-// Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License.
-//
-// This library is distributed in the hope that it will be useful
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License along with this library; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-//
-// See http://www.salome-platform.org/
-//
using namespace std;
#include "MEDMEM_Mesh.hxx"
#include "MEDMEM_Field.hxx"
-// Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License.
-//
-// This library is distributed in the hope that it will be useful
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License along with this library; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-//
-// See http://www.salome-platform.org/
-//
using namespace std;
#include "MEDMEM_Mesh.hxx"
#include "MEDMEM_Field.hxx"
--- /dev/null
+% ___________________________________________________________________________
+% | |
+% | DEBUT DU TEXTE |
+% |___________________________________________________________________________|
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{Introduction}
+\section{Rationale for Med Memory}
+The Med data exchange model (DEM in proper english) is the format used in the
+Salome platform for communicating data between different components. It
+manipulates objects that describe the meshes underlying scientific
+computations and the value fields lying on these meshes. This data exchange
+can be achieved either through files using the Med-file formalism or directly
+through memory with the Med Memory (\verb+MEDMEM+) library.
+
+The Med libraries are oganized in multiple layers:
+\begin{itemize}
+\item The MED file layer : C and Fortran API to implement mesh and field
+persistency.
+\item The MED Memory level C++ API to create and manipulate mesh and field
+objects in memory.
+\item Python API generated using SWIG which wraps the complete C++ API of the
+MED Memory
+\item CORBA API to simplify distributed computation inside SALOME (Server
+Side).
+\item MED Client classes to simplify and optimize interaction of distant
+objects within the local solver.
+\end{itemize}
+
+Thanks to Med Memory, any component can access a distant
+mesh or field object. Two codes running on
+different machines can thus exchange meshes and fields.
+These meshes and fields can easily be read/written in a Med file
+format, enabling access to the whole Salome suite of tools
+(CAD, meshing, Visualization, other components).
+
+\section{Outline}
+
+In this document, we describe the API of the Med Memory library (available in
+C++ and in Python). This document is intended for developers who are in charge
+of integrating existing applications in the Salome platform.
+
+As will be seen in section \ref{sec:objects}, the API consists
+of very few classes:
+\begin{itemize}
+\item a general MED container,
+\item meshes,
+\item supports and derived classes,
+\item fields
+\item drivers for reading and writing in MED, GIBI and VTK files.
+\end{itemize}
+
+All these are detailed in the following sections. The C++
+formalism will be used for the description in these sections.
+ Python syntax is very similar and is given in
+ appendix \ref{app:python}.
+
+\section{Naming conventions}
+The naming conventions are rather straightforward, but
+the reader used to the MED-file semantics will find that
+there are a few noticeable differences.
+\begin{description}
+\item[cell] entity of dimension equal to the mesh dimension ($1$, $2$ or $3$).
+\item[component] in a field, represents a value that is available for each
+element of the support (for instance : $T$, $v_x$, $\sigma_{xy}$)).
+\item[connectivity (descending)] connectivity table expressing connectivity of
+dimension $d$ elements in terms of list of dimension $d-1$ elements.
+\item[connectivity (nodal)] connectivity table expressing connectivity of
+dimension $d$ elements in terms of list of nodes.
+\item[coordinates] in a mesh, coordinates can be described by strings giving
+the names of the coordinates, the units of the coordinates, and the type of
+coordinates ('CARTESIAN', 'SPHERICAL' or 'CYLINDRICAL').
+\item[description] string of characters used to describ an object without
+giving any access to a query method.
+\item[dimension] Med Memory discriminates the mesh dimension from the space
+dimension (a surface shape in $3D$ will have $2$ as a mesh dimension).
+\item[driver] object attached to a mesh or a field to read (resp. write) data
+from (resp. to) a Med-file.
+\item[edge] entity of dimension $1$ in a $2D$ mesh.
+\item[element] elementary component of a mesh ($0D$, $1D$, $2D$ or $3D$).
+\item[entity] category giving information on the dimension of elementary
+components of meshes : node, edge, face (only in $3D$) or cell.
+\item[face] for $3D$ meshes, faces are the $2D$ entities.
+\item[family] support which is composed of a set of groups, which do not
+intersect each other, and which gives access to those groups.
+\item[field] array of integer, integer array, real or real array lying on a
+support (the dimension of the array of values for each element of the support
+is called the number of components). A field is uniquely defined by its name,
+its support, its iteration number and its order number. $-1$ is the default
+value of those two numbers.
+\item[group] support with additional access to parent families.
+\item[iteration number] information attached to a field that expresses the
+number of the time step in the computation ($-1$ is its default value).
+\item[name] information attached to a mesh, support or field to name it and access to it.
+\item[node] entity of dimension $0$.
+\item[order number] information attached to a field that expresses the number
+of an internal iteration inside a time step in the computation ($-1$ is its
+default value).
+\item[support] list of elements of the same entity.
+\item[type] category of an entity (triangle, segment, quadrangle, tetrahedron,
+hexahedron, etc...).
+\end{description}
+
+\chapter{Med Memory API}\label{sec:objects}
+
+\section{Conventions}
+
+\begin{itemize}
+\item
+In this document, one refers to the main user documentation \cite{RefManualMedMemory}
+where the variable \verb+$MED_ROOT_DIR+ is the Med Memory directory installation.
+
+\item All numberings start at one (take care of array index !).
+
+\item When one gets a C (resp. C++) type array (resp. container) using a \texttt{get...} method, one should
+not replace some value of it. Access is in read only. Other use may
+product an impredicable result. To modify a such array (resp. container) use a \texttt{set...}
+method.
+
+\item There are many couple of methods that have similar syntaxes (one singular and one
+plural). The plural method returns an array and the singular one returns one
+particular value in this array (see \method{double getCoordinate(int i)} and
+\method{double* getCoordinates()} for example).
+
+\item Difference between local and global number in mesh element connectivity list~: when one talks about an
+element number, one could see $i^{th}$ quadrangle ($i^{th}$ in quadrangles
+array~: local numbering) or $j^{th}$ element ($j^{th}$ in all elements array~:
+global numbering). These two numbering are equivalent only if one has only one
+geometric type ;
+
+\end{itemize}
+
+\section{Namespaces}
+Med Memory uses two namespaces : \verb+MEDMEM+ which is the general
+namespace where the main classes are defined and \verb+MED_EN+
+which defines enums that can be used by an English-speaking
+programer.
+
+\section{Classes}
+At a basic usage level, the API consists in few classes which are located in
+the \verb+MEDMEM+ C++ namespace :
+\begin{description}
+\item[MED] the global container;
+\item[MESH] the class containing 2D or 3D mesh objects;
+\item[SUPPORT] the class containing descriptions of list of elements;
+\item[FIELD] the class template containing list of values lying on a
+particular support.
+\end{description}
+
+Figure \ref{fig:uml_light} gives a view of the UML diagram of the classes that
+are sufficient for most integrations in the Salome platform, couplings using
+the Med Memory libraries. With these classes, it is possible to :
+\begin{itemize}
+\item read/write meshes from MED-files;
+\item create fields containing scalar or vectorial values on list of elements
+of the mesh;
+\item communicate these fields between different components;
+\item read/write such fields.
+\end{itemize}
+
+Note on this figure that the MED container controls the life cycle of all the
+objects it contains : its destruction will destroy all the objects it
+aggregates. On the other hand, the life cycle of mesh, support and field
+objects are independent. Destroying a support will have no effect on the fields
+which refer to it.
+
+\begin{center}
+\begin{figure}
+\includegraphics[width=15cm]{MEDMEM_UML_light.png}
+\caption{UML diagram of basic Med Memory API classes.}\label{fig:uml_light}
+\end{figure}
+\end{center}
+
+A more advanced usage of the Med Memory is possible through other classes.
+Figure \ref{fig:uml} gives a complete view of the Med Memory API. It includes :
+\begin{description}
+\item[GROUP] a class inherited from the SUPPORT class used to create supports
+linked to mesh groups (restricted list of elements used for setting boundary
+conditions, initial values or transferring data from one component to the
+other);
+\item[FAMILY] which is used to manipulate a certain kind of support and does
+not intersect each other;
+\item[MESHING] which builds meshes from scratch, it can be used to transform
+meshes from a specific format to the MED format or to integrate a mesher
+within Salome platform (note that class does not add element or node to a
+mesh);
+\item[Driver classes] which enable the user to get a fine control of the I/O
+operations.
+\end{description}
+
+\begin{center}
+\begin{figure}
+\includegraphics[width=15cm]{MEDMEM_UML.png}
+\caption{UML diagram of Med Memory API classes.}\label{fig:uml}
+\end{figure}
+\end{center}
+
+\section{Enums}
+A few enums are defined in the \verb+MED_EN+ namespace :
+\begin{itemize}
+\item The \verb+medGeometryElement+ enum which defines geometry types. The
+available types are linear and quadratic elements (c.f. [DR??]). The
+entries of the enum are quite self-explanatory :
+\begin{itemize}
+\item \verb+MED_NONE+
+\item \verb+MED_POINT1+
+\item \verb+MED_SEG2+
+\item \verb+MED_SEG3+
+\item \verb+MED_TRIA3+
+\item \verb+MED_QUAD4+
+\item \verb+MED_TRIA6+
+\item \verb+MED_QUAD8+
+\item \verb+MED_TETRA4+
+\item \verb+MED_PYRA5+
+\item \verb+MED_PENTA6+
+\item \verb+MED_HEXA8+
+\item \verb+MED_TETRA10+
+\item \verb+MED_PYRA13+
+\item \verb+MED_PENTA15+
+\item \verb+MED_HEXA20+
+\item \verb+MED_POLYGON+
+\item \verb+MED_POLYHEDRA+
+\item \verb+MED_ALL_ELEMENTS+
+\end{itemize}
+\item
+an enum which contains the different mesh entities, \verb+medEntityMesh+, the
+entries of which being :
+\begin{itemize}
+\item \verb+MED_CELL+
+\item \verb+MED_FACE+
+\item \verb+MED_EDGE+
+\item \verb+MED_NODE+
+\item \verb+MED_ALL_ENTITIES+
+\end{itemize}
+\item an enum which describes the way node coordinates or field values are
+stored,
+\begin{itemize}
+\item \verb+MED_FULL_INTERLACE+ for arrays such that $x_1,y_1,z_1,x_2,y_2,z_2,\ldots,x_n,y_n,z_n$;
+\item \verb+MED_NO_INTERLACE+ for arrays such that $x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_n,z_1,z_2,\ldots,z_n$;
+\item \verb+MED_UNDEFINED_INTERLACE+, the undefined interlacing mode.
+\end{itemize}
+\item
+an enum which describes the type of connectivity
+\begin{itemize}
+\item \verb+MED_NODAL+ for nodal connectivity;
+\item \verb+MED_DESCENDING+ for descending connectivity.
+\end{itemize}
+\end{itemize}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{How to use MED object}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{General Information}
+
+A typical use of this object is to mount in memory what is in a MED file (or
+any type of driver in red or read/write mode) and it will manage its memory on
+its own. Then from this object one can get some information such as~:
+
+\begin{itemize}
+\item the number of meshes stored in this object using the
+{\method{getNumberOfMeshes}}.
+\item the number of fields stored in this object using the
+{\method{getNumberOfFields}}.
+\item a list of mesh names using the {\method{getMeshNames}}.
+\item a list of field names using the {\method{getFieldNames}}.
+\item a list of MESH object using the {\method{getMesh}}
+\item a list of FIELD object using the {\method{getField}}
+\item a list of SUPPORT object on all type of entities (node, cell,
+ face in 3d or edge on 2d) using the {\method{getSupport}}.
+\end{itemize}
+
+The destructor of this object will destruct itself all FIELD, SUPPORT and MESH
+objects; via its get method you will have a pointer on this object and you
+should never delete it.
+
+One can add as well some MESH or FIELD object via the {\method{addMesh}} and
+the {\method{addField}} respectively.
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{How to use MESH object}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+\section{General Information}
+
+We could get some general information about a MESH object such as~:
+
+\begin{itemize}
+\item name (\method{getName})
+\item a description (\method{getDescription})
+\item the space dimension (\method{getSpaceDimension})
+\item the mesh dimension (\method{getMeshDimension})
+\end{itemize}
+\fileCxx{MESHgeneral.cxx}
+
+\filePython{MESHgeneral.py}
+
+\section{Information about nodes}
+
+\begin{enumerate}
+\item I want to get the number of nodes~: Really simple, use \method{getNumberOfNodes}.
+\item I want to get the coordinates components names~: use \method{getCoordinatesNames}
+which returns a string array (one string for each space dimension)
+\item I want to get the coordinates components units~: use \method{getCoordinatesUnits}
+which returns a string array (one string for each space dimension)
+\item I want to get the coordinates system~: use \method{getCoordinatesSystem}
+which returns a string (\verb+"CARTESIAN"+, \verb+"CYLINDRICAL"+ or \verb+"SPHERICAL"+).
+\item I want to get the nodes coordinates~: use \method{getCoordinates}
+which return a pointer to the coordinates array where values are interlace
+or no.
+
+\textbf{Warning~:}
+
+\begin{itemize}
+\item When we get coordinates in \verb+MED_NO_INTERLACE+ mode, we get an
+array where values are ordered like (\verb+X1,X2,X..., Y1,Y..., Z1,Z...+).
+\item When we get coordinates in \verb+MED_FULL_INTERLACE+ mode, we get
+an array where values are ordered like (\verb+X1,Y1,Z1, X2,Y2,Z2, ...+).
+\end{itemize}
+\item I want to get one particular value of coordinate~: use \method{getCoordinate}
+which returns the value of \( i^{th} \) node and \( j^{th} \) axis.
+\end{enumerate}
+\fileCxx{MESHcoordinates.cxx}
+
+\filePython{MESHcoordinates.py}
+
+\section{Information about cells}
+
+\begin{enumerate}
+\item I want to get the number of geometric type for a mesh entity~: use
+\method{getNumberOfTypes}
+
+
+\textbf{C++ Example~:}
+
+\verb+int NumberOfCellsTypes = myMesh.getNumberOfTypes(MED_CELL);+
+
+%%%%%%%%%%%%%%%%%
+\item I want to get all geometric type for a mesh entity~: use
+\method{getTypes} to get an array of \verb+medGeometryElement+
+(to use directly in others methods).
+
+\textbf{C++ Example~:}
+
+\verb+const medGeometryElement * Types = myMesh.getTypes(MED_CELL);+
+
+(array is of size \verb+NumberOfCellsTypes+)
+
+\item I want to get the number of cells~: use \method{getNumberOfElements}
+which return this information. You must give the mesh entity (\verb+MED_CELL+,
+\verb+MED_FACE+, \verb+MED_EDGE+ or \verb+MED_NODE+) and a geometric
+type of this entity.
+
+
+\textbf{C++ Example~:}
+
+\verb+int NumberOfTriangle = myMesh.getNumberOfElements(MED_FACE,MED_TRIA3);+
+
+\verb+int NumberOfFace = myMesh.getNumberOfElements(MED_FACE,MED_ALL_ELEMENT);+
+
+\item I want to get the geometric type of one element~: use \method{getElementType}
+which return a \verb+medGeometryElement+.
+
+
+\textbf{C++ Example~:}
+
+\verb+medGeometryElement myType = myMesh.getElementType(MED_FACE,10);+
+
+Return the \verb+medGeometryElement+ of \( 10^{th} \) face.
+
+\item I want to get a connectivity~: use \method{getConnectivity} which
+return an array with connectivity values.
+
+
+\label{getConnectivity}
+
+\textbf{C++ Example~:}
+
+\begin{verbatim}
+int NumberOfTetrahedron = myMesh.getNumberOfElements(MED_CELL,MED_TETRA4);
+const int * TetrahedronConnectivity =
+ myMesh.getConnectivity(MED_FULL_ENTERLACE,
+ MED_NODAL,
+ MED_CELL,
+ MED_TETRA4);
+\end{verbatim}
+\verb+TetrahedronConnectivity+ contain nodal connectivity
+of tetrahedron in mesh. It is arranged in full enterlace mode and
+its size is \verb+NumberOfTetrahedron x 4+.
+
+If you want to get connectivity of all elements (with \verb+Type=MED_ALL_ELEMENTS+),
+you must use the index array (return by \method{getConnectivityIndex})
+to get connectivity for each elements (see example \myref{MESHconnectivities.cxx}).
+
+\item I want to get an element number from a connectivity~: use \method{getElementNumber}
+which return the global number of a given connectivity.
+
+
+\textbf{C++ Example~:}
+\begin{verbatim}
+int * myElementConnectivity = {2,10,12,14};
+int myNumber = myMesh.getElementNumber(MED_NODAL,MED_CELL,
+ myElementConnectivity);
+\end{verbatim}
+
+%%%%%%%%%%% WITH POLY METHODS %%%%%%%%%%%%
+
+\item The listed above methods do not take into account information about
+ \verb+polygonal+ and \verb+polyhedral+ cells contained in a MESH object. To get
+ full information about cell types, use the same methods with
+ \verb+WithPoly+ postfix:
+\begin{itemize}
+\item use \method{getNumberOfTypesWithPoly} to get the number of
+ geometric types for a mesh entity;
+\item use \method{getTypesWithPoly} to get all geometric types for a mesh entity;
+\item use \method{getNumberOfElementsWithPoly} to get the number of cells;
+\item use \method{getElementTypeWithPoly} to get the geometric type of
+ one element.
+\end{itemize}
+There are separate methods to get number of polygons and polyhedrons:
+\method{getNumberOfPolygons} and \method{getNumberOfPolyhedron}
+
+To get connectivity of polygonal elements, use \method{getPolygonsConnectivity} along with
+\method{getPolygonsConnectivityIndex} (see example \myref{MESHconnectivities.cxx}).
+
+To get nodal connectivity of polyhedral elements, it is necessary use together
+3 methods: \method{getPolyhedronConnectivity}, \method{getPolyhedronFacesIndex}
+and \method{getPolyhedronIndex} (see example \myref{MESHconnectivities.cxx}).
+
+\end{enumerate}
+\fileCxx{MESHconnectivities.cxx}
+
+\filePython{MESHconnectivities.py}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{How to use MESHING object}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+This class is a derivated class of MESH class to build a MESH object from
+scratch (use of set methods).
+
+All verifications are under user responsability : If arrays values or arrays
+dimensions are wrongs, results are impredicable.
+
+All arrays in arguments in set methods are duplicated in MESHING object.
+
+\section{Build a MESHING}
+
+\label{BuildMeshing}
+
+\subsection{Coordinates}
+
+First we must defined points coordinates of the mesh. We use
+\method{setCoordinates}.
+
+\textbf{C++ Example~:}
+\begin{verbatim}
+MESHING myMeshing ;
+const int SpaceDimension=2;
+const int NumberOfNodes=6;
+int * Coordinates = new int[SpaceDimension*NumberOfNodes] ;
+string System="CARTESIAN";
+medModeSwitch MED_FULL_INTERLACE ;
+myMeshing.setCoordinates(SpaceDimension,NumberOfNodes,Coordinates,System,Mode);
+\end{verbatim}
+
+Then you could set the coordinates names and units (with
+\method{setCoordinatesNames} and \method{setCoordinatesUnits}).
+
+\subsection{Connectivities}
+
+When coordinates are defined, we could defined connectivities.
+
+First we must defined connectivity of MED\_CELL elements.
+After, we could defined constituent connectivity if necesary
+(MED\_FACE and/or MED\_EDGE).
+
+For each connectivities, you could use some methods in the following order :
+\begin{itemize}
+\item \method{setNumberOfTypes} to set the number of differents geometrics
+types (3 for example). This method allocates all arrays which size is this
+number ;
+\item \method{setTypes} to set the differents geometrics types
+({MED\_TETRA4,MED\_PYRA5,MED\_HEXA8} for example). Types should be given
+in increasing order of number of nodes for this type ;
+\item \method{setNumberOfElements} to set the number of elements for
+each geometric type. This method allocates connectivities array ;
+\item \method{setConnectivity} to set the connectivity in MED\_FULL\_INTERLACE
+mode for each geometric type (use \method{setPolygonsConnectivity} and
+\method{setPolyhedraConnectivity} for poly elements);
+\end{itemize}
+
+\textbf{C++ Example~:}
+\begin{verbatim}
+MESHING myMeshing ;
+myMeshing.setCoordinates(SpaceDimension,NumberOfNodes,Coordinates,System,Mode);
+
+myMeshing.setNumberOfTypes(2,MED_CELL);
+myMeshing.setTypes({MED_TRIA3,MED_QUAD4},MED_CELL);
+myMeshing.setNumberOfElements({3,2},MED_CELL); // 3 MED_TRIA3 and 2 MED_QUAD4
+myMeshing.setConnectivity({1,2,3,6,8,9,4,5,6},MED_CELL,MED_TRIA3);
+myMeshing.setConnectivity({1,3,4,5,4,5,7,8},MED_CELL,MED_QUAD4);
+\end{verbatim}
+
+
+\section{Defined a GROUP object}
+
+To add a group in a MESHING object, use \method{addGroup}.
+
+This method duplicate the GROUP object in the MESH object.
+
+To build this GROUP object, use SUPPORT methods \ref{CreateSupport} to set all attributes.
+
+\subsection{WARNING}
+
+For instance, translation from GROUP objects to FAMILY objects are not completed !
+
+You MUST set GROUP objects as if they are FAMILY objects.
+
+This feature will be fully implemented in next release of med memory.
+
+\section{Example}
+
+\fileCxx{MESHINGexample.cxx}
+
+%\filePython{MESHINGexample.py}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{How to use SUPPORT object}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{Create a SUPPORT object}
+
+\label{CreateSupport}
+
+To create a SUPPORT object, you must give :
+
+\begin{itemize}
+\item a reference to a MESH object
+\item its name
+\item on which mesh entity it apply to
+\end{itemize}
+\textbf{C++ example~:}
+
+\verb+SUPPORT mySupport(myMesh,"support on all faces",MED_FACE) ;+
+By default, this support is defined on all elements of the given entity.
+
+If you want a restricted SUPPORT, you must add manualy information
+about what do you want~:
+
+\begin{itemize}
+\item is not on all elements~: \verb+mySupport.setAll(false);+
+\item on how many geometric type~:\\
+ \verb+mySupport.setNumberOfGeometricType(myNumberOfGeometricType);+
+\item on which geometric type~:\\
+ \verb+mySupport.setGeometricType(myGeometricType);+
+\item Temporary : the Gauss point number for each geometric type~:\\
+ \verb+mySupport.setNumberOfGaussPoint(myNumberOfGaussPoint);+
+\item the number of elements for each geometric type~:\\
+ \verb+mySupport.setNumberOfEntities(myNumberOfEntities);+
+\item the total number of elements~:\\
+ \verb+mySupport.setTotalNumberOfEntities(myTotalNumberOfEntities);+
+\item the array which contains elements for each geometric type~:\\
+ \verb+mySupport.setNumber(myNumber);+
+\end{itemize}
+You could also use \method{setpartial} which set all you need.
+
+
+\section{Use a SUPPORT object}
+
+You could get all basic information (as you set them in \myref{CreateSupport})~:
+
+\begin{itemize}
+\item \verb+getName()+
+\item \verb+getDescription()+
+\item \verb+getMesh()+
+\item \verb+getEntity()+
+\item \verb+isOnAllElements()+
+\item \verb+getNumberOfTypes()+
+\item \verb+getTypes()+
+%\item \verb+getNumberOfGaussPoint()+
+%\item \verb+getNumberOfGaussPoint(myGeometricType)+
+\item \verb+getGeometricTypeNumber()+
+\item \verb+getNumberOfElements(myGeometricType)+
+\item \verb+getNumber(myGeometricType)+
+\item \verb+getNumberIndex()+
+\end{itemize}
+For details about this methods, see the reference manual \cite{RefManualMedFile}.
+
+The use of \method{getNumber} and \method{getNumberIndex} are the
+same as \method{getConnectivity} and \method{getConnectivityIndex}
+(see item \myref{getConnectivity}
+
+There is another particular method to blend another SUPPORT object
+into it.
+
+For example in C++ :
+\begin{verbatim}
+SUPPORT mySupport ;
+SUPPORT myOtherSupport ;
+...
+mySupport.blending(myOtherSupport) ;
+\end{verbatim}
+
+\verb+mySupport+ contain now all elements defined originally in it,
+more those defined in \verb+myOtherSupport+.
+
+
+\section{Case of FAMILY object}
+
+A FAMILY is a SUPPORT with some additionnal methods that concern some optional attribut (we could have none) and group (we could also have none) :
+\begin{itemize}
+\item \method{getIdentifier} return the family identifier (an integer)
+
+\item \method{getNumberOfAttributes} return the number of attributes of this family
+\item \method{getAttributesIdentifiers} and \method{getAttributeIdentifier} return an integer array or an integer that represent attribut identifier.
+\item \method{getAttributesValues} and \method{getAttributeValue} return an integer array or an integer that represent attribut value.
+\item \method{getAttributesDescriptions} and \method{getAttributeDescription} return a string array or a string that represent attribut description.
+
+\item \method{getNumberOfGroups} return the number of groups which it belog to.
+\item \method{getGroupsNames} and \method{getGroupName} return a string array or a string that represent the group name which it belog to.
+
+\end{itemize}
+
+\section{Case of GROUP object}
+
+A GROUP is a SUPPORT with some additionnal methods to find FAMILY that make up it :
+\begin{itemize}
+\item \method{getNumberOfFamilies} return the number of FAMILY that make up the GROUP ;
+\item \method{getFamilies} and \method{getFamily} return a FAMILY array or a FAMILY that make up the GROUP.
+\end{itemize}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{How to use Field}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{Introduction}
+
+A field is characterized by its name (\method{getName}) and an optional description (\method{getDescription}).
+
+It is also characterized by this calculating moment :
+\begin{itemize}
+\item an iteration number (time step number)
+\item an order number (use if there are internal iteration in a time step)
+\item the time that correspond to this iteration number.
+\end{itemize}
+
+By default, there are no iteration and order number defined (value
+MED\_NOPDT and MED\_NONOR).
+
+A field contain values which apply on some nodes or elements (cell, face or edge).
+
+We find these informations from a SUPPORT object (see \method{getSupport}).
+
+Each field have a number of components (\method getNumberOfComponents) and all these components have a name (\method{getComponentsNames} and \method{getComponentName}), a description (\method{getComponentsDescriptions} and \method{getComponentDescription}) and an unit (\method{getMEDComponentsUnits} and \method{getMEDComponentUnit}).
+
+To get values of a FIELD, you could use \method{getValue}, \method{getValueI}
+and \method{getValueIJ}~:
+
+\begin{itemize}
+\item First return a reference to all values in the given mode (full or no
+interlace).
+\item Second return a reference to $i^{th}$ element values or component values (in accordance with the given mode).
+\item Third return the $j^{th}$ component of $i^{th}$ element.
+\end{itemize}
+
+\fileCxx{FIELDgeneral.cxx}
+
+\filePython{FIELDgeneral.py}
+
+\section{Create a Field}
+
+It is simple to create a field object. You must know its SUPPORT and the number of components.
+
+\textbf{Example :}
+\verb+FILED<double> myField(mySupport,NumberOfComponents) ;+
+
+You must now set a name (\method{setName}) and optionaly a description
+(\method{setDescription}).
+
+By default there are no iteration and order number (negative values) and
+time is null. You could change this by using \method{setIterationNumber},
+\method{setOrderNumber} and \method{setTime}.
+
+You \textbf{SHOULD} also set unit of your components with \method{setMEDComponentUnit}
+
+To set value, use \method{setValueIJ} to put new value of field.
+
+\fileCxx{FIELDcreate.cxx}
+
+\filePython{FIELDcreate.py}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{Using drivers}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+The generic driver mecanism gives users the possibility to write/read
+the content of an object according to a specified file format. The
+semantic remains the same whatever the object is (MESH, FIELD, MED).
+By the way it allows using several file formats for writting an object.
+
+
+\section{Invoking a driver}
+
+
+\subsection{Invoking a driver at creation object time}
+
+This is the simplest way of invoking a driver. The driver parameters
+are given to the constructor of the object. Except for the MED object,
+this way of invoking a driver assume you know exactly the name of
+the MESH/FIELD you want read from a file <fileName> of type <driverType>.
+
+ex 1.1 : For a FIELD object, invoking FIELD<double> myField(MED\_DRIVER,fileName,fieldName)
+create a FIELD object and a driver which loads the mesh <fieldName>
+from the MED file <fileName> (Not implemented yet !).
+
+ex 1.2 : To remove the default driver previously created myField->rmDriver();
+
+ex 2 : For a MESH object, invoking MESH myMesh(MED\_DRIVER,fileName,meshName)
+create a MESH object and a driver which loads the mesh <meshName>
+from the MED file <fileName>.
+
+ex 3 : For a MED object, invoking MED myMed(MED\_DRIVER,fileName)
+create a MED object to explore the MED file <fileName>.
+
+rem 1 : ex1 is equivalent to \ref{sec:invoking_a_driver_from_the_std_drv_method}
+ex1.
+
+rem 2 : Since the driver has read the object, the associated file
+is closed. You can reread the object with the default driver by calling
+the read() method : myObject.read().
+
+\fileCxx{MEDMEM_InvokingDriverAtObjectCreationTime.cxx}
+
+\filePython{MEDMEM_InvokingDriverAtObjectCreationTime.py}
+
+\subsection{Invoking a driver from the standard driver method of an object\label{sec:invoking_a_driver_from_the_std_drv_method}}
+
+This way of invoking a driver give the possiblility to add several
+drivers to an exiting object.
+
+ex1 : First we create a FIELD without any driver FIELD<double>~{*}~myField1~=~new~FIELD<double>;
+then we add a driver with int myDriver1 = myField1->addDriver(driverType1,
+fileName1, fieldName1); for reading <fieldName1> from file <fileName1>
+with myField1->read(myDriver1);
+
+ex2 : We add a new driver of type <driverType2> int myDriver2 = myField1->addDriver(driverType2,
+fileName2,fieldName2); in order to write myField1 in file <fileName2>
+with <fieldName2> name using command myField1->write(myDriver2);
+
+rem 1 : Files are openned then closed each time you call read() or
+write() methods.
+
+rem 2 : If you use more than a driver you need to keep the driver
+handlers (myDriverI ).
+
+\fileCxx{MEDMEM_InvokingDriverFromStandardObjectMethod.cxx}
+
+\filePython{MEDMEM_InvokingDriverFromStandardObjectMethod.py}
+
+\subsection{Invoking a driver and attaching it to an existing object}
+
+The methods exposed in the two previous sections always create drivers
+in read/write access mode. Another way of creating a driver is to
+create a driver with a specific access mode.
+
+ex1 : First we create a FIELD without any driver FIELD<double>~{*}~myField1~=~new
+FIELD<double>(); then we create a read-only driver MED\_FIELD\_RDONLY\_DRIVER<double>~myRdOnlyDriver(fileName1,myField1);
+and attached it to myField1. Finally you must set the fieldName1 you
+want to acess in fileName1 with myRdOnlyDriver->setFieldName(fieldName1);
+in order to read the field with myRdOnlyDriver->open(); myRdOnlyDriver->read();
+
+Don't forget to close the file with myRdOnlyDriver->close().
+
+ToDo : By now when you create such specific drivers, the object doesn't
+know anything about it.
+
+\fileCxx{MEDMEM_InvokingDriverByAttachingItToAnObject.cxx}
+
+\filePython{MEDMEM_InvokingDriverByAttachingItToAnObject.py}
+
+\section{Using the MED driver}
+
+The MED object provides the ability of :
+
+\begin{enumerate}
+\item \noindent Obtainning a reference on the whole structure contained
+in a file.
+\item Obtainning the list of all the Meshes/Fields names contained in a
+file.
+\item Obtainning a Mesh/Field reference using a name.
+\item Writting a whole set of independent objects with a simple command.
+\end{enumerate}
+
+\subsection{Exploring files}
+
+In this first use case the user wants to explore the meshes \& fields
+containned within a file <filename> of type given by the <drivertype>
+parameter.
+
+ex 1 : Calling MED {*} myMed = new MED(driverType1, fileName1); create
+a MED object which open fileName1, read all MESHes/FIELDs relations
+then close the file.
+
+This is equivalent to MED~{*}~myMed~=~new~MED(); myDriver~=~myMed->addDriver(driverType1,fileName1);
+myMed->readFileStruct(myDriver);
+
+ex 2 : To get the list of meshNames from a MED object, first ask the
+object how many meshes it had by calling int numberOfMeshes~=~myMed->getNumberOfMeshes();
+then get the list with myMeshNames~=~new string{[}getMeshNames{]};
+myMed->getMeshNames(myMeshNames).
+
+Note you can also use the deque<string> getMeshNames() method.
+
+ex 3 : To get a list of fieldNames from a MED object, first ask the
+object how many fields it had by calling int numberOfFields~=~myMed->getNumberOfFields();
+then get the list with myFieldNames~=~new string{[}getFieldNames{]};
+myMed->getFieldNames(myFieldNames).
+
+ex 4 :To get a particular MESH use MESH {*} myMesh1 = myMED->getMesh(myMeshNames{[}0{]})
+
+ex 5 :To get a particular FIELD you first need to know what (time
+step, iteration number) list is used by calling deque<DT\_IT\_>~myField1DtIt~=~myMed->getFieldIteration(FieldName{[}0{]})
+; then you can ask for getting a specific FIELD with FIELD~{*}~myField1~=~myMED->getField(myFieldNames{[}0{]},myField1DtIt{[}0{]}.dt,myField1DtIt{[}0{]}.it).
+
+ex2 : To write the whole content of a MED object first add a driver
+myDriver2~=~myMed.addDriver(driverType2,~fileName2); then ask for
+writing the object myMed->write(myDriver2); (not implemented yet !)
+
+You can remove the driver with myMed->rmDriver(myDriver2);
+
+rem 1 : It is possible to use multiple drivers to read a set of FIELDs
+/ MESHes from various file formats and writing the whole set through
+a specific write.(not implemented yet !)
+
+
+\subsubsection{Adding existing MESHes/FIELDs objects}
+
+Not yet implemented.
+
+\section{Using the VTK driver}
+
+This driver allow to save all MESH and FIELD objects in an ASCII file in
+VTK format \cite{vtk}.
+
+You could use this driver only from a MED object, because VTK file format
+impose to write objects in particular order.
+
+\textbf{C++ Example~:}
+\begin{verbatim}
+MED myMed(MED_DRIVER,"file.med");
+myMed.read();
+int id = myMed.addDriver(VTK_DRIVER,"file.vtk");
+myMed.write(id) ;
+\end{verbatim}
+
+\section{Using the GIBI driver}
+
+This driver allow to load a mesh from a GIBI file (ASCII file with the extension '.sauve'), puting the mesh into a MESH object of MED. It's a read only driver and is applicable only to a MESH object.
+
+\textbf{C++ Example~:}
+\begin{verbatim}
+MESH * myMesh= new MESH() ;
+GIBI_MESH_RDONLY_DRIVER myGibiMeshDriver("file.sauve", myMesh) ;
+myGibiMeshDriver.open() ;
+myGibiMeshDriver.read() ;
+myGibiMeshDriver.close() ;
+\end{verbatim}
-// Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License.
-//
-// This library is distributed in the hope that it will be useful
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License along with this library; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-//
-// See http://www.salome-platform.org/
-//
#include "MEDMEM_Exception.hxx"
#include "MEDMEM_define.hxx"
-// Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License.
-//
-// This library is distributed in the hope that it will be useful
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License along with this library; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-//
-// See http://www.salome-platform.org/
-//
#include "MEDMEM_Exception.hxx"
#include "MEDMEM_define.hxx"
-// Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License.
-//
-// This library is distributed in the hope that it will be useful
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License along with this library; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-//
-// See http://www.salome-platform.org/
-//
#include "MEDMEM_Exception.hxx"
#include "MEDMEM_define.hxx"
-// Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License.
-//
-// This library is distributed in the hope that it will be useful
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License along with this library; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-//
-// See http://www.salome-platform.org/
-//
#include "MEDMEM_Exception.hxx"
#include "MEDMEM_define.hxx"
% | LE DOCUMENT |
% |___________________________________________________________________________|
%
-\title{User's Guide Of Med Memory}
+\title{User's Guide Of Med Memory V 3.2}
\author{Patrick Goldbronn \and Eric Fayolle \and Nadir Bouhamou \and Jerome Roy \and Nicolas Crouzet}
% ___________________________________________________________________________
%\newpage
\cleardoublepage
\tableofcontents
+
% ___________________________________________________________________________
% | |
-% | DEBUT DU TEXTE |
+% | DOCUMENT PRINCIPAL |
% |___________________________________________________________________________|
+%
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Introduction}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\section{Convention}
-
-\begin{itemize}
-
-\item Difference between local and global number~: when we talk about an
-element number, we could see $i^{th}$ quadrangle ($i^{th}$ in quadrangles
-array~: local numbering) or $j^{th}$ element ($j^{th}$ in all elements array~:
-global numbering). This two numbering are equivalent only if we have one
-geometric type ;
-
-\item All numbering begin at one (take care of array index !) ;
-\item When you get a C type array with a \texttt{get...} method, you must
-not replace some value of it. Access is in read only. Other use may
-product an impredicable result. To modify a such array use method
-\texttt{set...} ;
-\item Difference between local and global number~: when we talk about an
-element number, we could see \( i^{th} \) quadrangle (\( i^{th} \)
-in quadrangles array~: local numbering) or \( j^{th} \) element
-(\( j^{th} \) in all elements array~: global numbering). This two
-numbering are equivalent only if we have one geometric type.
-\item They are many methods that have two syntax (one singular and one
-plural). Plurals methods returns array and singulars methods returns one
-particular value in this array (see \method{getCoordinate} and
-\method{getCoordinates}).
-
-\end{itemize}
-
-\section{UML diagram}
-
-\includegraphics[width=16cm]{MEDMEM_UML.eps}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{How to use MED object}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\section{General Information}
-
-A typical use of this object is to mount in memory what is in a MED file (or
-any type of driver in red or read/write mode) and it will manage its memory on
-its own. Then from this object one can get some information such as~:
-
-\begin{itemize}
-\item the number of meshes stored in this object using the
-{\method{getNumberOfMeshes}}.
-\item the number of fields stored in this object using the
-{\method{getNumberOfFields}}.
-\item a list of mesh names using the {\method{getMeshNames}}.
-\item a list of field names using the {\method{getFieldNames}}.
-\item a list of MESH object using the {\method{getMesh}}
-\item a list of FIELD object using the {\method{getField}}
-\item a list of SUPPORT object on all type of entities (node, cell,
- face in 3d or edge on 2d) using the {\method{getSupport}}.
-\end{itemize}
-
-The destuctor of this object will destruct itself all FIELD, SUPPORT and MESH
-objects; via its get method you will have a pointeur on this object and you
-should never delete it.
-
-One can add as well some MESH or FIELD object via the {\method{addMesh}} and
-the {\method{addField}} respectively.
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{How to use MESH object}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-
-\section{General Information}
-
-We could get some general information about a MESH object such as~:
-
-\begin{itemize}
-\item name (\method{getName})
-\item a description (\method{getDescription})
-\item the space dimension (\method{getSpaceDimension})
-\item the mesh dimension (\method{getMeshDimension})
-\end{itemize}
-\fileCxx{MESHgeneral.cxx}
-
-\filePython{MESHgeneral.py}
-
-\section{Information about nodes}
-
-\begin{enumerate}
-\item I want to get the number of nodes~: Realy simple, use \method{getNumberOfNodes}.
-\item I want to get the coordinates components names~: use \method{getCoordinatesNames}
-which return a string array (one string for each space dimension)
-\item I want to get the coordinates components units~: use \method{getCoordinatesUnits}
-which return a string array (one string for each space dimension)
-\item I want to get the coordinates system~: use \method{getCoordinatesSystem}
-which return a string (\verb+"CARTESIAN"+, \verb+"CYLINDRICAL"+ or \verb+"SPHERICAL"+).
-\item I want to get the nodes coordinates~: use \method{getCoordinates}
-which return a pointer to the coordinates array where values are interlace
-or no. \textbf{Warning~:}
-
-\begin{itemize}
-\item When we get coordinates in \verb+MED_NO_INTERLACE+ mode, we get an
-array where values are ordered like (\verb+X1,X2,X..., Y1,Y..., Z1,Z...+).
-\item When we get coordinates in \verb+MED_FULL_INTERLACE+ mode, we get
-an array where values are ordered like (\verb+X1,Y1,Z1, X2,Y2,Z2, ...+).
-\end{itemize}
-\item I want to get one particular value of coordinate~: use \method{getCoordinate}
-which return the value of \( i^{th} \) node and \( j^{th} \) axis.
-\end{enumerate}
-\fileCxx{MESHcoordinates.cxx}
-
-\filePython{MESHcoordinates.py}
-
-\section{Information about cells}
-
-\begin{enumerate}
-\item I want to get the number of geometric type for a mesh entity~: use
-\method{getNumberOfTypes}
-
-
-\textbf{C++ Example~:}
-
-\verb+int NumberOfCellsTypes = myMesh.getNumberOfTypes(MED_CELL);+
-
-%%%%%%%%%%%%%%%%%
-\item I want to get all geometric type for a mesh entity~: use
-\method{getTypes} to get an array of \verb+medGeometryElement+
-(to use directly in others methods) or \method{getCellsTypes} to get
-an array of \verb+CELLMODEL+ (to ask mode information~: see \myref{CellModel}) .
-
-\textbf{C++ Example~:}
-
-\verb+const medGeometryElement * Types = myMesh.getTypes(MED_CELL);+
-
-\verb+const CELLMODEL * CellsTypes = myMesh.getCellsTypes(MED_CELL);+
-
-(each arrays are size \verb+NumberOfCellsTypes+)
-
-\item I want to get the number of cells~: use \method{getNumberOfElements}
-which return this information. You must give the mesh entity (\verb+MED_CELL+,
-\verb+MED_FACE+, \verb+MED_EDGE+ or \verb+MED_NODE+) and a geometric
-type of this entity.
-
-
-\textbf{C++ Example~:}
-
-\verb+int NumberOfTriangle = myMesh.getNumberOfElements(MED_FACE,MED_TRIA3);+
-
-\verb+int NumberOfFace = myMesh.getNumberOfElements(MED_FACE,MED_ALL_ELEMENT);+
-
-\item I want to get the geometric type of one element~: use \method{getElementType}
-which return a \verb+medGeometryElement+.
-
-
-\textbf{C++ Example~:}
-
-\verb+medGeometryElement myType = myMesh.getElementType(MED_FACE,10);+
-
-Return the \verb+medGeometryElement+ of \( 10^{th} \) face.
-
-\item I want to get a connectivity~: use \method{getConnectivity} which
-return an array with connectivity values.
-
-
-\label{getConnectivity}
-
-\textbf{C++ Example~:}
-
-\begin{verbatim}
-int NumberOfTetrahedron = myMesh.getNumberOfElements(MED_CELL,MED_TETRA4);
-const int * TetrahedronConnectivity =
- myMesh.getConnectivity(MED_FULL_ENTERLACE,
- MED_NODAL,
- MED_CELL,
- MED_TETRA4);
-\end{verbatim}
-\verb+TetrahedronConnectivity+ contain nodal connectivity
-of tetrahedron in mesh. It is arranged in full enterlace mode and
-its size is \verb+NumberOfTetrahedron x 4+.
-
-If you want to get connectivity of all elements (with \verb+Type=MED_ALL_ELEMENTS+),
-you must use the index array (return by \method{getConnectivityIndex})
-to get connectivity for each elements (see example \myref{MESHconnectivities.cxx}).
-
-\item I want to get an element number from a connectivity~: use \method{getElementNumber}
-which return the global number of a given connectivity.
-
-
-\textbf{C++ Example~:}
-\begin{verbatim}
-int * myElementConnectivity = {2,10,12,14};
-int myNumber = myMesh.getElementNumber(MED_NODAL,MED_CELL,
- myElementConnectivity);
-\end{verbatim}
-
-%%%%%%%%%%% WITH POLY METHODS %%%%%%%%%%%%
-
-\item The listed above methods do not take into account information about
- \verb+polygonal+ and \verb+polyhedral+ cells contained in a MESH object. To get
- full information about cell types, use the same methods with
- \verb+WithPoly+ postfix:
-\begin{itemize}
-\item use \method{getNumberOfTypesWithPoly} to get the number of
- geometric types for a mesh entity;
-\item use \method{getTypesWithPoly} to get all geometric types for a mesh entity;
-\item use \method{getNumberOfElementsWithPoly} to get the number of cells;
-\item use \method{getElementTypeWithPoly} to get the geometric type of
- one element.
-\end{itemize}
-There are separate methods to get number of polygons and polyhedrons:
-\method{getNumberOfPolygons} and \method{getNumberOfPolyhedron}
-
-To get connectivity of polygonal elements, use \method{getPolygonsConnectivity} along with
-\method{getPolygonsConnectivityIndex} (see example \myref{MESHconnectivities.cxx}).
-
-To get nodal connectivity of polyhedral elements, it is necessary use together
-3 methods: \method{getPolyhedronConnectivity}, \method{getPolyhedronFacesIndex}
-and \method{getPolyhedronIndex} (see example \myref{MESHconnectivities.cxx}).
-
-\end{enumerate}
-\fileCxx{MESHconnectivities.cxx}
-
-\filePython{MESHconnectivities.py}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{How to use MESHING object}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-This class is a derivated class of MESH class to build a MESH object from
-scratch (use of set methods).
-
-All verifications are under user responsability : If arrays values or arrays
-dimensions are wrongs, results are impredicable.
-
-All arrays in arguments in set methods are duplicated in MESHING object.
-
-\section{Build a MESHING}
-
-\label{BuildMeshing}
-
-\subsection{Coordinates}
-
-First we must defined points coordinates of the mesh. We use
-\method{setCoordinates}.
-
-\textbf{C++ Example~:}
-\begin{verbatim}
-MESHING myMeshing ;
-const int SpaceDimension=2;
-const int NumberOfNodes=6;
-int * Coordinates = new int[SpaceDimension*NumberOfNodes] ;
-string System="CARTESIAN";
-medModeSwitch MED_FULL_INTERLACE ;
-myMeshing.setCoordinates(SpaceDimension,NumberOfNodes,Coordinates,System,Mode);
-\end{verbatim}
-
-Then you could set the coordinates names and units (with
-\method{setCoordinatesNames} and \method{setCoordinatesUnits}).
-
-\subsection{Connectivities}
-
-When coordinates are defined, we could defined connectivities.
-
-First we must defined connectivity of MED\_CELL elements.
-After, we could defined constituent connectivity if necesary
-(MED\_FACE and/or MED\_EDGE).
-
-For each connectivities, you could use some methods in the following order :
-\begin{itemize}
-\item \method{setNumberOfTypes} to set the number of differents geometrics
-types (3 for example). This method allocates all arrays which size is this
-number ;
-\item \method{setTypes} to set the differents geometrics types
-({MED\_TETRA4,MED\_PYRA5,MED\_HEXA8} for example). Types should be given
-in increasing order of number of nodes for this type ;
-\item \method{setNumberOfElements} to set the number of elements for
-each geometric type. This method allocates connectivities array ;
-\item \method{setConnectivity} to set the connectivity in MED\_FULL\_INTERLACE
-mode for each geometric type (use \method{setPolygonsConnectivity} and
-\method{setPolyhedraConnectivity} for poly elements);
-\end{itemize}
-
-\textbf{C++ Example~:}
-\begin{verbatim}
-MESHING myMeshing ;
-myMeshing.setCoordinates(SpaceDimension,NumberOfNodes,Coordinates,System,Mode);
-
-myMeshing.setNumberOfTypes(2,MED_CELL);
-myMeshing.setTypes({MED_TRIA3,MED_QUAD4},MED_CELL);
-myMeshing.setNumberOfElements({3,2},MED_CELL); // 3 MED_TRIA3 and 2 MED_QUAD4
-myMeshing.setConnectivity({1,2,3,6,8,9,4,5,6},MED_CELL,MED_TRIA3);
-myMeshing.setConnectivity({1,3,4,5,4,5,7,8},MED_CELL,MED_QUAD4);
-\end{verbatim}
-
-
-\section{Defined a GROUP object}
-
-To add a group in a MESHING object, use \method{addGroup}.
-
-This method duplicate the GROUP object in the MESH object.
-
-To build this GROUP object, use SUPPORT methods \ref{CreateSupport} to set all attributes.
-
-\subsection{WARNING}
-
-For instance, translation from GROUP objects to FAMILY objects are not completed !
-
-You MUST set GROUP objects as if they are FAMILY objects.
-
-This feature will be fully implemented in next release of med memory.
-
-\section{Example}
-
-\fileCxx{MESHINGexample.cxx}
-
-%\filePython{MESHINGexample.py}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{How to use SUPPORT object}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\section{Create a SUPPORT object}
-
-\label{CreateSupport}
-
-To create a SUPPORT object, you must give :
-
-\begin{itemize}
-\item a reference to a MESH object
-\item its name
-\item on which mesh entity it apply to
-\end{itemize}
-\textbf{C++ example~:}
-
-\verb+SUPPORT mySupport(myMesh,"support on all faces",MED_FACE) ;+
-By default, this support is defined on all elements of the given entity.
-
-If you want a restricted SUPPORT, you must add manualy information
-about what do you want~:
-
-\begin{itemize}
-\item is not on all elements~: \verb+mySupport.setAll(false);+
-\item on how many geometric type~:\\
- \verb+mySupport.setNumberOfGeometricType(myNumberOfGeometricType);+
-\item on which geometric type~:\\
- \verb+mySupport.setGeometricType(myGeometricType);+
-\item Temporary : the Gauss point number for each geometric type~:\\
- \verb+mySupport.setNumberOfGaussPoint(myNumberOfGaussPoint);+
-\item the number of elements for each geometric type~:\\
- \verb+mySupport.setNumberOfEntities(myNumberOfEntities);+
-\item the total number of elements~:\\
- \verb+mySupport.setTotalNumberOfEntities(myTotalNumberOfEntities);+
-\item the array which contains elements for each geometric type~:\\
- \verb+mySupport.setNumber(myNumber);+
-\end{itemize}
-You could also use \method{setpartial} which set all you need.
-
-
-\section{Use a SUPPORT object}
-
-You could get all basic information (as you set them in \myref{CreateSupport})~:
-
-\begin{itemize}
-\item \verb+getName()+
-\item \verb+getDescription()+
-\item \verb+getMesh()+
-\item \verb+getEntity()+
-\item \verb+isOnAllElements()+
-\item \verb+getNumberOfTypes()+
-\item \verb+getTypes()+
-%\item \verb+getNumberOfGaussPoint()+
-%\item \verb+getNumberOfGaussPoint(myGeometricType)+
-\item \verb+getGeometricTypeNumber()+
-\item \verb+getNumberOfElements(myGeometricType)+
-\item \verb+getNumber(myGeometricType)+
-\item \verb+getNumberIndex()+
-\end{itemize}
-For details about this methods, see the reference manual \cite{RefManual}.
-
-The use of \method{getNumber} and \method{getNumberIndex} are the
-same as \method{getConnectivity} and \method{getConnectivityIndex}
-(see item \myref{getConnectivity}
-
-There is another particular method to blend another SUPPORT object
-into it.
-
-For example in C++ :
-\begin{verbatim}
-SUPPORT mySupport ;
-SUPPORT myOtherSupport ;
-...
-mySupport.blending(myOtherSupport) ;
-\end{verbatim}
-
-\verb+mySupport+ contain now all elements defined originally in it,
-more those defined in \verb+myOtherSupport+.
-
-
-\section{Case of FAMILY object}
-
-A FAMILY is a SUPPORT with some additionnal methods that concern some optional attribut (we could have none) and group (we could also have none) :
-\begin{itemize}
-\item \method{getIdentifier} return the family identifier (an integer)
-
-\item \method{getNumberOfAttributes} return the number of attributes of this family
-\item \method{getAttributesIdentifiers} and \method{getAttributeIdentifier} return an integer array or an integer that represent attribut identifier.
-\item \method{getAttributesValues} and \method{getAttributeValue} return an integer array or an integer that represent attribut value.
-\item \method{getAttributesDescriptions} and \method{getAttributeDescription} return a string array or a string that represent attribut description.
-
-\item \method{getNumberOfGroups} return the number of groups which it belog to.
-\item \method{getGroupsNames} and \method{getGroupName} return a string array or a string that represent the group name which it belog to.
-
-\end{itemize}
-
-\section{Case of GROUP object}
-
-A GROUP is a SUPPORT with some additionnal methods to find FAMILY that make up it :
-\begin{itemize}
-\item \method{getNumberOfFamilies} return the number of FAMILY that make up the GROUP ;
-\item \method{getFamilies} and \method{getFamily} return a FAMILY array or a FAMILY that make up the GROUP.
-\end{itemize}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{How to use Field}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\section{Introduction}
-
-A field is characterized by its name (\method{getName}) and an optional description (\method{getDescription}).
-
-It is also characterized by this calculating moment :
-\begin{itemize}
-\item an iteration number (time step number)
-\item an order number (use if there are internal iteration in a time step)
-\item the time that correspond to this iteration number.
-\end{itemize}
-
-By default, there are no iteration and order number defined (value
-MED\_NOPDT and MED\_NONOR).
-
-A field contain values which apply on some nodes or elements (cell, face or edge).
-
-We find these informations from a SUPPORT object (see \method{getSupport}).
-
-Each field have a number of components (\method getNumberOfComponents) and all these components have a name (\method{getComponentsNames} and \method{getComponentName}), a description (\method{getComponentsDescriptions} and \method{getComponentDescription}) and an unit (\method{getMEDComponentsUnits} and \method{getMEDComponentUnit}).
-
-For unit you could use later UNIT (\myref{Unit}) objet to make a more general control on it. But the use of this class must be specified.
-
-To get values of a FIELD, you could use \method{getValue}, \method{getValueI}
-and \method{getValueIJ}~:
-
-\begin{itemize}
-\item First return a reference to all values in the given mode (full or no
-interlace).
-\item Second return a reference to $i^{th}$ element values or component values (in accordance with the given mode).
-\item Third return the $j^{th}$ component of $i^{th}$ element.
-\end{itemize}
-
-\fileCxx{FIELDgeneral.cxx}
-
-\filePython{FIELDgeneral.py}
-
-\section{Create a Field}
-
-It is simple to create a field object. You must know its SUPPORT and the number of components.
-
-\textbf{Example :}
-\verb+FILED<double> myField(mySupport,NumberOfComponents) ;+
-
-You must now set a name (\method{setName}) and optionaly a description
-(\method{setDescription}).
-
-By default there are no iteration and order number (negative values) and
-time is null. You could change this by using \method{setIterationNumber},
-\method{setOrderNumber} and \method{setTime}.
-
-You \textbf{SHOULD} also set unit of your components with \method{setMEDComponentUnit}
-
-To set value, use \method{setValueIJ} to put new value of field.
-
-\fileCxx{FIELDcreate.cxx}
-
-\filePython{FIELDcreate.py}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Other Classes}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-
-\section{class CELLMODEL}
-\label{CellModel}
-
-To do
-
-\section{class UNIT}
-\label{Unit}
-
-To do
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\chapter{Using drivers}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-The generic driver mecanism gives users the possibility to write/read
-the content of an object according to a specified file format. The
-semantic remains the same whatever the object is (MESH, FIELD, MED).
-By the way it allows using several file formats for writting an object.
-
-
-\section{Invoking a driver}
-
-
-\subsection{Invoking a driver at creation object time}
-
-This is the simplest way of invoking a driver. The driver parameters
-are given to the constructor of the object. Except for the MED object,
-this way of invoking a driver assume you know exactly the name of
-the MESH/FIELD you want read from a file <fileName> of type <driverType>.
-
-ex 1.1 : For a FIELD object, invoking FIELD<double> myField(MED\_DRIVER,fileName,fieldName)
-create a FIELD object and a driver which loads the mesh <fieldName>
-from the MED file <fileName> (Not implemented yet !).
-
-ex 1.2 : To remove the default driver previously created myField->rmDriver();
-
-ex 2 : For a MESH object, invoking MESH myMesh(MED\_DRIVER,fileName,meshName)
-create a MESH object and a driver which loads the mesh <meshName>
-from the MED file <fileName>.
-
-ex 3 : For a MED object, invoking MED myMed(MED\_DRIVER,fileName)
-create a MED object to explore the MED file <fileName>.
-
-rem 1 : ex1 is equivalent to \ref{sec:invoking_a_driver_from_the_std_drv_method}
-ex1.
-
-rem 2 : Since the driver has read the object, the associated file
-is closed. You can reread the object with the default driver by calling
-the read() method : myObject.read().
-
-\fileCxx{MEDMEM_InvokingDriverAtObjectCreationTime.cxx}
-
-\filePython{MEDMEM_InvokingDriverAtObjectCreationTime.py}
-
-\subsection{Invoking a driver from the standard driver method of an object\label{sec:invoking_a_driver_from_the_std_drv_method}}
-
-This way of invoking a driver give the possiblility to add several
-drivers to an exiting object.
-
-ex1 : First we create a FIELD without any driver FIELD<double>~{*}~myField1~=~new~FIELD<double>;
-then we add a driver with int myDriver1 = myField1->addDriver(driverType1,
-fileName1, fieldName1); for reading <fieldName1> from file <fileName1>
-with myField1->read(myDriver1);
-
-ex2 : We add a new driver of type <driverType2> int myDriver2 = myField1->addDriver(driverType2,
-fileName2,fieldName2); in order to write myField1 in file <fileName2>
-with <fieldName2> name using command myField1->write(myDriver2);
-
-rem 1 : Files are openned then closed each time you call read() or
-write() methods.
-
-rem 2 : If you use more than a driver you need to keep the driver
-handlers (myDriverI ).
-
-\fileCxx{MEDMEM_InvokingDriverFromStandardObjectMethod.cxx}
-
-\filePython{MEDMEM_InvokingDriverFromStandardObjectMethod.py}
-
-\subsection{Invoking a driver and attaching it to an existing object}
-
-The methods exposed in the two previous sections always create drivers
-in read/write access mode. Another way of creating a driver is to
-create a driver with a specific access mode.
-
-ex1 : First we create a FIELD without any driver FIELD<double>~{*}~myField1~=~new
-FIELD<double>(); then we create a read-only driver MED\_FIELD\_RDONLY\_DRIVER<double>~myRdOnlyDriver(fileName1,myField1);
-and attached it to myField1. Finally you must set the fieldName1 you
-want to acess in fileName1 with myRdOnlyDriver->setFieldName(fieldName1);
-in order to read the field with myRdOnlyDriver->open(); myRdOnlyDriver->read();
-
-Don't forget to close the file with myRdOnlyDriver->close().
-
-ToDo : By now when you create such specific drivers, the object doesn't
-know anything about it.
-
-\fileCxx{MEDMEM_InvokingDriverByAttachingItToAnObject.cxx}
-
-\filePython{MEDMEM_InvokingDriverByAttachingItToAnObject.py}
-
-\section{Using the MED driver}
-
-The MED object provides the ability of :
-
-\begin{enumerate}
-\item \noindent Obtainning a reference on the whole structure contained
-in a file.
-\item Obtainning the list of all the Meshes/Fields names contained in a
-file.
-\item Obtainning a Mesh/Field reference using a name.
-\item Writting a whole set of independent objects with a simple command.
-\end{enumerate}
-
-\subsection{Exploring files}
-
-In this first use case the user wants to explore the meshes \& fields
-containned within a file <filename> of type given by the <drivertype>
-parameter.
-
-ex 1 : Calling MED {*} myMed = new MED(driverType1, fileName1); create
-a MED object which open fileName1, read all MESHes/FIELDs relations
-then close the file.
-
-This is equivalent to MED~{*}~myMed~=~new~MED(); myDriver~=~myMed->addDriver(driverType1,fileName1);
-myMed->readFileStruct(myDriver);
-
-ex 2 : To get the list of meshNames from a MED object, first ask the
-object how many meshes it had by calling int numberOfMeshes~=~myMed->getNumberOfMeshes();
-then get the list with myMeshNames~=~new string{[}getMeshNames{]};
-myMed->getMeshNames(myMeshNames).
-
-Note you can also use the deque<string> getMeshNames() method.
-
-ex 3 : To get a list of fieldNames from a MED object, first ask the
-object how many fields it had by calling int numberOfFields~=~myMed->getNumberOfFields();
-then get the list with myFieldNames~=~new string{[}getFieldNames{]};
-myMed->getFieldNames(myFieldNames).
-
-ex 4 :To get a particular MESH use MESH {*} myMesh1 = myMED->getMesh(myMeshNames{[}0{]})
-
-ex 5 :To get a particular FIELD you first need to know what (time
-step, iteration number) list is used by calling deque<DT\_IT\_>~myField1DtIt~=~myMed->getFieldIteration(FieldName{[}0{]})
-; then you can ask for getting a specific FIELD with FIELD~{*}~myField1~=~myMED->getField(myFieldNames{[}0{]},myField1DtIt{[}0{]}.dt,myField1DtIt{[}0{]}.it).
-
-ex2 : To write the whole content of a MED object first add a driver
-myDriver2~=~myMed.addDriver(driverType2,~fileName2); then ask for
-writing the object myMed->write(myDriver2); (not implemented yet !)
-
-You can remove the driver with myMed->rmDriver(myDriver2);
-
-rem 1 : It is possible to use multiple drivers to read a set of FIELDs
-/ MESHes from various file formats and writing the whole set through
-a specific write.(not implemented yet !)
-
-
-\subsubsection{Adding existing MESHes/FIELDs objects}
-
-Not yet implemented.
-
-\section{Using the VTK driver}
-
-This driver allow to save all MESH and FIELD objects in an ASCII file in
-VTK format \cite{vtk}.
-
-You could use this driver only from a MED object, because VTK file format
-impose to write objects in particular order.
-
-\textbf{C++ Example~:}
-\begin{verbatim}
-MED myMed(MED_DRIVER,"file.med");
-myMed.read();
-int id = myMed.addDriver(VTK_DRIVER,"file.vtk");
-myMed.write(id) ;
-\end{verbatim}
-
-\section{Using the GIBI driver}
-
-This driver allow to load a mesh from a GIBI file (ASCII file with the extension '.sauve'), puting the mesh into a MESH object of MED. It's a read only driver and is applicable only to a MESH object.
-
-\textbf{C++ Example~:}
-\begin{verbatim}
-MESH * myMesh= new MESH() ;
-GIBI_MESH_RDONLY_DRIVER myGibiMeshDriver("file.sauve", myMesh) ;
-myGibiMeshDriver.open() ;
-myGibiMeshDriver.read() ;
-myGibiMeshDriver.close() ;
-\end{verbatim}
-
+\input{MEDMEM_Content.tex}
+%
% ___________________________________________________________________________
% | |
% | REFERENCES |
% |___________________________________________________________________________|
-%
+
\newpage
%\thebibliography{biblio}
\begin{thebibliography}{1}
\addcontentsline{toc}{chapter}{Bibliography}
-\bibitem{RefManual} Reference Manual~: \verb+http://www-drn2.cea.fr/MED/MEDMEM/DOC/html/index.html+
+\bibitem{RefManualMedFile}
+\newblock {Reference Manual for Med File~:} \\
+\newblock {\verb+http://www-drn2.cea.fr/MED/MEDMEM/DOC/html/index.html+}
+
+\bibitem{RefManualMedMemory}
+\newblock {Med Memory Users Reference Manual~:} \\
+\newblock {\verb+file:://$MED_ROOT_DIR/share/salome/doc/html_ref_user/index.html+} \\
+\newblock {\verb+$MED_ROOT_DIR/share/salome/doc/MedMemory_user_2on1.pdf+}
+
-\bibitem{vtk} VTK home page~: \verb+http://public.kitware.com/VTK+
+\bibitem{vtk}
+\newblock {VTK home page~: \verb+http://public.kitware.com/VTK+}
\end{thebibliography}
-// Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License.
-//
-// This library is distributed in the hope that it will be useful
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License along with this library; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-//
-// See http://www.salome-platform.org/
-//
#include "MEDMEM_Meshing.hxx"
#include "MEDMEM_Group.hxx"
-// Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License.
-//
-// This library is distributed in the hope that it will be useful
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License along with this library; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-//
-// See http://www.salome-platform.org/
-//
#include "MEDMEM_Mesh.hxx"
#include "MEDMEM_CellModel.hxx"
-// Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License.
-//
-// This library is distributed in the hope that it will be useful
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License along with this library; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-//
-// See http://www.salome-platform.org/
-//
#include "MEDMEM_Mesh.hxx"
using namespace MEDMEM ;
-// Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License.
-//
-// This library is distributed in the hope that it will be useful
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License along with this library; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-//
-// See http://www.salome-platform.org/
-//
using namespace std;
#include "MEDMEM_Mesh.hxx"
# User Guide
-MEDMEM_UsersGuide.ps: MEDMEM_UsersGuide.dvi
- dvips -o MEDMEM_UsersGuide.ps MEDMEM_UsersGuide.dvi
-
-MEDMEM_UsersGuide.pdf: MEDMEM_UsersGuide.ps
- ps2pdf MEDMEM_UsersGuide.ps MEDMEM_UsersGuide.pdf
+MEDMEM_UsersGuide.ps: MEDMEM_UsersGuide.pdf
+ pdf2ps MEDMEM_UsersGuide.pdf MEDMEM_UsersGuide.ps
MEDMEM_UsersGuide_2on1.ps: MEDMEM_UsersGuide.ps
psnup -2 MEDMEM_UsersGuide.ps >MEDMEM_UsersGuide_2on1.ps
MEDMEM_UsersGuide_2on1.pdf: MEDMEM_UsersGuide_2on1.ps
ps2pdf MEDMEM_UsersGuide_2on1.ps MEDMEM_UsersGuide_2on1.pdf
-
-MEDMEM_UML.eps:MEDMEM_UML.dia
- dia -e $@ $<
-
-MEDMEM_UsersGuide.dvi: MEDMEM_UsersGuide.tex MEDMEM_UML.eps
- echo "Running latex..."
- latex $<
+MEDMEM_UsersGuide.pdf: MEDMEM_UsersGuide.tex MEDMEM_Content.tex MEDMEM_UML_light.png MEDMEM_UML.png
+ echo "Running pdflatex..."
+ pdflatex $<
#echo "Running makeindex..."
#makeindex MEDMEM_UsersGuide.idx
echo "Rerunning latex...."
- latex $<
+ pdflatex $<
latex_count=5
while egrep -s 'Rerun (LaTeX|to get cross-references right)' MEDMEM_UsersGuide.log && [ $latex_count -gt 0 ] ;\
do \
MEDMEM_UsersGuide.tex:MEDMEM_UsersGuide.tex.in
cd $(top_builddir) && CONFIG_FILES=./doc/MEDMEM/MEDMEM_UsersGuide.tex ./config.status
+MEDMEM_Content.tex:MEDMEM_Content.tex.in
+ cd $(top_builddir) && CONFIG_FILES=./doc/MEDMEM/MEDMEM_Content.tex ./config.status
+
+MEDMEM_UML_light.png:MEDMEM_UML_light.png.in
+ cd $(top_builddir) && CONFIG_FILES=./doc/MEDMEM/MEDMEM_UML_light.png ./config.status
+
+MEDMEM_UML.png:MEDMEM_UML.png.in
+ cd $(top_builddir) && CONFIG_FILES=./doc/MEDMEM/MEDMEM_UML.png ./config.status
+
# install procedure
install: $(datadir)/doc ps_2on1 pdf_2on1