]> SALOME platform Git repositories - modules/adao.git/commitdiff
Salome HOME
Documentation de l'usage de scripts pour les variables d'entrée
authorJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Mon, 17 Oct 2011 13:55:35 +0000 (15:55 +0200)
committerJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Mon, 17 Oct 2011 13:55:35 +0000 (15:55 +0200)
doc/conf.py
doc/examples.rst
doc/theory.rst
doc/using.rst

index 41339b842f4193a0177f8a269839000a4fe49946..3a775def54ecb33491a4d702d1cef9c87a4768a2 100644 (file)
@@ -65,9 +65,9 @@ copyright = u'2008-2011, EDF R&D, J.-P. Argaud, A. Ribes'
 # built documents.
 #
 # The short X.Y version.
-version = '0.1'
+version = '1.1'
 # The full version, including alpha/beta/rc tags.
-release = '1.0'
+release = '1.1'
 
 # The language for content autogenerated by Sphinx. Refer to documentation
 # for a list of supported languages.
index ff31fbeb08284fe469654c4f4992de72e78759b0..91e163434fc2cfaa37d794e80543ecf4433f659d 100644 (file)
@@ -6,10 +6,13 @@ Examples on using the ADAO module
 
 .. |eficas_new| image:: images/eficas_new.png
    :align: middle
+   :scale: 50%
 .. |eficas_save| image:: images/eficas_save.png
    :align: middle
+   :scale: 50%
 .. |eficas_yacs| image:: images/eficas_yacs.png
    :align: middle
+   :scale: 50%
 
 This section presents some examples on using the ADAO module in SALOME. The
 first one shows how to build a simple data assimilation case defining
@@ -31,39 +34,41 @@ Experimental set up
 
 We choose to operate in a 3-dimensional space. 3D is chosen in order to restrict
 the size of numerical object to explicitly enter by the user, but the problem is
-not dependant of the dimension and can be set in dimension 1000... The observed
-state is of value 1 in each direction, so:
+not dependant of the dimension and can be set in dimension 1000... The
+observation :math:`\mathbf{y}^o` is of value 1 in each direction, so:
 
     ``Yo = [1 1 1]``
 
-The background state, which represent some *a priori* knowledge or a
-regularization, is of value of 0 in each direction, which is:
+The background state :math:`\mathbf{x}^b`, which represent some *a priori*
+knowledge or a regularization, is of value of 0 in each direction, which is:
 
     ``Xb = [0 0 0]``
 
-Data assimilation requires information on errors covariances for observation and
-background variables. We choose here to have uncorrelated errors (that is,
-diagonal matrices) and to have the same variance of 1 for all variables (that
-is, identity matrices. We get:
+Data assimilation requires information on errors covariances :math:`\mathbf{R}`
+and :math:`\mathbf{B}` respectively for observation and background variables. We
+choose here to have uncorrelated errors (that is, diagonal matrices) and to have
+the same variance of 1 for all variables (that is, identity matrices). We get:
 
     ``B = R = [1 0 0 ; 0 1 0 ; 0 0 1]``
 
-Last, we need an observation operator to convert the background value in the
-space of observation value. Here, because the space dimensions are the same, we
-can choose the identity  as the observation operator:
+Last, we need an observation operator :math:`\mathbf{H}` to convert the
+background value in the space of observation value. Here, because the space
+dimensions are the same, we can choose the identity  as the observation
+operator:
 
     ``H = [1 0 0 ; 0 1 0 ; 0 0 1]``
 
-With such choices, the Best Linear Unbiased Estimator (BLUE) will be the
-average vector between ``Yo`` and ``Xb``, named the *analysis* and denoted by
-``Xa``:
+With such choices, the Best Linear Unbiased Estimator (BLUE) will be the average
+vector between :math:`\mathbf{y}^o` and :math:`\mathbf{x}^b`, named the
+*analysis* and denoted by :math:`\mathbf{x}^a`:
 
     ``Xa = [0.5 0.5 0.5]``
 
-As en extension of this example, one can change the variances for ``B`` or ``R``
-independently, and the analysis will move to ``Yo`` or ``Xb`` in inverse
-proportion of the variances in ``B`` and ``R``. It is also equivalent to search
-for the analysis thought a BLUE algorithm or a 3DVAR one.
+As en extension of this example, one can change the variances for
+:math:`\mathbf{B}` or :math:`\mathbf{R}` independently, and the analysis will
+move to :math:`\mathbf{y}^o` or to :math:`\mathbf{x}^b` in inverse proportion of
+the variances in :math:`\mathbf{B}` and :math:`\mathbf{R}`. It is also
+equivalent to search for the analysis thought a BLUE algorithm or a 3DVAR one.
 
 Using the GUI to build the ADAO case
 ++++++++++++++++++++++++++++++++++++
@@ -117,10 +122,10 @@ definition. In order to do that, right click on the name of the file case in the
     :align: center
     :scale: 75%
   .. centered::
-    **"Export to YACS" submenu to generate the YACS scheme from the ADAO case**
+    **"Export to YACS" sub-menu to generate the YACS scheme from the ADAO case**
 
 This command will generate the YACS scheme, activate YACS module in SALOME, and
-open the new scheme in the GUI of the YACS module [#]. After reordering the
+open the new scheme in the GUI of the YACS module [#]_. After reordering the
 nodes by using the "*arrange local node*" sub-menu of the YACS graphical view of
 the scheme, you get the following representation of the generated ADAO scheme:
 
@@ -187,8 +192,8 @@ shown by the following figure:
 
 There is only one command changing, with "*3DVAR*" value instead of "*Blue*".
 
-Building a simple estimation case with external data definition by functions
-----------------------------------------------------------------------------
+Building a simple estimation case with external data definition by scripts
+--------------------------------------------------------------------------
 
 It is useful to get parts or all of the data from external definition, using
 Python script files to provide access to the data. As an example, we build here
@@ -203,6 +208,7 @@ definition in the ADAO GUI and implicit data definition by external files. The
 present script looks like::
 
     #-*-coding:iso-8859-1-*-
+    #
     import numpy
     #
     # Definition of the Background as a vector
@@ -271,7 +277,7 @@ For example, with a 3DVAR algorithm, the possible keys are "*Minimizer*",
      default choice being "LBFGSB", and the possible ones "LBFGSB" (nonlinear
      constrained minimizer, see [Byrd95] and [Zhu97]), "TNC" (nonlinear
      constrained minimizer), "CG" (nonlinear unconstrained minimizer), "BFGS"
-     (nonlinear unconstrained minimizer).
+     (non-linear unconstrained minimizer).
 #.   The "*MaximumNumberOfSteps*" key indicates the maximum number of iterations
      allowed for iterative optimisation. The default is 15000, which very
      similar of no limit on iterations. It is then recommended to adapt this
@@ -310,4 +316,367 @@ Other steps and results are exactly the same as in the `Building a simple
 estimation case with explicit data definition`_ previous example. The dictionary
 can also be directly given in the input field associated with the keyword.
 
-.. [#] For more information on YACS, see the the *YACS User Guide* available in the main "*Help*" menu of SALOME GUI.
+Building a complex case with external data definition by scripts
+----------------------------------------------------------------
+
+This more complex and complete example has to been considered as a framework for
+user inputs, that need to be tailored for each real application. Nevertheless,
+the file skeletons are sufficiently general to have been used for various
+applications in neutronic, fluid mechanics... Here, we will not focus on the
+results, but more on the user control of inputs and outputs in an ADAO case. As
+previously, all the numerical values of this example are arbitrary.
+
+The objective is to set up the input and output definitions of a physical case
+by external python scripts, using a general non-linear operator, adding control
+on parameters and so on... The complete framework scripts can be found in the
+ADAO examples standard directory.
+
+Experimental set up
++++++++++++++++++++
+
+We continue to operate in a 3-dimensional space, in order to restrict
+the size of numerical object shown in the scripts, but the problem is
+not dependant of the dimension. 
+
+We choose a twin experiment context, using a known true state
+:math:`\mathbf{x}^t` of arbitrary values:
+
+    ``Xt = [1 2 3]``
+
+The background state :math:`\mathbf{x}^b`, which represent some *a priori*
+knowledge of the true state, is build as a normal random perturbation of 20% the
+true state :math:`\mathbf{x}^t` for each component, which is:
+
+    ``Xb = Xt + normal(0,20%*Xt)``
+
+To describe the background error covariances matrix :math:`\mathbf{B}`, we make
+as previously the hypothesis of uncorrelated errors (that is, a diagonal matrix,
+of size 3x3 because :math:`\mathbf{x}^b` is of lenght 3) and to have the same
+variance of 0.1 for all variables. We get:
+
+    ``B = 0.1 * diagonal( lenght(Xb) )``
+
+We suppose that there exist an observation operator :math:`\mathbf{H}`, which
+can be non linear. In real calibration procedure or inverse problems, the
+physical simulation codes are embedded in the observation operator. We need also
+to know its gradient with respect to each calibrated variable, which is a rarely
+known information with industrial codes. But we will see later how to obtain an
+approximated gradient in this case.
+
+Being in twin experiments, the observation :math:`\mathbf{y}^o` and its error
+covariances matrix :math:`\mathbf{R}` are generated by using the true state
+:math:`\mathbf{x}^t` and the observation operator :math:`\mathbf{H}`:
+
+    ``Yo = H( Xt )``
+
+and, with an arbitrary standard deviation of 1% on each error component:
+
+    ``R = 0.0001 * diagonal( lenght(Yo) )``
+
+All the required data assimilation informations are then defined.
+
+Skeletons of the scripts describing the setup
++++++++++++++++++++++++++++++++++++++++++++++
+
+We give here the essential parts of each script used afterwards to build the ADAO
+case. Remember that using these scripts in real Python files requires to
+correctly define the path to imported modules or codes (even if the module is in
+the same directory that the importing Python file ; we indicate the path
+adjustment using the mention ``"# INSERT PHYSICAL SCRIPT PATH"``), the encoding
+if necessary, etc. The indicated file names for the following scripts are
+arbitrary. Examples of complete file scripts are available in the ADAO examples
+standard directory.
+
+We first define the true state :math:`\mathbf{x}^t` and some convenient matrix
+building function, in a Python script file named
+``Physical_data_and_covariance_matrices.py``::
+
+    #-*-coding:iso-8859-1-*-
+    #
+    import numpy
+    #
+    def True_state():
+        """
+        Arbitrary values and names, as a tuple of two series of same length
+        """
+        return (numpy.array([1, 2, 3]), ['Para1', 'Para2', 'Para3'])
+    #
+    def Simple_Matrix( size, diagonal=None ):
+        """
+        Diagonal matrix, with either 1 or a given vector on the diagonal
+        """
+        if diagonal is not None:
+            S = numpy.diag( diagonal )
+        else:
+            S = numpy.matrix(numpy.identity(int(size)))
+        return S
+
+We can then define the background state :math:`\mathbf{x}^b` as a random
+perturbation of the true state, adding at the end of the script the definition
+of a *required ADAO variable* in order to export the defined value. It is done
+in a Python script file named ``Script_Background_xb.py``::
+
+    #-*-coding:iso-8859-1-*-
+    #
+    import sys ; sys.path.insert(0,"# INSERT PHYSICAL SCRIPT PATH")
+    from Physical_data_and_covariance_matrices import True_state
+    import numpy
+    #
+    xt, names = True_state()
+    #
+    Standard_deviation = 0.2*xt # 20% for each variable
+    #
+    xb = xt + abs(numpy.random.normal(0.,Standard_deviation,size=(len(xt),)))
+    #
+    # Creating the required ADAO variable
+    # -----------------------------------
+    Background = list(xb)
+
+In the same way, we define the background error covariance matrix
+:math:`\mathbf{B}` as a diagonal matrix of the same diagonal length as the
+background of the true state, using the convenient function already defined. It
+is done in a Python script file named ``Script_BackgroundError_B.py``::
+
+    #-*-coding:iso-8859-1-*-
+    #
+    import sys ; sys.path.insert(0,"# INSERT PHYSICAL SCRIPT PATH")
+    from Physical_data_and_covariance_matrices import True_state, Simple_Matrix
+    #
+    xt, names = True_state()
+    #
+    B = 0.1 * Simple_Matrix( size = len(xt) )
+    #
+    # Creating the required ADAO variable
+    # -----------------------------------
+    BackgroundError = B
+
+To continue, we need the observation operator :math:`\mathbf{H}` as a function
+of the state. It is here defined in an external file named
+``"Physical_simulation_functions.py"``, which should contain functions
+conveniently named here ``"FunctionH"`` and ``"AdjointH"``. These functions are
+user ones, representing as programming functions the :math:`\mathbf{H}` operator
+and its adjoint. We suppose these functions are given by the user (a simple
+skeleton is given in the Python script file ``Physical_simulation_functions.py``
+of the ADAO examples standard directory, not reproduced here).
+
+To operates in ADAO, it is required to define different types of operators: the
+(potentially non-linear) standard observation operator, named ``"Direct"``, its
+linearised approximation, named ``"Tangent"``, and the adjoint operator named
+``"Adjoint"``. The Python script have to retrieve an input parameter, found
+under the key "value", in a variable named ``"specificParameters"`` of the
+SALOME input data and parameters ``"computation"`` dictionary variable. If the
+operator is already linear, the ``"Direct"`` and ``"Tangent"`` functions are the
+same, as it is supposed here. The following example Python script file named
+``Script_ObservationOperator_H.py``, illustrates the case::
+
+    #-*-coding:iso-8859-1-*-
+    #
+    import sys ; sys.path.insert(0,"# INSERT PHYSICAL SCRIPT PATH")
+    import Physical_simulation_functions
+    import numpy, logging
+    #
+    # -----------------------------------------------------------------------
+    # SALOME input data and parameters: all information are the required input
+    # variable "computation", containing for example:
+    #      {'inputValues': [[[[0.0, 0.0, 0.0]]]],
+    #       'inputVarList': ['adao_default'],
+    #       'outputVarList': ['adao_default'],
+    #       'specificParameters': [{'name': 'method', 'value': 'Direct'}]}
+    # -----------------------------------------------------------------------
+    #
+    # Recovering the type of computation: "Direct", "Tangent" or "Adjoint"
+    # --------------------------------------------------------------------
+    method = ""
+    for param in computation["specificParameters"]:
+        if param["name"] == "method":
+            method = param["value"]
+    logging.info("ComputationFunctionNode: Found method is \'%s\'"%method)
+    #
+    # Loading the H operator functions from external definitions
+    # ----------------------------------------------------------
+    logging.info("ComputationFunctionNode: Loading operator functions")
+    FunctionH = Physical_simulation_functions.FunctionH
+    AdjointH  = Physical_simulation_functions.AdjointH
+    #
+    # Executing the possible computations
+    # -----------------------------------
+    if method == "Direct":
+        logging.info("ComputationFunctionNode: Direct computation")
+        Xcurrent = computation["inputValues"][0][0][0]
+        data = FunctionH(numpy.matrix( Xcurrent ).T)
+    #
+    if method == "Tangent":
+        logging.info("ComputationFunctionNode: Tangent computation")
+        Xcurrent = computation["inputValues"][0][0][0]
+        data = FunctionH(numpy.matrix( Xcurrent ).T)
+    #
+    if method == "Adjoint":
+        logging.info("ComputationFunctionNode: Adjoint computation")
+        Xcurrent = computation["inputValues"][0][0][0]
+        Ycurrent = computation["inputValues"][0][0][1]
+        data = AdjointH((numpy.matrix( Xcurrent ).T, numpy.matrix( Ycurrent ).T))
+    #
+    # Formatting the output
+    # ---------------------
+    logging.info("ComputationFunctionNode: Formatting the output")
+    it = data.flat
+    outputValues = [[[[]]]]
+    for val in it:
+      outputValues[0][0][0].append(val)
+    #
+    # Creating the required ADAO variable
+    # -----------------------------------
+    result = {}
+    result["outputValues"]        = outputValues
+    result["specificOutputInfos"] = []
+    result["returnCode"]          = 0
+    result["errorMessage"]        = ""
+
+As output, this script has to define a nested list variable, as shown above with
+the ``"outputValues"`` variable, where the nested levels describe the different
+variables included in the state, then the different possible states at the same
+time, then the different time steps. In this case, because there is only one
+time step and one state, and all the variables are stored together, we only set
+the most inner level of the lists.
+
+In this twin experiments framework, the observation :math:`\mathbf{y}^o` and its
+error covariances matrix :math:`\mathbf{R}` can be generated. It is done in two
+Python script files, the first one being named ``Script_Observation_yo.py``::
+
+    #-*-coding:iso-8859-1-*-
+    #
+    import sys ; sys.path.insert(0,"# INSERT PHYSICAL SCRIPT PATH")
+    from Physical_data_and_covariance_matrices import True_state
+    from Physical_simulation_functions import FunctionH
+    #
+    xt, noms = True_state()
+    #
+    yo = FunctionH( xt )
+    #
+    # Creating the required ADAO variable
+    # -----------------------------------
+    Observation = list(yo)
+
+and the second one named ``Script_ObservationError_R.py``::
+
+    #-*-coding:iso-8859-1-*-
+    #
+    import sys ; sys.path.insert(0,"# INSERT PHYSICAL SCRIPT PATH")
+    from Physical_data_and_covariance_matrices import True_state, Simple_Matrix
+    from Physical_simulation_functions import FunctionH
+    #
+    xt, names = True_state()
+    #
+    yo = FunctionH( xt )
+    #
+    R  = 0.0001 * Simple_Matrix( size = len(yo) )
+    #
+    # Creating the required ADAO variable
+    # -----------------------------------
+    ObservationError = R
+
+As in previous examples, it can be useful to define some parameters for the data
+assimilation algorithm. For example, if we use the standard 3DVAR algorithm, the
+following parameters can be defined in a Python script file named
+``Script_AlgorithmParameters.py``::
+
+    #-*-coding:iso-8859-1-*-
+    #
+    # Creating the required ADAO variable
+    # -----------------------------------
+    AlgorithmParameters = {
+        "Minimizer" : "TNC",         # Possible : "LBFGSB", "TNC", "CG", "BFGS"
+        "MaximumNumberOfSteps" : 15, # Number of global iterative steps
+        "Bounds" : [
+            [ None, None ],          # Bound on the first parameter
+            [ 0., 4. ],              # Bound on the second parameter
+            [ 0., None ],            # Bound on the third parameter
+            ],
+    }
+
+Finally, it is common to post-process the results, retrieving them after the
+data assimilation phase in order to analyse, print or show them. It requires to
+use a intermediary Python script file in order to extract these results. The
+following example Python script file named ``Script_UserPostAnalysis.py``,
+illustrates the fact::
+
+    #-*-coding:iso-8859-1-*-
+    #
+    import sys ; sys.path.insert(0,"# INSERT PHYSICAL SCRIPT PATH")
+    from Physical_data_and_covariance_matrices import True_state
+    import numpy
+    #
+    xt, names   = True_state()
+    xa          = ADD.get("Analysis").valueserie(-1)
+    x_series    = ADD.get("CurrentState").valueserie()
+    J           = ADD.get("CostFunctionJ").valueserie()
+    #
+    # Verifying the results by printing
+    # ---------------------------------
+    print
+    print "xt = %s"%xt
+    print "xa = %s"%numpy.array(xa)
+    print
+    for i in range( len(x_series) ):
+        print "Step %2i : J = %.5e  et  X = %s"%(i, J[i], x_series[i])
+    print
+
+At the end, we get a description of the whole case setup through a set of files
+listed here:
+
+#.      ``Physical_data_and_covariance_matrices.py``
+#.      ``Physical_simulation_functions.py``
+#.      ``Script_AlgorithmParameters.py``
+#.      ``Script_BackgroundError_B.py``
+#.      ``Script_Background_xb.py``
+#.      ``Script_ObservationError_R.py``
+#.      ``Script_ObservationOperator_H.py``
+#.      ``Script_Observation_yo.py``
+#.      ``Script_UserPostAnalysis.py``
+
+We insist here that all these scripts are written by the user and can not be
+automatically tested. So the user is required to verify the scripts (and in
+particular their input/output) in order to limit the difficulty of debug. We
+recall: **script methodology is not a "safe" procedure, in the sense that
+erroneous data, or errors in calculations, can be directly injected into the
+YACS scheme execution.**
+
+Building the case with external data definition by scripts
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+All these scripts can then be used to define the ADAO case with external data
+definition by Python script files. It is entirely similar to the method
+described in the `Building a simple estimation case with external data
+definition by scripts`_ previous section. For each variable to be defined, we
+select the "*Script*" option of the "*FROM*" keyword, which leads to a
+"*SCRIPT_DATA/SCRIPT_FILE*" entry in the tree.
+
+The other steps to build the ADAO case are exactly the same as in the `Building
+a simple estimation case with explicit data definition`_ previous section.
+
+Using the simple linear operator :math:`\mathbf{H}` from the Python script file
+``Physical_simulation_functions.py`` in the ADAO examples standard directory,
+the results will look like::
+
+    xt = [1 2 3]
+    xa = [ 1.000014    2.000458  3.000390]
+
+    Step  0 : J = 1.81750e+03  et  X = [1.014011, 2.459175, 3.390462]
+    Step  1 : J = 1.81750e+03  et  X = [1.014011, 2.459175, 3.390462]
+    Step  2 : J = 1.79734e+01  et  X = [1.010771, 2.040342, 2.961378]
+    Step  3 : J = 1.79734e+01  et  X = [1.010771, 2.040342, 2.961378]
+    Step  4 : J = 1.81909e+00  et  X = [1.000826, 2.000352, 3.000487]
+    Step  5 : J = 1.81909e+00  et  X = [1.000826, 2.000352, 3.000487]
+    Step  6 : J = 1.81641e+00  et  X = [1.000247, 2.000651, 3.000156]
+    Step  7 : J = 1.81641e+00  et  X = [1.000247, 2.000651, 3.000156]
+    Step  8 : J = 1.81569e+00  et  X = [1.000015, 2.000432, 3.000364]
+    Step  9 : J = 1.81569e+00  et  X = [1.000015, 2.000432, 3.000364]
+    Step 10 : J = 1.81568e+00  et  X = [1.000013, 2.000458, 3.000390]
+    ...
+
+The state at the first step is the randomly generated background state
+:math:`\mathbf{x}^b`. After completion, these printing on standard output is
+available in the "*YACS Container Log*", obtained through the right click menu
+of the "*proc*" window in the YACS scheme.
+
+.. [#] For more information on YACS, see the the *YACS module User's Guide* available in the main "*Help*" menu of SALOME GUI.
index 5d7a417ec9d9d349fd0fc3f966b1245886d84661..2a45a61ee8b4a9c7aea9e67ce52dcb6631d47187 100644 (file)
@@ -171,7 +171,7 @@ numerical quality or to take into account computer requirements such as
 calculation size and time.
 
 Going further in the data assimilation framework
-++++++++++++++++++++++++++++++++++++++++++++++++
+------------------------------------------------
 
 To get more information about all the data assimilation techniques, the reader
 can consult introductory documents like [Argaud09], on-line training courses or
index 8d282bf8029c531c561af36584d4b5af8c2f7ed6..664d07fadeb8534bc64e8841b016770a90102f09 100644 (file)
@@ -20,21 +20,21 @@ Logical procedure to build an ADAO test case
 
 The construction of an ADAO case follows a simple approach to define the set of
 input data, either static or dynamic data, and then generates a complete block
-diagram used in Y. Many variations exist for the definition of input data, but
-the logical sequence remains unchanged.
+diagram used in YACS. Many variations exist for the definition of input data,
+but the logical sequence remains unchanged.
 
 First of all, the user is considered to know the input data needed to set up the
 data assimilation study. These data can be in SALOME or not.
 
-**Basically, the procedure involves the following steps:**
+**Basically, the procedure of using ADAO involves the following steps:**
 
-#.      **Activate the ADAO module and use the editor GUI,**
-#.      **Build and modify the ADAO case and save it,**
-#.      **Export the ADAO case as a YACS scheme,**
-#.      **Modify and supplement the YACS scheme and save it,**
-#.      **Execute the YACS case and obtain the results.**
+#.  **Activate the ADAO module and use the editor GUI,**
+#.  **Build and modify the ADAO case and save it,**
+#.  **Export the ADAO case as a YACS scheme,**
+#.  **Modify and supplement the YACS scheme and save it,**
+#.  **Execute the YACS case and obtain the results.**
 
-Each step will be detailed later in the next section.
+Each step will be detailed in the next section.
 
 Detailed procedure to build an ADAO test case
 ---------------------------------------------
@@ -165,7 +165,7 @@ Execute the YACS case and obtain the results
 
 The YACS scheme is now complete and can be executed. Parametrisation and
 execution of a YACS case is fully compliant with the standard way to deal with a
-YACS scheme, and is described in the *YACS User Guide*.
+YACS scheme, and is described in the *YACS module User's Guide*.
 
 Results can be obtained, through the "*algoResults*" output port, using YACS
 nodes to retrieve all the informations in the "*pyobj*" object, to transform
@@ -315,9 +315,9 @@ The different commands are the following:
 Examples of using these commands are available in the section
 :ref:`section_examples` and in examples files installed with ADAO module.
 
-.. [#] For more information on EFICAS, see the the *EFICAS User Guide* available in the main "*Help*" menu of SALOME GUI.
+.. [#] For more information on EFICAS, see the *EFICAS module* available in SALOME GUI.
 
-.. [#] For more information on YACS, see the the *YACS User Guide* available in the main "*Help*" menu of SALOME GUI.
+.. [#] For more information on YACS, see the *YACS module User's Guide* available in the main "*Help*" menu of SALOME GUI.
 
 .. [#] This intermediary python file can be safely removed after YACS export, but can also be used as described in the section :ref:`section_advanced`.