}
/*!
- * This method splits 'this' with 'other' into smaller pieces localizable. 'mapThis' is a map that gives the correspondance between nodes contained in 'this' and node ids in a global mesh.
- * In the same way, 'mapOther' gives the correspondance between nodes contained in 'other' and node ids in a global mesh from wich 'other' is extracted.
- * This method has 1 out paramater : 'edgesThis', After the call of this method contains nodal connectivity (including type) of 'this' into globlal "this mesh".
- * This method has 2 in/out parameters : 'subDivOther' and 'addCoo'.'otherEdgeIds' is useful to put values in 'edgesThis', 'subDivOther' and 'addCoo'.
+ * This method splits 'this' with 'other' into smaller pieces localizable. 'mapThis' is a map that gives the correspondance
+ * between nodes contained in 'this' and node ids in a global mesh.
+ * In the same way, 'mapOther' gives the correspondance between nodes contained in 'other' and node ids in a
+ * global mesh from wich 'other' is extracted.
+ * This method has 1 out paramater : 'edgesThis', After the call of this method, it contains the nodal connectivity (including type)
+ * of 'this' into globlal "this mesh".
+ * This method has 2 in/out parameters : 'subDivOther' and 'addCoo'.'otherEdgeIds' is useful to put values in
+ * 'edgesThis', 'subDivOther' and 'addCoo'.
* Size of 'otherEdgeIds' has to be equal to number of ElementaryEdges in 'other'. No check of that will be done.
+ * The term 'abs' in the name recalls that we normalize the mesh (spatially) so that node coordinates fit into [0;1].
* @param offset1 is the number of nodes contained in global mesh from which 'this' is extracted.
* @param offset2 is the sum of nodes contained in global mesh from which 'this' is extracted and 'other' is extracted.
* @param edgesInOtherColinearWithThis will be appended at the end of the vector with colinear edge ids of other (if any)
- * @otherEdgeIds is a vector with the same size than other before calling this method. It gives in the same order the cell id in global other mesh.
+ * @param otherEdgeIds is a vector with the same size than other before calling this method. It gives in the same order
+ * the cell id in global other mesh.
*/
-void QuadraticPolygon::splitAbs(QuadraticPolygon& other, const std::map<INTERP_KERNEL::Node *,int>& mapThis, const std::map<INTERP_KERNEL::Node *,int>& mapOther, int offset1, int offset2 , const std::vector<int>& otherEdgeIds,
- std::vector<int>& edgesThis, int cellIdThis, std::vector< std::vector<int> >& edgesInOtherColinearWithThis, std::vector< std::vector<int> >& subDivOther, std::vector<double>& addCoo)
+void QuadraticPolygon::splitAbs(QuadraticPolygon& other,
+ const std::map<INTERP_KERNEL::Node *,int>& mapThis, const std::map<INTERP_KERNEL::Node *,int>& mapOther,
+ int offset1, int offset2 ,
+ const std::vector<int>& otherEdgeIds,
+ std::vector<int>& edgesThis, int cellIdThis,
+ std::vector< std::vector<int> >& edgesInOtherColinearWithThis, std::vector< std::vector<int> >& subDivOther,
+ std::vector<double>& addCoo)
{
double xBaryBB, yBaryBB;
double fact=normalizeExt(&other, xBaryBB, yBaryBB);
}
/*!
- * This method builds from descending conn of a quadratic polygon stored in crude mode (MEDCoupling). Descending conn is in FORTRAN relative mode in order to give the
- * orientation of edge.
+ * This method builds 'this' from its descending conn stored in crude mode (MEDCoupling).
+ * Descending conn is in FORTRAN relative mode in order to give the
+ * orientation of edge (see buildDescendingConnectivity2() method).
+ * See appendEdgeFromCrudeDataArray() for params description.
*/
void QuadraticPolygon::buildFromCrudeDataArray(const std::map<int,INTERP_KERNEL::Node *>& mapp, bool isQuad, const int *nodalBg, const double *coords,
const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges)
}
}
-void QuadraticPolygon::appendEdgeFromCrudeDataArray(std::size_t edgePos, const std::map<int,INTERP_KERNEL::Node *>& mapp, bool isQuad, const int *nodalBg, const double *coords,
- const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges)
+
+void QuadraticPolygon::appendEdgeFromCrudeDataArray(std::size_t edgePos, const std::map<int,INTERP_KERNEL::Node *>& mapp, bool isQuad,
+ const int *nodalBg, const double *coords,
+ const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges)
{
if(!isQuad)
{
bool direct=descBg[edgePos]>0;
- int edgeId=abs(descBg[edgePos])-1;
+ int edgeId=abs(descBg[edgePos])-1; // back to C indexing mode
const std::vector<int>& subEdge=intersectEdges[edgeId];
std::size_t nbOfSubEdges=subEdge.size()/2;
for(std::size_t j=0;j<nbOfSubEdges;j++)
/*!
* Method expected to be called on pol2. Every params not suffixed by numbered are supposed to refer to pol2 (this).
+ * Method to find edges that are ON.
*/
-void QuadraticPolygon::updateLocOfEdgeFromCrudeDataArray2(const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges, const INTERP_KERNEL::QuadraticPolygon& pol1, const int *descBg1, const int *descEnd1, const std::vector<std::vector<int> >& intersectEdges1, const std::vector< std::vector<int> >& colinear1) const
+void QuadraticPolygon::updateLocOfEdgeFromCrudeDataArray2(const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges,
+ const INTERP_KERNEL::QuadraticPolygon& pol1, const int *descBg1, const int *descEnd1,
+ const std::vector<std::vector<int> >& intersectEdges1, const std::vector< std::vector<int> >& colinear1) const
{
std::size_t nbOfSeg=std::distance(descBg,descEnd);
for(std::size_t i=0;i<nbOfSeg;i++)//loop over all edges of pol2
double xBaryBB, yBaryBB;
double fact=normalizeExt(&other, xBaryBB, yBaryBB);
//Locate 'this' relative to 'other'
- other.performLocatingOperationSlow(*this);
+ other.performLocatingOperationSlow(*this); // without any assumption
std::vector<QuadraticPolygon *> res=buildIntersectionPolygons(other,*this);
for(std::vector<QuadraticPolygon *>::iterator it=res.begin();it!=res.end();it++)
{
INTERP_KERNEL::EdgeLin *e1=new INTERP_KERNEL::EdgeLin(mapp2[bg[0]].first,mapp2[bg[2]].first);
INTERP_KERNEL::EdgeLin *e2=new INTERP_KERNEL::EdgeLin(mapp2[bg[2]].first,mapp2[bg[1]].first);
INTERP_KERNEL::SegSegIntersector inters(*e1,*e2);
+ // is the SEG3 degenerated, and thus can be reduced to a SEG2?
bool colinearity=inters.areColinears();
delete e1; delete e2;
if(colinearity)
}
/*!
- * This method creates a sub mesh in Geometric2D DS. The sub mesh is composed be the sub set of cells in 'candidates' and the global mesh 'mDesc'.
- * The input meth 'mDesc' must be so that mDim==1 et spaceDim==3.
- * 'mapp' contains a mapping between local numbering in submesh and the global node numbering in 'mDesc'.
+ * This method creates a sub mesh in Geometric2D DS. The sub mesh is composed by the sub set of cells in 'candidates' taken from
+ * the global mesh 'mDesc'.
+ * The input mesh 'mDesc' must be so that mDim==1 and spaceDim==2.
+ * 'mapp' returns a mapping between local numbering in submesh (represented by a Node*) and the global node numbering in 'mDesc'.
*/
- INTERP_KERNEL::QuadraticPolygon *MEDCouplingUMeshBuildQPFromMesh(const MEDCouplingUMesh *mDesc, const std::vector<int>& candidates, std::map<INTERP_KERNEL::Node *,int>& mapp) throw(INTERP_KERNEL::Exception)
+ INTERP_KERNEL::QuadraticPolygon *MEDCouplingUMeshBuildQPFromMesh(const MEDCouplingUMesh *mDesc, const std::vector<int>& candidates,
+ std::map<INTERP_KERNEL::Node *,int>& mapp)
+ throw(INTERP_KERNEL::Exception)
{
mapp.clear();
std::map<int, std::pair<INTERP_KERNEL::Node *,bool> > mapp2;//bool is for a flag specifying if node is boundary (true) or only a middle for SEG3.
return new INTERP_KERNEL::Node(coo1[2*nodeId],coo1[2*nodeId+1]);
}
+ /**
+ * Construct a mapping between set of Nodes and the standart MEDCoupling connectivity format (c, cI).
+ */
void MEDCouplingUMeshBuildQPFromMesh3(const double *coo1, int offset1, const double *coo2, int offset2, const std::vector<double>& addCoo,
const int *desc1Bg, const int *desc1End, const std::vector<std::vector<int> >& intesctEdges1,
/*output*/std::map<INTERP_KERNEL::Node *,int>& mapp, std::map<int,INTERP_KERNEL::Node *>& mappRev)
/*!
* Partitions the first given 2D mesh using the second given 2D mesh as a tool, and
- * returns a result mesh constituted by polygons. The meshes should be in 2D space. In
+ * returns a result mesh constituted by polygons.
+ * Thus the final result contains all nodes from m1 plus new nodes. However it doesn't necessarily contains
+ * all nodes from m2.
+ * The meshes should be in 2D space. In
* addition, returns two arrays mapping cells of the result mesh to cells of the input
* meshes.
* \param [in] m1 - the first input mesh which is a partitioned object.
* \throw If the nodal connectivity of cells is not defined in any of the meshes.
* \throw If any of the meshes is not a 2D mesh in 2D space.
*/
-MEDCouplingUMesh *MEDCouplingUMesh::Intersect2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps, DataArrayInt *&cellNb1, DataArrayInt *&cellNb2)
+MEDCouplingUMesh *MEDCouplingUMesh::Intersect2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2,
+ double eps, DataArrayInt *&cellNb1, DataArrayInt *&cellNb2)
{
m1->checkFullyDefined();
m2->checkFullyDefined();
if(m1->getMeshDimension()!=2 || m1->getSpaceDimension()!=2 || m2->getMeshDimension()!=2 || m2->getSpaceDimension()!=2)
throw INTERP_KERNEL::Exception("MEDCouplingUMesh::Intersect2DMeshes works on umeshes m1 AND m2 with meshdim equal to 2 and spaceDim equal to 2 too!");
+
+ // Step 1: compute all edge intersections (new nodes)
std::vector< std::vector<int> > intersectEdge1, colinear2, subDiv2;
- MEDCouplingUMesh *m1Desc=0,*m2Desc=0;
+ MEDCouplingUMesh *m1Desc=0,*m2Desc=0; // descending connec. meshes
DataArrayInt *desc1=0,*descIndx1=0,*revDesc1=0,*revDescIndx1=0,*desc2=0,*descIndx2=0,*revDesc2=0,*revDescIndx2=0;
- std::vector<double> addCoo,addCoordsQuadratic;
+ std::vector<double> addCoo,addCoordsQuadratic; // coordinates of newly created nodes
INTERP_KERNEL::QUADRATIC_PLANAR::_precision=eps;
INTERP_KERNEL::QUADRATIC_PLANAR::_arc_detection_precision=eps;
- IntersectDescending2DMeshes(m1,m2,eps,intersectEdge1,colinear2, subDiv2,m1Desc,desc1,descIndx1,revDesc1,revDescIndx1,
- m2Desc,desc2,descIndx2,revDesc2,revDescIndx2,addCoo);
+ IntersectDescending2DMeshes(m1,m2,eps,intersectEdge1,colinear2, subDiv2,
+ m1Desc,desc1,descIndx1,revDesc1,revDescIndx1,
+ addCoo, m2Desc,desc2,descIndx2,revDesc2,revDescIndx2);
revDesc1->decrRef(); revDescIndx1->decrRef(); revDesc2->decrRef(); revDescIndx2->decrRef();
MEDCouplingAutoRefCountObjectPtr<DataArrayInt> dd1(desc1),dd2(descIndx1),dd3(desc2),dd4(descIndx2);
MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> dd5(m1Desc),dd6(m2Desc);
+
+ // Step 2: re-order newly created nodes according to the ordering found in m2
std::vector< std::vector<int> > intersectEdge2;
BuildIntersectEdges(m1Desc,m2Desc,addCoo,subDiv2,intersectEdge2);
subDiv2.clear(); dd5=0; dd6=0;
+
+ // Step 3:
std::vector<int> cr,crI; //no DataArrayInt because interface with Geometric2D
std::vector<int> cNb1,cNb2; //no DataArrayInt because interface with Geometric2D
BuildIntersecting2DCellsFromEdges(eps,m1,desc1->getConstPointer(),descIndx1->getConstPointer(),intersectEdge1,colinear2,m2,desc2->getConstPointer(),descIndx2->getConstPointer(),intersectEdge2,addCoo,
/* outputs -> */addCoordsQuadratic,cr,crI,cNb1,cNb2);
- //
+
+ // Step 4: Prepare final result:
MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> addCooDa=DataArrayDouble::New();
addCooDa->alloc((int)(addCoo.size())/2,2);
std::copy(addCoo.begin(),addCoo.end(),addCooDa->getPointer());
return ret.retn();
}
+
+/**
+ * Private. Third step of the partitioning algorithm (Intersect2DMeshes): reconstruct full 2D cells from the
+ * (newly created) nodes corresponding to the edge intersections.
+ * Output params:
+ * @param[out] cr, crI connectivity of the resulting mesh
+ * @param[out] cNb1, cNb2 correspondance arrays giving for the merged mesh the initial cells IDs in m1 / m2
+ * TODO: describe input parameters
+ */
void MEDCouplingUMesh::BuildIntersecting2DCellsFromEdges(double eps, const MEDCouplingUMesh *m1, const int *desc1, const int *descIndx1,
const std::vector<std::vector<int> >& intesctEdges1, const std::vector< std::vector<int> >& colinear2,
const MEDCouplingUMesh *m2, const int *desc2, const int *descIndx2, const std::vector<std::vector<int> >& intesctEdges2,
int offset3=offset2+((int)addCoords.size())/2;
MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> bbox1Arr(m1->getBoundingBoxForBBTree()),bbox2Arr(m2->getBoundingBoxForBBTree());
const double *bbox1(bbox1Arr->begin()),*bbox2(bbox2Arr->begin());
+ // Here a BBTree on 2D-cells, not on segments:
BBTree<SPACEDIM,int> myTree(bbox2,0,0,m2->getNumberOfCells(),eps);
int ncell1=m1->getNumberOfCells();
crI.push_back(0);
INTERP_KERNEL::NormalizedCellType typ=(INTERP_KERNEL::NormalizedCellType)conn1[connI1[i]];
const INTERP_KERNEL::CellModel& cm=INTERP_KERNEL::CellModel::GetCellModel(typ);
MEDCouplingUMeshBuildQPFromMesh3(coo1,offset1,coo2,offset2,addCoords,desc1+descIndx1[i],desc1+descIndx1[i+1],intesctEdges1,/* output */mapp,mappRev);
+ // pol1 is the full cell from mesh2, in QP format, with all the additional intersecting nodes.
pol1.buildFromCrudeDataArray(mappRev,cm.isQuadratic(),conn1+connI1[i]+1,coo1,
desc1+descIndx1[i],desc1+descIndx1[i+1],intesctEdges1);
//
for(it1.first();!it1.finished();it1.next())
edges1.insert(it1.current()->getPtr());
//
- std::map<int,std::vector<INTERP_KERNEL::ElementaryEdge *> > edgesIn2ForShare;
+ std::map<int,std::vector<INTERP_KERNEL::ElementaryEdge *> > edgesIn2ForShare; // common edges
std::vector<INTERP_KERNEL::QuadraticPolygon> pol2s(candidates2.size());
int ii=0;
for(std::vector<int>::const_iterator it2=candidates2.begin();it2!=candidates2.end();it2++,ii++)
INTERP_KERNEL::NormalizedCellType typ2=(INTERP_KERNEL::NormalizedCellType)conn2[connI2[*it2]];
const INTERP_KERNEL::CellModel& cm2=INTERP_KERNEL::CellModel::GetCellModel(typ2);
MEDCouplingUMeshBuildQPFromMesh3(coo1,offset1,coo2,offset2,addCoords,desc2+descIndx2[*it2],desc2+descIndx2[*it2+1],intesctEdges2,/* output */mapp,mappRev);
+ // pol2 is the new QP in the final merged result.
pol2s[ii].buildFromCrudeDataArray2(mappRev,cm2.isQuadratic(),conn2+connI2[*it2]+1,coo2,desc2+descIndx2[*it2],desc2+descIndx2[*it2+1],intesctEdges2,
pol1,desc1+descIndx1[i],desc1+descIndx1[i+1],intesctEdges1,colinear2,edgesIn2ForShare);
}
//MEDCouplingUMeshAssignOnLoc(pol1,pol2,desc1+descIndx1[i],desc1+descIndx1[i+1],intesctEdges1,desc2+descIndx2[*it2],desc2+descIndx2[*it2+1],intesctEdges2,colinear2);
pol1.buildPartitionsAbs(pol2s[ii],edges1,edgesBoundary2,mapp,i,*it2,offset3,addCoordsQuadratic,cr,crI,cNb1,cNb2);
}
+ // Deals with remaining (non-consumed) edges from m1: these are the edges that were never touched
+ // by m2 but that we still want to keep in the final result.
if(!edges1.empty())
{
try
/*!
* This method is private and is the first step of Partition of 2D mesh (spaceDim==2 and meshDim==2).
- *
+ * It builds the descending connectivity of the two meshes, and then using a binary tree
+ * it computes the edge intersections. This results in new points being created : they're stored in addCoo.
+ * Documentation about parameters colinear2 and subDiv2 can be found in method QuadraticPolygon::splitAbs().
*/
void MEDCouplingUMesh::IntersectDescending2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps,
std::vector< std::vector<int> >& intersectEdge1, std::vector< std::vector<int> >& colinear2, std::vector< std::vector<int> >& subDiv2,
MEDCouplingUMesh *& m1Desc, DataArrayInt *&desc1, DataArrayInt *&descIndx1, DataArrayInt *&revDesc1, DataArrayInt *&revDescIndx1,
- MEDCouplingUMesh *& m2Desc, DataArrayInt *&desc2, DataArrayInt *&descIndx2, DataArrayInt *&revDesc2, DataArrayInt *&revDescIndx2,
- std::vector<double>& addCoo) throw(INTERP_KERNEL::Exception)
+ std::vector<double>& addCoo,
+ MEDCouplingUMesh *& m2Desc, DataArrayInt *&desc2, DataArrayInt *&descIndx2, DataArrayInt *&revDesc2, DataArrayInt *&revDescIndx2)
+ throw(INTERP_KERNEL::Exception)
{
static const int SPACEDIM=2;
+ // Build desc connectivity
desc1=DataArrayInt::New(); descIndx1=DataArrayInt::New(); revDesc1=DataArrayInt::New(); revDescIndx1=DataArrayInt::New();
desc2=DataArrayInt::New();
descIndx2=DataArrayInt::New();
MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> dd9(m1Desc),dd10(m2Desc);
const int *c1=m1Desc->getNodalConnectivity()->getConstPointer();
const int *ci1=m1Desc->getNodalConnectivityIndex()->getConstPointer();
+
+ // Build BB tree of all edges in the tool mesh (second mesh)
MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> bbox1Arr(m1Desc->getBoundingBoxForBBTree()),bbox2Arr(m2Desc->getBoundingBoxForBBTree());
const double *bbox1(bbox1Arr->begin()),*bbox2(bbox2Arr->begin());
- int ncell1=m1Desc->getNumberOfCells();
- int ncell2=m2Desc->getNumberOfCells();
- intersectEdge1.resize(ncell1);
- colinear2.resize(ncell2);
- subDiv2.resize(ncell2);
+ int nDescCell1=m1Desc->getNumberOfCells();
+ int nDescCell2=m2Desc->getNumberOfCells();
+ intersectEdge1.resize(nDescCell1);
+ colinear2.resize(nDescCell2);
+ subDiv2.resize(nDescCell2);
BBTree<SPACEDIM,int> myTree(bbox2,0,0,m2Desc->getNumberOfCells(),-eps);
+
std::vector<int> candidates1(1);
int offset1=m1->getNumberOfNodes();
int offset2=offset1+m2->getNumberOfNodes();
- for(int i=0;i<ncell1;i++)
+ for(int i=0;i<nDescCell1;i++) // for all edges in the first mesh
{
- std::vector<int> candidates2;
+ std::vector<int> candidates2; // edges of mesh2 candidate for intersection
myTree.getIntersectingElems(bbox1+i*2*SPACEDIM,candidates2);
- if(!candidates2.empty())
+ if(!candidates2.empty()) // candidates2 holds edges from the second mesh potentially intersecting current edge i in mesh1
{
std::map<INTERP_KERNEL::Node *,int> map1,map2;
+ // pol2 is not necessarily a closed polygon: just a set of (quadratic) edges (same as candidates2) in the Geometric DS format
INTERP_KERNEL::QuadraticPolygon *pol2=MEDCouplingUMeshBuildQPFromMesh(m2Desc,candidates2,map2);
candidates1[0]=i;
INTERP_KERNEL::QuadraticPolygon *pol1=MEDCouplingUMeshBuildQPFromMesh(m1Desc,candidates1,map1);
- // this following part is to avoid that a some remove nodes (for example due to a merge between pol1 and pol2) can be replaced by a newlt created one
- // This trick garanties that Node * are discriminant
+ // This following part is to avoid that some removed nodes (for example due to a merge between pol1 and pol2) are replaced by a newly created one
+ // This trick guarantees that Node * are discriminant (i.e. form a unique identifier)
std::set<INTERP_KERNEL::Node *> nodes;
pol1->getAllNodes(nodes); pol2->getAllNodes(nodes);
std::size_t szz(nodes.size());
for(std::size_t iii=0;iii<szz;iii++,itt++)
{ (*itt)->incrRef(); nodesSafe[iii]=*itt; }
// end of protection
+ // Performs egde cutting:
pol1->splitAbs(*pol2,map1,map2,offset1,offset2,candidates2,intersectEdge1[i],i,colinear2,subDiv2,addCoo);
delete pol2;
delete pol1;
* This method has 4 inputs :
* - a mesh 'm1' with meshDim==1 and a SpaceDim==2
* - a mesh 'm2' with meshDim==1 and a SpaceDim==2
- * - subDiv of size 'm2->getNumberOfCells()' that lists for each seg cell in 'm' the splitting node ids in randomly sorted.
- * The aim of this method is to sort the splitting nodes, if any, and to put in 'intersectEdge' output paramter based on edges of mesh 'm2'
- * \param m1 is expected to be a mesh of meshDimension equal to 1 and spaceDim equal to 2. No check of that is performed by this method. Only present for its coords in case of 'subDiv' shares some nodes of 'm1'
+ * - subDiv of size 'm2->getNumberOfCells()' that lists for each seg cell in 'm' the splitting node ids randomly sorted.
+ * The aim of this method is to sort the splitting nodes, if any, and to put them in 'intersectEdge' output parameter based on edges of mesh 'm2'
+ * Nodes end up lying consecutively on a cutted edge.
+ * \param m1 is expected to be a mesh of meshDimension equal to 1 and spaceDim equal to 2. No check of that is performed by this method.
+ * (Only present for its coords in case of 'subDiv' shares some nodes of 'm1')
* \param m2 is expected to be a mesh of meshDimension equal to 1 and spaceDim equal to 2. No check of that is performed by this method.
- * \param addCoo input parameter with additionnal nodes linked to intersection of the 2 meshes.
+ * \param addCoo input parameter with additional nodes linked to intersection of the 2 meshes.
+ * \param[out] intersectEdge the same content as subDiv, but correclty oriented.
*/
-void MEDCouplingUMesh::BuildIntersectEdges(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, const std::vector<double>& addCoo, const std::vector< std::vector<int> >& subDiv, std::vector< std::vector<int> >& intersectEdge)
+void MEDCouplingUMesh::BuildIntersectEdges(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2,
+ const std::vector<double>& addCoo,
+ const std::vector< std::vector<int> >& subDiv, std::vector< std::vector<int> >& intersectEdge)
{
int offset1=m1->getNumberOfNodes();
int ncell=m2->getNumberOfCells();