum en estimation de paramètres
+ # ----------------------------------------------------------------------
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ selfA.StoredVariables["Analysis"].store( XaMin )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ 3DVAR incrémental
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import numpy, scipy, scipy.optimize, scipy.version
+from daCore.NumericObjects import HessienneEstimation, QuantilesEstimations
+from daCore.NumericObjects import RecentredBounds
+from daCore.PlatformInfo import PlatformInfo
+mpr = PlatformInfo().MachinePrecision()
+
+# ==============================================================================
+def incr3dvar(selfA, Xb, Y, HO, R, B):
+ """
+ 3DVAR incrémental
+ """
+ #
+ # Initialisations
+ # ---------------
+ Hm = HO["Direct"].appliedTo
+ #
+ if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
+ HXb = numpy.asarray(Hm( Xb, HO["AppliedInX"]["HXb"] ))
+ else:
+ HXb = numpy.asarray(Hm( Xb ))
+ HXb = HXb.reshape((-1,1))
+ if Y.size != HXb.size:
+ raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
+ if max(Y.shape) != max(HXb.shape):
+ raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
+ #
+ if selfA._toStore("JacobianMatrixAtBackground"):
+ HtMb = HO["Tangent"].asMatrix(ValueForMethodForm = Xb)
+ HtMb = HtMb.reshape(Y.size,Xb.size) # ADAO & check shape
+ selfA.StoredVariables["JacobianMatrixAtBackground"].store( HtMb )
+ #
+ BI = B.getI()
+ RI = R.getI()
+ #
+ Innovation = Y - HXb
+ #
+ # Outer Loop
+ # ----------
+ iOuter = 0
+ J = 1./mpr
+ DeltaJ = 1./mpr
+ Xr = numpy.asarray(selfA._parameters["InitializationPoint"]).reshape((-1,1))
+ while abs(DeltaJ) >= selfA._parameters["CostDecrementTolerance"] and iOuter <= selfA._parameters["MaximumNumberOfSteps"]:
+ #
+ # Inner Loop
+ # ----------
+ Ht = HO["Tangent"].asMatrix(Xr)
+ Ht = Ht.reshape(Y.size,Xr.size) # ADAO & check shape
+ #
+ # Définition de la fonction-coût
+ # ------------------------------
+ def CostFunction(dx):
+ _dX = numpy.asarray(dx).reshape((-1,1))
+ if selfA._parameters["StoreInternalVariables"] or \
+ selfA._toStore("CurrentState") or \
+ selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentState"].store( Xb + _dX )
+ _HdX = (Ht @ _dX).reshape((-1,1))
+ _dInnovation = Innovation - _HdX
+ if selfA._toStore("SimulatedObservationAtCurrentState") or \
+ selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HXb + _HdX )
+ if selfA._toStore("InnovationAtCurrentState"):
+ selfA.StoredVariables["InnovationAtCurrentState"].store( _dInnovation )
+ #
+ Jb = float( 0.5 * _dX.T * (BI * _dX) )
+ Jo = float( 0.5 * _dInnovation.T * (RI * _dInnovation) )
+ J = Jb + Jo
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ if selfA._toStore("IndexOfOptimum") or \
+ selfA._toStore("CurrentOptimum") or \
+ selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+ selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ return J
+ #
+ def GradientOfCostFunction(dx):
+ _dX = numpy.ravel( dx )
+ _HdX = (Ht @ _dX).reshape((-1,1))
+ _dInnovation = Innovation - _HdX
+ GradJb = BI @ _dX
+ GradJo = - Ht.T @ (RI * _dInnovation)
+ GradJ = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
+ return GradJ
+ #
+ # Minimisation de la fonctionnelle
+ # --------------------------------
+ nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
+ #
+ if selfA._parameters["Minimizer"] == "LBFGSB":
+ # Minimum, J_optimal, Informations = scipy.optimize.fmin_l_bfgs_b(
+ if "0.19" <= scipy.version.version <= "1.1.0":
+ import daAlgorithms.Atoms.lbfgsbhlt as optimiseur
+ else:
+ import scipy.optimize as optimiseur
+ Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
+ func = CostFunction,
+ x0 = numpy.zeros(Xb.size),
+ fprime = GradientOfCostFunction,
+ args = (),
+ bounds = RecentredBounds(selfA._parameters["Bounds"], Xb),
+ maxfun = selfA._parameters["MaximumNumberOfSteps"]-1,
+ factr = selfA._parameters["CostDecrementTolerance"]*1.e14,
+ pgtol = selfA._parameters["ProjectedGradientTolerance"],
+ iprint = selfA._parameters["optiprint"],
+ )
+ # nfeval = Informations['funcalls']
+ # rc = Informations['warnflag']
+ elif selfA._parameters["Minimizer"] == "TNC":
+ Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
+ func = CostFunction,
+ x0 = numpy.zeros(Xb.size),
+ fprime = GradientOfCostFunction,
+ args = (),
+ bounds = RecentredBounds(selfA._parameters["Bounds"], Xb),
+ maxfun = selfA._parameters["MaximumNumberOfSteps"],
+ pgtol = selfA._parameters["ProjectedGradientTolerance"],
+ ftol = selfA._parameters["CostDecrementTolerance"],
+ messages = selfA._parameters["optmessages"],
+ )
+ elif selfA._parameters["Minimizer"] == "CG":
+ Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
+ f = CostFunction,
+ x0 = numpy.zeros(Xb.size),
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ gtol = selfA._parameters["GradientNormTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ elif selfA._parameters["Minimizer"] == "NCG":
+ Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
+ f = CostFunction,
+ x0 = numpy.zeros(Xb.size),
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ avextol = selfA._parameters["CostDecrementTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ elif selfA._parameters["Minimizer"] == "BFGS":
+ Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
+ f = CostFunction,
+ x0 = numpy.zeros(Xb.size),
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ gtol = selfA._parameters["GradientNormTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ else:
+ raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
+ #
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ MinJ = selfA.StoredVariables["CostFunctionJ"][IndexMin]
+ #
+ if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+ Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
+ else:
+ Minimum = Xb + Minimum.reshape((-1,1))
+ #
+ Xr = Minimum
+ DeltaJ = selfA.StoredVariables["CostFunctionJ" ][-1] - J
+ iOuter = selfA.StoredVariables["CurrentIterationNumber"][-1]
+ #
+ Xa = Xr
+ #--------------------------
+ #
+ selfA.StoredVariables["Analysis"].store( Xa )
+ #
+ if selfA._toStore("OMA") or \
+ selfA._toStore("InnovationAtCurrentAnalysis") or \
+ selfA._toStore("SigmaObs2") or \
+ selfA._toStore("SimulationQuantiles") or \
+ selfA._toStore("SimulatedObservationAtOptimum"):
+ if selfA._toStore("SimulatedObservationAtCurrentState"):
+ HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
+ elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
+ else:
+ HXa = Hm( Xa )
+ oma = Y - HXa.reshape((-1,1))
+ #
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles") or \
+ selfA._toStore("JacobianMatrixAtOptimum") or \
+ selfA._toStore("KalmanGainAtOptimum"):
+ HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
+ HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles") or \
+ selfA._toStore("KalmanGainAtOptimum"):
+ HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
+ HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles"):
+ A = HessienneEstimation(selfA, Xa.size, HaM, HtM, BI, RI)
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( A )
+ if selfA._toStore("JacobianMatrixAtOptimum"):
+ selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
+ if selfA._toStore("KalmanGainAtOptimum"):
+ if (Y.size <= Xb.size): KG = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
+ elif (Y.size > Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
+ selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
+ #
+ # Calculs et/ou stockages supplémentaires
+ # ---------------------------------------
+ if selfA._toStore("Innovation") or \
+ selfA._toStore("SigmaObs2") or \
+ selfA._toStore("MahalanobisConsistency") or \
+ selfA._toStore("OMB"):
+ Innovation = Y - HXb
+ if selfA._toStore("Innovation"):
+ selfA.StoredVariables["Innovation"].store( Innovation )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+ if selfA._toStore("OMA"):
+ selfA.StoredVariables["OMA"].store( oma )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( oma )
+ if selfA._toStore("OMB"):
+ selfA.StoredVariables["OMB"].store( Innovation )
+ if selfA._toStore("SigmaObs2"):
+ TraceR = R.trace(Y.size)
+ selfA.StoredVariables["SigmaObs2"].store( float( (Innovation.T @ oma) ) / TraceR )
+ if selfA._toStore("MahalanobisConsistency"):
+ selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/Innovation.size ) )
+ if selfA._toStore("SimulationQuantiles"):
+ QuantilesEstimations(selfA, A, Xa, HXa, Hm, HtM)
+ if selfA._toStore("SimulatedObservationAtBackground"):
+ selfA.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
+ if selfA._toStore("SimulatedObservationAtOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ Maximum Likelihood Ensemble Filter
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import math, numpy, scipy, scipy.optimize, scipy.version
+from daCore.NumericObjects import Apply3DVarRecentringOnEnsemble
+from daCore.NumericObjects import CovarianceInflation
+from daCore.NumericObjects import EnsembleErrorCovariance
+from daCore.NumericObjects import EnsembleMean
+from daCore.NumericObjects import EnsembleOfAnomalies
+from daCore.NumericObjects import EnsembleOfBackgroundPerturbations
+from daCore.NumericObjects import EnsemblePerturbationWithGivenCovariance
+from daCore.PlatformInfo import PlatformInfo
+mpr = PlatformInfo().MachinePrecision()
+mfp = PlatformInfo().MaximumPrecision()
+
+# ==============================================================================
+def mlef(selfA, Xb, Y, U, HO, EM, CM, R, B, Q,
+ VariantM="MLEF13", BnotT=False, _epsilon=1.e-3, _e=1.e-7, _jmax=15000,
+ Hybrid=None,
+ ):
+ """
+ Maximum Likelihood Ensemble Filter (MLEF)
+ """
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA._parameters["StoreInternalVariables"] = True
+ #
+ # Opérateurs
+ H = HO["Direct"].appliedControledFormTo
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ M = EM["Direct"].appliedControledFormTo
+ #
+ if CM is not None and "Tangent" in CM and U is not None:
+ Cm = CM["Tangent"].asMatrix(Xb)
+ else:
+ Cm = None
+ #
+ # Durée d'observation et tailles
+ if hasattr(Y,"stepnumber"):
+ duration = Y.stepnumber()
+ __p = numpy.cumprod(Y.shape())[-1]
+ else:
+ duration = 2
+ __p = numpy.array(Y).size
+ #
+ # Précalcul des inversions de B et R
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ BI = B.getI()
+ RI = R.getI()
+ #
+ __n = Xb.size
+ __m = selfA._parameters["NumberOfMembers"]
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
+ previousJMinimum = numpy.finfo(float).max
+ #
+ if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+ Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
+ selfA.StoredVariables["Analysis"].store( Xb )
+ if selfA._toStore("APosterioriCovariance"):
+ if hasattr(B,"asfullmatrix"):
+ selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
+ else:
+ selfA.StoredVariables["APosterioriCovariance"].store( B )
+ selfA._setInternalState("seed", numpy.random.get_state())
+ elif selfA._parameters["nextStep"]:
+ Xn = selfA._getInternalState("Xn")
+ #
+ for step in range(duration-1):
+ numpy.random.set_state(selfA._getInternalState("seed"))
+ if hasattr(Y,"store"):
+ Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+ else:
+ Ynpu = numpy.ravel( Y ).reshape((__p,1))
+ #
+ if U is not None:
+ if hasattr(U,"store") and len(U)>1:
+ Un = numpy.ravel( U[step] ).reshape((-1,1))
+ elif hasattr(U,"store") and len(U)==1:
+ Un = numpy.ravel( U[0] ).reshape((-1,1))
+ else:
+ Un = numpy.ravel( U ).reshape((-1,1))
+ else:
+ Un = None
+ #
+ if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
+ Xn = CovarianceInflation( Xn,
+ selfA._parameters["InflationType"],
+ selfA._parameters["InflationFactor"],
+ )
+ #
+ if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
+ EMX = M( [(Xn[:,i], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ Xn_predicted = EnsemblePerturbationWithGivenCovariance( EMX, Q )
+ if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+ Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+ Xn_predicted = Xn_predicted + Cm @ Un
+ elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
+ # --- > Par principe, M = Id, Q = 0
+ Xn_predicted = EMX = Xn
+ #
+ #--------------------------
+ if VariantM == "MLEF13":
+ Xfm = numpy.ravel(Xn_predicted.mean(axis=1, dtype=mfp).astype('float'))
+ EaX = EnsembleOfAnomalies( Xn_predicted, Xfm, 1./math.sqrt(__m-1) )
+ Ua = numpy.identity(__m)
+ __j = 0
+ Deltaw = 1
+ if not BnotT:
+ Ta = numpy.identity(__m)
+ vw = numpy.zeros(__m)
+ while numpy.linalg.norm(Deltaw) >= _e and __j <= _jmax:
+ vx1 = (Xfm + EaX @ vw).reshape((__n,1))
+ #
+ if BnotT:
+ E1 = vx1 + _epsilon * EaX
+ else:
+ E1 = vx1 + math.sqrt(__m-1) * EaX @ Ta
+ #
+ HE2 = H( [(E1[:,i,numpy.newaxis], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ vy2 = HE2.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
+ #
+ if BnotT:
+ EaY = (HE2 - vy2) / _epsilon
+ else:
+ EaY = ( (HE2 - vy2) @ numpy.linalg.inv(Ta) ) / math.sqrt(__m-1)
+ #
+ GradJ = numpy.ravel(vw[:,None] - EaY.transpose() @ (RI * ( Ynpu - vy2 )))
+ mH = numpy.identity(__m) + EaY.transpose() @ (RI * EaY).reshape((-1,__m))
+ Deltaw = - numpy.linalg.solve(mH,GradJ)
+ #
+ vw = vw + Deltaw
+ #
+ if not BnotT:
+ Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
+ #
+ __j = __j + 1
+ #
+ if BnotT:
+ Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
+ #
+ Xn = vx1 + math.sqrt(__m-1) * EaX @ Ta @ Ua
+ #--------------------------
+ else:
+ raise ValueError("VariantM has to be chosen in the authorized methods list.")
+ #
+ if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
+ Xn = CovarianceInflation( Xn,
+ selfA._parameters["InflationType"],
+ selfA._parameters["InflationFactor"],
+ )
+ #
+ if Hybrid == "E3DVAR":
+ betaf = selfA._parameters["HybridCovarianceEquilibrium"]
+ Xn = Apply3DVarRecentringOnEnsemble(Xn, EMX, Ynpu, HO, R, B, betaf)
+ #
+ Xa = EnsembleMean( Xn )
+ #--------------------------
+ selfA._setInternalState("Xn", Xn)
+ selfA._setInternalState("seed", numpy.random.get_state())
+ #--------------------------
+ #
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("APosterioriCovariance") \
+ or selfA._toStore("InnovationAtCurrentAnalysis") \
+ or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ _HXa = numpy.ravel( H((Xa, Un)) ).reshape((-1,1))
+ _Innovation = Ynpu - _HXa
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ # ---> avec analysis
+ selfA.StoredVariables["Analysis"].store( Xa )
+ if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+ # ---> avec current state
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CurrentState"):
+ selfA.StoredVariables["CurrentState"].store( Xn )
+ if selfA._toStore("ForecastState"):
+ selfA.StoredVariables["ForecastState"].store( EMX )
+ if selfA._toStore("ForecastCovariance"):
+ selfA.StoredVariables["ForecastCovariance"].store( EnsembleErrorCovariance(EMX) )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( EMX - Xa )
+ if selfA._toStore("InnovationAtCurrentState"):
+ selfA.StoredVariables["InnovationAtCurrentState"].store( - HE2 + Ynpu )
+ if selfA._toStore("SimulatedObservationAtCurrentState") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HE2 )
+ # ---> autres
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
+ Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
+ J = Jb + Jo
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ #
+ if selfA._toStore("IndexOfOptimum") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
+ if selfA._parameters["EstimationOf"] == "Parameters" \
+ and J < previousJMinimum:
+ previousJMinimum = J
+ XaMin = Xa
+ if selfA._toStore("APosterioriCovariance"):
+ covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
+ # ---> Pour les smoothers
+ if selfA._toStore("CurrentEnsembleState"):
+ selfA.StoredVariables["CurrentEnsembleState"].store( Xn )
+ #
+ # Stockage final supplémentaire de l'optimum en estimation de paramètres
+ # ----------------------------------------------------------------------
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ selfA.StoredVariables["Analysis"].store( XaMin )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ 3DVAR PSAS
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import numpy, scipy, scipy.optimize, scipy.version
+from daCore.NumericObjects import HessienneEstimation, QuantilesEstimations
+
+# ==============================================================================
+def psas3dvar(selfA, Xb, Y, HO, R, B):
+ """
+ 3DVAR PSAS
+ """
+ #
+ # Initialisations
+ # ---------------
+ Hm = HO["Direct"].appliedTo
+ #
+ if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
+ HXb = numpy.asarray(Hm( Xb, HO["AppliedInX"]["HXb"] ))
+ else:
+ HXb = numpy.asarray(Hm( Xb ))
+ HXb = HXb.reshape((-1,1))
+ if Y.size != HXb.size:
+ raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
+ if max(Y.shape) != max(HXb.shape):
+ raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
+ #
+ if selfA._toStore("JacobianMatrixAtBackground"):
+ HtMb = HO["Tangent"].asMatrix(ValueForMethodForm = Xb)
+ HtMb = HtMb.reshape(Y.size,Xb.size) # ADAO & check shape
+ selfA.StoredVariables["JacobianMatrixAtBackground"].store( HtMb )
+ #
+ Ht = HO["Tangent"].asMatrix(Xb)
+ BHT = B * Ht.T
+ HBHTpR = R + Ht * BHT
+ Innovation = Y - HXb
+ #
+ Xini = numpy.zeros(Y.size)
+ #
+ # Définition de la fonction-coût
+ # ------------------------------
+ def CostFunction(w):
+ _W = numpy.asarray(w).reshape((-1,1))
+ if selfA._parameters["StoreInternalVariables"] or \
+ selfA._toStore("CurrentState") or \
+ selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentState"].store( Xb + BHT @ _W )
+ if selfA._toStore("SimulatedObservationAtCurrentState") or \
+ selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( Hm( Xb + BHT @ _W ) )
+ if selfA._toStore("InnovationAtCurrentState"):
+ selfA.StoredVariables["InnovationAtCurrentState"].store( Innovation )
+ #
+ Jb = float( 0.5 * _W.T @ (HBHTpR @ _W) )
+ Jo = float( - _W.T @ Innovation )
+ J = Jb + Jo
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ if selfA._toStore("IndexOfOptimum") or \
+ selfA._toStore("CurrentOptimum") or \
+ selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+ selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ return J
+ #
+ def GradientOfCostFunction(w):
+ _W = numpy.asarray(w).reshape((-1,1))
+ GradJb = HBHTpR @ _W
+ GradJo = - Innovation
+ GradJ = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
+ return GradJ
+ #
+ # Minimisation de la fonctionnelle
+ # --------------------------------
+ nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
+ #
+ if selfA._parameters["Minimizer"] == "LBFGSB":
+ if "0.19" <= scipy.version.version <= "1.1.0":
+ import daAlgorithms.Atoms.lbfgsbhlt as optimiseur
+ else:
+ import scipy.optimize as optimiseur
+ Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
+ func = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxfun = selfA._parameters["MaximumNumberOfSteps"]-1,
+ factr = selfA._parameters["CostDecrementTolerance"]*1.e14,
+ pgtol = selfA._parameters["ProjectedGradientTolerance"],
+ iprint = selfA._parameters["optiprint"],
+ )
+ # nfeval = Informations['funcalls']
+ # rc = Informations['warnflag']
+ elif selfA._parameters["Minimizer"] == "TNC":
+ Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
+ func = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxfun = selfA._parameters["MaximumNumberOfSteps"],
+ pgtol = selfA._parameters["ProjectedGradientTolerance"],
+ ftol = selfA._parameters["CostDecrementTolerance"],
+ messages = selfA._parameters["optmessages"],
+ )
+ elif selfA._parameters["Minimizer"] == "CG":
+ Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ gtol = selfA._parameters["GradientNormTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ elif selfA._parameters["Minimizer"] == "NCG":
+ Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ avextol = selfA._parameters["CostDecrementTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ elif selfA._parameters["Minimizer"] == "BFGS":
+ Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ gtol = selfA._parameters["GradientNormTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ else:
+ raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
+ #
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ MinJ = selfA.StoredVariables["CostFunctionJ"][IndexMin]
+ #
+ # Correction pour pallier a un bug de TNC sur le retour du Minimum
+ # ----------------------------------------------------------------
+ if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+ Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
+ else:
+ Minimum = Xb + BHT @ Minimum.reshape((-1,1))
+ #
+ Xa = Minimum
+ #--------------------------
+ #
+ selfA.StoredVariables["Analysis"].store( Xa )
+ #
+ if selfA._toStore("OMA") or \
+ selfA._toStore("InnovationAtCurrentAnalysis") or \
+ selfA._toStore("SigmaObs2") or \
+ selfA._toStore("SimulationQuantiles") or \
+ selfA._toStore("SimulatedObservationAtOptimum"):
+ if selfA._toStore("SimulatedObservationAtCurrentState"):
+ HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
+ elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
+ else:
+ HXa = Hm( Xa )
+ oma = Y - HXa.reshape((-1,1))
+ #
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles") or \
+ selfA._toStore("JacobianMatrixAtOptimum") or \
+ selfA._toStore("KalmanGainAtOptimum"):
+ HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
+ HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles") or \
+ selfA._toStore("KalmanGainAtOptimum"):
+ HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
+ HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles"):
+ BI = B.getI()
+ RI = R.getI()
+ A = HessienneEstimation(selfA, Xa.size, HaM, HtM, BI, RI)
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( A )
+ if selfA._toStore("JacobianMatrixAtOptimum"):
+ selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
+ if selfA._toStore("KalmanGainAtOptimum"):
+ if (Y.size <= Xb.size): KG = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
+ elif (Y.size > Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
+ selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
+ #
+ # Calculs et/ou stockages supplémentaires
+ # ---------------------------------------
+ if selfA._toStore("Innovation") or \
+ selfA._toStore("SigmaObs2") or \
+ selfA._toStore("MahalanobisConsistency") or \
+ selfA._toStore("OMB"):
+ Innovation = Y - HXb
+ if selfA._toStore("Innovation"):
+ selfA.StoredVariables["Innovation"].store( Innovation )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+ if selfA._toStore("OMA"):
+ selfA.StoredVariables["OMA"].store( oma )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( oma )
+ if selfA._toStore("OMB"):
+ selfA.StoredVariables["OMB"].store( Innovation )
+ if selfA._toStore("SigmaObs2"):
+ TraceR = R.trace(Y.size)
+ selfA.StoredVariables["SigmaObs2"].store( float( (Innovation.T @ oma) ) / TraceR )
+ if selfA._toStore("MahalanobisConsistency"):
+ selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/Innovation.size ) )
+ if selfA._toStore("SimulationQuantiles"):
+ QuantilesEstimations(selfA, A, Xa, HXa, Hm, HtM)
+ if selfA._toStore("SimulatedObservationAtBackground"):
+ selfA.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
+ if selfA._toStore("SimulatedObservationAtOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ Stochastic EnKF
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import math, numpy
+from daCore.NumericObjects import Apply3DVarRecentringOnEnsemble
+from daCore.NumericObjects import CovarianceInflation
+from daCore.NumericObjects import EnsembleErrorCovariance
+from daCore.NumericObjects import EnsembleMean
+from daCore.NumericObjects import EnsembleOfAnomalies
+from daCore.NumericObjects import EnsembleOfBackgroundPerturbations
+from daCore.NumericObjects import EnsembleOfCenteredPerturbations
+from daCore.NumericObjects import EnsemblePerturbationWithGivenCovariance
+from daCore.PlatformInfo import PlatformInfo
+mpr = PlatformInfo().MachinePrecision()
+mfp = PlatformInfo().MaximumPrecision()
+
+# ==============================================================================
+def senkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q,
+ VariantM="KalmanFilterFormula16",
+ Hybrid=None,
+ ):
+ """
+ Stochastic EnKF
+ """
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA._parameters["StoreInternalVariables"] = True
+ #
+ # Opérateurs
+ H = HO["Direct"].appliedControledFormTo
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ M = EM["Direct"].appliedControledFormTo
+ #
+ if CM is not None and "Tangent" in CM and U is not None:
+ Cm = CM["Tangent"].asMatrix(Xb)
+ else:
+ Cm = None
+ #
+ # Durée d'observation et tailles
+ if hasattr(Y,"stepnumber"):
+ duration = Y.stepnumber()
+ __p = numpy.cumprod(Y.shape())[-1]
+ else:
+ duration = 2
+ __p = numpy.array(Y).size
+ #
+ # Précalcul des inversions de B et R
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ BI = B.getI()
+ RI = R.getI()
+ #
+ __n = Xb.size
+ __m = selfA._parameters["NumberOfMembers"]
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
+ previousJMinimum = numpy.finfo(float).max
+ #
+ if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
+ else: Rn = R
+ #
+ if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+ if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
+ else: Pn = B
+ Xn = EnsembleOfBackgroundPerturbations( Xb, Pn, __m )
+ selfA.StoredVariables["Analysis"].store( Xb )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+ selfA._setInternalState("seed", numpy.random.get_state())
+ elif selfA._parameters["nextStep"]:
+ Xn = selfA._getInternalState("Xn")
+ #
+ for step in range(duration-1):
+ numpy.random.set_state(selfA._getInternalState("seed"))
+ if hasattr(Y,"store"):
+ Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+ else:
+ Ynpu = numpy.ravel( Y ).reshape((__p,1))
+ #
+ if U is not None:
+ if hasattr(U,"store") and len(U)>1:
+ Un = numpy.ravel( U[step] ).reshape((-1,1))
+ elif hasattr(U,"store") and len(U)==1:
+ Un = numpy.ravel( U[0] ).reshape((-1,1))
+ else:
+ Un = numpy.ravel( U ).reshape((-1,1))
+ else:
+ Un = None
+ #
+ if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
+ Xn = CovarianceInflation( Xn,
+ selfA._parameters["InflationType"],
+ selfA._parameters["InflationFactor"],
+ )
+ #
+ if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
+ EMX = M( [(Xn[:,i], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ Xn_predicted = EnsemblePerturbationWithGivenCovariance( EMX, Q )
+ HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+ Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+ Xn_predicted = Xn_predicted + Cm @ Un
+ elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
+ # --- > Par principe, M = Id, Q = 0
+ Xn_predicted = EMX = Xn
+ HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
+ argsAsSerie = True,
+ returnSerieAsArrayMatrix = True )
+ #
+ # Mean of forecast and observation of forecast
+ Xfm = EnsembleMean( Xn_predicted )
+ Hfm = EnsembleMean( HX_predicted )
+ #
+ #--------------------------
+ if VariantM == "KalmanFilterFormula05":
+ PfHT, HPfHT = 0., 0.
+ for i in range(__m):
+ Exfi = Xn_predicted[:,i].reshape((__n,1)) - Xfm
+ Eyfi = HX_predicted[:,i].reshape((__p,1)) - Hfm
+ PfHT += Exfi * Eyfi.T
+ HPfHT += Eyfi * Eyfi.T
+ PfHT = (1./(__m-1)) * PfHT
+ HPfHT = (1./(__m-1)) * HPfHT
+ Kn = PfHT * ( R + HPfHT ).I
+ del PfHT, HPfHT
+ #
+ for i in range(__m):
+ ri = numpy.random.multivariate_normal(numpy.zeros(__p), Rn)
+ Xn[:,i] = numpy.ravel(Xn_predicted[:,i]) + Kn @ (numpy.ravel(Ynpu) + ri - HX_predicted[:,i])
+ #--------------------------
+ elif VariantM == "KalmanFilterFormula16":
+ EpY = EnsembleOfCenteredPerturbations(Ynpu, Rn, __m)
+ EpYm = EpY.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
+ #
+ EaX = EnsembleOfAnomalies( Xn_predicted ) / math.sqrt(__m-1)
+ EaY = (HX_predicted - Hfm - EpY + EpYm) / math.sqrt(__m-1)
+ #
+ Kn = EaX @ EaY.T @ numpy.linalg.inv( EaY @ EaY.T)
+ #
+ for i in range(__m):
+ Xn[:,i] = numpy.ravel(Xn_predicted[:,i]) + Kn @ (numpy.ravel(EpY[:,i]) - HX_predicted[:,i])
+ #--------------------------
+ else:
+ raise ValueError("VariantM has to be chosen in the authorized methods list.")
+ #
+ if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
+ Xn = CovarianceInflation( Xn,
+ selfA._parameters["InflationType"],
+ selfA._parameters["InflationFactor"],
+ )
+ #
+ if Hybrid == "E3DVAR":
+ betaf = selfA._parameters["HybridCovarianceEquilibrium"]
+ Xn = Apply3DVarRecentringOnEnsemble(Xn, EMX, Ynpu, HO, R, B, betaf)
+ #
+ Xa = EnsembleMean( Xn )
+ #--------------------------
+ selfA._setInternalState("Xn", Xn)
+ selfA._setInternalState("seed", numpy.random.get_state())
+ #--------------------------
+ #
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("APosterioriCovariance") \
+ or selfA._toStore("InnovationAtCurrentAnalysis") \
+ or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ _HXa = numpy.ravel( H((Xa, Un)) ).reshape((-1,1))
+ _Innovation = Ynpu - _HXa
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ # ---> avec analysis
+ selfA.StoredVariables["Analysis"].store( Xa )
+ if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+ # ---> avec current state
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CurrentState"):
+ selfA.StoredVariables["CurrentState"].store( Xn )
+ if selfA._toStore("ForecastState"):
+ selfA.StoredVariables["ForecastState"].store( EMX )
+ if selfA._toStore("ForecastCovariance"):
+ selfA.StoredVariables["ForecastCovariance"].store( EnsembleErrorCovariance(EMX) )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( EMX - Xa )
+ if selfA._toStore("InnovationAtCurrentState"):
+ selfA.StoredVariables["InnovationAtCurrentState"].store( - HX_predicted + Ynpu )
+ if selfA._toStore("SimulatedObservationAtCurrentState") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
+ # ---> autres
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
+ Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
+ J = Jb + Jo
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ #
+ if selfA._toStore("IndexOfOptimum") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
+ if selfA._parameters["EstimationOf"] == "Parameters" \
+ and J < previousJMinimum:
+ previousJMinimum = J
+ XaMin = Xa
+ if selfA._toStore("APosterioriCovariance"):
+ covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
+ # ---> Pour les smoothers
+ if selfA._toStore("CurrentEnsembleState"):
+ selfA.StoredVariables["CurrentEnsembleState"].store( Xn )
+ #
+ # Stockage final supplémentaire de l'optimum en estimation de paramètres
+ # ----------------------------------------------------------------------
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ selfA.StoredVariables["Analysis"].store( XaMin )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ 3DVAR
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import numpy, scipy, scipy.optimize, scipy.version
+from daCore.NumericObjects import HessienneEstimation, QuantilesEstimations
+
+# ==============================================================================
+def std3dvar(selfA, Xb, Y, HO, R, B):
+ """
+ 3DVAR
+ """
+ #
+ # Initialisations
+ # ---------------
+ Hm = HO["Direct"].appliedTo
+ Ha = HO["Adjoint"].appliedInXTo
+ #
+ if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
+ HXb = numpy.asarray(Hm( Xb, HO["AppliedInX"]["HXb"] ))
+ else:
+ HXb = numpy.asarray(Hm( Xb ))
+ HXb = HXb.reshape((-1,1))
+ if Y.size != HXb.size:
+ raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
+ if max(Y.shape) != max(HXb.shape):
+ raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
+ #
+ if selfA._toStore("JacobianMatrixAtBackground"):
+ HtMb = HO["Tangent"].asMatrix(ValueForMethodForm = Xb)
+ HtMb = HtMb.reshape(Y.size,Xb.size) # ADAO & check shape
+ selfA.StoredVariables["JacobianMatrixAtBackground"].store( HtMb )
+ #
+ BI = B.getI()
+ RI = R.getI()
+ #
+ Xini = selfA._parameters["InitializationPoint"]
+ #
+ # Définition de la fonction-coût
+ # ------------------------------
+ def CostFunction(x):
+ _X = numpy.asarray(x).reshape((-1,1))
+ if selfA._parameters["StoreInternalVariables"] or \
+ selfA._toStore("CurrentState") or \
+ selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentState"].store( _X )
+ _HX = numpy.asarray(Hm( _X )).reshape((-1,1))
+ _Innovation = Y - _HX
+ if selfA._toStore("SimulatedObservationAtCurrentState") or \
+ selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
+ if selfA._toStore("InnovationAtCurrentState"):
+ selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
+ #
+ Jb = float( 0.5 * (_X - Xb).T * (BI * (_X - Xb)) )
+ Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
+ J = Jb + Jo
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ if selfA._toStore("IndexOfOptimum") or \
+ selfA._toStore("CurrentOptimum") or \
+ selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+ selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ return J
+ #
+ def GradientOfCostFunction(x):
+ _X = numpy.asarray(x).reshape((-1,1))
+ _HX = numpy.asarray(Hm( _X )).reshape((-1,1))
+ GradJb = BI * (_X - Xb)
+ GradJo = - Ha( (_X, RI * (Y - _HX)) )
+ GradJ = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
+ return GradJ
+ #
+ # Minimisation de la fonctionnelle
+ # --------------------------------
+ nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
+ #
+ if selfA._parameters["Minimizer"] == "LBFGSB":
+ if "0.19" <= scipy.version.version <= "1.1.0":
+ import daAlgorithms.Atoms.lbfgsbhlt as optimiseur
+ else:
+ import scipy.optimize as optimiseur
+ Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
+ func = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ bounds = selfA._parameters["Bounds"],
+ maxfun = selfA._parameters["MaximumNumberOfSteps"]-1,
+ factr = selfA._parameters["CostDecrementTolerance"]*1.e14,
+ pgtol = selfA._parameters["ProjectedGradientTolerance"],
+ iprint = selfA._parameters["optiprint"],
+ )
+ # nfeval = Informations['funcalls']
+ # rc = Informations['warnflag']
+ elif selfA._parameters["Minimizer"] == "TNC":
+ Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
+ func = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ bounds = selfA._parameters["Bounds"],
+ maxfun = selfA._parameters["MaximumNumberOfSteps"],
+ pgtol = selfA._parameters["ProjectedGradientTolerance"],
+ ftol = selfA._parameters["CostDecrementTolerance"],
+ messages = selfA._parameters["optmessages"],
+ )
+ elif selfA._parameters["Minimizer"] == "CG":
+ Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ gtol = selfA._parameters["GradientNormTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ elif selfA._parameters["Minimizer"] == "NCG":
+ Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ avextol = selfA._parameters["CostDecrementTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ elif selfA._parameters["Minimizer"] == "BFGS":
+ Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ gtol = selfA._parameters["GradientNormTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ else:
+ raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
+ #
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ MinJ = selfA.StoredVariables["CostFunctionJ"][IndexMin]
+ #
+ # Correction pour pallier a un bug de TNC sur le retour du Minimum
+ # ----------------------------------------------------------------
+ if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+ Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
+ #
+ Xa = Minimum
+ #--------------------------
+ #
+ selfA.StoredVariables["Analysis"].store( Xa )
+ #
+ if selfA._toStore("OMA") or \
+ selfA._toStore("InnovationAtCurrentAnalysis") or \
+ selfA._toStore("SigmaObs2") or \
+ selfA._toStore("SimulationQuantiles") or \
+ selfA._toStore("SimulatedObservationAtOptimum"):
+ if selfA._toStore("SimulatedObservationAtCurrentState"):
+ HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
+ elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
+ else:
+ HXa = Hm( Xa )
+ oma = Y - HXa.reshape((-1,1))
+ #
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles") or \
+ selfA._toStore("JacobianMatrixAtOptimum") or \
+ selfA._toStore("KalmanGainAtOptimum"):
+ HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
+ HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles") or \
+ selfA._toStore("KalmanGainAtOptimum"):
+ HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
+ HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles"):
+ A = HessienneEstimation(selfA, Xa.size, HaM, HtM, BI, RI)
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( A )
+ if selfA._toStore("JacobianMatrixAtOptimum"):
+ selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
+ if selfA._toStore("KalmanGainAtOptimum"):
+ if (Y.size <= Xb.size): KG = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
+ elif (Y.size > Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
+ selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
+ #
+ # Calculs et/ou stockages supplémentaires
+ # ---------------------------------------
+ if selfA._toStore("Innovation") or \
+ selfA._toStore("SigmaObs2") or \
+ selfA._toStore("MahalanobisConsistency") or \
+ selfA._toStore("OMB"):
+ Innovation = Y - HXb
+ if selfA._toStore("Innovation"):
+ selfA.StoredVariables["Innovation"].store( Innovation )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+ if selfA._toStore("OMA"):
+ selfA.StoredVariables["OMA"].store( oma )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( oma )
+ if selfA._toStore("OMB"):
+ selfA.StoredVariables["OMB"].store( Innovation )
+ if selfA._toStore("SigmaObs2"):
+ TraceR = R.trace(Y.size)
+ selfA.StoredVariables["SigmaObs2"].store( float( (Innovation.T @ oma) ) / TraceR )
+ if selfA._toStore("MahalanobisConsistency"):
+ selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/Innovation.size ) )
+ if selfA._toStore("SimulationQuantiles"):
+ QuantilesEstimations(selfA, A, Xa, HXa, Hm, HtM)
+ if selfA._toStore("SimulatedObservationAtBackground"):
+ selfA.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
+ if selfA._toStore("SimulatedObservationAtOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ 4DVAR
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import numpy, scipy, scipy.optimize, scipy.version
+from daCore.NumericObjects import ForceNumericBounds, ApplyBounds
+from daCore.PlatformInfo import PlatformInfo
+mpr = PlatformInfo().MachinePrecision()
+mfp = PlatformInfo().MaximumPrecision()
+
+# ==============================================================================
+def std4dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+ """
+ 4DVAR
+ """
+ #
+ # Initialisations
+ # ---------------
+ #
+ # Opérateurs
+ Hm = HO["Direct"].appliedControledFormTo
+ Mm = EM["Direct"].appliedControledFormTo
+ #
+ if CM is not None and "Tangent" in CM and U is not None:
+ Cm = CM["Tangent"].asMatrix(Xb)
+ else:
+ Cm = None
+ #
+ def Un(_step):
+ if U is not None:
+ if hasattr(U,"store") and 1<=_step<len(U) :
+ _Un = numpy.ravel( U[_step] ).reshape((-1,1))
+ elif hasattr(U,"store") and len(U)==1:
+ _Un = numpy.ravel( U[0] ).reshape((-1,1))
+ else:
+ _Un = numpy.ravel( U ).reshape((-1,1))
+ else:
+ _Un = None
+ return _Un
+ def CmUn(_xn,_un):
+ if Cm is not None and _un is not None: # Attention : si Cm est aussi dans M, doublon !
+ _Cm = Cm.reshape(_xn.size,_un.size) # ADAO & check shape
+ _CmUn = (_Cm @ _un).reshape((-1,1))
+ else:
+ _CmUn = 0.
+ return _CmUn
+ #
+ # Remarque : les observations sont exploitées à partir du pas de temps
+ # numéro 1, et sont utilisées dans Yo comme rangées selon ces indices.
+ # Donc le pas 0 n'est pas utilisé puisque la première étape commence
+ # avec l'observation du pas 1.
+ #
+ # Nombre de pas identique au nombre de pas d'observations
+ if hasattr(Y,"stepnumber"):
+ duration = Y.stepnumber()
+ else:
+ duration = 2
+ #
+ # Précalcul des inversions de B et R
+ BI = B.getI()
+ RI = R.getI()
+ #
+ # Point de démarrage de l'optimisation
+ Xini = selfA._parameters["InitializationPoint"]
+ #
+ # Définition de la fonction-coût
+ # ------------------------------
+ selfA.DirectCalculation = [None,] # Le pas 0 n'est pas observé
+ selfA.DirectInnovation = [None,] # Le pas 0 n'est pas observé
+ def CostFunction(x):
+ _X = numpy.asarray(x).reshape((-1,1))
+ if selfA._parameters["StoreInternalVariables"] or \
+ selfA._toStore("CurrentState") or \
+ selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentState"].store( _X )
+ Jb = float( 0.5 * (_X - Xb).T * (BI * (_X - Xb)) )
+ selfA.DirectCalculation = [None,]
+ selfA.DirectInnovation = [None,]
+ Jo = 0.
+ _Xn = _X
+ for step in range(0,duration-1):
+ if hasattr(Y,"store"):
+ _Ynpu = numpy.ravel( Y[step+1] ).reshape((-1,1))
+ else:
+ _Ynpu = numpy.ravel( Y ).reshape((-1,1))
+ _Un = Un(step)
+ #
+ # Etape d'évolution
+ if selfA._parameters["EstimationOf"] == "State":
+ _Xn = Mm( (_Xn, _Un) ).reshape((-1,1)) + CmUn(_Xn, _Un)
+ elif selfA._parameters["EstimationOf"] == "Parameters":
+ pass
+ #
+ if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
+ _Xn = ApplyBounds( _Xn, ForceNumericBounds(selfA._parameters["Bounds"]) )
+ #
+ # Etape de différence aux observations
+ if selfA._parameters["EstimationOf"] == "State":
+ _YmHMX = _Ynpu - numpy.ravel( Hm( (_Xn, None) ) ).reshape((-1,1))
+ elif selfA._parameters["EstimationOf"] == "Parameters":
+ _YmHMX = _Ynpu - numpy.ravel( Hm( (_Xn, _Un) ) ).reshape((-1,1)) - CmUn(_Xn, _Un)
+ #
+ # Stockage de l'état
+ selfA.DirectCalculation.append( _Xn )
+ selfA.DirectInnovation.append( _YmHMX )
+ #
+ # Ajout dans la fonctionnelle d'observation
+ Jo = Jo + 0.5 * float( _YmHMX.T * (RI * _YmHMX) )
+ J = Jb + Jo
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ if selfA._toStore("IndexOfOptimum") or \
+ selfA._toStore("CurrentOptimum") or \
+ selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ return J
+ #
+ def GradientOfCostFunction(x):
+ _X = numpy.asarray(x).reshape((-1,1))
+ GradJb = BI * (_X - Xb)
+ GradJo = 0.
+ for step in range(duration-1,0,-1):
+ # Étape de récupération du dernier stockage de l'évolution
+ _Xn = selfA.DirectCalculation.pop()
+ # Étape de récupération du dernier stockage de l'innovation
+ _YmHMX = selfA.DirectInnovation.pop()
+ # Calcul des adjoints
+ Ha = HO["Adjoint"].asMatrix(ValueForMethodForm = _Xn)
+ Ha = Ha.reshape(_Xn.size,_YmHMX.size) # ADAO & check shape
+ Ma = EM["Adjoint"].asMatrix(ValueForMethodForm = _Xn)
+ Ma = Ma.reshape(_Xn.size,_Xn.size) # ADAO & check shape
+ # Calcul du gradient par état adjoint
+ GradJo = GradJo + Ha * (RI * _YmHMX) # Équivaut pour Ha linéaire à : Ha( (_Xn, RI * _YmHMX) )
+ GradJo = Ma * GradJo # Équivaut pour Ma linéaire à : Ma( (_Xn, GradJo) )
+ GradJ = numpy.ravel( GradJb ) - numpy.ravel( GradJo )
+ return GradJ
+ #
+ # Minimisation de la fonctionnelle
+ # --------------------------------
+ nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
+ #
+ if selfA._parameters["Minimizer"] == "LBFGSB":
+ if "0.19" <= scipy.version.version <= "1.1.0":
+ import daAlgorithms.Atoms.lbfgsbhlt as optimiseur
+ else:
+ import scipy.optimize as optimiseur
+ Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
+ func = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ bounds = selfA._parameters["Bounds"],
+ maxfun = selfA._parameters["MaximumNumberOfSteps"]-1,
+ factr = selfA._parameters["CostDecrementTolerance"]*1.e14,
+ pgtol = selfA._parameters["ProjectedGradientTolerance"],
+ iprint = selfA._parameters["optiprint"],
+ )
+ # nfeval = Informations['funcalls']
+ # rc = Informations['warnflag']
+ elif selfA._parameters["Minimizer"] == "TNC":
+ Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
+ func = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ bounds = selfA._parameters["Bounds"],
+ maxfun = selfA._parameters["MaximumNumberOfSteps"],
+ pgtol = selfA._parameters["ProjectedGradientTolerance"],
+ ftol = selfA._parameters["CostDecrementTolerance"],
+ messages = selfA._parameters["optmessages"],
+ )
+ elif selfA._parameters["Minimizer"] == "CG":
+ Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ gtol = selfA._parameters["GradientNormTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ elif selfA._parameters["Minimizer"] == "NCG":
+ Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ avextol = selfA._parameters["CostDecrementTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ elif selfA._parameters["Minimizer"] == "BFGS":
+ Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ gtol = selfA._parameters["GradientNormTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ else:
+ raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
+ #
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ #
+ # Correction pour pallier a un bug de TNC sur le retour du Minimum
+ # ----------------------------------------------------------------
+ if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+ Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
+ #
+ # Obtention de l'analyse
+ # ----------------------
+ Xa = Minimum
+ #
+ selfA.StoredVariables["Analysis"].store( Xa )
+ #
+ # Calculs et/ou stockages supplémentaires
+ # ---------------------------------------
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ Standard Kalman Filter
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import numpy
+from daCore.PlatformInfo import PlatformInfo
+mpr = PlatformInfo().MachinePrecision()
+mfp = PlatformInfo().MaximumPrecision()
+
+# ==============================================================================
+def stdkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+ """
+ Standard Kalman Filter
+ """
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA._parameters["StoreInternalVariables"] = True
+ #
+ # Opérateurs
+ # ----------
+ Ht = HO["Tangent"].asMatrix(Xb)
+ Ha = HO["Adjoint"].asMatrix(Xb)
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ Mt = EM["Tangent"].asMatrix(Xb)
+ Ma = EM["Adjoint"].asMatrix(Xb)
+ #
+ if CM is not None and "Tangent" in CM and U is not None:
+ Cm = CM["Tangent"].asMatrix(Xb)
+ else:
+ Cm = None
+ #
+ # Durée d'observation et tailles
+ if hasattr(Y,"stepnumber"):
+ duration = Y.stepnumber()
+ __p = numpy.cumprod(Y.shape())[-1]
+ else:
+ duration = 2
+ __p = numpy.array(Y).size
+ #
+ # Précalcul des inversions de B et R
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ BI = B.getI()
+ RI = R.getI()
+ #
+ __n = Xb.size
+ nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
+ #
+ if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+ Xn = Xb
+ Pn = B
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ selfA.StoredVariables["Analysis"].store( Xb )
+ if selfA._toStore("APosterioriCovariance"):
+ if hasattr(B,"asfullmatrix"):
+ selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
+ else:
+ selfA.StoredVariables["APosterioriCovariance"].store( B )
+ selfA._setInternalState("seed", numpy.random.get_state())
+ elif selfA._parameters["nextStep"]:
+ Xn = selfA._getInternalState("Xn")
+ Pn = selfA._getInternalState("Pn")
+ #
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ XaMin = Xn
+ previousJMinimum = numpy.finfo(float).max
+ #
+ for step in range(duration-1):
+ if hasattr(Y,"store"):
+ Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+ else:
+ Ynpu = numpy.ravel( Y ).reshape((__p,1))
+ #
+ if U is not None:
+ if hasattr(U,"store") and len(U)>1:
+ Un = numpy.ravel( U[step] ).reshape((-1,1))
+ elif hasattr(U,"store") and len(U)==1:
+ Un = numpy.ravel( U[0] ).reshape((-1,1))
+ else:
+ Un = numpy.ravel( U ).reshape((-1,1))
+ else:
+ Un = None
+ #
+ if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
+ Xn_predicted = Mt @ Xn
+ if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+ Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+ Xn_predicted = Xn_predicted + Cm @ Un
+ Pn_predicted = Q + Mt * (Pn * Ma)
+ elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
+ # --- > Par principe, M = Id, Q = 0
+ Xn_predicted = Xn
+ Pn_predicted = Pn
+ #
+ if selfA._parameters["EstimationOf"] == "State":
+ HX_predicted = Ht @ Xn_predicted
+ _Innovation = Ynpu - HX_predicted
+ elif selfA._parameters["EstimationOf"] == "Parameters":
+ HX_predicted = Ht @ Xn_predicted
+ _Innovation = Ynpu - HX_predicted
+ if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
+ _Innovation = _Innovation - Cm @ Un
+ #
+ Kn = Pn_predicted * Ha * numpy.linalg.inv(R + numpy.dot(Ht, Pn_predicted * Ha))
+ Xn = Xn_predicted + Kn * _Innovation
+ Pn = Pn_predicted - Kn * Ht * Pn_predicted
+ #
+ Xa = Xn # Pointeurs
+ #--------------------------
+ selfA._setInternalState("Xn", Xn)
+ selfA._setInternalState("Pn", Pn)
+ #--------------------------
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ # ---> avec analysis
+ selfA.StoredVariables["Analysis"].store( Xa )
+ if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( Ht * Xa )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+ # ---> avec current state
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CurrentState"):
+ selfA.StoredVariables["CurrentState"].store( Xn )
+ if selfA._toStore("ForecastState"):
+ selfA.StoredVariables["ForecastState"].store( Xn_predicted )
+ if selfA._toStore("ForecastCovariance"):
+ selfA.StoredVariables["ForecastCovariance"].store( Pn_predicted )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( Xn_predicted - Xa )
+ if selfA._toStore("InnovationAtCurrentState"):
+ selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
+ if selfA._toStore("SimulatedObservationAtCurrentState") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
+ # ---> autres
+ if selfA._parameters["StoreInternalVariables"] \
+ or selfA._toStore("CostFunctionJ") \
+ or selfA._toStore("CostFunctionJb") \
+ or selfA._toStore("CostFunctionJo") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("APosterioriCovariance"):
+ Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
+ Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
+ J = Jb + Jo
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ #
+ if selfA._toStore("IndexOfOptimum") \
+ or selfA._toStore("CurrentOptimum") \
+ or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+ or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+ or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+ if selfA._parameters["EstimationOf"] == "Parameters" \
+ and J < previousJMinimum:
+ previousJMinimum = J
+ XaMin = Xa
+ if selfA._toStore("APosterioriCovariance"):
+ covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
+ #
+ # Stockage final supplémentaire de l'optimum en estimation de paramètres
+ # ----------------------------------------------------------------------
+ if selfA._parameters["EstimationOf"] == "Parameters":
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+ selfA.StoredVariables["Analysis"].store( XaMin )
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2022 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+__doc__ = """
+ 3DVAR variational analysis with no inversion of B
+"""
+__author__ = "Jean-Philippe ARGAUD"
+
+import numpy, scipy, scipy.optimize, scipy.version
+from daCore.NumericObjects import HessienneEstimation, QuantilesEstimations
+from daCore.NumericObjects import RecentredBounds
+from daCore.PlatformInfo import PlatformInfo
+mpr = PlatformInfo().MachinePrecision()
+
+# ==============================================================================
+def van3dvar(selfA, Xb, Y, HO, R, B):
+ """
+ 3DVAR variational analysis with no inversion of B
+ """
+ #
+ # Initialisations
+ # ---------------
+ Hm = HO["Direct"].appliedTo
+ Ha = HO["Adjoint"].appliedInXTo
+ #
+ if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
+ HXb = numpy.asarray(Hm( Xb, HO["AppliedInX"]["HXb"] ))
+ else:
+ HXb = numpy.asarray(Hm( Xb ))
+ HXb = HXb.reshape((-1,1))
+ if Y.size != HXb.size:
+ raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
+ if max(Y.shape) != max(HXb.shape):
+ raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
+ #
+ if selfA._toStore("JacobianMatrixAtBackground"):
+ HtMb = HO["Tangent"].asMatrix(ValueForMethodForm = Xb)
+ HtMb = HtMb.reshape(Y.size,Xb.size) # ADAO & check shape
+ selfA.StoredVariables["JacobianMatrixAtBackground"].store( HtMb )
+ #
+ BT = B.getT()
+ RI = R.getI()
+ if ("Bounds" in selfA._parameters) and selfA._parameters["Bounds"] is not None:
+ BI = B.getI()
+ else:
+ BI = None
+ #
+ Xini = numpy.zeros(Xb.size)
+ #
+ # Définition de la fonction-coût
+ # ------------------------------
+ def CostFunction(v):
+ _V = numpy.asarray(v).reshape((-1,1))
+ _X = Xb + (B @ _V).reshape((-1,1))
+ if selfA._parameters["StoreInternalVariables"] or \
+ selfA._toStore("CurrentState") or \
+ selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentState"].store( _X )
+ _HX = numpy.asarray(Hm( _X )).reshape((-1,1))
+ _Innovation = Y - _HX
+ if selfA._toStore("SimulatedObservationAtCurrentState") or \
+ selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
+ if selfA._toStore("InnovationAtCurrentState"):
+ selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
+ #
+ Jb = float( 0.5 * _V.T * (BT * _V) )
+ Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
+ J = Jb + Jo
+ #
+ selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
+ selfA.StoredVariables["CostFunctionJb"].store( Jb )
+ selfA.StoredVariables["CostFunctionJo"].store( Jo )
+ selfA.StoredVariables["CostFunctionJ" ].store( J )
+ if selfA._toStore("IndexOfOptimum") or \
+ selfA._toStore("CurrentOptimum") or \
+ selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+ selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+ selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ if selfA._toStore("IndexOfOptimum"):
+ selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+ if selfA._toStore("CurrentOptimum"):
+ selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
+ if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
+ if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+ if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+ if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+ selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+ return J
+ #
+ def GradientOfCostFunction(v):
+ _V = numpy.asarray(v).reshape((-1,1))
+ _X = Xb + (B @ _V).reshape((-1,1))
+ _HX = numpy.asarray(Hm( _X )).reshape((-1,1))
+ GradJb = BT * _V
+ GradJo = - BT * Ha( (_X, RI * (Y - _HX)) )
+ GradJ = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
+ return GradJ
+ #
+ # Minimisation de la fonctionnelle
+ # --------------------------------
+ nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
+ #
+ if selfA._parameters["Minimizer"] == "LBFGSB":
+ if "0.19" <= scipy.version.version <= "1.1.0":
+ import daAlgorithms.Atoms.lbfgsbhlt as optimiseur
+ else:
+ import scipy.optimize as optimiseur
+ Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
+ func = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ bounds = RecentredBounds(selfA._parameters["Bounds"], Xb, BI),
+ maxfun = selfA._parameters["MaximumNumberOfSteps"]-1,
+ factr = selfA._parameters["CostDecrementTolerance"]*1.e14,
+ pgtol = selfA._parameters["ProjectedGradientTolerance"],
+ iprint = selfA._parameters["optiprint"],
+ )
+ # nfeval = Informations['funcalls']
+ # rc = Informations['warnflag']
+ elif selfA._parameters["Minimizer"] == "TNC":
+ Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
+ func = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ bounds = RecentredBounds(selfA._parameters["Bounds"], Xb, BI),
+ maxfun = selfA._parameters["MaximumNumberOfSteps"],
+ pgtol = selfA._parameters["ProjectedGradientTolerance"],
+ ftol = selfA._parameters["CostDecrementTolerance"],
+ messages = selfA._parameters["optmessages"],
+ )
+ elif selfA._parameters["Minimizer"] == "CG":
+ Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ gtol = selfA._parameters["GradientNormTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ elif selfA._parameters["Minimizer"] == "NCG":
+ Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ avextol = selfA._parameters["CostDecrementTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ elif selfA._parameters["Minimizer"] == "BFGS":
+ Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
+ f = CostFunction,
+ x0 = Xini,
+ fprime = GradientOfCostFunction,
+ args = (),
+ maxiter = selfA._parameters["MaximumNumberOfSteps"],
+ gtol = selfA._parameters["GradientNormTolerance"],
+ disp = selfA._parameters["optdisp"],
+ full_output = True,
+ )
+ else:
+ raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
+ #
+ IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+ MinJ = selfA.StoredVariables["CostFunctionJ"][IndexMin]
+ #
+ # Correction pour pallier a un bug de TNC sur le retour du Minimum
+ # ----------------------------------------------------------------
+ if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+ Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
+ else:
+ Minimum = Xb + B * Minimum.reshape((-1,1)) # Pas @
+ #
+ Xa = Minimum
+ #--------------------------
+ #
+ selfA.StoredVariables["Analysis"].store( Xa )
+ #
+ if selfA._toStore("OMA") or \
+ selfA._toStore("InnovationAtCurrentAnalysis") or \
+ selfA._toStore("SigmaObs2") or \
+ selfA._toStore("SimulationQuantiles") or \
+ selfA._toStore("SimulatedObservationAtOptimum"):
+ if selfA._toStore("SimulatedObservationAtCurrentState"):
+ HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
+ elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+ HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
+ else:
+ HXa = Hm( Xa )
+ oma = Y - HXa.reshape((-1,1))
+ #
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles") or \
+ selfA._toStore("JacobianMatrixAtOptimum") or \
+ selfA._toStore("KalmanGainAtOptimum"):
+ HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
+ HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles") or \
+ selfA._toStore("KalmanGainAtOptimum"):
+ HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
+ HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
+ if selfA._toStore("APosterioriCovariance") or \
+ selfA._toStore("SimulationQuantiles"):
+ BI = B.getI()
+ A = HessienneEstimation(selfA, Xa.size, HaM, HtM, BI, RI)
+ if selfA._toStore("APosterioriCovariance"):
+ selfA.StoredVariables["APosterioriCovariance"].store( A )
+ if selfA._toStore("JacobianMatrixAtOptimum"):
+ selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
+ if selfA._toStore("KalmanGainAtOptimum"):
+ if (Y.size <= Xb.size): KG = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
+ elif (Y.size > Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
+ selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
+ #
+ # Calculs et/ou stockages supplémentaires
+ # ---------------------------------------
+ if selfA._toStore("Innovation") or \
+ selfA._toStore("SigmaObs2") or \
+ selfA._toStore("MahalanobisConsistency") or \
+ selfA._toStore("OMB"):
+ Innovation = Y - HXb
+ if selfA._toStore("Innovation"):
+ selfA.StoredVariables["Innovation"].store( Innovation )
+ if selfA._toStore("BMA"):
+ selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+ if selfA._toStore("OMA"):
+ selfA.StoredVariables["OMA"].store( oma )
+ if selfA._toStore("InnovationAtCurrentAnalysis"):
+ selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( oma )
+ if selfA._toStore("OMB"):
+ selfA.StoredVariables["OMB"].store( Innovation )
+ if selfA._toStore("SigmaObs2"):
+ TraceR = R.trace(Y.size)
+ selfA.StoredVariables["SigmaObs2"].store( float( (Innovation.T @ oma) ) / TraceR )
+ if selfA._toStore("MahalanobisConsistency"):
+ selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/Innovation.size ) )
+ if selfA._toStore("SimulationQuantiles"):
+ QuantilesEstimations(selfA, A, Xa, HXa, Hm, HtM)
+ if selfA._toStore("SimulatedObservationAtBackground"):
+ selfA.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
+ if selfA._toStore("SimulatedObservationAtOptimum"):
+ selfA.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
+ #
+ return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+ print('\n AUTODIAGNOSTIC\n')
#
# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
-import logging
-from daCore import BasicObjects, NumericObjects
import numpy
+from daCore import BasicObjects, NumericObjects
+from daAlgorithms.Atoms import ecwblue
# ==============================================================================
class ElementaryAlgorithm(BasicObjects.Algorithm):
def __init__(self):
BasicObjects.Algorithm.__init__(self, "BLUE")
+ self.defineRequiredParameter(
+ name = "Variant",
+ default = "Blue",
+ typecast = str,
+ message = "Variant ou formulation de la méthode",
+ listval = [
+ "Blue",
+ "OneCorrection",
+ ],
+ )
+ self.defineRequiredParameter(
+ name = "EstimationOf",
+ default = "Parameters",
+ typecast = str,
+ message = "Estimation d'état ou de paramètres",
+ listval = ["State", "Parameters"],
+ )
self.defineRequiredParameter(
name = "StoreInternalVariables",
default = False,
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
+ "ForecastState",
"Innovation",
+ "InnovationAtCurrentAnalysis",
"MahalanobisConsistency",
"OMA",
"OMB",
)
self.requireInputArguments(
mandatory= ("Xb", "Y", "HO", "R", "B"),
+ optional = ("U", "EM", "CM", "Q"),
)
self.setAttributes(tags=(
"DataAssimilation",
def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
#
- Hm = HO["Tangent"].asMatrix(Xb)
- Hm = Hm.reshape(Y.size,Xb.size) # ADAO & check shape
- Ha = HO["Adjoint"].asMatrix(Xb)
- Ha = Ha.reshape(Xb.size,Y.size) # ADAO & check shape
- #
- if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
- HXb = HO["AppliedInX"]["HXb"]
- else:
- HXb = Hm @ Xb
- HXb = HXb.reshape((-1,1))
- if Y.size != HXb.size:
- raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
- if max(Y.shape) != max(HXb.shape):
- raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
- #
- BI = B.getI()
- RI = R.getI()
+ #--------------------------
+ if self._parameters["Variant"] == "Blue":
+ NumericObjects.multiXOsteps(self, Xb, Y, U, HO, EM, CM, R, B, Q, ecwblue.ecwblue)
#
- Innovation = Y - HXb
+ #--------------------------
+ elif self._parameters["Variant"] == "OneCorrection":
+ ecwblue.ecwblue(self, Xb, Y, HO, R, B)
#
- # Calcul de la matrice de gain et de l'analyse
- # --------------------------------------------
- if Y.size <= Xb.size:
- _A = R + numpy.dot(Hm, B * Ha)
- _u = numpy.linalg.solve( _A , Innovation )
- Xa = Xb + B * Ha * _u
+ #--------------------------
else:
- _A = BI + numpy.dot(Ha, RI * Hm)
- _u = numpy.linalg.solve( _A , numpy.dot(Ha, RI * Innovation) )
- Xa = Xb + _u
- self.StoredVariables["Analysis"].store( Xa )
- #
- # Calcul de la fonction coût
- # --------------------------
- if self._parameters["StoreInternalVariables"] or \
- self._toStore("CostFunctionJ") or self._toStore("CostFunctionJAtCurrentOptimum") or \
- self._toStore("CostFunctionJb") or self._toStore("CostFunctionJbAtCurrentOptimum") or \
- self._toStore("CostFunctionJo") or self._toStore("CostFunctionJoAtCurrentOptimum") or \
- self._toStore("OMA") or \
- self._toStore("SigmaObs2") or \
- self._toStore("MahalanobisConsistency") or \
- self._toStore("SimulatedObservationAtCurrentOptimum") or \
- self._toStore("SimulatedObservationAtCurrentState") or \
- self._toStore("SimulatedObservationAtOptimum") or \
- self._toStore("SimulationQuantiles"):
- HXa = Hm @ Xa
- oma = Y - HXa
- if self._parameters["StoreInternalVariables"] or \
- self._toStore("CostFunctionJ") or self._toStore("CostFunctionJAtCurrentOptimum") or \
- self._toStore("CostFunctionJb") or self._toStore("CostFunctionJbAtCurrentOptimum") or \
- self._toStore("CostFunctionJo") or self._toStore("CostFunctionJoAtCurrentOptimum") or \
- self._toStore("MahalanobisConsistency"):
- Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
- Jo = float( 0.5 * oma.T * (RI * oma) )
- J = Jb + Jo
- self.StoredVariables["CostFunctionJb"].store( Jb )
- self.StoredVariables["CostFunctionJo"].store( Jo )
- self.StoredVariables["CostFunctionJ" ].store( J )
- self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( Jb )
- self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( Jo )
- self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( J )
- #
- # Calcul de la covariance d'analyse
- # ---------------------------------
- if self._toStore("APosterioriCovariance") or \
- self._toStore("SimulationQuantiles"):
- if (Y.size <= Xb.size): K = B * Ha * (R + numpy.dot(Hm, B * Ha)).I
- elif (Y.size > Xb.size): K = (BI + numpy.dot(Ha, RI * Hm)).I * Ha * RI
- A = B - K * Hm * B
- if min(A.shape) != max(A.shape):
- raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(self._name,str(A.shape)))
- if (numpy.diag(A) < 0).any():
- raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(self._name,))
- if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
- try:
- L = numpy.linalg.cholesky( A )
- except:
- raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(self._name,))
- self.StoredVariables["APosterioriCovariance"].store( A )
- #
- # Calculs et/ou stockages supplémentaires
- # ---------------------------------------
- if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
- self.StoredVariables["CurrentState"].store( Xa )
- if self._toStore("CurrentOptimum"):
- self.StoredVariables["CurrentOptimum"].store( Xa )
- if self._toStore("Innovation"):
- self.StoredVariables["Innovation"].store( Innovation )
- if self._toStore("BMA"):
- self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
- if self._toStore("OMA"):
- self.StoredVariables["OMA"].store( oma )
- if self._toStore("OMB"):
- self.StoredVariables["OMB"].store( Innovation )
- if self._toStore("SigmaObs2"):
- TraceR = R.trace(Y.size)
- self.StoredVariables["SigmaObs2"].store( float( Innovation.T @ oma ) / TraceR )
- if self._toStore("SigmaBck2"):
- self.StoredVariables["SigmaBck2"].store( float( (Innovation.T @ (Hm @ (Xa - Xb)))/(Hm * (B * Hm.T)).trace() ) )
- if self._toStore("MahalanobisConsistency"):
- self.StoredVariables["MahalanobisConsistency"].store( float( 2.*J/Innovation.size ) )
- if self._toStore("SimulationQuantiles"):
- H = HO["Direct"].appliedTo
- NumericObjects.QuantilesEstimations(self, A, Xa, HXa, H, Hm)
- if self._toStore("SimulatedObservationAtBackground"):
- self.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
- if self._toStore("SimulatedObservationAtCurrentState"):
- self.StoredVariables["SimulatedObservationAtCurrentState"].store( HXa )
- if self._toStore("SimulatedObservationAtCurrentOptimum"):
- self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( HXa )
- if self._toStore("SimulatedObservationAtOptimum"):
- self.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
+ raise ValueError("Error in Variant name: %s"%self._parameters["Variant"])
#
self._post_run(HO)
return 0
#
# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
-import logging
-from daCore import BasicObjects, NumericObjects
import numpy
+from daCore import BasicObjects
+from daAlgorithms.Atoms import enks, etkf, ienkf, mlef, senkf
# ==============================================================================
class ElementaryAlgorithm(BasicObjects.Algorithm):
#--------------------------
# Default EnKF = EnKF-16 = StochasticEnKF
if self._parameters["Variant"] == "EnKF-05":
- NumericObjects.senkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="KalmanFilterFormula05")
+ senkf.senkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="KalmanFilterFormula05")
#
elif self._parameters["Variant"] in ["EnKF-16", "StochasticEnKF", "EnKF"]:
- NumericObjects.senkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="KalmanFilterFormula16")
+ senkf.senkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="KalmanFilterFormula16")
#
#--------------------------
# Default ETKF = ETKF-KFF
elif self._parameters["Variant"] in ["ETKF-KFF", "ETKF"]:
- NumericObjects.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="KalmanFilterFormula")
+ etkf.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="KalmanFilterFormula")
#
elif self._parameters["Variant"] == "ETKF-VAR":
- NumericObjects.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="Variational")
+ etkf.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="Variational")
#
#--------------------------
# Default ETKF-N = ETKF-N-16
elif self._parameters["Variant"] == "ETKF-N-11":
- NumericObjects.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="FiniteSize11")
+ etkf.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="FiniteSize11")
#
elif self._parameters["Variant"] == "ETKF-N-15":
- NumericObjects.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="FiniteSize15")
+ etkf.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="FiniteSize15")
#
elif self._parameters["Variant"] in ["ETKF-N-16", "ETKF-N"]:
- NumericObjects.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="FiniteSize16")
+ etkf.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="FiniteSize16")
#
#--------------------------
# Default MLEF = MLEF-T
elif self._parameters["Variant"] in ["MLEF-T", "MLEF"]:
- NumericObjects.mlef(self, Xb, Y, U, HO, EM, CM, R, B, Q, BnotT=False)
+ mlef.mlef(self, Xb, Y, U, HO, EM, CM, R, B, Q, BnotT=False)
#
elif self._parameters["Variant"] == "MLEF-B":
- NumericObjects.mlef(self, Xb, Y, U, HO, EM, CM, R, B, Q, BnotT=True)
+ mlef.mlef(self, Xb, Y, U, HO, EM, CM, R, B, Q, BnotT=True)
#
#--------------------------
# Default IEnKF = IEnKF-T
elif self._parameters["Variant"] in ["IEnKF-T", "IEnKF"]:
- NumericObjects.ienkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, BnotT=False)
+ ienkf.ienkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, BnotT=False)
#
elif self._parameters["Variant"] in ["IEnKF-B", "IEKF"]:
- NumericObjects.ienkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, BnotT=True)
+ ienkf.ienkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, BnotT=True)
#
#--------------------------
# Default EnKS = EnKS-KFF
elif self._parameters["Variant"] in ["EnKS-KFF", "EnKS"]:
- NumericObjects.enks(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="EnKS16-KalmanFilterFormula")
+ enks.enks(self, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="EnKS16-KalmanFilterFormula")
#
#--------------------------
- # Default E3DVAR = E3DVAR-EnKF
- elif self._parameters["Variant"] in ["E3DVAR-EnKF", "E3DVAR"]:
- NumericObjects.senkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, Hybrid="E3DVAR")
+ # Default E3DVAR = E3DVAR-ETKF
+ elif self._parameters["Variant"] == "E3DVAR-EnKF":
+ senkf.senkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, Hybrid="E3DVAR")
#
- elif self._parameters["Variant"] == "E3DVAR-ETKF":
- NumericObjects.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, Hybrid="E3DVAR")
+ elif self._parameters["Variant"] in ["E3DVAR-ETKF", "E3DVAR"]:
+ etkf.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, Hybrid="E3DVAR")
#
elif self._parameters["Variant"] == "E3DVAR-MLEF":
- NumericObjects.mlef(self, Xb, Y, U, HO, EM, CM, R, B, Q, Hybrid="E3DVAR")
+ mlef.mlef(self, Xb, Y, U, HO, EM, CM, R, B, Q, Hybrid="E3DVAR")
#
#--------------------------
else:
#
# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
-import logging
-from daCore import BasicObjects, NumericObjects
import numpy
+from daCore import BasicObjects, NumericObjects
+from daAlgorithms.Atoms import ecwexblue
# ==============================================================================
class ElementaryAlgorithm(BasicObjects.Algorithm):
def __init__(self):
BasicObjects.Algorithm.__init__(self, "EXTENDEDBLUE")
+ self.defineRequiredParameter(
+ name = "Variant",
+ default = "ExtendedBlue",
+ typecast = str,
+ message = "Variant ou formulation de la méthode",
+ listval = [
+ "ExtendedBlue",
+ "OneCorrection",
+ ],
+ )
+ self.defineRequiredParameter(
+ name = "EstimationOf",
+ default = "Parameters",
+ typecast = str,
+ message = "Estimation d'état ou de paramètres",
+ listval = ["State", "Parameters"],
+ )
self.defineRequiredParameter(
name = "StoreInternalVariables",
default = False,
"CostFunctionJoAtCurrentOptimum",
"CurrentOptimum",
"CurrentState",
+ "ForecastState",
"Innovation",
+ "InnovationAtCurrentAnalysis",
"MahalanobisConsistency",
"OMA",
"OMB",
)
self.requireInputArguments(
mandatory= ("Xb", "Y", "HO", "R", "B"),
+ optional = ("U", "EM", "CM", "Q"),
)
self.setAttributes(tags=(
"DataAssimilation",
def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
#
- Hm = HO["Tangent"].asMatrix(Xb)
- Hm = Hm.reshape(Y.size,Xb.size) # ADAO & check shape
- Ha = HO["Adjoint"].asMatrix(Xb)
- Ha = Ha.reshape(Xb.size,Y.size) # ADAO & check shape
- H = HO["Direct"].appliedTo
- #
- if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
- HXb = H( Xb, HO["AppliedInX"]["HXb"])
- else:
- HXb = H( Xb )
- HXb = HXb.reshape((-1,1))
- if Y.size != HXb.size:
- raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
- if max(Y.shape) != max(HXb.shape):
- raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
- #
- BI = B.getI()
- RI = R.getI()
+ #--------------------------
+ if self._parameters["Variant"] == "ExtendedBlue":
+ NumericObjects.multiXOsteps(self, Xb, Y, U, HO, EM, CM, R, B, Q, ecwexblue.ecwexblue)
#
- Innovation = Y - HXb
+ #--------------------------
+ elif self._parameters["Variant"] == "OneCorrection":
+ ecwexblue.ecwexblue(self, Xb, Y, HO, R, B)
#
- # Calcul de la matrice de gain et de l'analyse
- # --------------------------------------------
- if Y.size <= Xb.size:
- _A = R + numpy.dot(Hm, B * Ha)
- _u = numpy.linalg.solve( _A , Innovation )
- Xa = Xb + B * Ha * _u
+ #--------------------------
else:
- _A = BI + numpy.dot(Ha, RI * Hm)
- _u = numpy.linalg.solve( _A , numpy.dot(Ha, RI * Innovation) )
- Xa = Xb + _u
- self.StoredVariables["Analysis"].store( Xa )
- #
- # Calcul de la fonction coût
- # --------------------------
- if self._parameters["StoreInternalVariables"] or \
- self._toStore("CostFunctionJ") or self._toStore("CostFunctionJAtCurrentOptimum") or \
- self._toStore("CostFunctionJb") or self._toStore("CostFunctionJbAtCurrentOptimum") or \
- self._toStore("CostFunctionJo") or self._toStore("CostFunctionJoAtCurrentOptimum") or \
- self._toStore("OMA") or \
- self._toStore("SigmaObs2") or \
- self._toStore("MahalanobisConsistency") or \
- self._toStore("SimulatedObservationAtCurrentOptimum") or \
- self._toStore("SimulatedObservationAtCurrentState") or \
- self._toStore("SimulatedObservationAtOptimum") or \
- self._toStore("SimulationQuantiles"):
- HXa = H( Xa ).reshape((-1,1))
- oma = Y - HXa
- if self._parameters["StoreInternalVariables"] or \
- self._toStore("CostFunctionJ") or self._toStore("CostFunctionJAtCurrentOptimum") or \
- self._toStore("CostFunctionJb") or self._toStore("CostFunctionJbAtCurrentOptimum") or \
- self._toStore("CostFunctionJo") or self._toStore("CostFunctionJoAtCurrentOptimum") or \
- self._toStore("MahalanobisConsistency"):
- Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
- Jo = float( 0.5 * oma.T * (RI * oma) )
- J = Jb + Jo
- self.StoredVariables["CostFunctionJb"].store( Jb )
- self.StoredVariables["CostFunctionJo"].store( Jo )
- self.StoredVariables["CostFunctionJ" ].store( J )
- self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( Jb )
- self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( Jo )
- self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( J )
- #
- # Calcul de la covariance d'analyse
- # ---------------------------------
- if self._toStore("APosterioriCovariance") or \
- self._toStore("SimulationQuantiles"):
- if (Y.size <= Xb.size): K = B * Ha * (R + numpy.dot(Hm, B * Ha)).I
- elif (Y.size > Xb.size): K = (BI + numpy.dot(Ha, RI * Hm)).I * Ha * RI
- A = B - K * Hm * B
- if min(A.shape) != max(A.shape):
- raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(self._name,str(A.shape)))
- if (numpy.diag(A) < 0).any():
- raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(self._name,))
- if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
- try:
- L = numpy.linalg.cholesky( A )
- except:
- raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(self._name,))
- self.StoredVariables["APosterioriCovariance"].store( A )
- #
- # Calculs et/ou stockages supplémentaires
- # ---------------------------------------
- if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
- self.StoredVariables["CurrentState"].store( Xa )
- if self._toStore("CurrentOptimum"):
- self.StoredVariables["CurrentOptimum"].store( Xa )
- if self._toStore("Innovation"):
- self.StoredVariables["Innovation"].store( Innovation )
- if self._toStore("BMA"):
- self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
- if self._toStore("OMA"):
- self.StoredVariables["OMA"].store( oma )
- if self._toStore("OMB"):
- self.StoredVariables["OMB"].store( Innovation )
- if self._toStore("SigmaObs2"):
- TraceR = R.trace(Y.size)
- self.StoredVariables["SigmaObs2"].store( float( Innovation.T @ oma ) / TraceR )
- if self._toStore("SigmaBck2"):
- self.StoredVariables["SigmaBck2"].store( float( (Innovation.T @ (Hm @ (Xa - Xb)))/(Hm * (B * Hm.T)).trace() ) )
- if self._toStore("MahalanobisConsistency"):
- self.StoredVariables["MahalanobisConsistency"].store( float( 2.*J/Innovation.size ) )
- if self._toStore("SimulationQuantiles"):
- HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
- HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
- NumericObjects.QuantilesEstimations(self, A, Xa, HXa, H, HtM)
- if self._toStore("SimulatedObservationAtBackground"):
- self.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
- if self._toStore("SimulatedObservationAtCurrentState"):
- self.StoredVariables["SimulatedObservationAtCurrentState"].store( HXa )
- if self._toStore("SimulatedObservationAtCurrentOptimum"):
- self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( HXa )
- if self._toStore("SimulatedObservationAtOptimum"):
- self.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
+ raise ValueError("Error in Variant name: %s"%self._parameters["Variant"])
#
self._post_run(HO)
return 0
#
# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
-import logging
-from daCore import BasicObjects, NumericObjects
+from daCore import BasicObjects
+from daAlgorithms.Atoms import cekf, exkf
# ==============================================================================
class ElementaryAlgorithm(BasicObjects.Algorithm):
# Default EKF
#--------------------------
if self._parameters["Variant"] == "EKF":
- NumericObjects.exkf(self, Xb, Y, U, HO, EM, CM, R, B, Q)
+ exkf.exkf(self, Xb, Y, U, HO, EM, CM, R, B, Q)
#
#--------------------------
# Default CEKF
elif self._parameters["Variant"] == "CEKF":
- NumericObjects.cekf(self, Xb, Y, U, HO, EM, CM, R, B, Q)
+ cekf.cekf(self, Xb, Y, U, HO, EM, CM, R, B, Q)
#
#--------------------------
else:
#
# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
-import logging
-from daCore import BasicObjects, NumericObjects
-import numpy
+from daCore import BasicObjects
+from daAlgorithms.Atoms import stdkf
# ==============================================================================
class ElementaryAlgorithm(BasicObjects.Algorithm):
self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
#
#--------------------------
- NumericObjects.stdkf(self, Xb, Y, U, HO, EM, CM, R, B, Q)
+ stdkf.stdkf(self, Xb, Y, U, HO, EM, CM, R, B, Q)
#--------------------------
#
self._post_run(HO)
#
# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
-import logging
-from daCore import BasicObjects
-import numpy
+from daCore import BasicObjects, NumericObjects
+from daAlgorithms.Atoms import ecwlls
# ==============================================================================
class ElementaryAlgorithm(BasicObjects.Algorithm):
def __init__(self):
BasicObjects.Algorithm.__init__(self, "LINEARLEASTSQUARES")
+ self.defineRequiredParameter(
+ name = "Variant",
+ default = "LinearLeastSquares",
+ typecast = str,
+ message = "Variant ou formulation de la méthode",
+ listval = [
+ "LinearLeastSquares",
+ "OneCorrection",
+ ],
+ )
+ self.defineRequiredParameter(
+ name = "EstimationOf",
+ default = "Parameters",
+ typecast = str,
+ message = "Estimation d'état ou de paramètres",
+ listval = ["State", "Parameters"],
+ )
self.defineRequiredParameter(
name = "StoreInternalVariables",
default = False,
"CostFunctionJoAtCurrentOptimum",
"CurrentOptimum",
"CurrentState",
+ "ForecastState",
+ "InnovationAtCurrentAnalysis",
"OMA",
"SimulatedObservationAtCurrentOptimum",
"SimulatedObservationAtCurrentState",
def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
#
- Hm = HO["Tangent"].asMatrix(Xb)
- Hm = Hm.reshape(Y.size,-1) # ADAO & check shape
- Ha = HO["Adjoint"].asMatrix(Xb)
- Ha = Ha.reshape(-1,Y.size) # ADAO & check shape
+ #--------------------------
+ if self._parameters["Variant"] == "LinearLeastSquares":
+ NumericObjects.multiXOsteps(self, Xb, Y, U, HO, EM, CM, R, B, Q, ecwlls.ecwlls)
#
- if R is None:
- RI = 1.
- else:
- RI = R.getI()
- #
- # Calcul de la matrice de gain et de l'analyse
- # --------------------------------------------
- K = (Ha * (RI * Hm)).I * Ha * RI
- Xa = K * Y
- self.StoredVariables["Analysis"].store( Xa )
+ #--------------------------
+ elif self._parameters["Variant"] == "OneCorrection":
+ ecwlls.ecwlls(self, Xb, Y, HO, R, B)
#
- # Calcul de la fonction coût
- # --------------------------
- if self._parameters["StoreInternalVariables"] or \
- self._toStore("CostFunctionJ") or self._toStore("CostFunctionJAtCurrentOptimum") or \
- self._toStore("CostFunctionJb") or self._toStore("CostFunctionJbAtCurrentOptimum") or \
- self._toStore("CostFunctionJo") or self._toStore("CostFunctionJoAtCurrentOptimum") or \
- self._toStore("OMA") or \
- self._toStore("SimulatedObservationAtCurrentOptimum") or \
- self._toStore("SimulatedObservationAtCurrentState") or \
- self._toStore("SimulatedObservationAtOptimum"):
- HXa = Hm * Xa
- oma = Y - HXa
- if self._parameters["StoreInternalVariables"] or \
- self._toStore("CostFunctionJ") or self._toStore("CostFunctionJAtCurrentOptimum") or \
- self._toStore("CostFunctionJb") or self._toStore("CostFunctionJbAtCurrentOptimum") or \
- self._toStore("CostFunctionJo") or self._toStore("CostFunctionJoAtCurrentOptimum"):
- Jb = 0.
- Jo = float( 0.5 * oma.T * (RI * oma) )
- J = Jb + Jo
- self.StoredVariables["CostFunctionJb"].store( Jb )
- self.StoredVariables["CostFunctionJo"].store( Jo )
- self.StoredVariables["CostFunctionJ" ].store( J )
- self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( Jb )
- self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( Jo )
- self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( J )
- #
- # Calculs et/ou stockages supplémentaires
- # ---------------------------------------
- if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
- self.StoredVariables["CurrentState"].store( Xa )
- if self._toStore("CurrentOptimum"):
- self.StoredVariables["CurrentOptimum"].store( Xa )
- if self._toStore("OMA"):
- self.StoredVariables["OMA"].store( oma )
- if self._toStore("SimulatedObservationAtBackground"):
- self.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
- if self._toStore("SimulatedObservationAtCurrentState"):
- self.StoredVariables["SimulatedObservationAtCurrentState"].store( HXa )
- if self._toStore("SimulatedObservationAtCurrentOptimum"):
- self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( HXa )
- if self._toStore("SimulatedObservationAtOptimum"):
- self.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
+ #--------------------------
+ else:
+ raise ValueError("Error in Variant name: %s"%self._parameters["Variant"])
#
self._post_run(HO)
return 0
#
# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
-import logging
-from daCore import BasicObjects
-import numpy, scipy.optimize, scipy.version
+import numpy
+from daCore import BasicObjects, NumericObjects
+from daAlgorithms.Atoms import ecwnlls
# ==============================================================================
class ElementaryAlgorithm(BasicObjects.Algorithm):
def __init__(self):
BasicObjects.Algorithm.__init__(self, "NONLINEARLEASTSQUARES")
+ self.defineRequiredParameter(
+ name = "Variant",
+ default = "NonLinearLeastSquares",
+ typecast = str,
+ message = "Variant ou formulation de la méthode",
+ listval = [
+ "NonLinearLeastSquares",
+ "OneCorrection",
+ ],
+ )
self.defineRequiredParameter(
name = "Minimizer",
default = "LBFGSB",
"LM",
],
)
+ self.defineRequiredParameter(
+ name = "EstimationOf",
+ default = "Parameters",
+ typecast = str,
+ message = "Estimation d'état ou de paramètres",
+ listval = ["State", "Parameters"],
+ )
self.defineRequiredParameter(
name = "MaximumNumberOfSteps",
default = 15000,
"CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
+ "ForecastState",
"IndexOfOptimum",
"Innovation",
+ "InnovationAtCurrentAnalysis",
"InnovationAtCurrentState",
"OMA",
"OMB",
)
self.requireInputArguments(
mandatory= ("Xb", "Y", "HO", "R"),
+ optional = ("U", "EM", "CM", "Q"),
)
self.setAttributes(tags=(
"Optimization",
def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
#
- # Initialisations
- # ---------------
- Hm = HO["Direct"].appliedTo
- Ha = HO["Adjoint"].appliedInXTo
- #
- if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
- HXb = Hm( Xb, HO["AppliedInX"]["HXb"] )
- else:
- HXb = Hm( Xb )
- HXb = HXb.reshape((-1,1))
- if Y.size != HXb.size:
- raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
- if max(Y.shape) != max(HXb.shape):
- raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
- #
- RI = R.getI()
- if self._parameters["Minimizer"] == "LM":
- RdemiI = R.choleskyI()
- #
- Xini = self._parameters["InitializationPoint"]
- #
- # Définition de la fonction-coût
- # ------------------------------
- def CostFunction(x):
- _X = numpy.ravel( x ).reshape((-1,1))
- if self._parameters["StoreInternalVariables"] or \
- self._toStore("CurrentState") or \
- self._toStore("CurrentOptimum"):
- self.StoredVariables["CurrentState"].store( _X )
- _HX = Hm( _X ).reshape((-1,1))
- _Innovation = Y - _HX
- if self._toStore("SimulatedObservationAtCurrentState") or \
- self._toStore("SimulatedObservationAtCurrentOptimum"):
- self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
- if self._toStore("InnovationAtCurrentState"):
- self.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
- #
- Jb = 0.
- Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
- J = Jb + Jo
- #
- self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
- self.StoredVariables["CostFunctionJb"].store( Jb )
- self.StoredVariables["CostFunctionJo"].store( Jo )
- self.StoredVariables["CostFunctionJ" ].store( J )
- if self._toStore("IndexOfOptimum") or \
- self._toStore("CurrentOptimum") or \
- self._toStore("CostFunctionJAtCurrentOptimum") or \
- self._toStore("CostFunctionJbAtCurrentOptimum") or \
- self._toStore("CostFunctionJoAtCurrentOptimum") or \
- self._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if self._toStore("IndexOfOptimum"):
- self.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if self._toStore("CurrentOptimum"):
- self.StoredVariables["CurrentOptimum"].store( self.StoredVariables["CurrentState"][IndexMin] )
- if self._toStore("SimulatedObservationAtCurrentOptimum"):
- self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
- if self._toStore("CostFunctionJbAtCurrentOptimum"):
- self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJb"][IndexMin] )
- if self._toStore("CostFunctionJoAtCurrentOptimum"):
- self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJo"][IndexMin] )
- if self._toStore("CostFunctionJAtCurrentOptimum"):
- self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( self.StoredVariables["CostFunctionJ" ][IndexMin] )
- return J
- #
- def GradientOfCostFunction(x):
- _X = x.reshape((-1,1))
- _HX = Hm( _X ).reshape((-1,1))
- GradJb = 0.
- GradJo = - Ha( (_X, RI * (Y - _HX)) )
- GradJ = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
- return GradJ
- #
- def CostFunctionLM(x):
- _X = numpy.ravel( x ).reshape((-1,1))
- _HX = Hm( _X ).reshape((-1,1))
- _Innovation = Y - _HX
- Jb = 0.
- Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
- J = Jb + Jo
- if self._parameters["StoreInternalVariables"] or \
- self._toStore("CurrentState"):
- self.StoredVariables["CurrentState"].store( _X )
- self.StoredVariables["CostFunctionJb"].store( Jb )
- self.StoredVariables["CostFunctionJo"].store( Jo )
- self.StoredVariables["CostFunctionJ" ].store( J )
- #
- return numpy.ravel( RdemiI*_Innovation )
- #
- def GradientOfCostFunctionLM(x):
- _X = x.reshape((-1,1))
- return - RdemiI*HO["Tangent"].asMatrix( _X )
- #
- # Minimisation de la fonctionnelle
- # --------------------------------
- nbPreviousSteps = self.StoredVariables["CostFunctionJ"].stepnumber()
- #
- if self._parameters["Minimizer"] == "LBFGSB":
- if "0.19" <= scipy.version.version <= "1.1.0":
- import lbfgsbhlt as optimiseur
- else:
- import scipy.optimize as optimiseur
- Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
- func = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- bounds = self._parameters["Bounds"],
- maxfun = self._parameters["MaximumNumberOfSteps"]-1,
- factr = self._parameters["CostDecrementTolerance"]*1.e14,
- pgtol = self._parameters["ProjectedGradientTolerance"],
- iprint = self._parameters["optiprint"],
- )
- nfeval = Informations['funcalls']
- rc = Informations['warnflag']
- elif self._parameters["Minimizer"] == "TNC":
- Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
- func = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- bounds = self._parameters["Bounds"],
- maxfun = self._parameters["MaximumNumberOfSteps"],
- pgtol = self._parameters["ProjectedGradientTolerance"],
- ftol = self._parameters["CostDecrementTolerance"],
- messages = self._parameters["optmessages"],
- )
- elif self._parameters["Minimizer"] == "CG":
- Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = self._parameters["MaximumNumberOfSteps"],
- gtol = self._parameters["GradientNormTolerance"],
- disp = self._parameters["optdisp"],
- full_output = True,
- )
- elif self._parameters["Minimizer"] == "NCG":
- Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = self._parameters["MaximumNumberOfSteps"],
- avextol = self._parameters["CostDecrementTolerance"],
- disp = self._parameters["optdisp"],
- full_output = True,
- )
- elif self._parameters["Minimizer"] == "BFGS":
- Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = self._parameters["MaximumNumberOfSteps"],
- gtol = self._parameters["GradientNormTolerance"],
- disp = self._parameters["optdisp"],
- full_output = True,
- )
- elif self._parameters["Minimizer"] == "LM":
- Minimum, cov_x, infodict, mesg, rc = scipy.optimize.leastsq(
- func = CostFunctionLM,
- x0 = Xini,
- Dfun = GradientOfCostFunctionLM,
- args = (),
- ftol = self._parameters["CostDecrementTolerance"],
- maxfev = self._parameters["MaximumNumberOfSteps"],
- gtol = self._parameters["GradientNormTolerance"],
- full_output = True,
- )
- nfeval = infodict['nfev']
- else:
- raise ValueError("Error in Minimizer name: %s"%self._parameters["Minimizer"])
- #
- IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- MinJ = self.StoredVariables["CostFunctionJ"][IndexMin]
- #
- # Correction pour pallier a un bug de TNC sur le retour du Minimum
- # ----------------------------------------------------------------
- if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
- Minimum = self.StoredVariables["CurrentState"][IndexMin]
- #
- Xa = Minimum
#--------------------------
+ if self._parameters["Variant"] == "NonLinearLeastSquares":
+ NumericObjects.multiXOsteps(self, Xb, Y, U, HO, EM, CM, R, B, Q, ecwnlls.ecwnlls)
#
- self.StoredVariables["Analysis"].store( Xa )
- #
- if self._toStore("OMA") or \
- self._toStore("SimulatedObservationAtOptimum"):
- if self._toStore("SimulatedObservationAtCurrentState"):
- HXa = self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
- elif self._toStore("SimulatedObservationAtCurrentOptimum"):
- HXa = self.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
- else:
- HXa = Hm( Xa )
+ #--------------------------
+ elif self._parameters["Variant"] == "OneCorrection":
+ ecwnlls.ecwnlls(self, Xb, Y, HO, R, B)
#
- # Calculs et/ou stockages supplémentaires
- # ---------------------------------------
- if self._toStore("Innovation") or \
- self._toStore("OMB"):
- Innovation = Y - HXb
- if self._toStore("Innovation"):
- self.StoredVariables["Innovation"].store( Innovation )
- if self._toStore("BMA"):
- self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
- if self._toStore("OMA"):
- self.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
- if self._toStore("OMB"):
- self.StoredVariables["OMB"].store( Innovation )
- if self._toStore("SimulatedObservationAtBackground"):
- self.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
- if self._toStore("SimulatedObservationAtOptimum"):
- self.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
+ #--------------------------
+ else:
+ raise ValueError("Error in Variant name: %s"%self._parameters["Variant"])
#
self._post_run(HO)
return 0
+++ /dev/null
-# Modification de la version 1.1.0
-"""
-Functions
----------
-.. autosummary::
- :toctree: generated/
-
- fmin_l_bfgs_b
-
-"""
-
-## License for the Python wrapper
-## ==============================
-
-## Copyright (c) 2004 David M. Cooke <cookedm@physics.mcmaster.ca>
-
-## Permission is hereby granted, free of charge, to any person obtaining a
-## copy of this software and associated documentation files (the "Software"),
-## to deal in the Software without restriction, including without limitation
-## the rights to use, copy, modify, merge, publish, distribute, sublicense,
-## and/or sell copies of the Software, and to permit persons to whom the
-## Software is furnished to do so, subject to the following conditions:
-
-## The above copyright notice and this permission notice shall be included in
-## all copies or substantial portions of the Software.
-
-## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-## IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-## FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-## AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-## LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-## FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
-## DEALINGS IN THE SOFTWARE.
-
-## Modifications by Travis Oliphant and Enthought, Inc. for inclusion in SciPy
-
-from __future__ import division, print_function, absolute_import
-
-import numpy as np
-from numpy import array, asarray, float64, int32, zeros
-from scipy.optimize import _lbfgsb
-from scipy.optimize.optimize import (approx_fprime, MemoizeJac, OptimizeResult,
- _check_unknown_options, wrap_function,
- _approx_fprime_helper)
-from scipy.sparse.linalg import LinearOperator
-
-__all__ = ['fmin_l_bfgs_b', 'LbfgsInvHessProduct']
-
-
-def fmin_l_bfgs_b(func, x0, fprime=None, args=(),
- approx_grad=0,
- bounds=None, m=10, factr=1e7, pgtol=1e-5,
- epsilon=1e-8,
- iprint=-1, maxfun=15000, maxiter=15000, disp=None,
- callback=None, maxls=20):
- """
- Minimize a function func using the L-BFGS-B algorithm.
-
- Parameters
- ----------
- func : callable f(x,*args)
- Function to minimise.
- x0 : ndarray
- Initial guess.
- fprime : callable fprime(x,*args), optional
- The gradient of `func`. If None, then `func` returns the function
- value and the gradient (``f, g = func(x, *args)``), unless
- `approx_grad` is True in which case `func` returns only ``f``.
- args : sequence, optional
- Arguments to pass to `func` and `fprime`.
- approx_grad : bool, optional
- Whether to approximate the gradient numerically (in which case
- `func` returns only the function value).
- bounds : list, optional
- ``(min, max)`` pairs for each element in ``x``, defining
- the bounds on that parameter. Use None or +-inf for one of ``min`` or
- ``max`` when there is no bound in that direction.
- m : int, optional
- The maximum number of variable metric corrections
- used to define the limited memory matrix. (The limited memory BFGS
- method does not store the full hessian but uses this many terms in an
- approximation to it.)
- factr : float, optional
- The iteration stops when
- ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps``,
- where ``eps`` is the machine precision, which is automatically
- generated by the code. Typical values for `factr` are: 1e12 for
- low accuracy; 1e7 for moderate accuracy; 10.0 for extremely
- high accuracy. See Notes for relationship to `ftol`, which is exposed
- (instead of `factr`) by the `scipy.optimize.minimize` interface to
- L-BFGS-B.
- pgtol : float, optional
- The iteration will stop when
- ``max{|proj g_i | i = 1, ..., n} <= pgtol``
- where ``pg_i`` is the i-th component of the projected gradient.
- epsilon : float, optional
- Step size used when `approx_grad` is True, for numerically
- calculating the gradient
- iprint : int, optional
- Controls the frequency of output. ``iprint < 0`` means no output;
- ``iprint = 0`` print only one line at the last iteration;
- ``0 < iprint < 99`` print also f and ``|proj g|`` every iprint iterations;
- ``iprint = 99`` print details of every iteration except n-vectors;
- ``iprint = 100`` print also the changes of active set and final x;
- ``iprint > 100`` print details of every iteration including x and g.
- disp : int, optional
- If zero, then no output. If a positive number, then this over-rides
- `iprint` (i.e., `iprint` gets the value of `disp`).
- maxfun : int, optional
- Maximum number of function evaluations.
- maxiter : int, optional
- Maximum number of iterations.
- callback : callable, optional
- Called after each iteration, as ``callback(xk)``, where ``xk`` is the
- current parameter vector.
- maxls : int, optional
- Maximum number of line search steps (per iteration). Default is 20.
-
- Returns
- -------
- x : array_like
- Estimated position of the minimum.
- f : float
- Value of `func` at the minimum.
- d : dict
- Information dictionary.
-
- * d['warnflag'] is
-
- - 0 if converged,
- - 1 if too many function evaluations or too many iterations,
- - 2 if stopped for another reason, given in d['task']
-
- * d['grad'] is the gradient at the minimum (should be 0 ish)
- * d['funcalls'] is the number of function calls made.
- * d['nit'] is the number of iterations.
-
- See also
- --------
- minimize: Interface to minimization algorithms for multivariate
- functions. See the 'L-BFGS-B' `method` in particular. Note that the
- `ftol` option is made available via that interface, while `factr` is
- provided via this interface, where `factr` is the factor multiplying
- the default machine floating-point precision to arrive at `ftol`:
- ``ftol = factr * numpy.finfo(float).eps``.
-
- Notes
- -----
- License of L-BFGS-B (FORTRAN code):
-
- The version included here (in fortran code) is 3.0
- (released April 25, 2011). It was written by Ciyou Zhu, Richard Byrd,
- and Jorge Nocedal <nocedal@ece.nwu.edu>. It carries the following
- condition for use:
-
- This software is freely available, but we expect that all publications
- describing work using this software, or all commercial products using it,
- quote at least one of the references given below. This software is released
- under the BSD License.
-
- References
- ----------
- * R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound
- Constrained Optimization, (1995), SIAM Journal on Scientific and
- Statistical Computing, 16, 5, pp. 1190-1208.
- * C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B,
- FORTRAN routines for large scale bound constrained optimization (1997),
- ACM Transactions on Mathematical Software, 23, 4, pp. 550 - 560.
- * J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B,
- FORTRAN routines for large scale bound constrained optimization (2011),
- ACM Transactions on Mathematical Software, 38, 1.
-
- """
- # handle fprime/approx_grad
- if approx_grad:
- fun = func
- jac = None
- elif fprime is None:
- fun = MemoizeJac(func)
- jac = fun.derivative
- else:
- fun = func
- jac = fprime
-
- # build options
- if disp is None:
- disp = iprint
- opts = {'disp': disp,
- 'iprint': iprint,
- 'maxcor': m,
- 'ftol': factr * np.finfo(float).eps,
- 'gtol': pgtol,
- 'eps': epsilon,
- 'maxfun': maxfun,
- 'maxiter': maxiter,
- 'callback': callback,
- 'maxls': maxls}
-
- res = _minimize_lbfgsb(fun, x0, args=args, jac=jac, bounds=bounds,
- **opts)
- d = {'grad': res['jac'],
- 'task': res['message'],
- 'funcalls': res['nfev'],
- 'nit': res['nit'],
- 'warnflag': res['status']}
- f = res['fun']
- x = res['x']
-
- return x, f, d
-
-
-def _minimize_lbfgsb(fun, x0, args=(), jac=None, bounds=None,
- disp=None, maxcor=10, ftol=2.2204460492503131e-09,
- gtol=1e-5, eps=1e-8, maxfun=15000, maxiter=15000,
- iprint=-1, callback=None, maxls=20, **unknown_options):
- """
- Minimize a scalar function of one or more variables using the L-BFGS-B
- algorithm.
-
- Options
- -------
- disp : bool
- Set to True to print convergence messages.
- maxcor : int
- The maximum number of variable metric corrections used to
- define the limited memory matrix. (The limited memory BFGS
- method does not store the full hessian but uses this many terms
- in an approximation to it.)
- ftol : float
- The iteration stops when ``(f^k -
- f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol``.
- gtol : float
- The iteration will stop when ``max{|proj g_i | i = 1, ..., n}
- <= gtol`` where ``pg_i`` is the i-th component of the
- projected gradient.
- eps : float
- Step size used for numerical approximation of the jacobian.
- disp : int
- Set to True to print convergence messages.
- maxfun : int
- Maximum number of function evaluations.
- maxiter : int
- Maximum number of iterations.
- maxls : int, optional
- Maximum number of line search steps (per iteration). Default is 20.
-
- Notes
- -----
- The option `ftol` is exposed via the `scipy.optimize.minimize` interface,
- but calling `scipy.optimize.fmin_l_bfgs_b` directly exposes `factr`. The
- relationship between the two is ``ftol = factr * numpy.finfo(float).eps``.
- I.e., `factr` multiplies the default machine floating-point precision to
- arrive at `ftol`.
-
- """
- _check_unknown_options(unknown_options)
- m = maxcor
- epsilon = eps
- pgtol = gtol
- factr = ftol / np.finfo(float).eps
-
- x0 = asarray(x0).ravel()
- n, = x0.shape
-
- if bounds is None:
- bounds = [(None, None)] * n
- if len(bounds) != n:
- raise ValueError('length of x0 != length of bounds')
- # unbounded variables must use None, not +-inf, for optimizer to work properly
- bounds = [(None if l == -np.inf else l, None if u == np.inf else u) for l, u in bounds]
-
- if disp is not None:
- if disp == 0:
- iprint = -1
- else:
- iprint = disp
-
- n_function_evals, fun = wrap_function(fun, ())
- if jac is None:
- def func_and_grad(x):
- f = fun(x, *args)
- g = _approx_fprime_helper(x, fun, epsilon, args=args, f0=f)
- return f, g
- else:
- def func_and_grad(x):
- f = fun(x, *args)
- g = jac(x, *args)
- return f, g
-
- nbd = zeros(n, int32)
- low_bnd = zeros(n, float64)
- upper_bnd = zeros(n, float64)
- bounds_map = {(None, None): 0,
- (1, None): 1,
- (1, 1): 2,
- (None, 1): 3}
- for i in range(0, n):
- l, u = bounds[i]
- if l is not None:
- low_bnd[i] = l
- l = 1
- if u is not None:
- upper_bnd[i] = u
- u = 1
- nbd[i] = bounds_map[l, u]
-
- if not maxls > 0:
- raise ValueError('maxls must be positive.')
-
- x = array(x0, float64)
- f = array(0.0, float64)
- g = zeros((n,), float64)
- wa = zeros(2*m*n + 5*n + 11*m*m + 8*m, float64)
- iwa = zeros(3*n, int32)
- task = zeros(1, 'S60')
- csave = zeros(1, 'S60')
- lsave = zeros(4, int32)
- isave = zeros(44, int32)
- dsave = zeros(29, float64)
-
- task[:] = 'START'
-
- n_iterations = 0
-
- while 1:
- # x, f, g, wa, iwa, task, csave, lsave, isave, dsave = \
- _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr,
- pgtol, wa, iwa, task, iprint, csave, lsave,
- isave, dsave, maxls)
- task_str = task.tostring()
- if task_str.startswith(b'FG'):
- # The minimization routine wants f and g at the current x.
- # Note that interruptions due to maxfun are postponed
- # until the completion of the current minimization iteration.
- # Overwrite f and g:
- f, g = func_and_grad(x)
- if n_function_evals[0] > maxfun:
- task[:] = ('STOP: TOTAL NO. of f AND g EVALUATIONS '
- 'EXCEEDS LIMIT')
- elif task_str.startswith(b'NEW_X'):
- # new iteration
- n_iterations += 1
- if callback is not None:
- callback(np.copy(x))
-
- if n_iterations >= maxiter:
- task[:] = 'STOP: TOTAL NO. of ITERATIONS REACHED LIMIT'
- elif n_function_evals[0] > maxfun:
- task[:] = ('STOP: TOTAL NO. of f AND g EVALUATIONS '
- 'EXCEEDS LIMIT')
- else:
- break
-
- task_str = task.tostring().strip(b'\x00').strip()
- if task_str.startswith(b'CONV'):
- warnflag = 0
- elif n_function_evals[0] > maxfun or n_iterations >= maxiter:
- warnflag = 1
- else:
- warnflag = 2
-
- # These two portions of the workspace are described in the mainlb
- # subroutine in lbfgsb.f. See line 363.
- s = wa[0: m*n].reshape(m, n)
- y = wa[m*n: 2*m*n].reshape(m, n)
-
- # See lbfgsb.f line 160 for this portion of the workspace.
- # isave(31) = the total number of BFGS updates prior the current iteration;
- n_bfgs_updates = isave[30]
-
- n_corrs = min(n_bfgs_updates, maxcor)
- hess_inv = LbfgsInvHessProduct(s[:n_corrs], y[:n_corrs])
-
- return OptimizeResult(fun=f, jac=g, nfev=n_function_evals[0],
- nit=n_iterations, status=warnflag, message=task_str,
- x=x, success=(warnflag == 0), hess_inv=hess_inv)
-
-
-class LbfgsInvHessProduct(LinearOperator):
- """Linear operator for the L-BFGS approximate inverse Hessian.
-
- This operator computes the product of a vector with the approximate inverse
- of the Hessian of the objective function, using the L-BFGS limited
- memory approximation to the inverse Hessian, accumulated during the
- optimization.
-
- Objects of this class implement the ``scipy.sparse.linalg.LinearOperator``
- interface.
-
- Parameters
- ----------
- sk : array_like, shape=(n_corr, n)
- Array of `n_corr` most recent updates to the solution vector.
- (See [1]).
- yk : array_like, shape=(n_corr, n)
- Array of `n_corr` most recent updates to the gradient. (See [1]).
-
- References
- ----------
- .. [1] Nocedal, Jorge. "Updating quasi-Newton matrices with limited
- storage." Mathematics of computation 35.151 (1980): 773-782.
-
- """
- def __init__(self, sk, yk):
- """Construct the operator."""
- if sk.shape != yk.shape or sk.ndim != 2:
- raise ValueError('sk and yk must have matching shape, (n_corrs, n)')
- n_corrs, n = sk.shape
-
- super(LbfgsInvHessProduct, self).__init__(
- dtype=np.float64, shape=(n, n))
-
- self.sk = sk
- self.yk = yk
- self.n_corrs = n_corrs
- self.rho = 1 / np.einsum('ij,ij->i', sk, yk)
-
- def _matvec(self, x):
- """Efficient matrix-vector multiply with the BFGS matrices.
-
- This calculation is described in Section (4) of [1].
-
- Parameters
- ----------
- x : ndarray
- An array with shape (n,) or (n,1).
-
- Returns
- -------
- y : ndarray
- The matrix-vector product
-
- """
- s, y, n_corrs, rho = self.sk, self.yk, self.n_corrs, self.rho
- q = np.array(x, dtype=self.dtype, copy=True)
- if q.ndim == 2 and q.shape[1] == 1:
- q = q.reshape(-1)
-
- alpha = np.zeros(n_corrs)
-
- for i in range(n_corrs-1, -1, -1):
- alpha[i] = rho[i] * np.dot(s[i], q)
- q = q - alpha[i]*y[i]
-
- r = q
- for i in range(n_corrs):
- beta = rho[i] * np.dot(y[i], r)
- r = r + s[i] * (alpha[i] - beta)
-
- return r
-
- def todense(self):
- """Return a dense array representation of this operator.
-
- Returns
- -------
- arr : ndarray, shape=(n, n)
- An array with the same shape and containing
- the same data represented by this `LinearOperator`.
-
- """
- s, y, n_corrs, rho = self.sk, self.yk, self.n_corrs, self.rho
- I = np.eye(*self.shape, dtype=self.dtype)
- Hk = I
-
- for i in range(n_corrs):
- A1 = I - s[i][:, np.newaxis] * y[i][np.newaxis, :] * rho[i]
- A2 = I - y[i][:, np.newaxis] * s[i][np.newaxis, :] * rho[i]
-
- Hk = np.dot(A1, np.dot(Hk, A2)) + (rho[i] * s[i][:, np.newaxis] *
- s[i][np.newaxis, :])
- return Hk
"""
__author__ = "Jean-Philippe ARGAUD"
-import os, time, copy, types, sys, logging
-import math, numpy, scipy, scipy.optimize, scipy.version
+import os, copy, types, sys, logging, numpy
from daCore.BasicObjects import Operator, Covariance, PartialAlgorithm
from daCore.PlatformInfo import PlatformInfo
mpr = PlatformInfo().MachinePrecision()
else: return _HaY
# ==============================================================================
-def EnsembleOfCenteredPerturbations( _bgcenter, _bgcovariance, _nbmembers ):
- "Génération d'un ensemble de taille _nbmembers-1 d'états aléatoires centrés"
+def EnsembleOfCenteredPerturbations( __bgcenter, __bgcovariance, __nbmembers ):
+ "Génération d'un ensemble de taille __nbmembers-1 d'états aléatoires centrés"
#
- _bgcenter = numpy.ravel(_bgcenter)[:,None]
- if _nbmembers < 1:
- raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(_nbmembers),))
+ __bgcenter = numpy.ravel(__bgcenter)[:,None]
+ if __nbmembers < 1:
+ raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(__nbmembers),))
#
- if _bgcovariance is None:
- _Perturbations = numpy.tile( _bgcenter, _nbmembers)
+ if __bgcovariance is None:
+ _Perturbations = numpy.tile( __bgcenter, __nbmembers)
else:
- _Z = numpy.random.multivariate_normal(numpy.zeros(_bgcenter.size), _bgcovariance, size=_nbmembers).T
- _Perturbations = numpy.tile( _bgcenter, _nbmembers) + _Z
+ _Z = numpy.random.multivariate_normal(numpy.zeros(__bgcenter.size), __bgcovariance, size=__nbmembers).T
+ _Perturbations = numpy.tile( __bgcenter, __nbmembers) + _Z
#
return _Perturbations
# ==============================================================================
-def EnsembleOfBackgroundPerturbations( _bgcenter, _bgcovariance, _nbmembers, _withSVD = True):
- "Génération d'un ensemble de taille _nbmembers-1 d'états aléatoires centrés"
+def EnsembleOfBackgroundPerturbations( __bgcenter, __bgcovariance, __nbmembers, __withSVD = True):
+ "Génération d'un ensemble de taille __nbmembers-1 d'états aléatoires centrés"
def __CenteredRandomAnomalies(Zr, N):
"""
Génère une matrice de N anomalies aléatoires centrées sur Zr selon les
Zr = numpy.dot(Q,Zr)
return Zr.T
#
- _bgcenter = numpy.ravel(_bgcenter).reshape((-1,1))
- if _nbmembers < 1:
- raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(_nbmembers),))
- if _bgcovariance is None:
- _Perturbations = numpy.tile( _bgcenter, _nbmembers)
+ __bgcenter = numpy.ravel(__bgcenter).reshape((-1,1))
+ if __nbmembers < 1:
+ raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(__nbmembers),))
+ if __bgcovariance is None:
+ _Perturbations = numpy.tile( __bgcenter, __nbmembers)
else:
- if _withSVD:
- _U, _s, _V = numpy.linalg.svd(_bgcovariance, full_matrices=False)
- _nbctl = _bgcenter.size
- if _nbmembers > _nbctl:
+ if __withSVD:
+ _U, _s, _V = numpy.linalg.svd(__bgcovariance, full_matrices=False)
+ _nbctl = __bgcenter.size
+ if __nbmembers > _nbctl:
_Z = numpy.concatenate((numpy.dot(
numpy.diag(numpy.sqrt(_s[:_nbctl])), _V[:_nbctl]),
- numpy.random.multivariate_normal(numpy.zeros(_nbctl),_bgcovariance,_nbmembers-1-_nbctl)), axis = 0)
+ numpy.random.multivariate_normal(numpy.zeros(_nbctl),__bgcovariance,__nbmembers-1-_nbctl)), axis = 0)
else:
- _Z = numpy.dot(numpy.diag(numpy.sqrt(_s[:_nbmembers-1])), _V[:_nbmembers-1])
- _Zca = __CenteredRandomAnomalies(_Z, _nbmembers)
- _Perturbations = _bgcenter + _Zca
- else:
- if max(abs(_bgcovariance.flatten())) > 0:
- _nbctl = _bgcenter.size
- _Z = numpy.random.multivariate_normal(numpy.zeros(_nbctl),_bgcovariance,_nbmembers-1)
- _Zca = __CenteredRandomAnomalies(_Z, _nbmembers)
- _Perturbations = _bgcenter + _Zca
+ _Z = numpy.dot(numpy.diag(numpy.sqrt(_s[:__nbmembers-1])), _V[:__nbmembers-1])
+ _Zca = __CenteredRandomAnomalies(_Z, __nbmembers)
+ _Perturbations = __bgcenter + _Zca
+ else:
+ if max(abs(__bgcovariance.flatten())) > 0:
+ _nbctl = __bgcenter.size
+ _Z = numpy.random.multivariate_normal(numpy.zeros(_nbctl),__bgcovariance,__nbmembers-1)
+ _Zca = __CenteredRandomAnomalies(_Z, __nbmembers)
+ _Perturbations = __bgcenter + _Zca
else:
- _Perturbations = numpy.tile( _bgcenter, _nbmembers)
+ _Perturbations = numpy.tile( __bgcenter, __nbmembers)
#
return _Perturbations
return __Covariance
# ==============================================================================
-def EnsemblePerturbationWithGivenCovariance( __Ensemble, __Covariance, __Seed=None ):
+def EnsemblePerturbationWithGivenCovariance(
+ __Ensemble,
+ __Covariance,
+ __Seed = None,
+ ):
"Ajout d'une perturbation à chaque membre d'un ensemble selon une covariance prescrite"
if hasattr(__Covariance,"assparsematrix"):
if (abs(__Ensemble).mean() > mpr) and (abs(__Covariance.assparsematrix())/abs(__Ensemble).mean() < mpr).all():
# ==============================================================================
def CovarianceInflation(
- InputCovOrEns,
- InflationType = None,
- InflationFactor = None,
- BackgroundCov = None,
+ __InputCovOrEns,
+ __InflationType = None,
+ __InflationFactor = None,
+ __BackgroundCov = None,
):
"""
Inflation applicable soit sur Pb ou Pa, soit sur les ensembles EXb ou EXa
Synthèse : Hunt 2007, section 2.3.5
"""
- if InflationFactor is None:
- return InputCovOrEns
+ if __InflationFactor is None:
+ return __InputCovOrEns
else:
- InflationFactor = float(InflationFactor)
+ __InflationFactor = float(__InflationFactor)
#
- if InflationType in ["MultiplicativeOnAnalysisCovariance", "MultiplicativeOnBackgroundCovariance"]:
- if InflationFactor < 1.:
+ if __InflationType in ["MultiplicativeOnAnalysisCovariance", "MultiplicativeOnBackgroundCovariance"]:
+ if __InflationFactor < 1.:
raise ValueError("Inflation factor for multiplicative inflation has to be greater or equal than 1.")
- if InflationFactor < 1.+mpr:
- return InputCovOrEns
- OutputCovOrEns = InflationFactor**2 * InputCovOrEns
+ if __InflationFactor < 1.+mpr:
+ return __InputCovOrEns
+ __OutputCovOrEns = __InflationFactor**2 * __InputCovOrEns
#
- elif InflationType in ["MultiplicativeOnAnalysisAnomalies", "MultiplicativeOnBackgroundAnomalies"]:
- if InflationFactor < 1.:
+ elif __InflationType in ["MultiplicativeOnAnalysisAnomalies", "MultiplicativeOnBackgroundAnomalies"]:
+ if __InflationFactor < 1.:
raise ValueError("Inflation factor for multiplicative inflation has to be greater or equal than 1.")
- if InflationFactor < 1.+mpr:
- return InputCovOrEns
- InputCovOrEnsMean = InputCovOrEns.mean(axis=1, dtype=mfp).astype('float')
- OutputCovOrEns = InputCovOrEnsMean[:,numpy.newaxis] \
- + InflationFactor * (InputCovOrEns - InputCovOrEnsMean[:,numpy.newaxis])
- #
- elif InflationType in ["AdditiveOnAnalysisCovariance", "AdditiveOnBackgroundCovariance"]:
- if InflationFactor < 0.:
+ if __InflationFactor < 1.+mpr:
+ return __InputCovOrEns
+ __InputCovOrEnsMean = __InputCovOrEns.mean(axis=1, dtype=mfp).astype('float')
+ __OutputCovOrEns = __InputCovOrEnsMean[:,numpy.newaxis] \
+ + __InflationFactor * (__InputCovOrEns - __InputCovOrEnsMean[:,numpy.newaxis])
+ #
+ elif __InflationType in ["AdditiveOnAnalysisCovariance", "AdditiveOnBackgroundCovariance"]:
+ if __InflationFactor < 0.:
raise ValueError("Inflation factor for additive inflation has to be greater or equal than 0.")
- if InflationFactor < mpr:
- return InputCovOrEns
+ if __InflationFactor < mpr:
+ return __InputCovOrEns
__n, __m = numpy.asarray(InputCovOrEns).shape
if __n != __m:
raise ValueError("Additive inflation can only be applied to squared (covariance) matrix.")
- OutputCovOrEns = (1. - InflationFactor) * InputCovOrEns + InflationFactor * numpy.identity(__n)
+ __OutputCovOrEns = (1. - __InflationFactor) * __InputCovOrEns + __InflationFactor * numpy.identity(__n)
#
- elif InflationType == "HybridOnBackgroundCovariance":
- if InflationFactor < 0.:
+ elif __InflationType == "HybridOnBackgroundCovariance":
+ if __InflationFactor < 0.:
raise ValueError("Inflation factor for hybrid inflation has to be greater or equal than 0.")
- if InflationFactor < mpr:
- return InputCovOrEns
+ if __InflationFactor < mpr:
+ return __InputCovOrEns
__n, __m = numpy.asarray(InputCovOrEns).shape
if __n != __m:
raise ValueError("Additive inflation can only be applied to squared (covariance) matrix.")
- if BackgroundCov is None:
+ if __BackgroundCov is None:
raise ValueError("Background covariance matrix B has to be given for hybrid inflation.")
- if InputCovOrEns.shape != BackgroundCov.shape:
+ if __InputCovOrEns.shape != __BackgroundCov.shape:
raise ValueError("Ensemble covariance matrix has to be of same size than background covariance matrix B.")
- OutputCovOrEns = (1. - InflationFactor) * InputCovOrEns + InflationFactor * BackgroundCov
+ __OutputCovOrEns = (1. - __InflationFactor) * __InputCovOrEns + __InflationFactor * __BackgroundCov
#
- elif InflationType == "Relaxation":
+ elif __InflationType == "Relaxation":
raise NotImplementedError("InflationType Relaxation")
#
else:
raise ValueError("Error in inflation type, '%s' is not a valid keyword."%InflationType)
#
- return OutputCovOrEns
+ return __OutputCovOrEns
# ==============================================================================
-def HessienneEstimation(nb, HaM, HtM, BI, RI):
+def HessienneEstimation(__selfA, __nb, __HaM, __HtM, __BI, __RI):
"Estimation de la Hessienne"
#
- HessienneI = []
- for i in range(int(nb)):
- _ee = numpy.zeros((nb,1))
- _ee[i] = 1.
- _HtEE = numpy.dot(HtM,_ee).reshape((-1,1))
- HessienneI.append( numpy.ravel( BI * _ee + HaM * (RI * _HtEE) ) )
- #
- A = numpy.linalg.inv(numpy.array( HessienneI ))
- #
- if min(A.shape) != max(A.shape):
- raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
- if (numpy.diag(A) < 0).any():
- raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
- if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
+ __HessienneI = []
+ for i in range(int(__nb)):
+ __ee = numpy.zeros((__nb,1))
+ __ee[i] = 1.
+ __HtEE = numpy.dot(__HtM,__ee).reshape((-1,1))
+ __HessienneI.append( numpy.ravel( __BI * __ee + __HaM * (__RI * __HtEE) ) )
+ #
+ __A = numpy.linalg.inv(numpy.array( __HessienneI ))
+ __A = (__A + __A.T) * 0.5 # Symétrie
+ __A = __A + mpr*numpy.trace( __A ) * numpy.identity(__nb) # Positivité
+ #
+ if min(__A.shape) != max(__A.shape):
+ raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(__selfA._name,str(__A.shape)))
+ if (numpy.diag(__A) < 0).any():
+ raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(__selfA._name,))
+ if logging.getLogger().level < logging.WARNING: # La vérification n'a lieu qu'en debug
try:
- L = numpy.linalg.cholesky( A )
+ numpy.linalg.cholesky( __A )
except:
- raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
+ raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(__selfA._name,))
#
- return A
+ return __A
# ==============================================================================
def QuantilesEstimations(selfA, A, Xa, HXa = None, Hm = None, HtM = None):
- "Estimation des quantiles a posteriori (selfA est modifié)"
+ "Estimation des quantiles a posteriori à partir de A>0 (selfA est modifié)"
nbsamples = selfA._parameters["NumberOfSamplesForQuantiles"]
#
# Traitement des bornes
LBounds = None
if LBounds is not None:
LBounds = ForceNumericBounds( LBounds )
- _Xa = numpy.ravel(Xa)
+ __Xa = numpy.ravel(Xa)
#
# Échantillonnage des états
YfQ = None
EXr = None
for i in range(nbsamples):
if selfA._parameters["SimulationForQuantiles"] == "Linear" and HtM is not None and HXa is not None:
- dXr = (numpy.random.multivariate_normal(_Xa,A) - _Xa).reshape((-1,1))
+ dXr = (numpy.random.multivariate_normal(__Xa,A) - __Xa).reshape((-1,1))
if LBounds is not None: # "EstimateProjection" par défaut
- dXr = numpy.max(numpy.hstack((dXr,LBounds[:,0].reshape((-1,1))) - Xa),axis=1)
- dXr = numpy.min(numpy.hstack((dXr,LBounds[:,1].reshape((-1,1))) - Xa),axis=1)
+ dXr = numpy.max(numpy.hstack((dXr,LBounds[:,0].reshape((-1,1))) - __Xa.reshape((-1,1))),axis=1)
+ dXr = numpy.min(numpy.hstack((dXr,LBounds[:,1].reshape((-1,1))) - __Xa.reshape((-1,1))),axis=1)
dYr = HtM @ dXr
Yr = HXa.reshape((-1,1)) + dYr
- if selfA._toStore("SampledStateForQuantiles"): Xr = _Xa + numpy.ravel(dXr)
+ if selfA._toStore("SampledStateForQuantiles"): Xr = __Xa + numpy.ravel(dXr)
elif selfA._parameters["SimulationForQuantiles"] == "NonLinear" and Hm is not None:
- Xr = numpy.random.multivariate_normal(_Xa,A)
+ Xr = numpy.random.multivariate_normal(__Xa,A)
if LBounds is not None: # "EstimateProjection" par défaut
Xr = numpy.max(numpy.hstack((Xr.reshape((-1,1)),LBounds[:,0].reshape((-1,1)))),axis=1)
Xr = numpy.min(numpy.hstack((Xr.reshape((-1,1)),LBounds[:,1].reshape((-1,1)))),axis=1)
return __Bounds
# ==============================================================================
-def RecentredBounds( __Bounds, __Center):
+def RecentredBounds( __Bounds, __Center, __Scale = None):
"Recentre les bornes autour de 0, sauf si globalement None"
# Conserve une valeur par défaut à None s'il n'y a pas de bornes
if __Bounds is None: return None
- # Recentre les valeurs numériques de bornes
- return ForceNumericBounds( __Bounds ) - numpy.ravel( __Center ).reshape((-1,1))
+ if __Scale is None:
+ # Recentre les valeurs numériques de bornes
+ return ForceNumericBounds( __Bounds ) - numpy.ravel( __Center ).reshape((-1,1))
+ else:
+ # Recentre les valeurs numériques de bornes et change l'échelle par une matrice
+ return __Scale @ (ForceNumericBounds( __Bounds ) - numpy.ravel( __Center ).reshape((-1,1)))
# ==============================================================================
def ApplyBounds( __Vector, __Bounds, __newClip = True):
#
Xf = EnsembleMean( __EnXf )
Pf = Covariance( asCovariance=EnsembleErrorCovariance(__EnXf) )
- Pf = (1 - __Betaf) * __B + __Betaf * Pf
+ Pf = (1 - __Betaf) * __B.asfullmatrix(Xf.size) + __Betaf * Pf
#
selfB = PartialAlgorithm("3DVAR")
selfB._parameters["Minimizer"] = "LBFGSB"
selfB._parameters["optdisp"] = 0
selfB._parameters["Bounds"] = None
selfB._parameters["InitializationPoint"] = Xf
- std3dvar(selfB, Xf, __Ynpu, None, __HO, None, None, __R, Pf, None)
+ from daAlgorithms.Atoms import std3dvar
+ std3dvar.std3dvar(selfB, Xf, __Ynpu, __HO, __R, Pf)
Xa = selfB.get("Analysis")[-1].reshape((-1,1))
del selfB
#
return Xa + EnsembleOfAnomalies( __EnXn )
# ==============================================================================
-def c2ukf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+def multiXOsteps(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, oneCycle):
"""
- Constrained Unscented Kalman Filter
+ Prévision multi-pas avec une correction par pas en X (multi-méthodes)
"""
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA._parameters["StoreInternalVariables"] = True
- selfA._parameters["Bounds"] = ForceNumericBounds( selfA._parameters["Bounds"] )
- #
- L = Xb.size
- Alpha = selfA._parameters["Alpha"]
- Beta = selfA._parameters["Beta"]
- if selfA._parameters["Kappa"] == 0:
- if selfA._parameters["EstimationOf"] == "State":
- Kappa = 0
- elif selfA._parameters["EstimationOf"] == "Parameters":
- Kappa = 3 - L
- else:
- Kappa = selfA._parameters["Kappa"]
- Lambda = float( Alpha**2 ) * ( L + Kappa ) - L
- Gamma = math.sqrt( L + Lambda )
- #
- Ww = []
- Ww.append( 0. )
- for i in range(2*L):
- Ww.append( 1. / (2.*(L + Lambda)) )
- #
- Wm = numpy.array( Ww )
- Wm[0] = Lambda / (L + Lambda)
- Wc = numpy.array( Ww )
- Wc[0] = Lambda / (L + Lambda) + (1. - Alpha**2 + Beta)
- #
- # Opérateurs
- Hm = HO["Direct"].appliedControledFormTo
#
+ # Initialisation
+ # --------------
if selfA._parameters["EstimationOf"] == "State":
- Mm = EM["Direct"].appliedControledFormTo
- #
- if CM is not None and "Tangent" in CM and U is not None:
- Cm = CM["Tangent"].asMatrix(Xb)
- else:
- Cm = None
- #
- # Durée d'observation et tailles
- if hasattr(Y,"stepnumber"):
- duration = Y.stepnumber()
- __p = numpy.cumprod(Y.shape())[-1]
- else:
- duration = 2
- __p = numpy.array(Y).size
- #
- # Précalcul des inversions de B et R
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- BI = B.getI()
- RI = R.getI()
- #
- __n = Xb.size
- nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
- #
- if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
- Xn = Xb
- if hasattr(B,"asfullmatrix"):
- Pn = B.asfullmatrix(__n)
- else:
- Pn = B
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( Xb )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( Pn )
- elif selfA._parameters["nextStep"]:
- Xn = selfA._getInternalState("Xn")
- Pn = selfA._getInternalState("Pn")
- #
- if selfA._parameters["EstimationOf"] == "Parameters":
- XaMin = Xn
- previousJMinimum = numpy.finfo(float).max
- #
- for step in range(duration-1):
- if hasattr(Y,"store"):
- Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
- else:
- Ynpu = numpy.ravel( Y ).reshape((__p,1))
- #
- if U is not None:
- if hasattr(U,"store") and len(U)>1:
- Un = numpy.ravel( U[step] ).reshape((-1,1))
- elif hasattr(U,"store") and len(U)==1:
- Un = numpy.ravel( U[0] ).reshape((-1,1))
- else:
- Un = numpy.ravel( U ).reshape((-1,1))
- else:
- Un = None
- #
- Pndemi = numpy.real(scipy.linalg.sqrtm(Pn))
- Xnp = numpy.hstack([Xn, Xn+Gamma*Pndemi, Xn-Gamma*Pndemi])
- nbSpts = 2*Xn.size+1
- #
- if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
- for point in range(nbSpts):
- Xnp[:,point] = ApplyBounds( Xnp[:,point], selfA._parameters["Bounds"] )
- #
- XEtnnp = []
- for point in range(nbSpts):
- if selfA._parameters["EstimationOf"] == "State":
- XEtnnpi = numpy.asarray( Mm( (Xnp[:,point], Un) ) ).reshape((-1,1))
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
- Cm = Cm.reshape(Xn.size,Un.size) # ADAO & check shape
- XEtnnpi = XEtnnpi + Cm @ Un
- if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
- XEtnnpi = ApplyBounds( XEtnnpi, selfA._parameters["Bounds"] )
- elif selfA._parameters["EstimationOf"] == "Parameters":
- # --- > Par principe, M = Id, Q = 0
- XEtnnpi = Xnp[:,point]
- XEtnnp.append( numpy.ravel(XEtnnpi).reshape((-1,1)) )
- XEtnnp = numpy.concatenate( XEtnnp, axis=1 )
- #
- Xncm = ( XEtnnp * Wm ).sum(axis=1)
- #
- if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
- Xncm = ApplyBounds( Xncm, selfA._parameters["Bounds"] )
- #
- if selfA._parameters["EstimationOf"] == "State": Pnm = Q
- elif selfA._parameters["EstimationOf"] == "Parameters": Pnm = 0.
- for point in range(nbSpts):
- Pnm += Wc[i] * ((XEtnnp[:,point]-Xncm).reshape((-1,1)) * (XEtnnp[:,point]-Xncm))
- #
- if selfA._parameters["EstimationOf"] == "Parameters" and selfA._parameters["Bounds"] is not None:
- Pnmdemi = selfA._parameters["Reconditioner"] * numpy.real(scipy.linalg.sqrtm(Pnm))
- else:
- Pnmdemi = numpy.real(scipy.linalg.sqrtm(Pnm))
- #
- Xnnp = numpy.hstack([Xncm.reshape((-1,1)), Xncm.reshape((-1,1))+Gamma*Pnmdemi, Xncm.reshape((-1,1))-Gamma*Pnmdemi])
- #
- if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
- for point in range(nbSpts):
- Xnnp[:,point] = ApplyBounds( Xnnp[:,point], selfA._parameters["Bounds"] )
- #
- Ynnp = []
- for point in range(nbSpts):
- if selfA._parameters["EstimationOf"] == "State":
- Ynnpi = Hm( (Xnnp[:,point], None) )
- elif selfA._parameters["EstimationOf"] == "Parameters":
- Ynnpi = Hm( (Xnnp[:,point], Un) )
- Ynnp.append( numpy.ravel(Ynnpi).reshape((-1,1)) )
- Ynnp = numpy.concatenate( Ynnp, axis=1 )
- #
- Yncm = ( Ynnp * Wm ).sum(axis=1)
- #
- Pyyn = R
- Pxyn = 0.
- for point in range(nbSpts):
- Pyyn += Wc[i] * ((Ynnp[:,point]-Yncm).reshape((-1,1)) * (Ynnp[:,point]-Yncm))
- Pxyn += Wc[i] * ((Xnnp[:,point]-Xncm).reshape((-1,1)) * (Ynnp[:,point]-Yncm))
- #
- _Innovation = Ynpu - Yncm.reshape((-1,1))
- if selfA._parameters["EstimationOf"] == "Parameters":
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
- _Innovation = _Innovation - Cm @ Un
- #
- Kn = Pxyn * Pyyn.I
- Xn = Xncm.reshape((-1,1)) + Kn * _Innovation
- Pn = Pnm - Kn * Pyyn * Kn.T
- #
- if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
- Xn = ApplyBounds( Xn, selfA._parameters["Bounds"] )
- #
- Xa = Xn # Pointeurs
- #--------------------------
- selfA._setInternalState("Xn", Xn)
- selfA._setInternalState("Pn", Pn)
- #--------------------------
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- # ---> avec analysis
- selfA.StoredVariables["Analysis"].store( Xa )
- if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
- selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( Hm((Xa, Un)) )
- if selfA._toStore("InnovationAtCurrentAnalysis"):
- selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
- # ---> avec current state
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CurrentState"):
- selfA.StoredVariables["CurrentState"].store( Xn )
- if selfA._toStore("ForecastState"):
- selfA.StoredVariables["ForecastState"].store( Xncm )
- if selfA._toStore("ForecastCovariance"):
- selfA.StoredVariables["ForecastCovariance"].store( Pnm )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( Xncm - Xa )
- if selfA._toStore("InnovationAtCurrentState"):
- selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
- if selfA._toStore("SimulatedObservationAtCurrentState") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( Yncm )
- # ---> autres
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
- Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
- J = Jb + Jo
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- #
- if selfA._toStore("IndexOfOptimum") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("CostFunctionJAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
- if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( Pn )
- if selfA._parameters["EstimationOf"] == "Parameters" \
- and J < previousJMinimum:
- previousJMinimum = J
- XaMin = Xa
+ if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+ Xn = numpy.asarray(Xb)
+ selfA.StoredVariables["Analysis"].store( Xn )
if selfA._toStore("APosterioriCovariance"):
- covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
- #
- # Stockage final supplémentaire de l'optimum en estimation de paramètres
- # ----------------------------------------------------------------------
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( XaMin )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
- #
- return 0
-
-# ==============================================================================
-def cekf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
- """
- Contrained Extended Kalman Filter
- """
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA._parameters["StoreInternalVariables"] = True
- selfA._parameters["Bounds"] = ForceNumericBounds( selfA._parameters["Bounds"] )
- #
- # Opérateurs
- H = HO["Direct"].appliedControledFormTo
- #
- if selfA._parameters["EstimationOf"] == "State":
- M = EM["Direct"].appliedControledFormTo
- #
- if CM is not None and "Tangent" in CM and U is not None:
- Cm = CM["Tangent"].asMatrix(Xb)
+ if hasattr(B,"asfullmatrix"):
+ selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(Xn.size) )
+ else:
+ selfA.StoredVariables["APosterioriCovariance"].store( B )
+ if selfA._toStore("ForecastState"):
+ selfA.StoredVariables["ForecastState"].store( Xn )
+ selfA._setInternalState("seed", numpy.random.get_state())
+ elif selfA._parameters["nextStep"]:
+ Xn = selfA._getInternalState("Xn")
else:
- Cm = None
+ Xn = numpy.asarray(Xb)
#
- # Durée d'observation et tailles
if hasattr(Y,"stepnumber"):
duration = Y.stepnumber()
- __p = numpy.cumprod(Y.shape())[-1]
else:
duration = 2
- __p = numpy.array(Y).size
- #
- # Précalcul des inversions de B et R
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- BI = B.getI()
- RI = R.getI()
- #
- __n = Xb.size
- nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
- #
- if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
- Xn = Xb
- Pn = B
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( Xb )
- if selfA._toStore("APosterioriCovariance"):
- if hasattr(B,"asfullmatrix"):
- selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
- else:
- selfA.StoredVariables["APosterioriCovariance"].store( B )
- selfA._setInternalState("seed", numpy.random.get_state())
- elif selfA._parameters["nextStep"]:
- Xn = selfA._getInternalState("Xn")
- Pn = selfA._getInternalState("Pn")
- #
- if selfA._parameters["EstimationOf"] == "Parameters":
- XaMin = Xn
- previousJMinimum = numpy.finfo(float).max
#
+ # Multi-steps
+ # -----------
for step in range(duration-1):
if hasattr(Y,"store"):
- Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+ Ynpu = numpy.asarray( Y[step+1] ).reshape((-1,1))
else:
- Ynpu = numpy.ravel( Y ).reshape((__p,1))
- #
- Ht = HO["Tangent"].asMatrix(ValueForMethodForm = Xn)
- Ht = Ht.reshape(Ynpu.size,Xn.size) # ADAO & check shape
- Ha = HO["Adjoint"].asMatrix(ValueForMethodForm = Xn)
- Ha = Ha.reshape(Xn.size,Ynpu.size) # ADAO & check shape
- #
- if selfA._parameters["EstimationOf"] == "State":
- Mt = EM["Tangent"].asMatrix(ValueForMethodForm = Xn)
- Mt = Mt.reshape(Xn.size,Xn.size) # ADAO & check shape
- Ma = EM["Adjoint"].asMatrix(ValueForMethodForm = Xn)
- Ma = Ma.reshape(Xn.size,Xn.size) # ADAO & check shape
+ Ynpu = numpy.asarray( Y ).reshape((-1,1))
#
if U is not None:
if hasattr(U,"store") and len(U)>1:
- Un = numpy.ravel( U[step] ).reshape((-1,1))
+ Un = numpy.asarray( U[step] ).reshape((-1,1))
elif hasattr(U,"store") and len(U)==1:
- Un = numpy.ravel( U[0] ).reshape((-1,1))
+ Un = numpy.asarray( U[0] ).reshape((-1,1))
else:
- Un = numpy.ravel( U ).reshape((-1,1))
+ Un = numpy.asarray( U ).reshape((-1,1))
else:
Un = None
#
- if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
- Xn = ApplyBounds( Xn, selfA._parameters["Bounds"] )
- #
- if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
- Xn_predicted = numpy.ravel( M( (Xn, Un) ) ).reshape((__n,1))
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
- Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
- Xn_predicted = Xn_predicted + Cm @ Un
- Pn_predicted = Q + Mt * (Pn * Ma)
- elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
- # --- > Par principe, M = Id, Q = 0
- Xn_predicted = Xn
- Pn_predicted = Pn
- #
- if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
- Xn_predicted = ApplyBounds( Xn_predicted, selfA._parameters["Bounds"] )
- #
- if selfA._parameters["EstimationOf"] == "State":
- HX_predicted = numpy.ravel( H( (Xn_predicted, None) ) ).reshape((__p,1))
- _Innovation = Ynpu - HX_predicted
- elif selfA._parameters["EstimationOf"] == "Parameters":
- HX_predicted = numpy.ravel( H( (Xn_predicted, Un) ) ).reshape((__p,1))
- _Innovation = Ynpu - HX_predicted
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
- _Innovation = _Innovation - Cm @ Un
- #
- Kn = Pn_predicted * Ha * numpy.linalg.inv(R + numpy.dot(Ht, Pn_predicted * Ha))
- Xn = Xn_predicted + Kn * _Innovation
- Pn = Pn_predicted - Kn * Ht * Pn_predicted
- #
- if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
- Xn = ApplyBounds( Xn, selfA._parameters["Bounds"] )
- #
- Xa = Xn # Pointeurs
- #--------------------------
- selfA._setInternalState("Xn", Xn)
- selfA._setInternalState("Pn", Pn)
- #--------------------------
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- # ---> avec analysis
- selfA.StoredVariables["Analysis"].store( Xa )
- if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
- selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( H((Xa, Un)) )
- if selfA._toStore("InnovationAtCurrentAnalysis"):
- selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
- # ---> avec current state
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CurrentState"):
- selfA.StoredVariables["CurrentState"].store( Xn )
- if selfA._toStore("ForecastState"):
- selfA.StoredVariables["ForecastState"].store( Xn_predicted )
- if selfA._toStore("ForecastCovariance"):
- selfA.StoredVariables["ForecastCovariance"].store( Pn_predicted )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( Xn_predicted - Xa )
- if selfA._toStore("InnovationAtCurrentState"):
- selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
- if selfA._toStore("SimulatedObservationAtCurrentState") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
- # ---> autres
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- Jb = float( 0.5 * (Xa - Xb).T @ (BI @ (Xa - Xb)) )
- Jo = float( 0.5 * _Innovation.T @ (RI @ _Innovation) )
- J = Jb + Jo
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- #
- if selfA._toStore("IndexOfOptimum") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("CostFunctionJAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
- if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( Pn )
- if selfA._parameters["EstimationOf"] == "Parameters" \
- and J < previousJMinimum:
- previousJMinimum = J
- XaMin = Xa
- if selfA._toStore("APosterioriCovariance"):
- covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
- #
- # Stockage final supplémentaire de l'optimum en estimation de paramètres
- # ----------------------------------------------------------------------
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( XaMin )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
- #
- return 0
-
-# ==============================================================================
-def enks(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="EnKS16-KalmanFilterFormula"):
- """
- EnKS
- """
- #
- # Opérateurs
- H = HO["Direct"].appliedControledFormTo
- #
- if selfA._parameters["EstimationOf"] == "State":
- M = EM["Direct"].appliedControledFormTo
- #
- if CM is not None and "Tangent" in CM and U is not None:
- Cm = CM["Tangent"].asMatrix(Xb)
- else:
- Cm = None
- #
- # Précalcul des inversions de B et R
- RIdemi = R.sqrtmI()
- #
- # Durée d'observation et tailles
- LagL = selfA._parameters["SmootherLagL"]
- if (not hasattr(Y,"store")) or (not hasattr(Y,"stepnumber")):
- raise ValueError("Fixed-lag smoother requires a series of observation")
- if Y.stepnumber() < LagL:
- raise ValueError("Fixed-lag smoother requires a series of observation greater then the lag L")
- duration = Y.stepnumber()
- __p = numpy.cumprod(Y.shape())[-1]
- __n = Xb.size
- __m = selfA._parameters["NumberOfMembers"]
- #
- if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
- selfA.StoredVariables["Analysis"].store( Xb )
- if selfA._toStore("APosterioriCovariance"):
- if hasattr(B,"asfullmatrix"):
- selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
- else:
- selfA.StoredVariables["APosterioriCovariance"].store( B )
- #
- # Calcul direct initial (on privilégie la mémorisation au recalcul)
- __seed = numpy.random.get_state()
- selfB = copy.deepcopy(selfA)
- selfB._parameters["StoreSupplementaryCalculations"] = ["CurrentEnsembleState"]
- if VariantM == "EnKS16-KalmanFilterFormula":
- etkf(selfB, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM = "KalmanFilterFormula")
- else:
- raise ValueError("VariantM has to be chosen in the authorized methods list.")
- if LagL > 0:
- EL = selfB.StoredVariables["CurrentEnsembleState"][LagL-1]
- else:
- EL = EnsembleOfBackgroundPerturbations( Xb, None, __m ) # Cf. etkf
- selfA._parameters["SetSeed"] = numpy.random.set_state(__seed)
- #
- for step in range(LagL,duration-1):
- #
- sEL = selfB.StoredVariables["CurrentEnsembleState"][step+1-LagL:step+1]
- sEL.append(None)
- #
- if hasattr(Y,"store"):
- Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
- else:
- Ynpu = numpy.ravel( Y ).reshape((__p,1))
- #
- if U is not None:
- if hasattr(U,"store") and len(U)>1:
- Un = numpy.ravel( U[step] ).reshape((-1,1))
- elif hasattr(U,"store") and len(U)==1:
- Un = numpy.ravel( U[0] ).reshape((-1,1))
+ if selfA._parameters["EstimationOf"] == "State": # Forecast
+ M = EM["Direct"].appliedControledFormTo
+ if CM is not None and "Tangent" in CM and Un is not None:
+ Cm = CM["Tangent"].asMatrix(Xn)
else:
- Un = numpy.ravel( U ).reshape((-1,1))
- else:
- Un = None
- #
- #--------------------------
- if VariantM == "EnKS16-KalmanFilterFormula":
- if selfA._parameters["EstimationOf"] == "State": # Forecast
- EL = M( [(EL[:,i], Un) for i in range(__m)],
- argsAsSerie = True,
- returnSerieAsArrayMatrix = True )
- EL = EnsemblePerturbationWithGivenCovariance( EL, Q )
- EZ = H( [(EL[:,i], Un) for i in range(__m)],
- argsAsSerie = True,
- returnSerieAsArrayMatrix = True )
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
- Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
- EZ = EZ + Cm @ Un
- elif selfA._parameters["EstimationOf"] == "Parameters":
- # --- > Par principe, M = Id, Q = 0
- EZ = H( [(EL[:,i], Un) for i in range(__m)],
- argsAsSerie = True,
- returnSerieAsArrayMatrix = True )
- #
- vEm = EL.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
- vZm = EZ.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
+ Cm = None
#
- mS = RIdemi @ EnsembleOfAnomalies( EZ, vZm, 1./math.sqrt(__m-1) )
- mS = mS.reshape((-1,__m)) # Pour dimension 1
- delta = RIdemi @ ( Ynpu - vZm )
- mT = numpy.linalg.inv( numpy.identity(__m) + mS.T @ mS )
- vw = mT @ mS.T @ delta
- #
- Tdemi = numpy.real(scipy.linalg.sqrtm(mT))
- mU = numpy.identity(__m)
- wTU = (vw.reshape((__m,1)) + math.sqrt(__m-1) * Tdemi @ mU)
- #
- EX = EnsembleOfAnomalies( EL, vEm, 1./math.sqrt(__m-1) )
- EL = vEm + EX @ wTU
- #
- sEL[LagL] = EL
- for irl in range(LagL): # Lissage des L précédentes analysis
- vEm = sEL[irl].mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
- EX = EnsembleOfAnomalies( sEL[irl], vEm, 1./math.sqrt(__m-1) )
- sEL[irl] = vEm + EX @ wTU
- #
- # Conservation de l'analyse retrospective d'ordre 0 avant rotation
- Xa = sEL[0].mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
- if selfA._toStore("APosterioriCovariance"):
- EXn = sEL[0]
- #
- for irl in range(LagL):
- sEL[irl] = sEL[irl+1]
- sEL[LagL] = None
- #--------------------------
- else:
- raise ValueError("VariantM has to be chosen in the authorized methods list.")
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- # ---> avec analysis
- selfA.StoredVariables["Analysis"].store( Xa )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(EXn) )
- #
- # Stockage des dernières analyses incomplètement remises à jour
- for irl in range(LagL):
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- Xa = sEL[irl].mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
- selfA.StoredVariables["Analysis"].store( Xa )
- #
- return 0
-
-# ==============================================================================
-def etkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q,
- VariantM="KalmanFilterFormula",
- Hybrid=None,
- ):
- """
- Ensemble-Transform EnKF
- """
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA._parameters["StoreInternalVariables"] = True
- #
- # Opérateurs
- H = HO["Direct"].appliedControledFormTo
- #
- if selfA._parameters["EstimationOf"] == "State":
- M = EM["Direct"].appliedControledFormTo
- #
- if CM is not None and "Tangent" in CM and U is not None:
- Cm = CM["Tangent"].asMatrix(Xb)
- else:
- Cm = None
- #
- # Durée d'observation et tailles
- if hasattr(Y,"stepnumber"):
- duration = Y.stepnumber()
- __p = numpy.cumprod(Y.shape())[-1]
- else:
- duration = 2
- __p = numpy.array(Y).size
- #
- # Précalcul des inversions de B et R
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- BI = B.getI()
- RI = R.getI()
- elif VariantM != "KalmanFilterFormula":
- RI = R.getI()
- if VariantM == "KalmanFilterFormula":
- RIdemi = R.sqrtmI()
- #
- __n = Xb.size
- __m = selfA._parameters["NumberOfMembers"]
- nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
- previousJMinimum = numpy.finfo(float).max
- #
- if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
- Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
- selfA.StoredVariables["Analysis"].store( Xb )
- if selfA._toStore("APosterioriCovariance"):
- if hasattr(B,"asfullmatrix"):
- selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
- else:
- selfA.StoredVariables["APosterioriCovariance"].store( B )
- selfA._setInternalState("seed", numpy.random.get_state())
- elif selfA._parameters["nextStep"]:
- Xn = selfA._getInternalState("Xn")
- #
- for step in range(duration-1):
- numpy.random.set_state(selfA._getInternalState("seed"))
- if hasattr(Y,"store"):
- Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
- else:
- Ynpu = numpy.ravel( Y ).reshape((__p,1))
- #
- if U is not None:
- if hasattr(U,"store") and len(U)>1:
- Un = numpy.ravel( U[step] ).reshape((-1,1))
- elif hasattr(U,"store") and len(U)==1:
- Un = numpy.ravel( U[0] ).reshape((-1,1))
- else:
- Un = numpy.ravel( U ).reshape((-1,1))
- else:
- Un = None
- #
- if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
- Xn = CovarianceInflation( Xn,
- selfA._parameters["InflationType"],
- selfA._parameters["InflationFactor"],
- )
- #
- if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
- EMX = M( [(Xn[:,i], Un) for i in range(__m)],
- argsAsSerie = True,
- returnSerieAsArrayMatrix = True )
- Xn_predicted = EnsemblePerturbationWithGivenCovariance( EMX, Q )
- HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
- argsAsSerie = True,
- returnSerieAsArrayMatrix = True )
+ Xn_predicted = M( (Xn, Un) )
+ if selfA._toStore("ForecastState"):
+ selfA.StoredVariables["ForecastState"].store( Xn_predicted )
if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
- Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+ Cm = Cm.reshape(Xn.size,Un.size) # ADAO & check shape
Xn_predicted = Xn_predicted + Cm @ Un
- elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
+ elif selfA._parameters["EstimationOf"] == "Parameters": # No forecast
# --- > Par principe, M = Id, Q = 0
- Xn_predicted = EMX = Xn
- HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
- argsAsSerie = True,
- returnSerieAsArrayMatrix = True )
- #
- # Mean of forecast and observation of forecast
- Xfm = EnsembleMean( Xn_predicted )
- Hfm = EnsembleMean( HX_predicted )
- #
- # Anomalies
- EaX = EnsembleOfAnomalies( Xn_predicted, Xfm )
- EaHX = EnsembleOfAnomalies( HX_predicted, Hfm)
- #
- #--------------------------
- if VariantM == "KalmanFilterFormula":
- mS = RIdemi * EaHX / math.sqrt(__m-1)
- mS = mS.reshape((-1,__m)) # Pour dimension 1
- delta = RIdemi * ( Ynpu - Hfm )
- mT = numpy.linalg.inv( numpy.identity(__m) + mS.T @ mS )
- vw = mT @ mS.T @ delta
- #
- Tdemi = numpy.real(scipy.linalg.sqrtm(mT))
- mU = numpy.identity(__m)
- #
- EaX = EaX / math.sqrt(__m-1)
- Xn = Xfm + EaX @ ( vw.reshape((__m,1)) + math.sqrt(__m-1) * Tdemi @ mU )
- #--------------------------
- elif VariantM == "Variational":
- HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
- def CostFunction(w):
- _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
- _Jo = 0.5 * _A.T @ (RI * _A)
- _Jb = 0.5 * (__m-1) * w.T @ w
- _J = _Jo + _Jb
- return float(_J)
- def GradientOfCostFunction(w):
- _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
- _GardJo = - EaHX.T @ (RI * _A)
- _GradJb = (__m-1) * w.reshape((__m,1))
- _GradJ = _GardJo + _GradJb
- return numpy.ravel(_GradJ)
- vw = scipy.optimize.fmin_cg(
- f = CostFunction,
- x0 = numpy.zeros(__m),
- fprime = GradientOfCostFunction,
- args = (),
- disp = False,
- )
- #
- Hto = EaHX.T @ (RI * EaHX).reshape((-1,__m))
- Htb = (__m-1) * numpy.identity(__m)
- Hta = Hto + Htb
- #
- Pta = numpy.linalg.inv( Hta )
- EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
- #
- Xn = Xfm + EaX @ (vw[:,None] + EWa)
- #--------------------------
- elif VariantM == "FiniteSize11": # Jauge Boc2011
- HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
- def CostFunction(w):
- _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
- _Jo = 0.5 * _A.T @ (RI * _A)
- _Jb = 0.5 * __m * math.log(1 + 1/__m + w.T @ w)
- _J = _Jo + _Jb
- return float(_J)
- def GradientOfCostFunction(w):
- _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
- _GardJo = - EaHX.T @ (RI * _A)
- _GradJb = __m * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w)
- _GradJ = _GardJo + _GradJb
- return numpy.ravel(_GradJ)
- vw = scipy.optimize.fmin_cg(
- f = CostFunction,
- x0 = numpy.zeros(__m),
- fprime = GradientOfCostFunction,
- args = (),
- disp = False,
- )
- #
- Hto = EaHX.T @ (RI * EaHX).reshape((-1,__m))
- Htb = __m * \
- ( (1 + 1/__m + vw.T @ vw) * numpy.identity(__m) - 2 * vw @ vw.T ) \
- / (1 + 1/__m + vw.T @ vw)**2
- Hta = Hto + Htb
- #
- Pta = numpy.linalg.inv( Hta )
- EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
- #
- Xn = Xfm + EaX @ (vw.reshape((__m,1)) + EWa)
- #--------------------------
- elif VariantM == "FiniteSize15": # Jauge Boc2015
- HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
- def CostFunction(w):
- _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
- _Jo = 0.5 * _A.T * (RI * _A)
- _Jb = 0.5 * (__m+1) * math.log(1 + 1/__m + w.T @ w)
- _J = _Jo + _Jb
- return float(_J)
- def GradientOfCostFunction(w):
- _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
- _GardJo = - EaHX.T @ (RI * _A)
- _GradJb = (__m+1) * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w)
- _GradJ = _GardJo + _GradJb
- return numpy.ravel(_GradJ)
- vw = scipy.optimize.fmin_cg(
- f = CostFunction,
- x0 = numpy.zeros(__m),
- fprime = GradientOfCostFunction,
- args = (),
- disp = False,
- )
- #
- Hto = EaHX.T @ (RI * EaHX).reshape((-1,__m))
- Htb = (__m+1) * \
- ( (1 + 1/__m + vw.T @ vw) * numpy.identity(__m) - 2 * vw @ vw.T ) \
- / (1 + 1/__m + vw.T @ vw)**2
- Hta = Hto + Htb
- #
- Pta = numpy.linalg.inv( Hta )
- EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
- #
- Xn = Xfm + EaX @ (vw.reshape((__m,1)) + EWa)
- #--------------------------
- elif VariantM == "FiniteSize16": # Jauge Boc2016
- HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
- def CostFunction(w):
- _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
- _Jo = 0.5 * _A.T @ (RI * _A)
- _Jb = 0.5 * (__m+1) * math.log(1 + 1/__m + w.T @ w / (__m-1))
- _J = _Jo + _Jb
- return float(_J)
- def GradientOfCostFunction(w):
- _A = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
- _GardJo = - EaHX.T @ (RI * _A)
- _GradJb = ((__m+1) / (__m-1)) * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w / (__m-1))
- _GradJ = _GardJo + _GradJb
- return numpy.ravel(_GradJ)
- vw = scipy.optimize.fmin_cg(
- f = CostFunction,
- x0 = numpy.zeros(__m),
- fprime = GradientOfCostFunction,
- args = (),
- disp = False,
- )
- #
- Hto = EaHX.T @ (RI * EaHX).reshape((-1,__m))
- Htb = ((__m+1) / (__m-1)) * \
- ( (1 + 1/__m + vw.T @ vw / (__m-1)) * numpy.identity(__m) - 2 * vw @ vw.T / (__m-1) ) \
- / (1 + 1/__m + vw.T @ vw / (__m-1))**2
- Hta = Hto + Htb
- #
- Pta = numpy.linalg.inv( Hta )
- EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
- #
- Xn = Xfm + EaX @ (vw[:,None] + EWa)
- #--------------------------
- else:
- raise ValueError("VariantM has to be chosen in the authorized methods list.")
- #
- if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
- Xn = CovarianceInflation( Xn,
- selfA._parameters["InflationType"],
- selfA._parameters["InflationFactor"],
- )
+ Xn_predicted = Xn
+ Xn_predicted = numpy.asarray(Xn_predicted).reshape((-1,1))
#
- if Hybrid == "E3DVAR":
- betaf = selfA._parameters["HybridCovarianceEquilibrium"]
- Xn = Apply3DVarRecentringOnEnsemble(Xn, EMX, Ynpu, HO, R, B, betaf)
+ oneCycle(selfA, Xn_predicted, Ynpu, HO, R, B) # Correct
#
- Xa = EnsembleMean( Xn )
+ Xn = selfA.StoredVariables["Analysis"][-1]
#--------------------------
selfA._setInternalState("Xn", Xn)
- selfA._setInternalState("seed", numpy.random.get_state())
- #--------------------------
- #
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("APosterioriCovariance") \
- or selfA._toStore("InnovationAtCurrentAnalysis") \
- or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- _HXa = numpy.ravel( H((Xa, Un)) ).reshape((-1,1))
- _Innovation = Ynpu - _HXa
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- # ---> avec analysis
- selfA.StoredVariables["Analysis"].store( Xa )
- if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
- selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
- if selfA._toStore("InnovationAtCurrentAnalysis"):
- selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
- # ---> avec current state
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CurrentState"):
- selfA.StoredVariables["CurrentState"].store( Xn )
- if selfA._toStore("ForecastState"):
- selfA.StoredVariables["ForecastState"].store( EMX )
- if selfA._toStore("ForecastCovariance"):
- selfA.StoredVariables["ForecastCovariance"].store( EnsembleErrorCovariance(EMX) )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( EMX - Xa )
- if selfA._toStore("InnovationAtCurrentState"):
- selfA.StoredVariables["InnovationAtCurrentState"].store( - HX_predicted + Ynpu )
- if selfA._toStore("SimulatedObservationAtCurrentState") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
- # ---> autres
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
- Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
- J = Jb + Jo
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- #
- if selfA._toStore("IndexOfOptimum") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("CostFunctionJAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
- if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
- if selfA._parameters["EstimationOf"] == "Parameters" \
- and J < previousJMinimum:
- previousJMinimum = J
- XaMin = Xa
- if selfA._toStore("APosterioriCovariance"):
- covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
- # ---> Pour les smoothers
- if selfA._toStore("CurrentEnsembleState"):
- selfA.StoredVariables["CurrentEnsembleState"].store( Xn )
- #
- # Stockage final supplémentaire de l'optimum en estimation de paramètres
- # ----------------------------------------------------------------------
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( XaMin )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
- #
- return 0
-
-# ==============================================================================
-def exkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
- """
- Extended Kalman Filter
- """
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA._parameters["StoreInternalVariables"] = True
- #
- # Opérateurs
- H = HO["Direct"].appliedControledFormTo
- #
- if selfA._parameters["EstimationOf"] == "State":
- M = EM["Direct"].appliedControledFormTo
- #
- if CM is not None and "Tangent" in CM and U is not None:
- Cm = CM["Tangent"].asMatrix(Xb)
- else:
- Cm = None
- #
- # Durée d'observation et tailles
- if hasattr(Y,"stepnumber"):
- duration = Y.stepnumber()
- __p = numpy.cumprod(Y.shape())[-1]
- else:
- duration = 2
- __p = numpy.array(Y).size
- #
- # Précalcul des inversions de B et R
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- BI = B.getI()
- RI = R.getI()
- #
- __n = Xb.size
- nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
- #
- if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
- Xn = Xb
- Pn = B
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( Xb )
- if selfA._toStore("APosterioriCovariance"):
- if hasattr(B,"asfullmatrix"):
- selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
- else:
- selfA.StoredVariables["APosterioriCovariance"].store( B )
- selfA._setInternalState("seed", numpy.random.get_state())
- elif selfA._parameters["nextStep"]:
- Xn = selfA._getInternalState("Xn")
- Pn = selfA._getInternalState("Pn")
- #
- if selfA._parameters["EstimationOf"] == "Parameters":
- XaMin = Xn
- previousJMinimum = numpy.finfo(float).max
- #
- for step in range(duration-1):
- if hasattr(Y,"store"):
- Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
- else:
- Ynpu = numpy.ravel( Y ).reshape((__p,1))
- #
- Ht = HO["Tangent"].asMatrix(ValueForMethodForm = Xn)
- Ht = Ht.reshape(Ynpu.size,Xn.size) # ADAO & check shape
- Ha = HO["Adjoint"].asMatrix(ValueForMethodForm = Xn)
- Ha = Ha.reshape(Xn.size,Ynpu.size) # ADAO & check shape
- #
- if selfA._parameters["EstimationOf"] == "State":
- Mt = EM["Tangent"].asMatrix(ValueForMethodForm = Xn)
- Mt = Mt.reshape(Xn.size,Xn.size) # ADAO & check shape
- Ma = EM["Adjoint"].asMatrix(ValueForMethodForm = Xn)
- Ma = Ma.reshape(Xn.size,Xn.size) # ADAO & check shape
- #
- if U is not None:
- if hasattr(U,"store") and len(U)>1:
- Un = numpy.ravel( U[step] ).reshape((-1,1))
- elif hasattr(U,"store") and len(U)==1:
- Un = numpy.ravel( U[0] ).reshape((-1,1))
- else:
- Un = numpy.ravel( U ).reshape((-1,1))
- else:
- Un = None
- #
- if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
- Xn_predicted = numpy.ravel( M( (Xn, Un) ) ).reshape((__n,1))
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
- Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
- Xn_predicted = Xn_predicted + Cm @ Un
- Pn_predicted = Q + Mt * (Pn * Ma)
- elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
- # --- > Par principe, M = Id, Q = 0
- Xn_predicted = Xn
- Pn_predicted = Pn
- #
- if selfA._parameters["EstimationOf"] == "State":
- HX_predicted = numpy.ravel( H( (Xn_predicted, None) ) ).reshape((__p,1))
- _Innovation = Ynpu - HX_predicted
- elif selfA._parameters["EstimationOf"] == "Parameters":
- HX_predicted = numpy.ravel( H( (Xn_predicted, Un) ) ).reshape((__p,1))
- _Innovation = Ynpu - HX_predicted
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
- _Innovation = _Innovation - Cm @ Un
- #
- Kn = Pn_predicted * Ha * numpy.linalg.inv(R + numpy.dot(Ht, Pn_predicted * Ha))
- Xn = Xn_predicted + Kn * _Innovation
- Pn = Pn_predicted - Kn * Ht * Pn_predicted
- #
- Xa = Xn # Pointeurs
- #--------------------------
- selfA._setInternalState("Xn", Xn)
- selfA._setInternalState("Pn", Pn)
- #--------------------------
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- # ---> avec analysis
- selfA.StoredVariables["Analysis"].store( Xa )
- if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
- selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( H((Xa, Un)) )
- if selfA._toStore("InnovationAtCurrentAnalysis"):
- selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
- # ---> avec current state
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CurrentState"):
- selfA.StoredVariables["CurrentState"].store( Xn )
- if selfA._toStore("ForecastState"):
- selfA.StoredVariables["ForecastState"].store( Xn_predicted )
- if selfA._toStore("ForecastCovariance"):
- selfA.StoredVariables["ForecastCovariance"].store( Pn_predicted )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( Xn_predicted - Xa )
- if selfA._toStore("InnovationAtCurrentState"):
- selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
- if selfA._toStore("SimulatedObservationAtCurrentState") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
- # ---> autres
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- Jb = float( 0.5 * (Xa - Xb).T @ (BI @ (Xa - Xb)) )
- Jo = float( 0.5 * _Innovation.T @ (RI @ _Innovation) )
- J = Jb + Jo
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- #
- if selfA._toStore("IndexOfOptimum") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("CostFunctionJAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
- if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( Pn )
- if selfA._parameters["EstimationOf"] == "Parameters" \
- and J < previousJMinimum:
- previousJMinimum = J
- XaMin = Xa
- if selfA._toStore("APosterioriCovariance"):
- covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
- #
- # Stockage final supplémentaire de l'optimum en estimation de paramètres
- # ----------------------------------------------------------------------
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( XaMin )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
- #
- return 0
-
-# ==============================================================================
-def ienkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="IEnKF12",
- BnotT=False, _epsilon=1.e-3, _e=1.e-7, _jmax=15000):
- """
- Iterative EnKF
- """
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA._parameters["StoreInternalVariables"] = True
- #
- # Opérateurs
- H = HO["Direct"].appliedControledFormTo
- #
- if selfA._parameters["EstimationOf"] == "State":
- M = EM["Direct"].appliedControledFormTo
- #
- if CM is not None and "Tangent" in CM and U is not None:
- Cm = CM["Tangent"].asMatrix(Xb)
- else:
- Cm = None
- #
- # Durée d'observation et tailles
- if hasattr(Y,"stepnumber"):
- duration = Y.stepnumber()
- __p = numpy.cumprod(Y.shape())[-1]
- else:
- duration = 2
- __p = numpy.array(Y).size
- #
- # Précalcul des inversions de B et R
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- BI = B.getI()
- RI = R.getI()
- #
- __n = Xb.size
- __m = selfA._parameters["NumberOfMembers"]
- nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
- previousJMinimum = numpy.finfo(float).max
- #
- if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
- if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
- else: Pn = B
- Xn = EnsembleOfBackgroundPerturbations( Xb, Pn, __m )
- selfA.StoredVariables["Analysis"].store( Xb )
- if selfA._toStore("APosterioriCovariance"):
- if hasattr(B,"asfullmatrix"):
- selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
- else:
- selfA.StoredVariables["APosterioriCovariance"].store( B )
- selfA._setInternalState("seed", numpy.random.get_state())
- elif selfA._parameters["nextStep"]:
- Xn = selfA._getInternalState("Xn")
- #
- for step in range(duration-1):
- numpy.random.set_state(selfA._getInternalState("seed"))
- if hasattr(Y,"store"):
- Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
- else:
- Ynpu = numpy.ravel( Y ).reshape((__p,1))
- #
- if U is not None:
- if hasattr(U,"store") and len(U)>1:
- Un = numpy.ravel( U[step] ).reshape((-1,1))
- elif hasattr(U,"store") and len(U)==1:
- Un = numpy.ravel( U[0] ).reshape((-1,1))
- else:
- Un = numpy.ravel( U ).reshape((-1,1))
- else:
- Un = None
- #
- if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
- Xn = CovarianceInflation( Xn,
- selfA._parameters["InflationType"],
- selfA._parameters["InflationFactor"],
- )
- #
- #--------------------------
- if VariantM == "IEnKF12":
- Xfm = numpy.ravel(Xn.mean(axis=1, dtype=mfp).astype('float'))
- EaX = EnsembleOfAnomalies( Xn ) / math.sqrt(__m-1)
- __j = 0
- Deltaw = 1
- if not BnotT:
- Ta = numpy.identity(__m)
- vw = numpy.zeros(__m)
- while numpy.linalg.norm(Deltaw) >= _e and __j <= _jmax:
- vx1 = (Xfm + EaX @ vw).reshape((__n,1))
- #
- if BnotT:
- E1 = vx1 + _epsilon * EaX
- else:
- E1 = vx1 + math.sqrt(__m-1) * EaX @ Ta
- #
- if selfA._parameters["EstimationOf"] == "State": # Forecast + Q
- E2 = M( [(E1[:,i,numpy.newaxis], Un) for i in range(__m)],
- argsAsSerie = True,
- returnSerieAsArrayMatrix = True )
- elif selfA._parameters["EstimationOf"] == "Parameters":
- # --- > Par principe, M = Id
- E2 = Xn
- vx2 = E2.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
- vy1 = H((vx2, Un)).reshape((__p,1))
- #
- HE2 = H( [(E2[:,i,numpy.newaxis], Un) for i in range(__m)],
- argsAsSerie = True,
- returnSerieAsArrayMatrix = True )
- vy2 = HE2.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
- #
- if BnotT:
- EaY = (HE2 - vy2) / _epsilon
- else:
- EaY = ( (HE2 - vy2) @ numpy.linalg.inv(Ta) ) / math.sqrt(__m-1)
- #
- GradJ = numpy.ravel(vw[:,None] - EaY.transpose() @ (RI * ( Ynpu - vy1 )))
- mH = numpy.identity(__m) + EaY.transpose() @ (RI * EaY).reshape((-1,__m))
- Deltaw = - numpy.linalg.solve(mH,GradJ)
- #
- vw = vw + Deltaw
- #
- if not BnotT:
- Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
- #
- __j = __j + 1
- #
- A2 = EnsembleOfAnomalies( E2 )
- #
- if BnotT:
- Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
- A2 = math.sqrt(__m-1) * A2 @ Ta / _epsilon
- #
- Xn = vx2 + A2
- #--------------------------
- else:
- raise ValueError("VariantM has to be chosen in the authorized methods list.")
- #
- if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
- Xn = CovarianceInflation( Xn,
- selfA._parameters["InflationType"],
- selfA._parameters["InflationFactor"],
- )
- #
- Xa = EnsembleMean( Xn )
- #--------------------------
- selfA._setInternalState("Xn", Xn)
- selfA._setInternalState("seed", numpy.random.get_state())
- #--------------------------
- #
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("APosterioriCovariance") \
- or selfA._toStore("InnovationAtCurrentAnalysis") \
- or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- _HXa = numpy.ravel( H((Xa, Un)) ).reshape((-1,1))
- _Innovation = Ynpu - _HXa
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- # ---> avec analysis
- selfA.StoredVariables["Analysis"].store( Xa )
- if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
- selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
- if selfA._toStore("InnovationAtCurrentAnalysis"):
- selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
- # ---> avec current state
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CurrentState"):
- selfA.StoredVariables["CurrentState"].store( Xn )
- if selfA._toStore("ForecastState"):
- selfA.StoredVariables["ForecastState"].store( E2 )
- if selfA._toStore("ForecastCovariance"):
- selfA.StoredVariables["ForecastCovariance"].store( EnsembleErrorCovariance(E2) )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( E2 - Xa )
- if selfA._toStore("InnovationAtCurrentState"):
- selfA.StoredVariables["InnovationAtCurrentState"].store( - HE2 + Ynpu )
- if selfA._toStore("SimulatedObservationAtCurrentState") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HE2 )
- # ---> autres
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
- Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
- J = Jb + Jo
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- #
- if selfA._toStore("IndexOfOptimum") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("CostFunctionJAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
- if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
- if selfA._parameters["EstimationOf"] == "Parameters" \
- and J < previousJMinimum:
- previousJMinimum = J
- XaMin = Xa
- if selfA._toStore("APosterioriCovariance"):
- covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
- # ---> Pour les smoothers
- if selfA._toStore("CurrentEnsembleState"):
- selfA.StoredVariables["CurrentEnsembleState"].store( Xn )
- #
- # Stockage final supplémentaire de l'optimum en estimation de paramètres
- # ----------------------------------------------------------------------
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( XaMin )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
- #
- return 0
-
-# ==============================================================================
-def incr3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
- """
- 3DVAR incrémental
- """
- #
- # Initialisations
- # ---------------
- Hm = HO["Direct"].appliedTo
- #
- BI = B.getI()
- RI = R.getI()
- #
- HXb = numpy.asarray(Hm( Xb )).reshape((-1,1))
- Innovation = Y - HXb
- #
- # Outer Loop
- # ----------
- iOuter = 0
- J = 1./mpr
- DeltaJ = 1./mpr
- Xr = numpy.asarray(selfA._parameters["InitializationPoint"]).reshape((-1,1))
- while abs(DeltaJ) >= selfA._parameters["CostDecrementTolerance"] and iOuter <= selfA._parameters["MaximumNumberOfSteps"]:
- #
- # Inner Loop
- # ----------
- Ht = HO["Tangent"].asMatrix(Xr)
- Ht = Ht.reshape(Y.size,Xr.size) # ADAO & check shape
- #
- # Définition de la fonction-coût
- # ------------------------------
- def CostFunction(dx):
- _dX = numpy.asarray(dx).reshape((-1,1))
- if selfA._parameters["StoreInternalVariables"] or \
- selfA._toStore("CurrentState") or \
- selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentState"].store( Xb + _dX )
- _HdX = (Ht @ _dX).reshape((-1,1))
- _dInnovation = Innovation - _HdX
- if selfA._toStore("SimulatedObservationAtCurrentState") or \
- selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HXb + _HdX )
- if selfA._toStore("InnovationAtCurrentState"):
- selfA.StoredVariables["InnovationAtCurrentState"].store( _dInnovation )
- #
- Jb = float( 0.5 * _dX.T * (BI * _dX) )
- Jo = float( 0.5 * _dInnovation.T * (RI * _dInnovation) )
- J = Jb + Jo
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- if selfA._toStore("IndexOfOptimum") or \
- selfA._toStore("CurrentOptimum") or \
- selfA._toStore("CostFunctionJAtCurrentOptimum") or \
- selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
- selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
- selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
- if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- return J
- #
- def GradientOfCostFunction(dx):
- _dX = numpy.ravel( dx )
- _HdX = (Ht @ _dX).reshape((-1,1))
- _dInnovation = Innovation - _HdX
- GradJb = BI @ _dX
- GradJo = - Ht.T @ (RI * _dInnovation)
- GradJ = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
- return GradJ
- #
- # Minimisation de la fonctionnelle
- # --------------------------------
- nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
- #
- if selfA._parameters["Minimizer"] == "LBFGSB":
- # Minimum, J_optimal, Informations = scipy.optimize.fmin_l_bfgs_b(
- if "0.19" <= scipy.version.version <= "1.1.0":
- import lbfgsbhlt as optimiseur
- else:
- import scipy.optimize as optimiseur
- Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
- func = CostFunction,
- x0 = numpy.zeros(Xb.size),
- fprime = GradientOfCostFunction,
- args = (),
- bounds = RecentredBounds(selfA._parameters["Bounds"], Xb),
- maxfun = selfA._parameters["MaximumNumberOfSteps"]-1,
- factr = selfA._parameters["CostDecrementTolerance"]*1.e14,
- pgtol = selfA._parameters["ProjectedGradientTolerance"],
- iprint = selfA._parameters["optiprint"],
- )
- nfeval = Informations['funcalls']
- rc = Informations['warnflag']
- elif selfA._parameters["Minimizer"] == "TNC":
- Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
- func = CostFunction,
- x0 = numpy.zeros(Xb.size),
- fprime = GradientOfCostFunction,
- args = (),
- bounds = RecentredBounds(selfA._parameters["Bounds"], Xb),
- maxfun = selfA._parameters["MaximumNumberOfSteps"],
- pgtol = selfA._parameters["ProjectedGradientTolerance"],
- ftol = selfA._parameters["CostDecrementTolerance"],
- messages = selfA._parameters["optmessages"],
- )
- elif selfA._parameters["Minimizer"] == "CG":
- Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
- f = CostFunction,
- x0 = numpy.zeros(Xb.size),
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- gtol = selfA._parameters["GradientNormTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- elif selfA._parameters["Minimizer"] == "NCG":
- Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
- f = CostFunction,
- x0 = numpy.zeros(Xb.size),
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- avextol = selfA._parameters["CostDecrementTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- elif selfA._parameters["Minimizer"] == "BFGS":
- Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
- f = CostFunction,
- x0 = numpy.zeros(Xb.size),
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- gtol = selfA._parameters["GradientNormTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- else:
- raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
- #
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- MinJ = selfA.StoredVariables["CostFunctionJ"][IndexMin]
- #
- if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
- Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
- else:
- Minimum = Xb + Minimum.reshape((-1,1))
- #
- Xr = Minimum
- DeltaJ = selfA.StoredVariables["CostFunctionJ" ][-1] - J
- iOuter = selfA.StoredVariables["CurrentIterationNumber"][-1]
- #
- Xa = Xr
- #--------------------------
- #
- selfA.StoredVariables["Analysis"].store( Xa )
- #
- if selfA._toStore("OMA") or \
- selfA._toStore("SigmaObs2") or \
- selfA._toStore("SimulationQuantiles") or \
- selfA._toStore("SimulatedObservationAtOptimum"):
- if selfA._toStore("SimulatedObservationAtCurrentState"):
- HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
- elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
- else:
- HXa = Hm( Xa )
- #
- if selfA._toStore("APosterioriCovariance") or \
- selfA._toStore("SimulationQuantiles") or \
- selfA._toStore("JacobianMatrixAtOptimum") or \
- selfA._toStore("KalmanGainAtOptimum"):
- HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
- HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
- if selfA._toStore("APosterioriCovariance") or \
- selfA._toStore("SimulationQuantiles") or \
- selfA._toStore("KalmanGainAtOptimum"):
- HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
- HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
- if selfA._toStore("APosterioriCovariance") or \
- selfA._toStore("SimulationQuantiles"):
- A = HessienneEstimation(Xa.size, HaM, HtM, BI, RI)
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( A )
- if selfA._toStore("JacobianMatrixAtOptimum"):
- selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
- if selfA._toStore("KalmanGainAtOptimum"):
- if (Y.size <= Xb.size): KG = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
- elif (Y.size > Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
- selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
- #
- # Calculs et/ou stockages supplémentaires
- # ---------------------------------------
- if selfA._toStore("Innovation") or \
- selfA._toStore("SigmaObs2") or \
- selfA._toStore("MahalanobisConsistency") or \
- selfA._toStore("OMB"):
- d = Y - HXb
- if selfA._toStore("Innovation"):
- selfA.StoredVariables["Innovation"].store( d )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
- if selfA._toStore("OMA"):
- selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
- if selfA._toStore("OMB"):
- selfA.StoredVariables["OMB"].store( d )
- if selfA._toStore("SigmaObs2"):
- TraceR = R.trace(Y.size)
- selfA.StoredVariables["SigmaObs2"].store( float( (d.T @ (numpy.ravel(Y)-numpy.ravel(HXa))) ) / TraceR )
- if selfA._toStore("MahalanobisConsistency"):
- selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
- if selfA._toStore("SimulationQuantiles"):
- QuantilesEstimations(selfA, A, Xa, HXa, Hm, HtM)
- if selfA._toStore("SimulatedObservationAtBackground"):
- selfA.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
- if selfA._toStore("SimulatedObservationAtOptimum"):
- selfA.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
- #
- return 0
-
-# ==============================================================================
-def mlef(selfA, Xb, Y, U, HO, EM, CM, R, B, Q,
- VariantM="MLEF13", BnotT=False, _epsilon=1.e-3, _e=1.e-7, _jmax=15000,
- Hybrid=None,
- ):
- """
- Maximum Likelihood Ensemble Filter
- """
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA._parameters["StoreInternalVariables"] = True
- #
- # Opérateurs
- H = HO["Direct"].appliedControledFormTo
- #
- if selfA._parameters["EstimationOf"] == "State":
- M = EM["Direct"].appliedControledFormTo
- #
- if CM is not None and "Tangent" in CM and U is not None:
- Cm = CM["Tangent"].asMatrix(Xb)
- else:
- Cm = None
- #
- # Durée d'observation et tailles
- if hasattr(Y,"stepnumber"):
- duration = Y.stepnumber()
- __p = numpy.cumprod(Y.shape())[-1]
- else:
- duration = 2
- __p = numpy.array(Y).size
- #
- # Précalcul des inversions de B et R
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- BI = B.getI()
- RI = R.getI()
- #
- __n = Xb.size
- __m = selfA._parameters["NumberOfMembers"]
- nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
- previousJMinimum = numpy.finfo(float).max
- #
- if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
- Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
- selfA.StoredVariables["Analysis"].store( Xb )
- if selfA._toStore("APosterioriCovariance"):
- if hasattr(B,"asfullmatrix"):
- selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
- else:
- selfA.StoredVariables["APosterioriCovariance"].store( B )
- selfA._setInternalState("seed", numpy.random.get_state())
- elif selfA._parameters["nextStep"]:
- Xn = selfA._getInternalState("Xn")
- #
- for step in range(duration-1):
- numpy.random.set_state(selfA._getInternalState("seed"))
- if hasattr(Y,"store"):
- Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
- else:
- Ynpu = numpy.ravel( Y ).reshape((__p,1))
- #
- if U is not None:
- if hasattr(U,"store") and len(U)>1:
- Un = numpy.ravel( U[step] ).reshape((-1,1))
- elif hasattr(U,"store") and len(U)==1:
- Un = numpy.ravel( U[0] ).reshape((-1,1))
- else:
- Un = numpy.ravel( U ).reshape((-1,1))
- else:
- Un = None
- #
- if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
- Xn = CovarianceInflation( Xn,
- selfA._parameters["InflationType"],
- selfA._parameters["InflationFactor"],
- )
- #
- if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
- EMX = M( [(Xn[:,i], Un) for i in range(__m)],
- argsAsSerie = True,
- returnSerieAsArrayMatrix = True )
- Xn_predicted = EnsemblePerturbationWithGivenCovariance( EMX, Q )
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
- Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
- Xn_predicted = Xn_predicted + Cm @ Un
- elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
- # --- > Par principe, M = Id, Q = 0
- Xn_predicted = EMX = Xn
- #
- #--------------------------
- if VariantM == "MLEF13":
- Xfm = numpy.ravel(Xn_predicted.mean(axis=1, dtype=mfp).astype('float'))
- EaX = EnsembleOfAnomalies( Xn_predicted, Xfm, 1./math.sqrt(__m-1) )
- Ua = numpy.identity(__m)
- __j = 0
- Deltaw = 1
- if not BnotT:
- Ta = numpy.identity(__m)
- vw = numpy.zeros(__m)
- while numpy.linalg.norm(Deltaw) >= _e and __j <= _jmax:
- vx1 = (Xfm + EaX @ vw).reshape((__n,1))
- #
- if BnotT:
- E1 = vx1 + _epsilon * EaX
- else:
- E1 = vx1 + math.sqrt(__m-1) * EaX @ Ta
- #
- HE2 = H( [(E1[:,i,numpy.newaxis], Un) for i in range(__m)],
- argsAsSerie = True,
- returnSerieAsArrayMatrix = True )
- vy2 = HE2.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
- #
- if BnotT:
- EaY = (HE2 - vy2) / _epsilon
- else:
- EaY = ( (HE2 - vy2) @ numpy.linalg.inv(Ta) ) / math.sqrt(__m-1)
- #
- GradJ = numpy.ravel(vw[:,None] - EaY.transpose() @ (RI * ( Ynpu - vy2 )))
- mH = numpy.identity(__m) + EaY.transpose() @ (RI * EaY).reshape((-1,__m))
- Deltaw = - numpy.linalg.solve(mH,GradJ)
- #
- vw = vw + Deltaw
- #
- if not BnotT:
- Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
- #
- __j = __j + 1
- #
- if BnotT:
- Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
- #
- Xn = vx1 + math.sqrt(__m-1) * EaX @ Ta @ Ua
- #--------------------------
- else:
- raise ValueError("VariantM has to be chosen in the authorized methods list.")
- #
- if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
- Xn = CovarianceInflation( Xn,
- selfA._parameters["InflationType"],
- selfA._parameters["InflationFactor"],
- )
- #
- if Hybrid == "E3DVAR":
- betaf = selfA._parameters["HybridCovarianceEquilibrium"]
- Xn = Apply3DVarRecentringOnEnsemble(Xn, EMX, Ynpu, HO, R, B, betaf)
- #
- Xa = EnsembleMean( Xn )
- #--------------------------
- selfA._setInternalState("Xn", Xn)
- selfA._setInternalState("seed", numpy.random.get_state())
- #--------------------------
- #
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("APosterioriCovariance") \
- or selfA._toStore("InnovationAtCurrentAnalysis") \
- or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- _HXa = numpy.ravel( H((Xa, Un)) ).reshape((-1,1))
- _Innovation = Ynpu - _HXa
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- # ---> avec analysis
- selfA.StoredVariables["Analysis"].store( Xa )
- if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
- selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
- if selfA._toStore("InnovationAtCurrentAnalysis"):
- selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
- # ---> avec current state
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CurrentState"):
- selfA.StoredVariables["CurrentState"].store( Xn )
- if selfA._toStore("ForecastState"):
- selfA.StoredVariables["ForecastState"].store( EMX )
- if selfA._toStore("ForecastCovariance"):
- selfA.StoredVariables["ForecastCovariance"].store( EnsembleErrorCovariance(EMX) )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( EMX - Xa )
- if selfA._toStore("InnovationAtCurrentState"):
- selfA.StoredVariables["InnovationAtCurrentState"].store( - HE2 + Ynpu )
- if selfA._toStore("SimulatedObservationAtCurrentState") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HE2 )
- # ---> autres
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
- Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
- J = Jb + Jo
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- #
- if selfA._toStore("IndexOfOptimum") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("CostFunctionJAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
- if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
- if selfA._parameters["EstimationOf"] == "Parameters" \
- and J < previousJMinimum:
- previousJMinimum = J
- XaMin = Xa
- if selfA._toStore("APosterioriCovariance"):
- covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
- # ---> Pour les smoothers
- if selfA._toStore("CurrentEnsembleState"):
- selfA.StoredVariables["CurrentEnsembleState"].store( Xn )
- #
- # Stockage final supplémentaire de l'optimum en estimation de paramètres
- # ----------------------------------------------------------------------
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( XaMin )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
- #
- return 0
-
-# ==============================================================================
-def mmqr(
- func = None,
- x0 = None,
- fprime = None,
- bounds = None,
- quantile = 0.5,
- maxfun = 15000,
- toler = 1.e-06,
- y = None,
- ):
- """
- Implémentation informatique de l'algorithme MMQR, basée sur la publication :
- David R. Hunter, Kenneth Lange, "Quantile Regression via an MM Algorithm",
- Journal of Computational and Graphical Statistics, 9, 1, pp.60-77, 2000.
- """
- #
- # Recuperation des donnees et informations initiales
- # --------------------------------------------------
- variables = numpy.ravel( x0 )
- mesures = numpy.ravel( y )
- increment = sys.float_info[0]
- p = variables.size
- n = mesures.size
- quantile = float(quantile)
- #
- # Calcul des parametres du MM
- # ---------------------------
- tn = float(toler) / n
- e0 = -tn / math.log(tn)
- epsilon = (e0-tn)/(1+math.log(e0))
- #
- # Calculs d'initialisation
- # ------------------------
- residus = mesures - numpy.ravel( func( variables ) )
- poids = 1./(epsilon+numpy.abs(residus))
- veps = 1. - 2. * quantile - residus * poids
- lastsurrogate = -numpy.sum(residus*veps) - (1.-2.*quantile)*numpy.sum(residus)
- iteration = 0
- #
- # Recherche iterative
- # -------------------
- while (increment > toler) and (iteration < maxfun) :
- iteration += 1
- #
- Derivees = numpy.array(fprime(variables))
- Derivees = Derivees.reshape(n,p) # ADAO & check shape
- DeriveesT = Derivees.transpose()
- M = numpy.dot( DeriveesT , (numpy.array(numpy.matrix(p*[poids,]).T)*Derivees) )
- SM = numpy.transpose(numpy.dot( DeriveesT , veps ))
- step = - numpy.linalg.lstsq( M, SM, rcond=-1 )[0]
- #
- variables = variables + step
- if bounds is not None:
- # Attention : boucle infinie à éviter si un intervalle est trop petit
- while( (variables < numpy.ravel(numpy.asmatrix(bounds)[:,0])).any() or (variables > numpy.ravel(numpy.asmatrix(bounds)[:,1])).any() ):
- step = step/2.
- variables = variables - step
- residus = mesures - numpy.ravel( func(variables) )
- surrogate = numpy.sum(residus**2 * poids) + (4.*quantile-2.) * numpy.sum(residus)
- #
- while ( (surrogate > lastsurrogate) and ( max(list(numpy.abs(step))) > 1.e-16 ) ) :
- step = step/2.
- variables = variables - step
- residus = mesures - numpy.ravel( func(variables) )
- surrogate = numpy.sum(residus**2 * poids) + (4.*quantile-2.) * numpy.sum(residus)
- #
- increment = lastsurrogate-surrogate
- poids = 1./(epsilon+numpy.abs(residus))
- veps = 1. - 2. * quantile - residus * poids
- lastsurrogate = -numpy.sum(residus * veps) - (1.-2.*quantile)*numpy.sum(residus)
- #
- # Mesure d'écart
- # --------------
- Ecart = quantile * numpy.sum(residus) - numpy.sum( residus[residus<0] )
- #
- return variables, Ecart, [n,p,iteration,increment,0]
-
-# ==============================================================================
-def multi3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, oneCycle):
- """
- 3DVAR multi-pas et multi-méthodes
- """
- #
- # Initialisation
- # --------------
- if selfA._parameters["EstimationOf"] == "State":
- M = EM["Direct"].appliedControledFormTo
- if CM is not None and "Tangent" in CM and U is not None:
- Cm = CM["Tangent"].asMatrix(Xb)
- else:
- Cm = None
- #
- if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
- Xn = numpy.ravel(Xb).reshape((-1,1))
- selfA.StoredVariables["Analysis"].store( Xn )
- if selfA._toStore("APosterioriCovariance"):
- if hasattr(B,"asfullmatrix"):
- selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(Xn.size) )
- else:
- selfA.StoredVariables["APosterioriCovariance"].store( B )
- if selfA._toStore("ForecastState"):
- selfA.StoredVariables["ForecastState"].store( Xn )
- elif selfA._parameters["nextStep"]:
- Xn = selfA._getInternalState("Xn")
- else:
- Xn = numpy.ravel(Xb).reshape((-1,1))
- #
- if hasattr(Y,"stepnumber"):
- duration = Y.stepnumber()
- else:
- duration = 2
- #
- # Multi-pas
- for step in range(duration-1):
- if hasattr(Y,"store"):
- Ynpu = numpy.ravel( Y[step+1] ).reshape((-1,1))
- else:
- Ynpu = numpy.ravel( Y ).reshape((-1,1))
- #
- if U is not None:
- if hasattr(U,"store") and len(U)>1:
- Un = numpy.ravel( U[step] ).reshape((-1,1))
- elif hasattr(U,"store") and len(U)==1:
- Un = numpy.ravel( U[0] ).reshape((-1,1))
- else:
- Un = numpy.ravel( U ).reshape((-1,1))
- else:
- Un = None
- #
- if selfA._parameters["EstimationOf"] == "State": # Forecast
- Xn_predicted = M( (Xn, Un) )
- if selfA._toStore("ForecastState"):
- selfA.StoredVariables["ForecastState"].store( Xn_predicted )
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
- Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
- Xn_predicted = Xn_predicted + Cm @ Un
- elif selfA._parameters["EstimationOf"] == "Parameters": # No forecast
- # --- > Par principe, M = Id, Q = 0
- Xn_predicted = Xn
- Xn_predicted = numpy.ravel(Xn_predicted).reshape((-1,1))
- #
- oneCycle(selfA, Xn_predicted, Ynpu, None, HO, None, None, R, B, None)
- #
- Xn = selfA.StoredVariables["Analysis"][-1]
- #--------------------------
- selfA._setInternalState("Xn", Xn)
- #
- return 0
-
-# ==============================================================================
-def psas3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
- """
- 3DVAR PSAS
- """
- #
- # Initialisations
- # ---------------
- Hm = HO["Direct"].appliedTo
- #
- if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
- HXb = numpy.asarray(Hm( Xb, HO["AppliedInX"]["HXb"] ))
- else:
- HXb = numpy.asarray(Hm( Xb ))
- HXb = numpy.ravel( HXb ).reshape((-1,1))
- if Y.size != HXb.size:
- raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
- if max(Y.shape) != max(HXb.shape):
- raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
- #
- if selfA._toStore("JacobianMatrixAtBackground"):
- HtMb = HO["Tangent"].asMatrix(ValueForMethodForm = Xb)
- HtMb = HtMb.reshape(Y.size,Xb.size) # ADAO & check shape
- selfA.StoredVariables["JacobianMatrixAtBackground"].store( HtMb )
- #
- Ht = HO["Tangent"].asMatrix(Xb)
- BHT = B * Ht.T
- HBHTpR = R + Ht * BHT
- Innovation = Y - HXb
- #
- Xini = numpy.zeros(Y.size)
- #
- # Définition de la fonction-coût
- # ------------------------------
- def CostFunction(w):
- _W = numpy.asarray(w).reshape((-1,1))
- if selfA._parameters["StoreInternalVariables"] or \
- selfA._toStore("CurrentState") or \
- selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentState"].store( Xb + BHT @ _W )
- if selfA._toStore("SimulatedObservationAtCurrentState") or \
- selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( Hm( Xb + BHT @ _W ) )
- if selfA._toStore("InnovationAtCurrentState"):
- selfA.StoredVariables["InnovationAtCurrentState"].store( Innovation )
- #
- Jb = float( 0.5 * _W.T @ (HBHTpR @ _W) )
- Jo = float( - _W.T @ Innovation )
- J = Jb + Jo
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- if selfA._toStore("IndexOfOptimum") or \
- selfA._toStore("CurrentOptimum") or \
- selfA._toStore("CostFunctionJAtCurrentOptimum") or \
- selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
- selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
- selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
- if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- return J
- #
- def GradientOfCostFunction(w):
- _W = numpy.asarray(w).reshape((-1,1))
- GradJb = HBHTpR @ _W
- GradJo = - Innovation
- GradJ = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
- return GradJ
- #
- # Minimisation de la fonctionnelle
- # --------------------------------
- nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
- #
- if selfA._parameters["Minimizer"] == "LBFGSB":
- if "0.19" <= scipy.version.version <= "1.1.0":
- import lbfgsbhlt as optimiseur
- else:
- import scipy.optimize as optimiseur
- Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
- func = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxfun = selfA._parameters["MaximumNumberOfSteps"]-1,
- factr = selfA._parameters["CostDecrementTolerance"]*1.e14,
- pgtol = selfA._parameters["ProjectedGradientTolerance"],
- iprint = selfA._parameters["optiprint"],
- )
- nfeval = Informations['funcalls']
- rc = Informations['warnflag']
- elif selfA._parameters["Minimizer"] == "TNC":
- Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
- func = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxfun = selfA._parameters["MaximumNumberOfSteps"],
- pgtol = selfA._parameters["ProjectedGradientTolerance"],
- ftol = selfA._parameters["CostDecrementTolerance"],
- messages = selfA._parameters["optmessages"],
- )
- elif selfA._parameters["Minimizer"] == "CG":
- Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- gtol = selfA._parameters["GradientNormTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- elif selfA._parameters["Minimizer"] == "NCG":
- Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- avextol = selfA._parameters["CostDecrementTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- elif selfA._parameters["Minimizer"] == "BFGS":
- Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- gtol = selfA._parameters["GradientNormTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- else:
- raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
- #
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- MinJ = selfA.StoredVariables["CostFunctionJ"][IndexMin]
- #
- # Correction pour pallier a un bug de TNC sur le retour du Minimum
- # ----------------------------------------------------------------
- if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
- Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
- else:
- Minimum = Xb + BHT @ Minimum.reshape((-1,1))
- #
- Xa = Minimum
- #--------------------------
- #
- selfA.StoredVariables["Analysis"].store( Xa )
- #
- if selfA._toStore("OMA") or \
- selfA._toStore("SigmaObs2") or \
- selfA._toStore("SimulationQuantiles") or \
- selfA._toStore("SimulatedObservationAtOptimum"):
- if selfA._toStore("SimulatedObservationAtCurrentState"):
- HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
- elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
- else:
- HXa = Hm( Xa )
- #
- if selfA._toStore("APosterioriCovariance") or \
- selfA._toStore("SimulationQuantiles") or \
- selfA._toStore("JacobianMatrixAtOptimum") or \
- selfA._toStore("KalmanGainAtOptimum"):
- HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
- HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
- if selfA._toStore("APosterioriCovariance") or \
- selfA._toStore("SimulationQuantiles") or \
- selfA._toStore("KalmanGainAtOptimum"):
- HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
- HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
- if selfA._toStore("APosterioriCovariance") or \
- selfA._toStore("SimulationQuantiles"):
- BI = B.getI()
- RI = R.getI()
- A = HessienneEstimation(Xa.size, HaM, HtM, BI, RI)
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( A )
- if selfA._toStore("JacobianMatrixAtOptimum"):
- selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
- if selfA._toStore("KalmanGainAtOptimum"):
- if (Y.size <= Xb.size): KG = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
- elif (Y.size > Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
- selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
- #
- # Calculs et/ou stockages supplémentaires
- # ---------------------------------------
- if selfA._toStore("Innovation") or \
- selfA._toStore("SigmaObs2") or \
- selfA._toStore("MahalanobisConsistency") or \
- selfA._toStore("OMB"):
- d = Y - HXb
- if selfA._toStore("Innovation"):
- selfA.StoredVariables["Innovation"].store( d )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
- if selfA._toStore("OMA"):
- selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
- if selfA._toStore("OMB"):
- selfA.StoredVariables["OMB"].store( d )
- if selfA._toStore("SigmaObs2"):
- TraceR = R.trace(Y.size)
- selfA.StoredVariables["SigmaObs2"].store( float( (d.T @ (numpy.ravel(Y)-numpy.ravel(HXa))) ) / TraceR )
- if selfA._toStore("MahalanobisConsistency"):
- selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
- if selfA._toStore("SimulationQuantiles"):
- QuantilesEstimations(selfA, A, Xa, HXa, Hm, HtM)
- if selfA._toStore("SimulatedObservationAtBackground"):
- selfA.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
- if selfA._toStore("SimulatedObservationAtOptimum"):
- selfA.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
- #
- return 0
-
-# ==============================================================================
-def senkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q,
- VariantM="KalmanFilterFormula16",
- Hybrid=None,
- ):
- """
- Stochastic EnKF
- """
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA._parameters["StoreInternalVariables"] = True
- #
- # Opérateurs
- H = HO["Direct"].appliedControledFormTo
- #
- if selfA._parameters["EstimationOf"] == "State":
- M = EM["Direct"].appliedControledFormTo
- #
- if CM is not None and "Tangent" in CM and U is not None:
- Cm = CM["Tangent"].asMatrix(Xb)
- else:
- Cm = None
- #
- # Durée d'observation et tailles
- if hasattr(Y,"stepnumber"):
- duration = Y.stepnumber()
- __p = numpy.cumprod(Y.shape())[-1]
- else:
- duration = 2
- __p = numpy.array(Y).size
- #
- # Précalcul des inversions de B et R
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- BI = B.getI()
- RI = R.getI()
- #
- __n = Xb.size
- __m = selfA._parameters["NumberOfMembers"]
- nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
- previousJMinimum = numpy.finfo(float).max
- #
- if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
- else: Rn = R
- #
- if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
- if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
- else: Pn = B
- Xn = EnsembleOfBackgroundPerturbations( Xb, Pn, __m )
- selfA.StoredVariables["Analysis"].store( Xb )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( Pn )
- selfA._setInternalState("seed", numpy.random.get_state())
- elif selfA._parameters["nextStep"]:
- Xn = selfA._getInternalState("Xn")
- #
- for step in range(duration-1):
- numpy.random.set_state(selfA._getInternalState("seed"))
- if hasattr(Y,"store"):
- Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
- else:
- Ynpu = numpy.ravel( Y ).reshape((__p,1))
- #
- if U is not None:
- if hasattr(U,"store") and len(U)>1:
- Un = numpy.ravel( U[step] ).reshape((-1,1))
- elif hasattr(U,"store") and len(U)==1:
- Un = numpy.ravel( U[0] ).reshape((-1,1))
- else:
- Un = numpy.ravel( U ).reshape((-1,1))
- else:
- Un = None
- #
- if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
- Xn = CovarianceInflation( Xn,
- selfA._parameters["InflationType"],
- selfA._parameters["InflationFactor"],
- )
- #
- if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
- EMX = M( [(Xn[:,i], Un) for i in range(__m)],
- argsAsSerie = True,
- returnSerieAsArrayMatrix = True )
- Xn_predicted = EnsemblePerturbationWithGivenCovariance( EMX, Q )
- HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
- argsAsSerie = True,
- returnSerieAsArrayMatrix = True )
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
- Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
- Xn_predicted = Xn_predicted + Cm @ Un
- elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
- # --- > Par principe, M = Id, Q = 0
- Xn_predicted = EMX = Xn
- HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
- argsAsSerie = True,
- returnSerieAsArrayMatrix = True )
- #
- # Mean of forecast and observation of forecast
- Xfm = EnsembleMean( Xn_predicted )
- Hfm = EnsembleMean( HX_predicted )
- #
- #--------------------------
- if VariantM == "KalmanFilterFormula05":
- PfHT, HPfHT = 0., 0.
- for i in range(__m):
- Exfi = Xn_predicted[:,i].reshape((__n,1)) - Xfm
- Eyfi = HX_predicted[:,i].reshape((__p,1)) - Hfm
- PfHT += Exfi * Eyfi.T
- HPfHT += Eyfi * Eyfi.T
- PfHT = (1./(__m-1)) * PfHT
- HPfHT = (1./(__m-1)) * HPfHT
- Kn = PfHT * ( R + HPfHT ).I
- del PfHT, HPfHT
- #
- for i in range(__m):
- ri = numpy.random.multivariate_normal(numpy.zeros(__p), Rn)
- Xn[:,i] = numpy.ravel(Xn_predicted[:,i]) + Kn @ (numpy.ravel(Ynpu) + ri - HX_predicted[:,i])
- #--------------------------
- elif VariantM == "KalmanFilterFormula16":
- EpY = EnsembleOfCenteredPerturbations(Ynpu, Rn, __m)
- EpYm = EpY.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
- #
- EaX = EnsembleOfAnomalies( Xn_predicted ) / math.sqrt(__m-1)
- EaY = (HX_predicted - Hfm - EpY + EpYm) / math.sqrt(__m-1)
- #
- Kn = EaX @ EaY.T @ numpy.linalg.inv( EaY @ EaY.T)
- #
- for i in range(__m):
- Xn[:,i] = numpy.ravel(Xn_predicted[:,i]) + Kn @ (numpy.ravel(EpY[:,i]) - HX_predicted[:,i])
- #--------------------------
- else:
- raise ValueError("VariantM has to be chosen in the authorized methods list.")
- #
- if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
- Xn = CovarianceInflation( Xn,
- selfA._parameters["InflationType"],
- selfA._parameters["InflationFactor"],
- )
- #
- if Hybrid == "E3DVAR":
- betaf = selfA._parameters["HybridCovarianceEquilibrium"]
- Xn = Apply3DVarRecentringOnEnsemble(Xn, EMX, Ynpu, HO, R, B, betaf)
- #
- Xa = EnsembleMean( Xn )
- #--------------------------
- selfA._setInternalState("Xn", Xn)
- selfA._setInternalState("seed", numpy.random.get_state())
- #--------------------------
- #
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("APosterioriCovariance") \
- or selfA._toStore("InnovationAtCurrentAnalysis") \
- or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- _HXa = numpy.ravel( H((Xa, Un)) ).reshape((-1,1))
- _Innovation = Ynpu - _HXa
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- # ---> avec analysis
- selfA.StoredVariables["Analysis"].store( Xa )
- if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
- selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
- if selfA._toStore("InnovationAtCurrentAnalysis"):
- selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
- # ---> avec current state
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CurrentState"):
- selfA.StoredVariables["CurrentState"].store( Xn )
- if selfA._toStore("ForecastState"):
- selfA.StoredVariables["ForecastState"].store( EMX )
- if selfA._toStore("ForecastCovariance"):
- selfA.StoredVariables["ForecastCovariance"].store( EnsembleErrorCovariance(EMX) )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( EMX - Xa )
- if selfA._toStore("InnovationAtCurrentState"):
- selfA.StoredVariables["InnovationAtCurrentState"].store( - HX_predicted + Ynpu )
- if selfA._toStore("SimulatedObservationAtCurrentState") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
- # ---> autres
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
- Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
- J = Jb + Jo
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- #
- if selfA._toStore("IndexOfOptimum") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("CostFunctionJAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
- if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
- if selfA._parameters["EstimationOf"] == "Parameters" \
- and J < previousJMinimum:
- previousJMinimum = J
- XaMin = Xa
- if selfA._toStore("APosterioriCovariance"):
- covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
- # ---> Pour les smoothers
- if selfA._toStore("CurrentEnsembleState"):
- selfA.StoredVariables["CurrentEnsembleState"].store( Xn )
- #
- # Stockage final supplémentaire de l'optimum en estimation de paramètres
- # ----------------------------------------------------------------------
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( XaMin )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
- #
- return 0
-
-# ==============================================================================
-def std3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
- """
- 3DVAR
- """
- #
- # Initialisations
- # ---------------
- Hm = HO["Direct"].appliedTo
- Ha = HO["Adjoint"].appliedInXTo
- #
- if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
- HXb = numpy.asarray(Hm( Xb, HO["AppliedInX"]["HXb"] ))
- else:
- HXb = numpy.asarray(Hm( Xb ))
- HXb = HXb.reshape((-1,1))
- if Y.size != HXb.size:
- raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
- if max(Y.shape) != max(HXb.shape):
- raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
- #
- if selfA._toStore("JacobianMatrixAtBackground"):
- HtMb = HO["Tangent"].asMatrix(ValueForMethodForm = Xb)
- HtMb = HtMb.reshape(Y.size,Xb.size) # ADAO & check shape
- selfA.StoredVariables["JacobianMatrixAtBackground"].store( HtMb )
- #
- BI = B.getI()
- RI = R.getI()
- #
- Xini = selfA._parameters["InitializationPoint"]
- #
- # Définition de la fonction-coût
- # ------------------------------
- def CostFunction(x):
- _X = numpy.asarray(x).reshape((-1,1))
- if selfA._parameters["StoreInternalVariables"] or \
- selfA._toStore("CurrentState") or \
- selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentState"].store( _X )
- _HX = numpy.asarray(Hm( _X )).reshape((-1,1))
- _Innovation = Y - _HX
- if selfA._toStore("SimulatedObservationAtCurrentState") or \
- selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
- if selfA._toStore("InnovationAtCurrentState"):
- selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
- #
- Jb = float( 0.5 * (_X - Xb).T * (BI * (_X - Xb)) )
- Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
- J = Jb + Jo
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- if selfA._toStore("IndexOfOptimum") or \
- selfA._toStore("CurrentOptimum") or \
- selfA._toStore("CostFunctionJAtCurrentOptimum") or \
- selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
- selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
- selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
- if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- return J
- #
- def GradientOfCostFunction(x):
- _X = numpy.asarray(x).reshape((-1,1))
- _HX = numpy.asarray(Hm( _X )).reshape((-1,1))
- GradJb = BI * (_X - Xb)
- GradJo = - Ha( (_X, RI * (Y - _HX)) )
- GradJ = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
- return GradJ
- #
- # Minimisation de la fonctionnelle
- # --------------------------------
- nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
- #
- if selfA._parameters["Minimizer"] == "LBFGSB":
- if "0.19" <= scipy.version.version <= "1.1.0":
- import lbfgsbhlt as optimiseur
- else:
- import scipy.optimize as optimiseur
- Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
- func = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- bounds = selfA._parameters["Bounds"],
- maxfun = selfA._parameters["MaximumNumberOfSteps"]-1,
- factr = selfA._parameters["CostDecrementTolerance"]*1.e14,
- pgtol = selfA._parameters["ProjectedGradientTolerance"],
- iprint = selfA._parameters["optiprint"],
- )
- nfeval = Informations['funcalls']
- rc = Informations['warnflag']
- elif selfA._parameters["Minimizer"] == "TNC":
- Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
- func = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- bounds = selfA._parameters["Bounds"],
- maxfun = selfA._parameters["MaximumNumberOfSteps"],
- pgtol = selfA._parameters["ProjectedGradientTolerance"],
- ftol = selfA._parameters["CostDecrementTolerance"],
- messages = selfA._parameters["optmessages"],
- )
- elif selfA._parameters["Minimizer"] == "CG":
- Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- gtol = selfA._parameters["GradientNormTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- elif selfA._parameters["Minimizer"] == "NCG":
- Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- avextol = selfA._parameters["CostDecrementTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- elif selfA._parameters["Minimizer"] == "BFGS":
- Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- gtol = selfA._parameters["GradientNormTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- else:
- raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
- #
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- MinJ = selfA.StoredVariables["CostFunctionJ"][IndexMin]
- #
- # Correction pour pallier a un bug de TNC sur le retour du Minimum
- # ----------------------------------------------------------------
- if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
- Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
- #
- Xa = Minimum
- #--------------------------
- #
- selfA.StoredVariables["Analysis"].store( Xa )
- #
- if selfA._toStore("OMA") or \
- selfA._toStore("SigmaObs2") or \
- selfA._toStore("SimulationQuantiles") or \
- selfA._toStore("SimulatedObservationAtOptimum"):
- if selfA._toStore("SimulatedObservationAtCurrentState"):
- HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
- elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
- else:
- HXa = Hm( Xa )
- #
- if selfA._toStore("APosterioriCovariance") or \
- selfA._toStore("SimulationQuantiles") or \
- selfA._toStore("JacobianMatrixAtOptimum") or \
- selfA._toStore("KalmanGainAtOptimum"):
- HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
- HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
- if selfA._toStore("APosterioriCovariance") or \
- selfA._toStore("SimulationQuantiles") or \
- selfA._toStore("KalmanGainAtOptimum"):
- HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
- HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
- if selfA._toStore("APosterioriCovariance") or \
- selfA._toStore("SimulationQuantiles"):
- A = HessienneEstimation(Xa.size, HaM, HtM, BI, RI)
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( A )
- if selfA._toStore("JacobianMatrixAtOptimum"):
- selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
- if selfA._toStore("KalmanGainAtOptimum"):
- if (Y.size <= Xb.size): KG = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
- elif (Y.size > Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
- selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
- #
- # Calculs et/ou stockages supplémentaires
- # ---------------------------------------
- if selfA._toStore("Innovation") or \
- selfA._toStore("SigmaObs2") or \
- selfA._toStore("MahalanobisConsistency") or \
- selfA._toStore("OMB"):
- d = Y - HXb
- if selfA._toStore("Innovation"):
- selfA.StoredVariables["Innovation"].store( d )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
- if selfA._toStore("OMA"):
- selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
- if selfA._toStore("OMB"):
- selfA.StoredVariables["OMB"].store( d )
- if selfA._toStore("SigmaObs2"):
- TraceR = R.trace(Y.size)
- selfA.StoredVariables["SigmaObs2"].store( float( (d.T @ (numpy.ravel(Y)-numpy.ravel(HXa))) ) / TraceR )
- if selfA._toStore("MahalanobisConsistency"):
- selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
- if selfA._toStore("SimulationQuantiles"):
- QuantilesEstimations(selfA, A, Xa, HXa, Hm, HtM)
- if selfA._toStore("SimulatedObservationAtBackground"):
- selfA.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
- if selfA._toStore("SimulatedObservationAtOptimum"):
- selfA.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
- #
- return 0
-
-# ==============================================================================
-def std4dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
- """
- 4DVAR
- """
- #
- # Initialisations
- # ---------------
- #
- # Opérateurs
- Hm = HO["Direct"].appliedControledFormTo
- Mm = EM["Direct"].appliedControledFormTo
- #
- if CM is not None and "Tangent" in CM and U is not None:
- Cm = CM["Tangent"].asMatrix(Xb)
- else:
- Cm = None
- #
- def Un(_step):
- if U is not None:
- if hasattr(U,"store") and 1<=_step<len(U) :
- _Un = numpy.ravel( U[_step] ).reshape((-1,1))
- elif hasattr(U,"store") and len(U)==1:
- _Un = numpy.ravel( U[0] ).reshape((-1,1))
- else:
- _Un = numpy.ravel( U ).reshape((-1,1))
- else:
- _Un = None
- return _Un
- def CmUn(_xn,_un):
- if Cm is not None and _un is not None: # Attention : si Cm est aussi dans M, doublon !
- _Cm = Cm.reshape(_xn.size,_un.size) # ADAO & check shape
- _CmUn = (_Cm @ _un).reshape((-1,1))
- else:
- _CmUn = 0.
- return _CmUn
- #
- # Remarque : les observations sont exploitées à partir du pas de temps
- # numéro 1, et sont utilisées dans Yo comme rangées selon ces indices.
- # Donc le pas 0 n'est pas utilisé puisque la première étape commence
- # avec l'observation du pas 1.
- #
- # Nombre de pas identique au nombre de pas d'observations
- if hasattr(Y,"stepnumber"):
- duration = Y.stepnumber()
- else:
- duration = 2
- #
- # Précalcul des inversions de B et R
- BI = B.getI()
- RI = R.getI()
- #
- # Point de démarrage de l'optimisation
- Xini = selfA._parameters["InitializationPoint"]
- #
- # Définition de la fonction-coût
- # ------------------------------
- selfA.DirectCalculation = [None,] # Le pas 0 n'est pas observé
- selfA.DirectInnovation = [None,] # Le pas 0 n'est pas observé
- def CostFunction(x):
- _X = numpy.asarray(x).reshape((-1,1))
- if selfA._parameters["StoreInternalVariables"] or \
- selfA._toStore("CurrentState") or \
- selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentState"].store( _X )
- Jb = float( 0.5 * (_X - Xb).T * (BI * (_X - Xb)) )
- selfA.DirectCalculation = [None,]
- selfA.DirectInnovation = [None,]
- Jo = 0.
- _Xn = _X
- for step in range(0,duration-1):
- if hasattr(Y,"store"):
- _Ynpu = numpy.ravel( Y[step+1] ).reshape((-1,1))
- else:
- _Ynpu = numpy.ravel( Y ).reshape((-1,1))
- _Un = Un(step)
- #
- # Etape d'évolution
- if selfA._parameters["EstimationOf"] == "State":
- _Xn = Mm( (_Xn, _Un) ).reshape((-1,1)) + CmUn(_Xn, _Un)
- elif selfA._parameters["EstimationOf"] == "Parameters":
- pass
- #
- if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
- _Xn = ApplyBounds( _Xn, ForceNumericBounds(selfA._parameters["Bounds"]) )
- #
- # Etape de différence aux observations
- if selfA._parameters["EstimationOf"] == "State":
- _YmHMX = _Ynpu - numpy.ravel( Hm( (_Xn, None) ) ).reshape((-1,1))
- elif selfA._parameters["EstimationOf"] == "Parameters":
- _YmHMX = _Ynpu - numpy.ravel( Hm( (_Xn, _Un) ) ).reshape((-1,1)) - CmUn(_Xn, _Un)
- #
- # Stockage de l'état
- selfA.DirectCalculation.append( _Xn )
- selfA.DirectInnovation.append( _YmHMX )
- #
- # Ajout dans la fonctionnelle d'observation
- Jo = Jo + 0.5 * float( _YmHMX.T * (RI * _YmHMX) )
- J = Jb + Jo
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- if selfA._toStore("IndexOfOptimum") or \
- selfA._toStore("CurrentOptimum") or \
- selfA._toStore("CostFunctionJAtCurrentOptimum") or \
- selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
- selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- return J
- #
- def GradientOfCostFunction(x):
- _X = numpy.asarray(x).reshape((-1,1))
- GradJb = BI * (_X - Xb)
- GradJo = 0.
- for step in range(duration-1,0,-1):
- # Étape de récupération du dernier stockage de l'évolution
- _Xn = selfA.DirectCalculation.pop()
- # Étape de récupération du dernier stockage de l'innovation
- _YmHMX = selfA.DirectInnovation.pop()
- # Calcul des adjoints
- Ha = HO["Adjoint"].asMatrix(ValueForMethodForm = _Xn)
- Ha = Ha.reshape(_Xn.size,_YmHMX.size) # ADAO & check shape
- Ma = EM["Adjoint"].asMatrix(ValueForMethodForm = _Xn)
- Ma = Ma.reshape(_Xn.size,_Xn.size) # ADAO & check shape
- # Calcul du gradient par état adjoint
- GradJo = GradJo + Ha * (RI * _YmHMX) # Équivaut pour Ha linéaire à : Ha( (_Xn, RI * _YmHMX) )
- GradJo = Ma * GradJo # Équivaut pour Ma linéaire à : Ma( (_Xn, GradJo) )
- GradJ = numpy.ravel( GradJb ) - numpy.ravel( GradJo )
- return GradJ
- #
- # Minimisation de la fonctionnelle
- # --------------------------------
- nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
- #
- if selfA._parameters["Minimizer"] == "LBFGSB":
- if "0.19" <= scipy.version.version <= "1.1.0":
- import lbfgsbhlt as optimiseur
- else:
- import scipy.optimize as optimiseur
- Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
- func = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- bounds = selfA._parameters["Bounds"],
- maxfun = selfA._parameters["MaximumNumberOfSteps"]-1,
- factr = selfA._parameters["CostDecrementTolerance"]*1.e14,
- pgtol = selfA._parameters["ProjectedGradientTolerance"],
- iprint = selfA._parameters["optiprint"],
- )
- nfeval = Informations['funcalls']
- rc = Informations['warnflag']
- elif selfA._parameters["Minimizer"] == "TNC":
- Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
- func = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- bounds = selfA._parameters["Bounds"],
- maxfun = selfA._parameters["MaximumNumberOfSteps"],
- pgtol = selfA._parameters["ProjectedGradientTolerance"],
- ftol = selfA._parameters["CostDecrementTolerance"],
- messages = selfA._parameters["optmessages"],
- )
- elif selfA._parameters["Minimizer"] == "CG":
- Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- gtol = selfA._parameters["GradientNormTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- elif selfA._parameters["Minimizer"] == "NCG":
- Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- avextol = selfA._parameters["CostDecrementTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- elif selfA._parameters["Minimizer"] == "BFGS":
- Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- gtol = selfA._parameters["GradientNormTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- else:
- raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
- #
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- MinJ = selfA.StoredVariables["CostFunctionJ"][IndexMin]
- #
- # Correction pour pallier a un bug de TNC sur le retour du Minimum
- # ----------------------------------------------------------------
- if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
- Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
- #
- # Obtention de l'analyse
- # ----------------------
- Xa = Minimum
- #
- selfA.StoredVariables["Analysis"].store( Xa )
- #
- # Calculs et/ou stockages supplémentaires
- # ---------------------------------------
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
- #
- return 0
-
-# ==============================================================================
-def stdkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
- """
- Standard Kalman Filter
- """
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA._parameters["StoreInternalVariables"] = True
- #
- # Opérateurs
- # ----------
- Ht = HO["Tangent"].asMatrix(Xb)
- Ha = HO["Adjoint"].asMatrix(Xb)
- #
- if selfA._parameters["EstimationOf"] == "State":
- Mt = EM["Tangent"].asMatrix(Xb)
- Ma = EM["Adjoint"].asMatrix(Xb)
- #
- if CM is not None and "Tangent" in CM and U is not None:
- Cm = CM["Tangent"].asMatrix(Xb)
- else:
- Cm = None
- #
- # Durée d'observation et tailles
- if hasattr(Y,"stepnumber"):
- duration = Y.stepnumber()
- __p = numpy.cumprod(Y.shape())[-1]
- else:
- duration = 2
- __p = numpy.array(Y).size
- #
- # Précalcul des inversions de B et R
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- BI = B.getI()
- RI = R.getI()
- #
- __n = Xb.size
- nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
- #
- if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
- Xn = Xb
- Pn = B
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( Xb )
- if selfA._toStore("APosterioriCovariance"):
- if hasattr(B,"asfullmatrix"):
- selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
- else:
- selfA.StoredVariables["APosterioriCovariance"].store( B )
- selfA._setInternalState("seed", numpy.random.get_state())
- elif selfA._parameters["nextStep"]:
- Xn = selfA._getInternalState("Xn")
- Pn = selfA._getInternalState("Pn")
- #
- if selfA._parameters["EstimationOf"] == "Parameters":
- XaMin = Xn
- previousJMinimum = numpy.finfo(float).max
- #
- for step in range(duration-1):
- if hasattr(Y,"store"):
- Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
- else:
- Ynpu = numpy.ravel( Y ).reshape((__p,1))
- #
- if U is not None:
- if hasattr(U,"store") and len(U)>1:
- Un = numpy.ravel( U[step] ).reshape((-1,1))
- elif hasattr(U,"store") and len(U)==1:
- Un = numpy.ravel( U[0] ).reshape((-1,1))
- else:
- Un = numpy.ravel( U ).reshape((-1,1))
- else:
- Un = None
- #
- if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
- Xn_predicted = Mt @ Xn
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
- Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
- Xn_predicted = Xn_predicted + Cm @ Un
- Pn_predicted = Q + Mt * (Pn * Ma)
- elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
- # --- > Par principe, M = Id, Q = 0
- Xn_predicted = Xn
- Pn_predicted = Pn
- #
- if selfA._parameters["EstimationOf"] == "State":
- HX_predicted = Ht @ Xn_predicted
- _Innovation = Ynpu - HX_predicted
- elif selfA._parameters["EstimationOf"] == "Parameters":
- HX_predicted = Ht @ Xn_predicted
- _Innovation = Ynpu - HX_predicted
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
- _Innovation = _Innovation - Cm @ Un
- #
- Kn = Pn_predicted * Ha * numpy.linalg.inv(R + numpy.dot(Ht, Pn_predicted * Ha))
- Xn = Xn_predicted + Kn * _Innovation
- Pn = Pn_predicted - Kn * Ht * Pn_predicted
- #
- Xa = Xn # Pointeurs
- #--------------------------
- selfA._setInternalState("Xn", Xn)
- selfA._setInternalState("Pn", Pn)
- #--------------------------
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- # ---> avec analysis
- selfA.StoredVariables["Analysis"].store( Xa )
- if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
- selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( Ht * Xa )
- if selfA._toStore("InnovationAtCurrentAnalysis"):
- selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
- # ---> avec current state
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CurrentState"):
- selfA.StoredVariables["CurrentState"].store( Xn )
- if selfA._toStore("ForecastState"):
- selfA.StoredVariables["ForecastState"].store( Xn_predicted )
- if selfA._toStore("ForecastCovariance"):
- selfA.StoredVariables["ForecastCovariance"].store( Pn_predicted )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( Xn_predicted - Xa )
- if selfA._toStore("InnovationAtCurrentState"):
- selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
- if selfA._toStore("SimulatedObservationAtCurrentState") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
- # ---> autres
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
- Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
- J = Jb + Jo
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- #
- if selfA._toStore("IndexOfOptimum") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("CostFunctionJAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
- if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( Pn )
- if selfA._parameters["EstimationOf"] == "Parameters" \
- and J < previousJMinimum:
- previousJMinimum = J
- XaMin = Xa
- if selfA._toStore("APosterioriCovariance"):
- covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
- #
- # Stockage final supplémentaire de l'optimum en estimation de paramètres
- # ----------------------------------------------------------------------
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( XaMin )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
- #
- return 0
-
-# ==============================================================================
-def uskf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
- """
- Unscented Kalman Filter
- """
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA._parameters["StoreInternalVariables"] = True
- #
- L = Xb.size
- Alpha = selfA._parameters["Alpha"]
- Beta = selfA._parameters["Beta"]
- if selfA._parameters["Kappa"] == 0:
- if selfA._parameters["EstimationOf"] == "State":
- Kappa = 0
- elif selfA._parameters["EstimationOf"] == "Parameters":
- Kappa = 3 - L
- else:
- Kappa = selfA._parameters["Kappa"]
- Lambda = float( Alpha**2 ) * ( L + Kappa ) - L
- Gamma = math.sqrt( L + Lambda )
- #
- Ww = []
- Ww.append( 0. )
- for i in range(2*L):
- Ww.append( 1. / (2.*(L + Lambda)) )
- #
- Wm = numpy.array( Ww )
- Wm[0] = Lambda / (L + Lambda)
- Wc = numpy.array( Ww )
- Wc[0] = Lambda / (L + Lambda) + (1. - Alpha**2 + Beta)
- #
- # Opérateurs
- Hm = HO["Direct"].appliedControledFormTo
- #
- if selfA._parameters["EstimationOf"] == "State":
- Mm = EM["Direct"].appliedControledFormTo
- #
- if CM is not None and "Tangent" in CM and U is not None:
- Cm = CM["Tangent"].asMatrix(Xb)
- else:
- Cm = None
- #
- # Durée d'observation et tailles
- if hasattr(Y,"stepnumber"):
- duration = Y.stepnumber()
- __p = numpy.cumprod(Y.shape())[-1]
- else:
- duration = 2
- __p = numpy.array(Y).size
- #
- # Précalcul des inversions de B et R
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- BI = B.getI()
- RI = R.getI()
- #
- __n = Xb.size
- nbPreviousSteps = len(selfA.StoredVariables["Analysis"])
- #
- if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
- Xn = Xb
- if hasattr(B,"asfullmatrix"):
- Pn = B.asfullmatrix(__n)
- else:
- Pn = B
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( Xb )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( Pn )
- elif selfA._parameters["nextStep"]:
- Xn = selfA._getInternalState("Xn")
- Pn = selfA._getInternalState("Pn")
- #
- if selfA._parameters["EstimationOf"] == "Parameters":
- XaMin = Xn
- previousJMinimum = numpy.finfo(float).max
- #
- for step in range(duration-1):
- if hasattr(Y,"store"):
- Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
- else:
- Ynpu = numpy.ravel( Y ).reshape((__p,1))
- #
- if U is not None:
- if hasattr(U,"store") and len(U)>1:
- Un = numpy.ravel( U[step] ).reshape((-1,1))
- elif hasattr(U,"store") and len(U)==1:
- Un = numpy.ravel( U[0] ).reshape((-1,1))
- else:
- Un = numpy.ravel( U ).reshape((-1,1))
- else:
- Un = None
- #
- Pndemi = numpy.real(scipy.linalg.sqrtm(Pn))
- Xnp = numpy.hstack([Xn, Xn+Gamma*Pndemi, Xn-Gamma*Pndemi])
- nbSpts = 2*Xn.size+1
- #
- XEtnnp = []
- for point in range(nbSpts):
- if selfA._parameters["EstimationOf"] == "State":
- XEtnnpi = numpy.asarray( Mm( (Xnp[:,point], Un) ) ).reshape((-1,1))
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
- Cm = Cm.reshape(Xn.size,Un.size) # ADAO & check shape
- XEtnnpi = XEtnnpi + Cm @ Un
- elif selfA._parameters["EstimationOf"] == "Parameters":
- # --- > Par principe, M = Id, Q = 0
- XEtnnpi = Xnp[:,point]
- XEtnnp.append( numpy.ravel(XEtnnpi).reshape((-1,1)) )
- XEtnnp = numpy.concatenate( XEtnnp, axis=1 )
- #
- Xncm = ( XEtnnp * Wm ).sum(axis=1)
- #
- if selfA._parameters["EstimationOf"] == "State": Pnm = Q
- elif selfA._parameters["EstimationOf"] == "Parameters": Pnm = 0.
- for point in range(nbSpts):
- Pnm += Wc[i] * ((XEtnnp[:,point]-Xncm).reshape((-1,1)) * (XEtnnp[:,point]-Xncm))
- #
- Pnmdemi = numpy.real(scipy.linalg.sqrtm(Pnm))
- #
- Xnnp = numpy.hstack([Xncm.reshape((-1,1)), Xncm.reshape((-1,1))+Gamma*Pnmdemi, Xncm.reshape((-1,1))-Gamma*Pnmdemi])
- #
- Ynnp = []
- for point in range(nbSpts):
- if selfA._parameters["EstimationOf"] == "State":
- Ynnpi = Hm( (Xnnp[:,point], None) )
- elif selfA._parameters["EstimationOf"] == "Parameters":
- Ynnpi = Hm( (Xnnp[:,point], Un) )
- Ynnp.append( numpy.ravel(Ynnpi).reshape((-1,1)) )
- Ynnp = numpy.concatenate( Ynnp, axis=1 )
- #
- Yncm = ( Ynnp * Wm ).sum(axis=1)
- #
- Pyyn = R
- Pxyn = 0.
- for point in range(nbSpts):
- Pyyn += Wc[i] * ((Ynnp[:,point]-Yncm).reshape((-1,1)) * (Ynnp[:,point]-Yncm))
- Pxyn += Wc[i] * ((Xnnp[:,point]-Xncm).reshape((-1,1)) * (Ynnp[:,point]-Yncm))
- #
- _Innovation = Ynpu - Yncm.reshape((-1,1))
- if selfA._parameters["EstimationOf"] == "Parameters":
- if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
- _Innovation = _Innovation - Cm @ Un
- #
- Kn = Pxyn * Pyyn.I
- Xn = Xncm.reshape((-1,1)) + Kn * _Innovation
- Pn = Pnm - Kn * Pyyn * Kn.T
- #
- Xa = Xn # Pointeurs
- #--------------------------
- selfA._setInternalState("Xn", Xn)
- selfA._setInternalState("Pn", Pn)
- #--------------------------
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- # ---> avec analysis
- selfA.StoredVariables["Analysis"].store( Xa )
- if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
- selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( Hm((Xa, Un)) )
- if selfA._toStore("InnovationAtCurrentAnalysis"):
- selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
- # ---> avec current state
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CurrentState"):
- selfA.StoredVariables["CurrentState"].store( Xn )
- if selfA._toStore("ForecastState"):
- selfA.StoredVariables["ForecastState"].store( Xncm )
- if selfA._toStore("ForecastCovariance"):
- selfA.StoredVariables["ForecastCovariance"].store( Pnm )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( Xncm - Xa )
- if selfA._toStore("InnovationAtCurrentState"):
- selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
- if selfA._toStore("SimulatedObservationAtCurrentState") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( Yncm )
- # ---> autres
- if selfA._parameters["StoreInternalVariables"] \
- or selfA._toStore("CostFunctionJ") \
- or selfA._toStore("CostFunctionJb") \
- or selfA._toStore("CostFunctionJo") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("APosterioriCovariance"):
- Jb = float( 0.5 * (Xa - Xb).T * (BI * (Xa - Xb)) )
- Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
- J = Jb + Jo
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- #
- if selfA._toStore("IndexOfOptimum") \
- or selfA._toStore("CurrentOptimum") \
- or selfA._toStore("CostFunctionJAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
- or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
- or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
- if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( Pn )
- if selfA._parameters["EstimationOf"] == "Parameters" \
- and J < previousJMinimum:
- previousJMinimum = J
- XaMin = Xa
- if selfA._toStore("APosterioriCovariance"):
- covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
- #
- # Stockage final supplémentaire de l'optimum en estimation de paramètres
- # ----------------------------------------------------------------------
- if selfA._parameters["EstimationOf"] == "Parameters":
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
- selfA.StoredVariables["Analysis"].store( XaMin )
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
- #
- return 0
-
-# ==============================================================================
-def van3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
- """
- 3DVAR variational analysis with no inversion of B
- """
- #
- # Initialisations
- # ---------------
- Hm = HO["Direct"].appliedTo
- Ha = HO["Adjoint"].appliedInXTo
- #
- BT = B.getT()
- RI = R.getI()
- #
- Xini = numpy.zeros(Xb.size)
- #
- # Définition de la fonction-coût
- # ------------------------------
- def CostFunction(v):
- _V = numpy.asarray(v).reshape((-1,1))
- _X = Xb + (B @ _V).reshape((-1,1))
- if selfA._parameters["StoreInternalVariables"] or \
- selfA._toStore("CurrentState") or \
- selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentState"].store( _X )
- _HX = numpy.asarray(Hm( _X )).reshape((-1,1))
- _Innovation = Y - _HX
- if selfA._toStore("SimulatedObservationAtCurrentState") or \
- selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
- if selfA._toStore("InnovationAtCurrentState"):
- selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
- #
- Jb = float( 0.5 * _V.T * (BT * _V) )
- Jo = float( 0.5 * _Innovation.T * (RI * _Innovation) )
- J = Jb + Jo
- #
- selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
- selfA.StoredVariables["CostFunctionJb"].store( Jb )
- selfA.StoredVariables["CostFunctionJo"].store( Jo )
- selfA.StoredVariables["CostFunctionJ" ].store( J )
- if selfA._toStore("IndexOfOptimum") or \
- selfA._toStore("CurrentOptimum") or \
- selfA._toStore("CostFunctionJAtCurrentOptimum") or \
- selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
- selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
- selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- if selfA._toStore("IndexOfOptimum"):
- selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
- if selfA._toStore("CurrentOptimum"):
- selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
- if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
- if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
- if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
- if selfA._toStore("CostFunctionJAtCurrentOptimum"):
- selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
- return J
- #
- def GradientOfCostFunction(v):
- _V = numpy.asarray(v).reshape((-1,1))
- _X = Xb + (B @ _V).reshape((-1,1))
- _HX = numpy.asarray(Hm( _X )).reshape((-1,1))
- GradJb = BT * _V
- GradJo = - Ha( (_X, RI * (Y - _HX)) )
- GradJ = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
- return GradJ
- #
- # Minimisation de la fonctionnelle
- # --------------------------------
- nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
- #
- if selfA._parameters["Minimizer"] == "LBFGSB":
- if "0.19" <= scipy.version.version <= "1.1.0":
- import lbfgsbhlt as optimiseur
- else:
- import scipy.optimize as optimiseur
- Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
- func = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- bounds = RecentredBounds(selfA._parameters["Bounds"], Xb),
- maxfun = selfA._parameters["MaximumNumberOfSteps"]-1,
- factr = selfA._parameters["CostDecrementTolerance"]*1.e14,
- pgtol = selfA._parameters["ProjectedGradientTolerance"],
- iprint = selfA._parameters["optiprint"],
- )
- nfeval = Informations['funcalls']
- rc = Informations['warnflag']
- elif selfA._parameters["Minimizer"] == "TNC":
- Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
- func = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- bounds = RecentredBounds(selfA._parameters["Bounds"], Xb),
- maxfun = selfA._parameters["MaximumNumberOfSteps"],
- pgtol = selfA._parameters["ProjectedGradientTolerance"],
- ftol = selfA._parameters["CostDecrementTolerance"],
- messages = selfA._parameters["optmessages"],
- )
- elif selfA._parameters["Minimizer"] == "CG":
- Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- gtol = selfA._parameters["GradientNormTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- elif selfA._parameters["Minimizer"] == "NCG":
- Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- avextol = selfA._parameters["CostDecrementTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- elif selfA._parameters["Minimizer"] == "BFGS":
- Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
- f = CostFunction,
- x0 = Xini,
- fprime = GradientOfCostFunction,
- args = (),
- maxiter = selfA._parameters["MaximumNumberOfSteps"],
- gtol = selfA._parameters["GradientNormTolerance"],
- disp = selfA._parameters["optdisp"],
- full_output = True,
- )
- else:
- raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
- #
- IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
- MinJ = selfA.StoredVariables["CostFunctionJ"][IndexMin]
- #
- # Correction pour pallier a un bug de TNC sur le retour du Minimum
- # ----------------------------------------------------------------
- if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
- Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
- else:
- Minimum = Xb + B * Minimum.reshape((-1,1)) # Pas @
- #
- Xa = Minimum
- #--------------------------
- #
- selfA.StoredVariables["Analysis"].store( Xa )
- #
- if selfA._toStore("OMA") or \
- selfA._toStore("SigmaObs2") or \
- selfA._toStore("SimulationQuantiles") or \
- selfA._toStore("SimulatedObservationAtOptimum"):
- if selfA._toStore("SimulatedObservationAtCurrentState"):
- HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
- elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
- HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
- else:
- HXa = Hm( Xa )
- #
- if selfA._toStore("APosterioriCovariance") or \
- selfA._toStore("SimulationQuantiles") or \
- selfA._toStore("JacobianMatrixAtOptimum") or \
- selfA._toStore("KalmanGainAtOptimum"):
- HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
- HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
- if selfA._toStore("APosterioriCovariance") or \
- selfA._toStore("SimulationQuantiles") or \
- selfA._toStore("KalmanGainAtOptimum"):
- HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
- HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
- if selfA._toStore("APosterioriCovariance") or \
- selfA._toStore("SimulationQuantiles"):
- BI = B.getI()
- A = HessienneEstimation(Xa.size, HaM, HtM, BI, RI)
- if selfA._toStore("APosterioriCovariance"):
- selfA.StoredVariables["APosterioriCovariance"].store( A )
- if selfA._toStore("JacobianMatrixAtOptimum"):
- selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
- if selfA._toStore("KalmanGainAtOptimum"):
- if (Y.size <= Xb.size): KG = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
- elif (Y.size > Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
- selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
- #
- # Calculs et/ou stockages supplémentaires
- # ---------------------------------------
- if selfA._toStore("Innovation") or \
- selfA._toStore("SigmaObs2") or \
- selfA._toStore("MahalanobisConsistency") or \
- selfA._toStore("OMB"):
- d = Y - HXb
- if selfA._toStore("Innovation"):
- selfA.StoredVariables["Innovation"].store( d )
- if selfA._toStore("BMA"):
- selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
- if selfA._toStore("OMA"):
- selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
- if selfA._toStore("OMB"):
- selfA.StoredVariables["OMB"].store( d )
- if selfA._toStore("SigmaObs2"):
- TraceR = R.trace(Y.size)
- selfA.StoredVariables["SigmaObs2"].store( float( (d.T @ (numpy.ravel(Y)-numpy.ravel(HXa))) ) / TraceR )
- if selfA._toStore("MahalanobisConsistency"):
- selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
- if selfA._toStore("SimulationQuantiles"):
- QuantilesEstimations(selfA, A, Xa, HXa, Hm, HtM)
- if selfA._toStore("SimulatedObservationAtBackground"):
- selfA.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
- if selfA._toStore("SimulatedObservationAtOptimum"):
- selfA.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
#
return 0
except:
raise TypeError("Base type is incompatible with numpy")
+ def norms(self, _ord=None):
+ """
+ Norm (_ord : voir numpy.linalg.norm)
+
+ Renvoie la série, contenant à chaque pas, la norme des données au pas.
+ Il faut que le type de base soit compatible avec les types élémentaires
+ numpy.
+ """
+ try:
+ return [numpy.linalg.norm(item, _ord) for item in self.__values]
+ except:
+ raise TypeError("Base type is incompatible with numpy")
+
+ def maes(self, _predictor=None):
+ """
+ Mean Absolute Error (MAE)
+ mae(dX) = 1/n sum(dX_i)
+
+ Renvoie la série, contenant à chaque pas, la MAE des données au pas.
+ Il faut que le type de base soit compatible avec les types élémentaires
+ numpy. C'est réservé aux variables d'écarts ou d'incréments si le
+ prédicteur est None, sinon c'est appliqué à l'écart entre les données
+ au pas et le prédicteur au même pas.
+ """
+ if _predictor is None:
+ try:
+ return [numpy.mean(numpy.abs(item)) for item in self.__values]
+ except:
+ raise TypeError("Base type is incompatible with numpy")
+ else:
+ if len(_predictor) != len(self.__values):
+ raise ValueError("Predictor number of steps is incompatible with the values")
+ for i, item in enumerate(self.__values):
+ if numpy.asarray(_predictor[i]).size != numpy.asarray(item).size:
+ raise ValueError("Predictor size at step %i is incompatible with the values"%i)
+ try:
+ return [numpy.mean(numpy.abs(numpy.ravel(item) - numpy.ravel(_predictor[i]))) for i, item in enumerate(self.__values)]
+ except:
+ raise TypeError("Base type is incompatible with numpy")
+
+ def mses(self, _predictor=None):
+ """
+ Mean-Square Error (MSE) ou Mean-Square Deviation (MSD)
+ mse(dX) = 1/n sum(dX_i**2)
+
+ Renvoie la série, contenant à chaque pas, la MSE des données au pas. Il
+ faut que le type de base soit compatible avec les types élémentaires
+ numpy. C'est réservé aux variables d'écarts ou d'incréments si le
+ prédicteur est None, sinon c'est appliqué à l'écart entre les données
+ au pas et le prédicteur au même pas.
+ """
+ if _predictor is None:
+ try:
+ __n = self.shape()[0]
+ return [(numpy.linalg.norm(item)**2 / __n) for item in self.__values]
+ except:
+ raise TypeError("Base type is incompatible with numpy")
+ else:
+ if len(_predictor) != len(self.__values):
+ raise ValueError("Predictor number of steps is incompatible with the values")
+ for i, item in enumerate(self.__values):
+ if numpy.asarray(_predictor[i]).size != numpy.asarray(item).size:
+ raise ValueError("Predictor size at step %i is incompatible with the values"%i)
+ try:
+ __n = self.shape()[0]
+ return [(numpy.linalg.norm(numpy.ravel(item) - numpy.ravel(_predictor[i]))**2 / __n) for i, item in enumerate(self.__values)]
+ except:
+ raise TypeError("Base type is incompatible with numpy")
+
+ msds=mses # Mean-Square Deviation (MSD=MSE)
+
+ def rmses(self, _predictor=None):
+ """
+ Root-Mean-Square Error (RMSE) ou Root-Mean-Square Deviation (RMSD)
+ rmse(dX) = sqrt( 1/n sum(dX_i**2) ) = sqrt( mse(dX) )
+
+ Renvoie la série, contenant à chaque pas, la RMSE des données au pas.
+ Il faut que le type de base soit compatible avec les types élémentaires
+ numpy. C'est réservé aux variables d'écarts ou d'incréments si le
+ prédicteur est None, sinon c'est appliqué à l'écart entre les données
+ au pas et le prédicteur au même pas.
+ """
+ if _predictor is None:
+ try:
+ __n = self.shape()[0]
+ return [(numpy.linalg.norm(item) / math.sqrt(__n)) for item in self.__values]
+ except:
+ raise TypeError("Base type is incompatible with numpy")
+ else:
+ if len(_predictor) != len(self.__values):
+ raise ValueError("Predictor number of steps is incompatible with the values")
+ for i, item in enumerate(self.__values):
+ if numpy.asarray(_predictor[i]).size != numpy.asarray(item).size:
+ raise ValueError("Predictor size at step %i is incompatible with the values"%i)
+ try:
+ __n = self.shape()[0]
+ return [(numpy.linalg.norm(numpy.ravel(item) - numpy.ravel(_predictor[i])) / math.sqrt(__n)) for i, item in enumerate(self.__values)]
+ except:
+ raise TypeError("Base type is incompatible with numpy")
+
+ rmsds = rmses # Root-Mean-Square Deviation (RMSD=RMSE)
+
def __preplots(self,
title = "",
xlabel = "",