+++ /dev/null
-<?xml version="1.0" encoding="UTF-8"?>
-<RN_EDG:RN_EDG xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:RN_EDG="http://chercheurs.edf.com/logiciels/RN_EDG" xsi:schemaLocation="http://chercheurs.edf.com/logiciels/RN_EDG cata_PETIT.xsd">
-<RN_EDG:AssemblyDKLibFile>
- <RN_EDG:rod_bank_names>
- <RN_EDG:n1>A</RN_EDG:n1>
- <RN_EDG:n2>B</RN_EDG:n2>
- </RN_EDG:rod_bank_names>
- <RN_EDG:rod_bank_names>
- <RN_EDG:n1>C</RN_EDG:n1>
- <RN_EDG:n2>D</RN_EDG:n2>
- </RN_EDG:rod_bank_names>
-</RN_EDG:AssemblyDKLibFile>
-</RN_EDG:RN_EDG>
validators=VerifPostTreatment(),
max="**"))
-from cata_RN_UQ import *
+#from cata_RN_UQ import *
+++ /dev/null
-# -*- coding: utf-8 -*-
-
-"""Definition of the data model used by the integration bench.
-
-Warnings
---------
-EFICAS will import this file as Python module with the ``__import__`` special
-function so, this module must not use relative import.
-"""
-# pylint: disable=import-error
-# pylint: disable=too-few-public-methods
-
-# TODO: Create a main object that point on the different subobjects and force its name
-
-# EFICAS
-from Accas import OPER, BLOC, FACT, SIMP, ASSD, JDC_CATA, VerifTypeTuple, Matrice
-from Accas import Tuple as _Tuple
-from Extensions.i18n import tr
-
-# Warning: The names of these variables are defined by EFICAS
-JdC = JDC_CATA(code="RN_EDG")
-VERSION_CATALOGUE = "V_0"
-
-# Define the minimum and the maximum number of elements (reflectors and fuel
-# assemblies) on the core's side
-NMIN_CORE_FUEL_ELTS = 1
-NMAX_CORE_FUEL_ELTS = 18
-
-# Available absorbing material type in the rod clusters
-ROD_COMPOSITIONS = (
- "Black", # Full AIC rods
- "Grey", # Mix between AIC and steel rods
- "B4C", # Full B4C rods
-)
-
-# Available options for the core elements rotation
-ASSEMBLY_ROTATIONS = (
- ".", # identity
- "R1", # 90° counter-clock
- "R2", # 180°
- "R3", # 270° counter-clock
- "UD", # up-down
- "LR", # left-right
- "TR", # transpose x/y
- "RT", # transpose x/-y
-)
-
-class Tuple(_Tuple):
- """Organize the data into a fixed size tuple.
-
- Warnings
- --------
- This class respect the EFICAS conventions.
- """
-
- def __convert__(self, valeur):
- if len(valeur) != self.ntuple:
- return None
- return valeur
-
-
-class VerifPostTreatment(VerifTypeTuple):
- """Validate the data comming from ``Scenario_data.post_processing``.
-
- Warnings
- --------
- This class respect the EFICAS conventions.
- """
- # pylint: disable=invalid-name
- # pylint: disable=missing-function-docstring
- # pylint: disable=no-self-use
-
- PHYSICS = ("Neutronics", "Thermalhydraulics")
- FORMATS = ("MED", "SUM", "MIN", "MAX", "MEAN")
-
- def __init__(self):
- super().__init__(("TXM", "TXM"))
- self.cata_info = ""
-
- def info(self):
- return tr(": vérifie les \ntypes dans un tuple")
-
- def infoErreurListe(self):
- return tr("Les types entres ne sont pas permis")
-
- def default(self, valeur):
- return valeur
-
- def isList(self):
- return 1
-
- def convertItem(self, valeur):
- if len(valeur) != len(self.typeDesTuples):
- raise ValueError(
- tr("%s devrait être de type %s ") % (valeur, self.typeDesTuples))
- ok = self.verifType(valeur)
- if ok == 0:
- raise ValueError(
- tr("%s devrait être de type %s (%d)") % (valeur, self.typeDesTuples, ok))
- if ok < 0:
- raise ValueError(
- tr("%s devrait être dans %s ") % (valeur[1], self.FORMATS))
- return valeur
-
- def verifItem(self, valeur):
- try:
- if len(valeur) != len(self.typeDesTuples):
- return 0
- ok = self.verifType(valeur)
- if ok != 1:
- return 0
- except: # pylint: disable=bare-except
- return 0
- return 1
-
- def verifType(self, valeur): # pylint: disable=arguments-differ
- ok = 0
- for v in valeur:
- if isinstance(v, (bytes, str)):
- ok += 1
- if ok == len(self.typeDesTuples):
- if valeur[1] in self.FORMATS:
- return 1
- return -1
- return 0
-
- def verif(self, valeur):
- if type(valeur) in (list, tuple):
- liste = list(valeur)
- for val in liste:
- if self.verifItem(val) != 1:
- return 0
- return 1
- return 0
-
-
-class _Assembly(ASSD):
- pass
-
-
-class _TechnoData(ASSD):
- pass
-
-
-class _RodBank(ASSD):
- pass
-
-
-class _ModelData(ASSD):
- pass
-
-
-class _ScenarioData(ASSD):
- pass
-
-
-Assembly = OPER(
- nom="Assembly",
- sd_prod=_Assembly,
- fr="Description d'un élément du cœur",
- ang="Core element description",
- assembly_type=SIMP(
- fr="Type d'élément cœur (assemblage combustible ou réflecteur",
- ang="Type of the core element (fuel assembly or reflector",
- statut="o",
- typ="TXM",
- into=("UOX", "MOX", "REF")),
- description=BLOC(
- condition="assembly_type != 'REF'",
- fr="Description d'un assemblage combustible",
- ang="Fuel assembly description",
- assembly_width=SIMP(
- fr="Pas inter-assemblage dans le cœur",
- ang="Fuel assembly pitch in the core",
- unite="m",
- statut="o",
- typ="R"),
- fuel_density=SIMP(
- fr=("Ratio entre masse volumique nominale et la masse volumique "
- "théorique des pastilles combustible"),
- ang=("Ratio between the nominal density and the theoretical "
- "density of the fuel pellets"),
- unite="g/cm3",
- statut="o",
- typ="R",
- defaut=0.95),
- radial_description=FACT(
- fr="Description radiale de l'assemblage combustible",
- ang="Fuel assembly radial description",
- statut="o",
- clad_outer_radius=SIMP(
- fr="Rayon externe de la gaine des crayons combustible",
- ang="Clad external radius of the fuel pins",
- unite="m",
- statut="o",
- typ="R"),
- guide_tube_outer_radius=SIMP(
- fr="Rayon externe des tubes guides",
- ang="Clad external radius of the guide tubes",
- unite="m",
- statut="o",
- typ="R"),
- fuel_rod_pitch=SIMP(
- fr="Pas inter-crayon dans l'assemblage",
- ang="Fuel pin pitch in the assembly",
- unite="m",
- statut="o",
- typ="R"),
- nfuel_rods=SIMP(
- fr="Nombre de crayons combustibles dans l'assemblage",
- ang="Number of fuel pins in the assembly",
- statut="o",
- typ="I")),
- axial_description=FACT(
- fr="Description axiale de l'assemblage combustible",
- ang="Fuel assembly axial description",
- statut="o",
- active_length_start=SIMP(
- fr="Altitude basse de la partie active",
- ang="Lower altitude of the active part",
- unite="m",
- statut="o",
- typ="R"),
- active_length_end=SIMP(
- fr="Altitude haute de la partie active",
- ang="Upper altitude of the active part",
- unite="m",
- statut="o",
- typ="R")),
- grids=FACT(
- fr="Description des grilles",
- ang="Grids description",
- statut="o",
- mixing=FACT(
- fr="Description des grilles de mélange",
- ang="Mixing grids description",
- statut="o",
- positions=SIMP(
- fr="Altitude basse de la grille",
- ang="Grid lower altitude",
- unite="m",
- statut="f",
- typ="R",
- max="**"),
- size=SIMP(
- fr="Hauteur de la grille",
- ang="Grid height",
- unite="m",
- statut="o",
- typ="R")),
- non_mixing=FACT(
- fr="Description des grilles de maintien",
- ang="Holding grids description",
- statut="o",
- positions=SIMP(
- fr="Altitude basse de la grille",
- ang="Grid lower altitude",
- unite="m",
- statut="f",
- typ="R",
- max="**"),
- size=SIMP(
- fr="Hauteur de la grille",
- ang="Grid height",
- unite="m",
- statut="o",
- typ="R")))))
-
-
-# TODO: Define the names of the possible compositions (Black, Grey, B4C, Hafnium and Pyrex)
-RodBank = OPER(
- nom="RodBank",
- sd_prod=_RodBank,
- fr="Description d'un groupe de grappes absorbantes",
- ang="Rod bank description",
- rod_type=SIMP(
- fr="Type de grappes absorbantes",
- ang="Type of rod clusters",
- statut="o",
- typ="TXM",
- into=("homogeneous", "heterogeneous")),
- description_HOM=BLOC(
- condition="rod_type == 'homogeneous'",
- fr="Description d'un groupe de grappes absorbantes homogènes axialement",
- ang="Axially homogeneous rod bank description",
- rod_composition=SIMP(
- fr=("Type de matériau absorbant des grappes absorbantes (Types "
- "autorisés : {})").format(
- ", ".join(ROD_COMPOSITIONS)),
- ang=("Absorbing material type of the rod clusters (Authorized "
- "types: {})").format(
- ", ".join(ROD_COMPOSITIONS)),
- statut="o",
- typ="TXM",
- into=ROD_COMPOSITIONS)),
- description_HET=BLOC(
- condition="rod_type == 'heterogeneous'",
- fr="Description d'un groupe de grappes absorbantes hétérogène axialement",
- ang="Axially heterogeneous rod bank description",
- bottom_composition=SIMP(
- fr=("Type de matériau absorbant dans la partie basse des grappes "
- "absorantes (Types autorisés : {})").format(
- ", ".join(ROD_COMPOSITIONS)),
- ang=("Absorbing material type in the lower part of the rod "
- "clusters (Authorized types: {})").format(
- ", ".join(ROD_COMPOSITIONS)),
- statut="o",
- typ="TXM",
- into=ROD_COMPOSITIONS),
- splitting_heigh=SIMP(
- fr=("Altitude de séparation entre la partie haute et la partie "
- "basse des grappes absorbantes"),
- ang=("Splitting height between the upper part and the lower part "
- "of the rod clusters"),
- unite="m",
- statut="o",
- typ="R"),
- upper_composition=SIMP(
- fr=("Type de matériau absorbant dans la partie haute des grappes "
- "absorantes (Types autorisés : {})").format(
- ", ".join(ROD_COMPOSITIONS)),
- ang=("Absorbing material type in the upper part of the rod "
- "clusters (Authorized types: {})").format(
- ", ".join(ROD_COMPOSITIONS)),
- statut="o",
- typ="TXM",
- into=ROD_COMPOSITIONS)),
- step_height=SIMP(
- fr="Hauteur d'un pas",
- ang="Step height",
- unite="m",
- statut="o",
- typ="R"),
- nsteps=SIMP(
- fr="Nombre de pas du groupe de grappes",
- ang="Rod bank steps number",
- statut="o",
- typ="I"))
-
-
-def gen_assembly_maps():
- """Generate all the possible maps (one for each possible core size) for the
- data cointained in ``Techno_data.radial_description.assembly_map``."""
- # Build the default axes names
- xsym_list = list("ABCDEFGHJKLNPRSTUVWXYZ")
- xsym_list.reverse()
- ysym_list = ["%02d" % i for i in range(NMIN_CORE_FUEL_ELTS, NMAX_CORE_FUEL_ELTS + 1)]
- ysym_list.reverse()
- def_xaxis = {}
- def_yaxis = {}
- for i in range(NMIN_CORE_FUEL_ELTS, NMAX_CORE_FUEL_ELTS + 1):
- def_xaxis[i] = ["RW"] + xsym_list[-i:] + ["RE"]
- def_yaxis[i] = ["RS"] + ysym_list[-i:] + ["RN"]
-
- dico = {}
- for i in range(NMIN_CORE_FUEL_ELTS, NMAX_CORE_FUEL_ELTS):
- dico["assembly_map_%d" % i] = BLOC(
- condition="nb_assembly == %d" % i,
- fr="Description radiale du cœur",
- ang="Core radial description",
- xaxis=SIMP(
- fr="Nom des repères radiaux du cœur suivant l'axe ouest-est",
- ang="Name of core radial marks following the west-east axis",
- statut="o",
- typ="TXM",
- min=i + 2,
- max=i + 2,
- defaut=def_xaxis[i]),
- yaxis=SIMP(
- fr="Nom des repères radiaux du cœur suivant l'axe nord-sud",
- ang="Name of core radial marks following the north-south axis",
- statut="o",
- typ="TXM",
- min=i + 2,
- max=i + 2,
- defaut=def_yaxis[i]),
- assembly_map=SIMP(
- fr=("Répartition radiale des assemblages combustibles et des "
- "réflecteurs dans le cœur"),
- ang=("Radial repartition of the fuel assemblies and the "
- "reflectors in the core"),
- statut="o",
- typ=Matrice(
- nbLigs=i + 2,
- nbCols=i + 2,
- typElt=_Assembly,
- listeHeaders=(
- ("RW","S","R","P","N","L","K","J","H","G","F","E","D","C","B","A","RE",),
- ("RS","15","14","13","12","11","10","09","08","07","06","05","04","03","02","01","RN",)), # pylint: disable=line-too-long
- defaut=(i + 2) * [(i + 2) * ["."]],
- coloree=True)),
- rotation_map=SIMP(
- fr="Rotation des éléments du cœur. Valeur possibles : {}".format(
- ", ".join([repr(elt) for elt in ASSEMBLY_ROTATIONS])),
- ang="Core elements rotation. Possible values : {}".format(
- ", ".join([repr(elt) for elt in ASSEMBLY_ROTATIONS])),
- statut="o",
- typ=Matrice(
- nbLigs=i + 2,
- nbCols=i + 2,
- typElt="TXM",
- typEltInto=ASSEMBLY_ROTATIONS,
- coloree=True),
- defaut=(i + 2) * [(i + 2) * ["."]]),
- rod_map=SIMP(
- fr="Répartition radiale des groupes de grappes dans le cœur",
- ang="Rod banks radial repartition in the core",
- statut="o",
- typ=Matrice(
- nbLigs=i + 2,
- nbCols=i + 2,
- valSup=1,
- valMin=-1,
- typElt="TXM",
- listeHeaders=None,
- coloree=True),
- defaut=(i + 2) * [(i + 2) * ["."]]),
- BU_map=SIMP(
- fr="Taux de combustion moyen des assemblages combustibles en GW.j/t",
- ang="Average burnup of the fuel assemblies in GW.d/t",
- statut="o",
- typ=Matrice(
- nbLigs=i + 2,
- nbCols=i + 2,
- valSup=90000.,
- valMin=0.,
- typElt="R",
- listeHeaders=None,
- coloree=True),
- defaut=(i + 2) * [(i + 2) * ["."]]))
- return dico
-
-
-Techno_data = OPER(
- nom="Techno_data",
- sd_prod=_TechnoData,
- fr="Description technologique du cœur",
- ang="Core technological description",
- assembly_list=SIMP(
- fr="Sélection des assemblages combustible",
- ang="Fuel assemblies selection",
- statut="o",
- typ=_Assembly,
- min=1,
- max="**"),
- rodbank_list=SIMP(
- fr="Sélection des groupes de grappes",
- ang="Rod banks selection",
- statut="o",
- typ=_RodBank,
- min=0,
- max="**"),
- radial_description=FACT(
- fr="Description radiale du cœur",
- ang="Radial description of the core",
- statut="o",
- nb_assembly=SIMP(
- fr="Nombre d'éléments combustible sur la tranche du cœur",
- ang="Number of fuel elements on one side of the core",
- statut="o",
- typ="I",
- into=list(range(NMIN_CORE_FUEL_ELTS, NMAX_CORE_FUEL_ELTS))),
- **(gen_assembly_maps())),
- axial_description=FACT(
- fr="Description axiale du cœur",
- ang="Axial description of the core",
- statut="o",
- lower_refl_size=SIMP(
- fr="Hauteur du réflecteur axial bas",
- ang="Height of bottom axial reflector",
- unite="m",
- statut="o",
- typ="R"),
- upper_refl_size=SIMP(
- fr="Hauteur du réflecteur axial haut",
- ang="Height of top axial reflector",
- unite="m",
- statut="o",
- typ="R")),
- nominal_power=SIMP(
- fr="Puissance thermique nominale du cœur",
- ang="Nominal thermal power of the core",
- unite="W",
- statut="o",
- typ="R"),
- Fuel_power_fraction=SIMP(
- fr="Fraction de la puissance dissipée dans le combustible",
- ang="Power fraction dissipated in the fuel",
- statut="o",
- typ="R",
- defaut=0.974),
- by_pass=SIMP(
- fr="Fraction du débit de bypass cœur",
- ang="Bypass core flow fraction",
- statut="o",
- typ="R",
- defaut=0.07),
- core_volumic_flowrate=SIMP(
- fr="Débit volumique cœur",
- ang="Core volume flowrate",
- unite="m3/h",
- statut="o",
- typ="R"))
-
-
-class _AssemblyDKLibFile(ASSD):
- """Manage informations about a fuel assembly DKLib file."""
-
-
-class _ReflectorDKLibFile(ASSD):
- """Manage informations about a reflector DKLib file."""
-
-
-AssemblyDKLibFile = OPER(
- nom="AssemblyDKLibFile",
- sd_prod=_AssemblyDKLibFile,
- fr="Description d'un fichier DKLib assemblage combustible",
- ang="Description of a fuel assembly DKLib file",
- filename=SIMP(
- fr="Nom du fichier DKLib",
- ang="DKLib filename",
- statut="o",
- typ=("Fichier", "DKLib Files (.dklib);;DKZip Files (.dkzip);;All Files ()", "Sauvegarde")),
- pattern=SIMP(
- fr="Nom du pattern à utiliser dans le fichier DKLib",
- ang="Name of the pattern to use in the DKLib file",
- statut="o",
- typ="TXM"),
- rod_bank_names=SIMP(
- fr=("Nom de la configuration de grappe dans la DKLib pour chaque type "
- "de matériaux absorbants disponibles dans le modèle sous la forme "
- "({{{}}}, nom dans la DKLib)").format(", ".join(ROD_COMPOSITIONS)),
- ang=("Name of the rod cluster configuration in the DKLib file for any "
- "type of absorbing materials available in the model under the form "
- "({{{}}}, name in the DKLib)").format(", ".join(ROD_COMPOSITIONS)),
- statut="o",
- typ=Tuple(2),
- # TODO: Check if the first string is ROD_COMPOSITIONS
- validators=VerifTypeTuple(("TXM", "TXM")),
- max="**"))
-
-
-ReflectorDKLibFile = OPER(
- nom="ReflectorDKLibFile",
- sd_prod=_ReflectorDKLibFile,
- fr="Description d'un fichier DKLib réflecteur",
- ang="Description of a reflector DKLib file",
- filename=SIMP(
- fr="Nom du fichier DKLib",
- ang="DKLib filename",
- statut="o",
- typ=("Fichier", "DKLib Files (.dklib);;DKZip Files (.dkzip);;All Files ()","Sauvegarde")),
- radial_pattern=SIMP(
- fr="Nom du pattern contenant les données du réflecteur radial",
- ang="Name of the pattern containing the radial reflector data",
- statut="o",
- typ="TXM"),
- lower_pattern=SIMP(
- fr="Nom du pattern contenant les données du réflecteur axial bas",
- ang="Name of the pattern containing the lower reflector data",
- statut="o",
- typ="TXM"),
- upper_pattern=SIMP(
- fr="Nom du pattern contenant les données du réflecteur axial haut",
- ang="Name of the pattern containing the upper reflector data",
- statut="o",
- typ="TXM"))
-
-
-# TODO: Split this class in two: neutronic and thermalhydraulic)
-# TODO: Or split this class in N classes (one for each code)
-Model_data = OPER(
- nom="Model_data",
- sd_prod=_ModelData,
- fr="Description de la modélisation physique",
- ang="Physical modeling description",
- physics=SIMP(
- fr="Sélection de la physique du modèle",
- ang="Physic model selection",
- statut="o",
- typ="TXM",
- into=("Neutronics", "Thermalhydraulics")),
- scale=SIMP(
- fr="Sélection de l'échelle du modèle",
- ang="Scale model selection",
- statut="o",
- typ="TXM",
- into=("system", "component", "local")),
- b_neutro_compo=BLOC(
- condition="physics == 'Neutronics' and scale == 'component'",
- fr="Description de la modélisation neutronique à l'échelle du composant",
- ang="Neutronic modeling description at the component scale",
- code=SIMP(
- fr="Sélection du code de neutronique cœur",
- ang="Core neutronic code selection",
- statut="o",
- typ="TXM",
- into=("COCAGNE", "APOLLO3")),
- cocagne_bloc=BLOC(
- condition="code == 'COCAGNE'",
- cocagne_options=FACT(
- fr="Options de modélisations spécifiques au code COCAGNE.",
- ang="COCAGNE specific modeling options",
- statut="o",
- n_threads=SIMP(
- fr="Nombre de threads alloués aux solveurs",
- ang="Number of threads allocated to the solvers",
- statut="f",
- typ="I",
- val_min=1),
- core_elements_vs_dklib=SIMP(
- fr=("Association des éléments du cœur aux bibliothèques neutroniques "
- "sous la forme (assemblage combustible, DKLib)"),
- ang=("Association between the core elements and the neutronic libraries "
- "in the form (fuel assembly, DKLib)"),
- statut="o",
- typ=Tuple(2),
- # TODO: Check if the attribute assembly_type of the
- # Assembly object is 'REF' then the type of the
- # DKLibFile must be ReflectorDKLibFile and, if not,
- # the type of the DKLibFile must be AssemblyDKLibFile
- validators=VerifTypeTuple((_Assembly, (_AssemblyDKLibFile, _ReflectorDKLibFile))),
- max="**"))),
- # TODO: Implement the *4x4* mesh
- radial_meshing=FACT(
- fr="Maillage radial du cœur",
- ang="Core radial meshing",
- statut="o",
- flux_solver=SIMP(
- fr="Type de maillage radial du solveur de flux",
- ang="Radial mesh type for the flux solver",
- statut="o",
- typ="TXM",
- into=("subdivision", "pin-by-pin")),
- b_flux_subdivision=BLOC(
- condition="flux_solver == 'subdivision'",
- fr=("Paramètres pour les maillages radiaux de type subdivisé "
- "pour le solveur de flux"),
- ang=("Parameters for the subdivided radial meshes types for the "
- "flux solver"),
- flux_subdivision=SIMP(
- fr=("Nombre de sous-divisions à appliquer à chaque maille "
- "radiale pour le solveur de flux"),
- ang=("Subdivision number to apply to all radial meshes for "
- "the flux solver"),
- statut="o",
- typ="I")),
- feedback_solver=SIMP(
- fr="Type de maillage radial du solveur de contre-réaction",
- ang="Radial mesh type for the feedback solver",
- statut="o",
- typ="TXM",
- into=("subdivision", "pin-by-pin")),
- b_feedback_subdivision=BLOC(
- condition="feedback_solver == 'subdivision'",
- fr=("Paramètres pour les maillages radiaux de type subdivisé "
- "pour le solveur de contre-réaction"),
- ang=("Parameters for the subdivided radial meshes types for the "
- "feedback solver"),
- feedback_subdivision=SIMP(
- fr=("Nombre de sous-divisions à appliquer à chaque maille "
- "radiale pour le solveur de contre-réaction"),
- ang=("Subdivision number to apply to all radial meshes for "
- "the feedback solver"),
- statut="o",
- typ="I")))),
- b_thermo_compo=BLOC(
- condition="physics == 'Thermalhydraulics' and scale == 'component'",
- fr="Description de la modélisation thermohydraulique à l'échelle du composant",
- ang="Thermalhydraulic modeling description at the component scale",
- code=SIMP(
- fr="Sélection du code de thermohydraulique cœur",
- ang="Core thermalhydraulic code selection",
- statut="o",
- typ="TXM",
- into=("THYC", "CATHARE3", "FLICA4")),
- thyc_bloc=BLOC(
- condition="code == 'THYC'",
- thyc_options=FACT(
- fr="Options de modélisations spécifiques au code THYC.",
- ang="THYC specific modeling options",
- statut="o",
- n_threads=SIMP(
- fr="Nombre de threads alloués aux solveurs",
- ang="Number of threads allocated to the solvers",
- statut="f",
- typ="I",
- val_min=1))),
- radial_meshing=FACT(
- fr="Description du maillage radial thermohydraulique à l'échelle du composant",
- ang="Thermalhydraulic radial meshing description at the component scale",
- statut="o",
- fluid=SIMP(
- fr="Méthode de maillage radial",
- ang="Radial meshing method",
- statut="o",
- typ="TXM",
- into=("subdivision", "subchannel")),
- b_fluid_subdivision=BLOC(
- condition="fluid == 'subdivision'",
- fr="Données spécifiques au maillage radial par subdivision",
- ang="Specific data for the radial meshing by subdivision",
- fluid_subdivision=SIMP(
- fr="Nombre de mailles radiales dans les assemblages combustibles",
- ang="Radial mesh number in the fuel assemblies",
- statut="o",
- typ="I")),
- pellet=SIMP(
- fr="Nombre de mailles radiales dans la pastille combustible",
- ang="Radial mesh number in the fuel pellet",
- statut="o",
- typ="I"),
- clad=SIMP(
- fr="Nombre de mailles radiales dans la gaine des crayons combustibles",
- ang="Radial mesh number in the clad of the fuel pins",
- statut="o",
- typ="I"))),
- b_scale_compo=BLOC(
- condition="scale == 'component'",
- fr="Description de la modélisation à l'échelle du composant",
- ang="Modeling description at the component scale",
- axial_meshing=FACT(
- fr="Maillage axial du cœur",
- ang="Core axial meshing",
- statut="o",
- lower_refl=SIMP(
- fr="Nombre de mailles axiales dans le réflecteur bas",
- ang="Axial mesh number in the lower reflector",
- statut="o",
- typ="I"),
- fuel=SIMP(
- fr="Nombre de mailles axiales dans la partie active de l'assemblage combustible",
- ang="Axial mesh number in the active part of the fuel assembly",
- statut="o",
- typ="I"),
- upper_refl=SIMP(
- fr="Nombre de mailles axiales dans le réflecteur haut",
- ang="Axial mesh number in the upper reflector",
- statut="o",
- typ="I"))),
- b_scale_local=BLOC(
- condition="scale == 'local'",
- fr="Description de la modélisation à l'échelle du locale",
- ang="Modeling description at the local scale",
- mesh_file=SIMP(
- fr="Nom du fichier décrivant le maillage",
- ang="Name of the file describing the mesh",
- statut="o",
- typ="Fichier")))
-
-
-Scenario_data = OPER(
- nom="Scenario_data",
- sd_prod=_ScenarioData,
- fr="Description du transitoire",
- ang="Transient description",
- initial_power=SIMP(
- fr="Puissance thermique initiale du cœur",
- ang="Initial thermal power of the core",
- statut="o",
- typ="R",
- val_min=0.,
- defaut=100.),
- initial_power_unit=SIMP(
- fr="Unité de la puissance thermique initiale du cœur",
- ang="Unit of the initial thermal power of the core",
- statut="o",
- typ="TXM",
- into=("% Nominal power", "W"),
- defaut="% Nominal power"),
- initial_core_inlet_temperature=SIMP(
- fr="Température initiale de l'eau à l'entrée du cœur",
- ang="Initial water temperature at the inlet of the core",
- unite="°C",
- statut="o",
- typ="R",
- val_min=0.,
- defaut=280.),
- initial_boron_concentration=SIMP(
- fr="Concentration en bore initiale",
- ang="Initial boron concentration",
- unite="ppm",
- statut="o",
- typ="R",
- val_min=0.,
- defaut=1300.),
- initial_inlet_pressure=SIMP(
- fr="Pression initiale de l'eau à l'entrée du cœur",
- ang="Initial water pressure at the inlet of the core",
- unite="bar",
- statut="o",
- typ="R",
- val_min=0.,
- defaut=160.2),
- initial_outlet_pressure=SIMP(
- fr="Pression initiale de l'eau à la sortie du cœur",
- ang="Initial water pressure at the outlet of the core",
- unite="bar",
- statut="o",
- typ="R",
- val_min=0.,
- defaut=157.2),
- initial_rod_positions=SIMP(
- fr=("Position initiale des groupes de grappes et des grappes dans le "
- "cœur sous la forme (type@nom, position) "
- "(ex. (Rodbank@RB, 62) pour le groupe de grappe RB positionné à 62 "
- "pas extraits et (Rodcluster@H08, 0) pour la grappe H08 "
- "complètement insérée)"),
- ang=("Initial position of the rod banks and the rod clusters in the "
- "core in the form (type@name, position) "
- "(e.g. (Rodbank@RB, 62) for the RB rod bank placed at 62 "
- "extracted steps and (Rodcluster@H08, 0) for the rod cluster H08 "
- "completely inserted)"),
- unite="extracted steps",
- statut="o",
- typ=Tuple(2), # TODO: Use a triplet (type, name, position) instead of a doublet
- validators=VerifTypeTuple(("TXM", "I")),
- max="**"),
- scenario_type=SIMP(
- fr="Type de transitoire à modéliser",
- ang="Type of transient to model",
- statut="o",
- typ="TXM",
- into=("RIA", )),
- b_ria=BLOC(
- condition="scenario_type == 'RIA'",
- fr="Données du transitoire 'accident de réactivité'",
- ang="Data of the 'Reactivity-initiated Accident' transient",
- ejected_rod=SIMP(
- fr="Nom de la grappe éjectée",
- ang="Name of the ejected rod cluster",
- statut="o",
- typ="TXM"),
- rod_position_program=SIMP(
- fr="Loi d'éjection à appliquer à la grappe sous la forme (temps, position)",
- ang="Ejection law to apply to the ejected rod cluster in the form (time, position)",
- unite="s, extracted steps",
- statut="o",
- typ=Tuple(2),
- validators=VerifTypeTuple(("R", "I")),
- max="**"),
- SCRAM=SIMP(
- fr="Activation/désactivation de l'arrêt automatique du réacteur",
- ang="Activation/deactivation of automatic reactor shutdown",
- statut="o",
- typ="TXM",
- into=("YES", "NO")),
- SCRAM_option=BLOC(
- condition="SCRAM == 'YES'",
- fr="Options relatives à l'arrêt automatique du réacteur",
- ang="Options relative to the automatic reactor shutdown",
- SCRAM_power=SIMP(
- fr=("Puissance thermique du cœur déclenchant un arrêt "
- "automatique du réacteur"),
- ang="Core thermal power triggering an automatic reactor shutdown",
- unite="MW",
- statut="o",
- typ="R"),
- complete_SCRAM_time=SIMP(
- fr="Temps de chute des grappes",
- ang="Rod cluster fall time",
- unite="s",
- statut="o",
- typ="R"))),
- post_processing=SIMP(
- # TODO: Give all the possible parameters depending of the physics
- fr=("Données de sortie du calcul sous la forme (paramètre@physique, format). "
- "'physique' peut valoir {physics!r} et 'format' peut valoir {formats!r}".format(
- physics=VerifPostTreatment.PHYSICS,
- formats=VerifPostTreatment.FORMATS)),
- ang=("Output computed data in function of time in the form (parameter@physic, format). "
- "'physic' can be {physics!r} and 'format' can be {formats!r})".format(
- physics=VerifPostTreatment.PHYSICS,
- formats=VerifPostTreatment.FORMATS)),
- statut="f",
- typ=Tuple(2), # TODO: Use a triplet (parameter, physic, format) instead of a doublet
- validators=VerifPostTreatment(),
- max="**"))
--- /dev/null
+cata_RN_EDG_yp_v1.py
\ No newline at end of file
scale='component',
code='THYC',
thyc_options=_F(n_threads=23,),
+ nprocs=2,
radial_meshing=_F(fluid='subdivision',
fluid_subdivision=1,
pellet=8,
fuel=40,
upper_refl=1,),);
#VERSION_CATALOGUE:V_0:FIN VERSION_CATALOGUE
-#CHECKSUM:ea75a6791472ab21137d2c91d59f3362:FIN CHECKSUM
\ No newline at end of file
+#CHECKSUM:63c60c86f79fba9512ae3bc2f18c7249:FIN CHECKSUM
\ No newline at end of file
guide_tube_outer_radius=0.006025,
fuel_rod_pitch=0.0126,
nfuel_rods=264,),
- axial_description=_F(active_length_start=0.21,
- active_length_end=4.4772,),
- grids=_F(mixing=_F(positions=(0.69216,1.19766,1.70316,2.20866,2.71416,3.20416,3.69416,4.18416,),
+ axial_description=_F(active_length_start=0.2,
+ active_length_end=1.5,),
+ grids=_F(mixing=_F(positions=(1.0807,),
size=0.033,),
- non_mixing=_F(positions=(0.026,4.2412,),
+ non_mixing=_F(positions=(0.026,),
size=0.033,),),);
-UGD=Assembly(assembly_type='UOX',
- assembly_width=0.21504,
- fuel_density=0.95,
- radial_description=_F(clad_outer_radius=0.00475,
- guide_tube_outer_radius=0.006025,
- fuel_rod_pitch=0.0126,
- nfuel_rods=264,),
- axial_description=_F(active_length_start=0.21,
- active_length_end=4.4772,),
- grids=_F(mixing=_F(positions=(0.69216,1.19766,1.70316,2.20866,2.71416,3.20416,3.69416,4.18416,),
- size=0.033,),
- non_mixing=_F(positions=(0.026,),
- size=0.033,),),);
+RB=RodBank(rod_type='homogeneous',
+ rod_composition='Black',
+ step_height=0.008,
+ nsteps=162,);
-RB=RodBank(rod_type='heterogeneous',
- bottom_composition='Black',
- splitting_heigh=1.4224,
- upper_composition='B4C',
- step_height=0.016,
- nsteps=260,);
-
-N1=RodBank(rod_type='heterogeneous',
- bottom_composition='Black',
- splitting_heigh=1.4224,
- upper_composition='B4C',
- step_height=0.016,
- nsteps=260,);
-
-N2=RodBank(rod_type='heterogeneous',
- bottom_composition='Black',
- splitting_heigh=1.4224,
- upper_composition='B4C',
- step_height=0.016,
- nsteps=260,);
-
-G1=RodBank(rod_type='homogeneous',
- rod_composition='Grey',
- step_height=0.016,
- nsteps=260,);
-
-G2=RodBank(rod_type='homogeneous',
- rod_composition='Grey',
- step_height=0.016,
- nsteps=260,);
-
-techno_data=Techno_data(assembly_list=(REF,U1,UGD,),
- rodbank_list=(RB,G1,G2,N1,N2,),
- radial_description=_F(nb_assembly=15,
- xaxis=('RW','S','R','P','N','L','K','J','H','G','F','E','D','C','B','A','RE',),
- yaxis=
- ('RS','15','14','13','12','11',
- '10','09','08','07','06','05','04','03','02','01','RN',),
+techno_data=Techno_data(technology='Other',
+ assembly_list=(REF,U1,),
+ rodbank_list=(RB,),
+ radial_description=_F(nb_assembly=6,
+ xaxis=('RW','F','E','D','C','B','A','RE',),
+ yaxis=('RS','06','05','04','03','02','01','RN',),
assembly_map=
([REF,REF,REF,REF,REF,REF,
- REF,REF,REF,REF,REF,REF,REF,REF,REF,REF,REF,],[REF,REF,
- REF,REF,REF,U1,U1,U1,U1,U1,U1,U1,REF,REF,REF,REF,REF,],
- [REF,REF,REF,UGD,U1,UGD,UGD,U1,U1,U1,UGD,UGD,U1,UGD,REF,
- REF,REF,],[REF,REF,UGD,U1,U1,U1,U1,UGD,U1,UGD,U1,U1,U1,U1,
- UGD,REF,REF,],[REF,REF,U1,U1,U1,UGD,U1,UGD,U1,UGD,U1,UGD,
- U1,U1,U1,REF,REF,],[REF,U1,UGD,U1,UGD,U1,U1,UGD,U1,UGD,U1,
- U1,UGD,U1,UGD,U1,REF,],[REF,U1,UGD,U1,U1,U1,UGD,UGD,U1,
- UGD,UGD,U1,U1,U1,UGD,U1,REF,],[REF,U1,U1,UGD,UGD,UGD,UGD,
- U1,UGD,U1,UGD,UGD,UGD,UGD,U1,U1,REF,],[REF,U1,U1,U1,U1,U1,
- U1,UGD,UGD,UGD,U1,U1,U1,U1,U1,U1,REF,],[REF,U1,U1,UGD,UGD,
- UGD,UGD,U1,UGD,U1,UGD,UGD,UGD,UGD,U1,U1,REF,],[REF,U1,UGD,
- U1,U1,U1,UGD,UGD,U1,UGD,UGD,U1,U1,U1,UGD,U1,REF,],[REF,U1,
- UGD,U1,UGD,U1,U1,UGD,U1,UGD,U1,U1,UGD,U1,UGD,U1,REF,],
- [REF,REF,U1,U1,U1,UGD,U1,UGD,U1,UGD,U1,UGD,U1,U1,U1,REF,
- REF,],[REF,REF,UGD,U1,U1,U1,U1,UGD,U1,UGD,U1,U1,U1,U1,UGD,
- REF,REF,],[REF,REF,REF,UGD,U1,UGD,UGD,U1,U1,U1,UGD,UGD,U1,
- UGD,REF,REF,REF,],[REF,REF,REF,REF,REF,U1,U1,U1,U1,U1,U1,
- U1,REF,REF,REF,REF,REF,],[REF,REF,REF,REF,REF,REF,REF,REF,
- REF,REF,REF,REF,REF,REF,REF,REF,REF,],),
+ REF,REF,],[REF,REF,U1,U1,U1,U1,REF,REF,],[REF,U1,U1,U1,U1,
+ U1,U1,REF,],[REF,U1,U1,U1,U1,U1,U1,REF,],[REF,U1,U1,U1,U1,
+ U1,U1,REF,],[REF,U1,U1,U1,U1,U1,U1,REF,],[REF,REF,U1,U1,
+ U1,U1,REF,REF,],[REF,REF,REF,REF,REF,REF,REF,REF,],),
rotation_map=
- (['.','.','.','.','.','.',
- '.','.','.','.','.','.','.','.','.','.','.'],['.','.','.',
- '.','.','.','.','.','.','.','.','.','.','.','.','.','.'],
- ['.','.','.','.','.','.','.','.','.','.','.','.','.','.',
- '.','.','.'],['.','.','.','.','.','.','.','.','.','.','.',
- '.','.','.','.','.','.'],['.','.','.','.','.','.','.','.',
- '.','.','.','.','.','.','.','.','.'],['.','.','.','.','.',
- '.','.','.','.','.','.','.','.','.','.','.','.'],['.','.',
- '.','.','.','.','.','.','.','.','.','.','.','.','.','.',
- '.'],['.','.','.','.','.','.','.','.','.','.','.','.','.',
- '.','.','.','.'],['.','.','.','.','.','.','.','.','.','.',
- '.','.','.','.','.','.','.'],['.','.','.','.','.','.','.',
- '.','.','.','.','.','.','.','.','.','.'],['.','.','.','.',
- '.','.','.','.','.','.','.','.','.','.','.','.','.'],['.',
- '.','.','.','.','.','.','.','.','.','.','.','.','.','.',
- '.','.'],['.','.','.','.','.','.','.','.','.','.','.','.',
- '.','.','.','.','.'],['.','.','.','.','.','.','.','.','.',
- '.','.','.','.','.','.','.','.'],['.','.','.','.','.','.',
- '.','.','.','.','.','.','.','.','.','.','.'],['.','.','.',
- '.','.','.','.','.','.','.','.','.','.','.','.','.','.'],
- ['.','.','.','.','.','.','.','.','.','.','.','.','.','.',
- '.','.','.'],),
+ (['R1','R1','R1','R1',
+ 'R1','R1','R1','R1'],['R1','R1','.','.','.','.','R1',
+ 'R1'],['R1','.','.','.','.','.','.','R1'],['R1','.','.',
+ '.','.','.','.','R1'],['R1','.','.','.','.','.','.','R1'],
+ ['R1','.','.','.','.','.','.','R1'],['R1','R1','.','.',
+ '.','.','R1','R1'],['R1','R1','R1','R1','R1','R1','R1',
+ 'R1'],),
rod_map=
(['#','#','#','#','#','#','#',
- '#','#','#','#','#','#','#','#','#','#'],['#','#','#','#','#','.',
- '.','.','.','.','.','.','#','#','#','#','#'],['#','#','#','.','.',
- '.','.','.','RB','.','.','.','.','.','#','#','#'],['#','#','.','.',
- '.','G2','.','N2','.','N2','.','G2','.','.','.','#','#'],['#','#',
- '.','.','N1','.','.','.','G1','.','.','.','N1','.','.','#','#'],
- ['#','.','.','G2','.','RB','.','.','.','.','.','RB','.','G2','.',
- '.','#'],['#','.','.','.','.','.','.','.','N1','.','.','.','.','.',
- '.','.','#'],['#','.','.','N2','.','.','.','.','.','.','.','.','.',
- 'N2','.','.','#'],['#','.','RB','.','G1','.','N1','.','RB','.','N1',
- '.','G1','.','RB','.','#'],['#','.','.','N2','.','.','.','.','.',
- '.','.','.','.','N2','.','.','#'],['#','.','.','.','.','.','.','.',
- 'N1','.','.','.','.','.','.','.','#'],['#','.','.','G2','.','RB',
- '.','.','.','.','.','RB','.','G2','.','.','#'],['#','#','.','.',
- 'N1','.','.','.','G1','.','.','.','N1','.','.','#','#'],['#','#',
- '.','.','.','G2','.','N2','.','N2','.','G2','.','.','.','#','#'],
- ['#','#','#','.','.','.','.','.','RB','.','.','.','.','.','#','#',
- '#'],['#','#','#','#','#','.','.','.','.','.','.','.','#','#','#',
- '#','#'],['#','#','#','#','#','#','#','#','#','#','#','#','#','#',
- '#','#','#'],),
+ '#'],['#','#','.','.','.','.','#','#'],['#','.','.','.','RB','.',
+ '.','#'],['#','.','RB','.','.','.','.','#'],['#','.','.','.','.',
+ 'RB','.','#'],['#','.','.','RB','.','.','.','#'],['#','#','.','.',
+ '.','.','#','#'],['#','#','#','#','#','#','#','#'],),
BU_map=
([0.0,0.0,0.0,0.0,0.0,0.0,0.0,
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,40.0,0.0,0.0,
- 40.0,40.0,20.0,40.0,40.0,0.0,0.0,40.0,0.0,0.0,0.0],[0.0,0.0,40.0,0.0,
- 40.0,20.0,40.0,0.0,40.0,0.0,40.0,20.0,40.0,0.0,40.0,0.0,0.0],[0.0,0.0,
- 0.0,40.0,20.0,20.0,20.0,40.0,20.0,40.0,20.0,20.0,20.0,40.0,0.0,0.0,
- 0.0],[0.0,0.0,0.0,20.0,20.0,20.0,40.0,0.0,40.0,0.0,40.0,20.0,20.0,
- 20.0,0.0,0.0,0.0],[0.0,0.0,40.0,40.0,20.0,40.0,20.0,40.0,20.0,40.0,
- 20.0,40.0,20.0,40.0,40.0,0.0,0.0],[0.0,0.0,40.0,0.0,40.0,0.0,40.0,
- 20.0,20.0,20.0,40.0,0.0,40.0,0.0,40.0,0.0,0.0],[0.0,0.0,20.0,40.0,
- 20.0,40.0,20.0,20.0,60.0,20.0,20.0,40.0,20.0,40.0,20.0,0.0,0.0],[0.0,
- 0.0,40.0,0.0,40.0,0.0,40.0,20.0,20.0,20.0,40.0,0.0,40.0,0.0,40.0,0.0,
- 0.0],[0.0,0.0,40.0,40.0,20.0,40.0,20.0,40.0,20.0,40.0,20.0,40.0,20.0,
- 40.0,40.0,0.0,0.0],[0.0,0.0,0.0,20.0,20.0,20.0,40.0,0.0,40.0,0.0,40.0,
- 20.0,20.0,20.0,0.0,0.0,0.0],[0.0,0.0,0.0,40.0,20.0,20.0,20.0,40.0,
- 20.0,40.0,20.0,20.0,20.0,40.0,0.0,0.0,0.0],[0.0,0.0,40.0,0.0,40.0,
- 20.0,40.0,0.0,40.0,0.0,40.0,20.0,40.0,0.0,40.0,0.0,0.0],[0.0,0.0,0.0,
- 40.0,0.0,0.0,40.0,40.0,20.0,40.0,40.0,0.0,0.0,40.0,0.0,0.0,0.0],[0.0,
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],),),
- axial_description=_F(lower_refl_size=0.21,
- upper_refl_size=0.21,),
- nominal_power=4000000000.0,
+ 0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+ 0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+ 0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+ 0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],),),
+ axial_description=_F(lower_refl_size=0.2,
+ upper_refl_size=0.2,),
+ nominal_power=100000000.0,
Fuel_power_fraction=0.974,
- by_pass=0.07,
- core_volumic_flowrate=90940.0,);
+ by_pass=0.0,
+ core_volumic_flowrate=13737.2,);
AF3R_400=AssemblyDKLibFile(filename='cocagne_data/dklib/AF3R_400.dklib',
pattern='PALU_AF3R_17_4.00_0P_0P_100_100__535_306.5_0.7127__500____________________________P13',
rod_bank_names=(('Black','black_rods'),('Grey','grey_rods'),('B4C','b4c_rods')),);
-AF3R_400_12G_GD80U071=AssemblyDKLibFile(filename='cocagne_data/dklib/AF3R_400_12G_GD80U071.dklib',
- pattern=\
- 'PALU_AF3R_17_4.0012G12G_100_100__535_306.5_0.7127__500___________GD__8_U_0.71_____P13',
- rod_bank_names=(('Black','black_rods'),('Grey','grey_rods'),('B4C','b4c_rods')),);
-
-REFL_PWR1300=ReflectorDKLibFile(filename='cocagne_data/dklib/Reflecteur_REP1300.dkzip',
- radial_pattern='R',
- lower_pattern='lower',
- upper_pattern='upper',);
+REP1300=ReflectorDKLibFile(filename='cocagne_data/dklib/Reflecteur_REP1300.dkzip',
+ radial_pattern='R',
+ lower_pattern='lower',
+ upper_pattern='upper',);
neutro_model=Model_data(physics='Neutronics',
scale='component',
code='COCAGNE',
- cocagne_options=_F(core_elements_vs_dklib=((REF,REFL_PWR1300),(U1,AF3R_400),(UGD,AF3R_400_12G_GD80U071)),),
+ cocagne_options=_F(n_threads=6,
+ nprocs=1,
+ core_elements_vs_dklib=((REF,REP1300),(U1,AF3R_400)),),
radial_meshing=_F(flux_solver='subdivision',
flux_subdivision=2,
feedback_solver='subdivision',
feedback_subdivision=1,),
- axial_meshing=_F(lower_refl=2,
- fuel=42,
- upper_refl=2,),);
+ axial_meshing=_F(lower_refl=1,
+ fuel=21,
+ upper_refl=1,),);
thermo_model=Model_data(physics='Thermalhydraulics',
scale='component',
code='THYC',
- thyc_options=_F(),
+ thyc_options=_F(n_threads=6,),
+ nprocs=2,
radial_meshing=_F(fluid='subdivision',
fluid_subdivision=1,
pellet=8,
fuel=40,
upper_refl=1,),);
-scenario_data=Scenario_data(initial_power=0.1,
+scenario_data=Scenario_data(initial_power=100.0,
initial_power_unit='% Nominal power',
- initial_core_inlet_temperature=290.0,
- initial_boron_concentration=1300.0,
+ initial_core_inlet_temperature=300.0,
+ initial_boron_concentration=600.0,
initial_inlet_pressure=160.2,
- initial_outlet_pressure=157.2,
- initial_rod_positions=(('Rodbank@RB',201),('Rodbank@N1',96),('Rodbank@N2',260),('Rodbank@G1',260),('Rodbank@G2',260),('Rodcluster@H08',260)),
+ initial_outlet_pressure=155.0,
+ initial_rod_positions=(('Rodbank@RB',162),('Rodcluster@B04',0)),
scenario_type='RIA',
- ejected_rod='H02',
- rod_position_program=((0.0,0),(0.1,260)),
- SCRAM='YES',
- SCRAM_power=1130.0,
- complete_SCRAM_time=1.0,
- post_processing=(('Fuel temperature@Thermalhydraulics','MAX'),('Neutronic power@Neutronics','SUM'),('Fuel temperature@Thermalhydraulics','MED'),('Neutronic power@Neutronics','MED')),);
+ ejected_rod='B04',
+ rod_position_program=((0.0,0),(0.1,162)),
+ SCRAM='NO',
+ post_processing=(('Fuel temperature','Thermalhydraulics','MAX'),('Neutronic power','Neutronics','SUM'),('Fuel temperature','Thermalhydraulics','MED'),('Rodbank@RB','Neutronics','VALUE'),('Rodcluster@B04','Neutronics','VALUE')),);
#VERSION_CATALOGUE:V_0:FIN VERSION_CATALOGUE
-#CHECKSUM:c06d10ac9fa4f4f20cad8266b6f6455d:FIN CHECKSUM
+#CHECKSUM:cd6b2c347ac3ee843b94b8ee510ce4b2:FIN CHECKSUM
\ No newline at end of file
sys.path.insert(0,repEficas)
import types
-from Accas import OPER, BLOC, FACT, SIMP, ASSD, JDC_CATA, Matrice, Tuple, AU_MOINS_UN, A_VALIDATOR, PROC
+#from Accas import OPER, BLOC, FACT, SIMP, ASSD, JDC_CATA, Matrice, Tuple, AU_MOINS_UN, A_VALIDATOR, PROC
from Noyau.N_VALIDATOR import Valid
+# #autonome=1
+# autonome=0
+# if autonome :
+# from Accas import *
+# #from Accas import OPER, BLOC, FACT, SIMP, ASSD, JDC_CATA, Matrice, Tuple, AU_MOINS_UN, A_VALIDATOR, PROC
+# JdC = JDC_CATA(code="UQ");
+# ExpressionIncertitude = creeOperExpressionIncertitude(dictUQ, dicoDesSortiesPossibles);
+# else:
+from cata_RN_EDG import *
+
# sert a activer les options d incertitude dans eficas
# et a changer le convert en convertUQ
avecIncertitude=True
ExpressionIncertitude=creeOperExpressionIncertitude(dictUQ, dicoDesSortiesPossibles, scriptPosttraitement, scriptDeLancement)
-#autonome=1
-autonome=0
-if autonome :
- from Accas import *
- JdC = JDC_CATA(code="UQ");
- ExpressionIncertitude = creeOperExpressionIncertitude(dictUQ, dicoDesSortiesPossibles);
-
def changeIntoOuput(objPostPro):
mesPostProVal=objPostPro.valeur
+ print('--------- mesPostProVal ----------- :',mesPostProVal)
contexte=objPostPro.etape.parent.g_context
# on essaye d assurer la compatibilite du catalogue UQ pour les 2 versions du catalogue RN_EDG
if len(mesPostProVal[0]) == 2 :
maDef.addInto(nomAProposer)
if len(mesPostProVal[0]) == 3 :
for (nomVar,phys,fonct) in mesPostProVal :
+ if '@' in nomVar : continue # Les noms des grandeurs et les associations à leurs définitions doivent être revues dans une nvlle version du cata_RN.py
if fonct == 'MED' : continue
nomAProposer= nomVar+'@'+phys+'@'+fonct
nomBloc = 'b_physique_' + phys
nomBlocVar = ('b_var_'+nomVar).replace( ' ','__')
maDef=contexte['ExpressionIncertitude'].entites['Output'].entites['VariableDeSortie'].entites[nomBloc].entites[nomBlocVar].entites['VariablePosttraiteeAssociee']
-
+ maDef.addInto(nomAProposer)
def creeOutput(monDicoVarSortie,scriptPosttraitement):
intoVariable=list(monDicoVarSortie.keys())
ang="Postprocessing Script File",
statut="o",
typ=("FichierNoAbs", "All Files ()"), defaut=scriptPosttraitement)
- VariableDeSortie = FACT ( max='**', statut ='o', Physique=Physique, **lesBlocs, FonctionDAggregation=FonctionDAggregation, ScriptPosttraitement=ScriptPosttraitement, Unit=Unit,Format=Format)
- output = FACT (max=1, statut ='o', VariableDeSortie=VariableDeSortie)
+ VariableDeSortie = FACT ( max='**', statut ='o', Physique=Physique, **lesBlocs, FonctionDAggregation=FonctionDAggregation, Unit=Unit,Format=Format)
+ output = FACT (max=1, statut ='o', VariableDeSortie=VariableDeSortie, ScriptPosttraitement=ScriptPosttraitement)
return output
def creeOperExpressionIncertitude(monDicoVarDeter, monDicoVarSortie,scriptPosttraitement, scriptDeLancement ):
EmpiricalStandardDeviation = SIMP ( statut = "o", typ = 'TXM', into = ( 'yes', 'no' ), defaut = 'yes',
fr = "Ecart-type empirique",
ang = "Empirical standard deviation",),
- EmpiricalQuantile = SIMP ( statut = "o", typ = 'TXM', into = ( 'yes', 'no' ), defaut = 'yes',
- fr = "Quantile empirique",
- ang = "Empirical quantile",),
+ EmpiricalQuantile = SIMP ( statut = "o", typ = 'TXM', into = ( 'no', ), defaut = 'no', #into = ( 'yes', 'no' ),
+ fr = "Quantile empirique (Non encore implémenté)",
+ ang = "Empirical quantile (Not Yet Implemented)",),
BlocEmpiricalQuantileSettings = BLOC ( condition = " EmpiricalQuantile in ( 'yes', ) ",
EmpiricalQuantile_Order = SIMP ( statut = "o", typ = 'R', defaut = 0.95,
val_min = 0.0, val_max = 1.0,
Execution = FACT (max=1, statut ='o',
bloc_OT = BLOC (condition = 'UncertaintyTool == "OpenTurns"',
ExecutionMode = SIMP ( statut = "o", typ = "TXM", into = ['desktop', 'cluster']),
- NbOfProcs = SIMP ( statut = 'o', typ ="I" , defaut = 1, val_min = 1),
- NbDeBranches = SIMP ( statut = "o", typ = "I", val_min = 0, fr='nb d evaluations simultanees'),
- JobName = SIMP ( statut = 'o', typ ="TXM", defaut='idefix_rn_job'),
+ NbDeBranches = SIMP ( statut = "o", typ = "I", val_min = 0, fr='nb d evaluations Persalys simultanees'),
bloc_OT_local = BLOC (condition = 'ExecutionMode == "desktop"',
+ JobName = SIMP ( statut = 'o', typ ="TXM", defaut='idefix_rn_job'),
ResourceName = SIMP ( statut = 'o', typ ="TXM", defaut ='localhost'),
Login = SIMP ( statut = 'o', typ ="TXM", defaut ='C65845'), #TODO
# WorkDirectory = SIMP ( statut = 'o', typ='Repertoire' , defaut='/tmp/C65845_workingdir_uncertainty'), #TODO: Login + NonExistent
fr="Nom du fichier script de lancement", ang="script File to launch",),
),
bloc_OT_cluster = BLOC (condition = 'ExecutionMode == "cluster"',
+ MultiJobStudy = SIMP ( statut = "o", typ = bool, defaut=False,fr='Si True, un job est soumis pour chaque évaluation de branche'),
+ NbOfProcs = SIMP ( statut = 'o', typ ="I" , defaut = 1, val_min = 1, fr='Equivaut au nombre de tasks SLURM affectées à chaque job'),
+ JobName = SIMP ( statut = 'o', typ ="TXM", defaut='idefix_rn_job'),
ResourceName = SIMP ( statut = 'o', typ ="TXM", defaut ='gaia'),
Login = SIMP( statut = 'o', typ ="TXM", defaut ='C65845'),
WorkDirectory = SIMP ( statut = 'o', typ='TXM' , defaut='/scratch/C65845/workingdir/persalys_light'), #TODO: Login
# WorkDirectory = SIMP ( statut = 'o', typ='Repertoire' , defaut='/scratch/C65845/workingdir/persalys_light'), #TODO: Login
ResultDirectory = SIMP ( statut = 'o', typ='TXM' , defaut='/tmp/idefix_rn_job'), #TODO: JobName
# ResultDirectory = SIMP ( statut = 'o', typ='Repertoire' , defaut='/tmp/idefix_rn_job'), #TODO: JobName
- MultiJobStudy = SIMP ( statut = "o", typ = bool, defaut=False),
Consigne = SIMP(statut="o", homo="information", typ="TXM",
defaut="Le chemin d'accès au script de lancement est celui utilisé par les machines du cluster."),
ScriptDeLancement=SIMP( statut="o", typ=("FichierNoAbs", "All Files ()"), defaut=scriptDeLancement,
#print(sys.argv[:])
-import petitCata_driver as mdm
+import cata_MOYEN_driver as mdm
import pyxb
#THESE CONFIGURATION LINES ARE FOR ADVANCED INTERNAL TEST ONLY, YOU DON'T NEED TO CONFIGURE PYXB LIKE THIS
listeArgAss.append(objPyxbRB)
dicoArgAss['rod_bank_names']=objPyxbRB
-AssemblyFileObjPyx=mdm.T_AssemblyDKLibFile(**dicoArgAss)
+print ('dicoArgAss', dicoArgAss)
+AssemblyFileObjPyx=mdm.T_AssemblyDKLibFile(**dicoArgAss) #Objet invalide avec un orderedContent hasardeux
+#AssemblyFileObjPyx=mdm.T_AssemblyDKLibFile()
print ('listeArgAss', listeArgAss)
newOrderedContent=[]
# pour chaque liste de tuple
#dicoArgAss['rod_bank_names']=None
badObjPyxb=mdm.T_AssemblyDKLibFile(**dicoArgAss)
- for newObj in obj :
- print (newObj)
+ #badObjPyxb=mdm.T_AssemblyDKLibFile(**{}) #Evite le model check
+ for newObj in obj : #newobj est une rod_bank_names
+ print ('newObj', newObj)
+ print ('badObjPyxb ordredcontent', badObjPyxb.orderedContent())
+ #print (badObjPyxb.toDOM(element_name='badObjPyxb').toprettyxml())
badObjPyxb.append(newObj)
+ print ('badObjPyxb ordredcontent', badObjPyxb.orderedContent())
for c in badObjPyxb.orderedContent() :
+ print ('___________________')
+ print ('c.value', c.value)
+ print ('___________________')
if hasattr (c,'value') and c.value == newObj : newOrderedContent.append(c)
continue
continue
+++ /dev/null
-#! /usr/bin/env python3
-# -*- coding:utf-8 -*-
-import sys
-
-#print(sys.argv[:])
-
-import toutPetitCata_driver as mdm
-import pyxb
-
-#THESE CONFIGURATION LINES ARE FOR ADVANCED INTERNAL TEST ONLY, YOU DON'T NEED TO CONFIGURE PYXB LIKE THIS
-#mdm.pyxb.GlobalValidationConfig._setContentInfluencesGeneration(mdm.pyxb.GlobalValidationConfig.NEVER)
-mdm.pyxb.GlobalValidationConfig._setContentInfluencesGeneration(mdm.pyxb.GlobalValidationConfig.ALWAYS)
-mdm.pyxb.GlobalValidationConfig._setInvalidElementInContent(mdm.pyxb.GlobalValidationConfig.RAISE_EXCEPTION)
-mdm.pyxb.GlobalValidationConfig._setOrphanElementInContent(mdm.pyxb.GlobalValidationConfig.RAISE_EXCEPTION)
-
-dd = mdm.CreateFromDocument(open('toto.xml').read())
-eltOk=dd.AssemblyDKLibFile[0]
-eltFils=dd.AssemblyDKLibFile[0].rod_bank_names
-print ('eltOk.orderedContent()', eltOk.orderedContent())
-
-elt=pyxb.binding.basis.ElementContent(eltFils, instance=eltOk, tag=pyxb.namespace.ExpandedName(mdm.Namespace, 'rod_bank_names'))
-print ('eltContent', elt)
-print ('elementDeclaration._ElementDeclaration__key',getattr(eltOk,elt.elementDeclaration._ElementDeclaration__key))
-
-
-listeArgAss=[]
-dicoArgAss={}
-#filename=mdm.T_filename('/tmp/oo')
-#listeArgAss.append(filename)
-#dicoArgAss['filename']=filename
-#pattern=mdm.T_filename('hhhh')
-#listeArgAss.append(pattern)
-#dicoArgAss['pattern']=pattern
-
-objPyxbRB=[]
-listeArg=[]
-listeArg.append(mdm.T_rod_bank_names_n1_tuple('A'))
-listeArg.append(mdm.T_rod_bank_names_n2_tuple('B'))
-objPyxbRB.append(mdm.T_rod_bank_names(*listeArg))
-listeArg=[]
-listeArg.append(mdm.T_rod_bank_names_n1_tuple('C'))
-listeArg.append(mdm.T_rod_bank_names_n2_tuple('D'))
-objPyxbRB.append(mdm.T_rod_bank_names(*listeArg))
-print ('objPyxbRB', objPyxbRB)
-for o in objPyxbRB : print (o.toDOM(element_name='rb').toprettyxml())
-
-listeArgAss.append(objPyxbRB)
-dicoArgAss['rod_bank_names']=objPyxbRB
-print ('dicoArgAss', dicoArgAss)
-AssemblyFileObjPyx=mdm.T_AssemblyDKLibFile(**dicoArgAss)
-
-print ('listeArgAss', listeArgAss)
-newOrderedContent=[]
-for obj in listeArgAss:
- print ('-------------------- for', newOrderedContent)
- print (obj)
- if isinstance(obj, list):
- # pour chaque liste de tuple
- #dicoArgAss['rod_bank_names']=None
- badObjPyxb=mdm.T_AssemblyDKLibFile(**dicoArgAss)
- for newObj in obj :
- print (newObj)
- print ('badObjPyxb ordredcontent', badObjPyxb.orderedContent())
- badObjPyxb.append(newObj)
- print ('badObjPyxb ordredcontent', badObjPyxb.orderedContent())
- for c in badObjPyxb.orderedContent() :
- print ('___________________')
- print ('c.value', c.value)
- print ('___________________')
- if hasattr (c,'value') and c.value == newObj : print ('ajout de', c); newOrderedContent.append(c)
- continue
- continue
- #newOrderedContent.append(AssemblyFileObjPyx.orderedContent()[list(map(lambda o:id(o.value), AssemblyFileObjPyx.orderedContent())).index(id(obj))] )
-
-for i in range(len(newOrderedContent)):
- print (newOrderedContent[i])
- try : AssemblyFileObjPyx.orderedContent()[i]=newOrderedContent[i]
- except : AssemblyFileObjPyx.orderedContent().append(newOrderedContent[i])
-print ('AssemblyFileObjPyx.orderedContent', AssemblyFileObjPyx.orderedContent())
-
-print (AssemblyFileObjPyx.toDOM(element_name='rb').toprettyxml())
SCRAM_power=1130.0,
complete_SCRAM_time=1.0,
post_processing=(('Fuel temperature@Thermalhydraulics','MAX'),('Neutronic power@Neutronics','SUM'),('Fuel temperature@Thermalhydraulics','MED'),('Neutronic power@Neutronics','MED')),);
-#VERSION_CATALOGUE:V_0:FIN VERSION_CATALOGUE
-#CHECKSUM:c06d10ac9fa4f4f20cad8266b6f6455d:FIN CHECKSUM
\ No newline at end of file
+
+++ /dev/null
-thermo_model=Model_data(physics='Thermalhydraulics',
- scale='component',
- code='THYC',
- thyc_options=_F(n_threads=23,),
- radial_meshing=_F(fluid='subdivision',
- fluid_subdivision=1,
- pellet=8,
- clad=2,),
- axial_meshing=_F(lower_refl=1,
- fuel=40,
- upper_refl=1,),);
-
+++ /dev/null
-<?xml version="1.0" encoding="UTF-8"?>
-<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
-xmlns="http://chercheurs.edf.com/logiciels/RN_EDG"
-xmlns:RN_EDG="http://chercheurs.edf.com/logiciels/RN_EDG"
-targetNamespace="http://chercheurs.edf.com/logiciels/RN_EDG"
-elementFormDefault="qualified" attributeFormDefault="unqualified" version="0">
- <xs:simpleType name="AccasAssd">
- <xs:restriction base="xs:string">
- </xs:restriction>
- </xs:simpleType>
- <xs:simpleType name="T_rod_bank_names_n1_tuple">
- <xs:restriction base="xs:string"/>
- </xs:simpleType>
- <xs:simpleType name="T_rod_bank_names_n2_tuple">
- <xs:restriction base="xs:string"/>
- </xs:simpleType>
- <xs:complexType name="T_rod_bank_names">
- <xs:sequence>
- <xs:element name="n1" type="T_rod_bank_names_n1_tuple" minOccurs="1" maxOccurs="1"/>
- <xs:element name="n2" type="T_rod_bank_names_n2_tuple" minOccurs="1" maxOccurs="1"/>
- </xs:sequence>
- <xs:attribute name="sdType" type="xs:string" fixed="Tuple"/>
- </xs:complexType>
- <xs:complexType name="T_AssemblyDKLibFile" >
- <xs:sequence>
- <xs:element name="rod_bank_names" type="RN_EDG:T_rod_bank_names" minOccurs="1" maxOccurs="unbounded"/>
- </xs:sequence>
- <xs:attribute name="sdName" type="xs:string"/>
- <xs:attribute name="sdType" type="xs:string" fixed="ASSD"/>
- <xs:attribute name="typeUtilisateur" type="xs:string" fixed="_AssemblyDKLibFile"/>
- </xs:complexType>
- <xs:element name="RN_EDG" type="RN_EDG:T_RN_EDG"/>
- <xs:complexType name="T_RN_EDG">
- <xs:choice minOccurs="0" maxOccurs="unbounded">
- <xs:element name="AssemblyDKLibFile" type="RN_EDG:T_AssemblyDKLibFile" minOccurs="0" maxOccurs="1">
- <xs:annotation>
- <xs:documentation>Description of a fuel assembly DKLib file</xs:documentation>
- </xs:annotation>
- </xs:element>
- </xs:choice>
- </xs:complexType>
-</xs:schema>
+++ /dev/null
-# Exemple de script pour lire la sortie csv du banc
-#
-# Lecture des valeurs dans le csv et renvoi de la valeur après application de la fonction d'agragation max,min et moy
-
-#To get the history in python
-#print('\n'.join([str(readline.get_history_item(i + 1)) for i in range(readline.get_current_history_length())]))
-
-def vMax(arrayNx2):
- import numpy as np
-
- return np.apply_along_axis(max, 0, arrayNx2[:,1]).item()
-
-def vMin(arrayNx2):
- import numpy as np
-
- return np.apply_along_axis(min, 0, arrayNx2[:,1]).item()
-
-def vMean(arrayNx2):
- import numpy as np
- import statistics
-
- return np.apply_along_axis(statistics.mean, 0, arrayNx2[:,1]).item()
-
-def vSum(arrayNx2):
- import numpy as np
-
- return np.apply_along_axis(sum, 0, arrayNx2[:,1]).item()
-
-def vInitialTime(arrayNx2):
- import numpy as np
-
- #Dates on first column, Values on second one
- timeColumn= arrayNx2[:,0]
- # Tmin=np.apply_along_axis(min, 0, timeColumn)
- # assert(arrayNx2[0,0]==Tmin)
- idxTmin = timeColumn.argmin()
- assert(idxTmin==0)
-
- valTmin= arrayNx2[idxTmin][1].item()
-
- return valTmin
-
-def vFinalTime(arrayNx2):
- import numpy as np
-
- #Dates on first column, Values on second one
- timeColumn= arrayNx2[:,0]
- # Tmax=np.apply_along_axis(max, 0, timeColumn)
- # assert(arrayNx2[timeColumn.size,0]==Tmax)
- idxTmax = timeColumn.argmax()
- idxMax=timeColumn.size-1
- assert(idxTmax==idxMax)
-
- valTmax= arrayNx2[idxTmax][1].item()
-
- return valTmax
-
-def vHalfTime(arrayNx2):
- import numpy as np
-
- #Dates on first column, Values on second one
- timeColumn= arrayNx2[:,0]
- Tmin=np.apply_along_axis(min, 0, timeColumn)
- Tmax=np.apply_along_axis(max, 0, timeColumn)
-
- Thalf=(Tmax-Tmin)/2+Tmin
- idxThalf = (np.abs(timeColumn-Thalf)).argmin()
- valThalf= arrayNx2[idxThalf][1].item()
-
- return valThalf
-
-def get_result_from_csv(variableName:str, functionList, filename:str=None, delimiter=','):
- from csv import reader
- import numpy as np
-
- transientName = 'Transient duration'
-
- #ex: file_csv = "Fuel temperature@Thermalhydraulics@MAX.csv"
- if filename == None: filename = variableName+'.csv'
-
- with open(filename, "r") as csv_file:
- csv_reader = reader(csv_file, delimiter=delimiter)
- header = next(csv_reader)
- header_transient_name=header[1]
- header_variable_name=header[2]
- if header_variable_name != variableName:
- print(sys.stderr,"The variable name {} differs from the file's header one {}".format(variableName, header_variable_name))
- return -1 #TODO Exception ?
- if header_transient_name != transientName:
- print(sys.stderr,"The transient duration name {} differs from the file's header one {}".format(transientName, header_transient_name))
- return -1 #TODO Exception ?
-
- date_value_array=np.loadtxt(file_csv, delimiter = delimiter, skiprows = 1)[:,1:3]
- valList=[]
- for func in functionList:
- valList.append(func(date_value_array))
- return valList
-
-def get_result_from_csv_v0(variableName:str, function, filename:str=None, delimiter=','):
- from csv import reader
-
- #ex: file_csv = "Fuel temperature@Thermalhydraulics@MAX.csv"
- if filename == None: filename = variableName+'.csv'
-
- with open(filename, "r") as csv_file:
- csv_reader = reader(csv_file, delimiter=delimiter)
- header = next(csv_reader)
- header_variable_name=header[-1]
- if header_variable_name != variableName:
- print(sys.stderr,"The variable name {} differs from the file's header one {}".format(variableName, header_variable_name))
- return -1 #TODO Exception ?
- # print("Header:")
- # print(", ".join(header))
- # print("Values:")
- # for row in csv_reader:
- # print(", ".join(row))
- return function(csv_reader)[-1]
-
-# import csv
-
-# #fich_csv = "Execution_APOLLO3/Neutronic power@Neutronics@SUM.csv"
-# fich_csv = "Fuel temperature@Thermalhydraulics@MAX.csv"
-# file_csv = open(fich_csv)
-
-# fich_sort = 'point.res'
-
-# csvReader = csv.reader(file_csv, delimiter=',')
-# header = []
-# header = next(csvReader)
-# # Pour APOLLO3 ?
-# # if len(header) != 2:
-# # print("Correction des headers contenant des espaces")
-# # tmp = header
-# # header = []
-# # header.append(tmp[1])
-# # header.append(tmp[-2] + " " + tmp[-1])
-# print(header)
-
-# rows = []
-# for row in csvReader:
-# ligne = []
-# for elem in row:
-# if elem != '':
-# ligne.append(float(elem))
-# rows.append(ligne)
-# #print(ligne)
-# print(rows)
-
-# # reperage des valeurs min et max
-# point_min = rows[0]
-# point_max = rows[0]
-# for point in rows:
-# if point[2] < point_min[2]:
-# point_min = point
-# if point[2] > point_max[2]:
-# point_max = point
-
-# # impression dans un fichier res de sortie
-# print("point min")
-# print(point_min)
-# print("point max")
-# print(point_max)
-
-# txt = "# time_min min time_max max\n"
-# txt += "{0} {1} {2} {3}".format(point_min[0],point_min[1],point_max[0],point_max[1])
-
-# file_sort = open(fich_sort,'w')
-# file_sort.write(txt)
+++ /dev/null
-AF3R_400=AssemblyDKLibFile(#filename='cocagne_data/dklib/AF3R_400.dklib',
- #pattern='PALU_AF3R_17_4.00_0P_0P_100_100__535_306.5_0.7127__500____________________________P13',
- #rod_bank_names=(('Black','black_rods'),('Grey','grey_rods'),('B4C','b4c_rods')),);
- rod_bank_names=(('Black','black_rods'),));
-
+++ /dev/null
-
-AF3R_400=AssemblyDKLibFile(#filename='/tmp/oo',
- #pattern='aaa',
- rod_bank_names=(('Black','black_rods'),),);
-#VERSION_CATALOGUE:V_0:FIN VERSION_CATALOGUE
-#CHECKSUM:d7e06c28bd7405b0913257d383914c9f:FIN CHECKSUM
+++ /dev/null
-# -*- coding: utf-8 -*-
-
-"""Definition of the data model used by the integration bench.
-
-Warnings
---------
-EFICAS will import this file as Python module with the ``__import__`` special
-function so, this module must not use relative import.
-"""
-# pylint: disable=import-error
-# pylint: disable=too-few-public-methods
-
-# TODO: Create a main object that point on the different subobjects and force its name
-
-# EFICAS
-from Accas import OPER, BLOC, FACT, SIMP, ASSD, JDC_CATA, VerifTypeTuple, Matrice, Tuple
-from Accas import Tuple as _Tuple
-from Extensions.i18n import tr
-
-# Warning: The names of these variables are defined by EFICAS
-JdC = JDC_CATA(code="RN_EDG")
-VERSION_CATALOGUE = "V_0"
-
-# Define the minimum and the maximum number of elements (reflectors and fuel
-# assemblies) on the core's side
-NMIN_CORE_FUEL_ELTS = 1
-NMAX_CORE_FUEL_ELTS = 18
-
-# Available absorbing material type in the rod clusters
-ROD_COMPOSITIONS = (
- "Black", # Full AIC rods
- "Grey", # Mix between AIC and steel rods
- "B4C", # Full B4C rods
-)
-
-# Available options for the core elements rotation
-ASSEMBLY_ROTATIONS = (
- ".", # identity
- "R1", # 90° counter-clock
- "R2", # 180°
- "R3", # 270° counter-clock
- "UD", # up-down
- "LR", # left-right
- "TR", # transpose x/y
- "RT", # transpose x/-y
-)
-
-
-
-class _AssemblyDKLibFile(ASSD):
- """Manage informations about a fuel assembly DKLib file."""
-
-
-
-AssemblyDKLibFile = OPER(
- nom="AssemblyDKLibFile",
- sd_prod=_AssemblyDKLibFile,
- fr="Description d'un fichier DKLib assemblage combustible",
- ang="Description of a fuel assembly DKLib file",
- #filename=SIMP(
- # fr="Nom du fichier DKLib",
- # ang="DKLib filename",
- # statut="o",
- # typ=("Fichier", "DKLib Files (.dklib);;DKZip Files (.dkzip);;All Files ()", "Sauvegarde")),
- #pattern=SIMP(
- # fr="Nom du pattern à utiliser dans le fichier DKLib",
- # ang="Name of the pattern to use in the DKLib file",
- # statut="o",
- # typ="TXM"),
- rod_bank_names=SIMP(
- fr=("Nom de la configuration de grappe dans la DKLib pour chaque type "
- "de matériaux absorbants disponibles dans le modèle sous la forme "
- "({{{}}}, nom dans la DKLib)").format(", ".join(ROD_COMPOSITIONS)),
- ang=("Name of the rod cluster configuration in the DKLib file for any "
- "type of absorbing materials available in the model under the form "
- "({{{}}}, name in the DKLib)").format(", ".join(ROD_COMPOSITIONS)),
- statut="o",
- typ=Tuple(2),
- # TODO: Check if the first string is ROD_COMPOSITIONS
- validators=VerifTypeTuple(("TXM", "TXM")),
- max="**"))
-
-
+++ /dev/null
-<?xml version="1.0" encoding="UTF-8"?>
-<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
-xmlns="http://chercheurs.edf.com/logiciels/RN_EDG"
-xmlns:RN_EDG="http://chercheurs.edf.com/logiciels/RN_EDG"
-targetNamespace="http://chercheurs.edf.com/logiciels/RN_EDG"
-elementFormDefault="qualified" attributeFormDefault="unqualified" version="0">
- <xs:simpleType name="AccasAssd">
- <xs:restriction base="xs:string">
- </xs:restriction>
- </xs:simpleType>
- <xs:simpleType name="T_rod_bank_names_n1_tuple">
- <xs:restriction base="xs:string"/>
- </xs:simpleType>
- <xs:simpleType name="T_rod_bank_names_n2_tuple">
- <xs:restriction base="xs:string"/>
- </xs:simpleType>
- <xs:complexType name="T_rod_bank_names">
- <xs:sequence>
- <xs:element name="n1" type="T_rod_bank_names_n1_tuple" minOccurs="1" maxOccurs="1"/>
- <xs:element name="n2" type="T_rod_bank_names_n2_tuple" minOccurs="1" maxOccurs="1"/>
- </xs:sequence>
- <xs:attribute name="sdType" type="xs:string" fixed="Tuple"/>
- </xs:complexType>
- <xs:complexType name="T_AssemblyDKLibFile" >
- <xs:sequence>
- <xs:element name="rod_bank_names" type="RN_EDG:T_rod_bank_names" minOccurs="1" maxOccurs="unbounded"/>
- </xs:sequence>
- <xs:attribute name="sdName" type="xs:string"/>
- <xs:attribute name="sdType" type="xs:string" fixed="ASSD"/>
- <xs:attribute name="typeUtilisateur" type="xs:string" fixed="_AssemblyDKLibFile"/>
- </xs:complexType>
- <xs:element name="RN_EDG" type="RN_EDG:T_RN_EDG"/>
- <xs:complexType name="T_RN_EDG">
- <xs:choice minOccurs="0" maxOccurs="unbounded">
- <xs:element name="AssemblyDKLibFile" type="RN_EDG:T_AssemblyDKLibFile" minOccurs="0" maxOccurs="1">
- <xs:annotation>
- <xs:documentation>Description of a fuel assembly DKLib file</xs:documentation>
- </xs:annotation>
- </xs:element>
- </xs:choice>
- </xs:complexType>
-</xs:schema>
\ No newline at end of file