//
#include "StdMeshers_RadialQuadrangle_1D2D.hxx"
-//#include "StdMeshers_ProjectionUtils.hxx"
#include "StdMeshers_NumberOfLayers.hxx"
#include "StdMeshers_LayerDistribution.hxx"
-//#include "StdMeshers_Prism_3D.hxx"
#include "StdMeshers_Regular_1D.hxx"
+#include "StdMeshers_NumberOfSegments.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMESHDS_SubMesh.hxx"
#include "SMESH_Gen.hxx"
+#include "SMESH_HypoFilter.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_subMesh.hxx"
#include <TColgp_SequenceOfPnt.hxx>
#include <TColgp_SequenceOfPnt2d.hxx>
#include <TopExp_Explorer.hxx>
+#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopoDS.hxx>
#define RETURN_BAD_RESULT(msg) { MESSAGE(")-: Error: " << msg); return false; }
#define gpXYZ(n) gp_XYZ(n->X(),n->Y(),n->Z())
-//typedef StdMeshers_ProjectionUtils TAssocTool;
-
//=======================================================================
//function : StdMeshers_RadialQuadrangle_1D2D
const list <const SMESHDS_Hypothesis * >&hyps = GetUsedHypothesis(aMesh, aShape);
if ( hyps.size() == 0 ) {
- aStatus = SMESH_Hypothesis::HYP_MISSING;
- return false; // can't work with no hypothesis
+ aStatus = SMESH_Hypothesis::HYP_OK;
+ return true; // can work with no hypothesis
}
if ( hyps.size() > 1 ) {
/*!
* \brief Listener used to mark edges meshed by StdMeshers_RadialQuadrangle_1D2D
*/
- class TLinEdgeMarker : public SMESH_subMeshEventListener
+ class TEdgeMarker : public SMESH_subMeshEventListener
{
- TLinEdgeMarker(): SMESH_subMeshEventListener(/*isDeletable=*/false) {}
+ TEdgeMarker(): SMESH_subMeshEventListener(/*isDeletable=*/false) {}
public:
+ //!< Return static listener
static SMESH_subMeshEventListener* getListener()
{
- static TLinEdgeMarker theEdgeMarker;
+ static TEdgeMarker theEdgeMarker;
return &theEdgeMarker;
}
+ //! Clear face sumbesh if something happens on edges
+ void ProcessEvent(const int event,
+ const int eventType,
+ SMESH_subMesh* edgeSubMesh,
+ EventListenerData* data,
+ const SMESH_Hypothesis* /*hyp*/)
+ {
+ if ( data && !data->mySubMeshes.empty() && eventType == SMESH_subMesh::ALGO_EVENT)
+ {
+ ASSERT( data->mySubMeshes.front() != edgeSubMesh );
+ SMESH_subMesh* faceSubMesh = data->mySubMeshes.front();
+ faceSubMesh->ComputeStateEngine( SMESH_subMesh::CLEAN );
+ }
+ }
};
-
+
// ------------------------------------------------------------------------------
/*!
* \brief Mark an edge as computed by StdMeshers_RadialQuadrangle_1D2D
*/
- void markLinEdgeAsComputedByMe(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh)
+ void markEdgeAsComputedByMe(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh)
{
if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge ))
{
- if ( !edgeSM->GetEventListenerData( TLinEdgeMarker::getListener() ))
- faceSubMesh->SetEventListener( TLinEdgeMarker::getListener(),
+ if ( !edgeSM->GetEventListenerData( TEdgeMarker::getListener() ))
+ faceSubMesh->SetEventListener( TEdgeMarker::getListener(),
SMESH_subMeshEventListenerData::MakeData(faceSubMesh),
edgeSM);
}
* \brief Return true if a radial edge was meshed with StdMeshers_RadialQuadrangle_1D2D with
* the same radial distribution
*/
- bool isEdgeCompitaballyMeshed(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh)
- {
- if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge ))
- {
- if ( SMESH_subMeshEventListenerData* otherFaceData =
- edgeSM->GetEventListenerData( TLinEdgeMarker::getListener() ))
- {
- // compare hypothesis aplied to two disk faces sharing radial edges
- SMESH_Mesh& mesh = *faceSubMesh->GetFather();
- SMESH_Algo* radialQuadAlgo = mesh.GetGen()->GetAlgo(mesh, faceSubMesh->GetSubShape() );
- SMESH_subMesh* otherFaceSubMesh = otherFaceData->mySubMeshes.front();
- const list <const SMESHDS_Hypothesis *> & hyps1 =
- radialQuadAlgo->GetUsedHypothesis( mesh, faceSubMesh->GetSubShape());
- const list <const SMESHDS_Hypothesis *> & hyps2 =
- radialQuadAlgo->GetUsedHypothesis( mesh, otherFaceSubMesh->GetSubShape());
- if( hyps1.empty() && hyps2.empty() )
- return true; // defaul hyps
- if ( hyps1.size() != hyps2.size() ||
- strcmp( hyps1.front()->GetName(), hyps2.front()->GetName() ))
- return false;
- ostringstream hypDump1, hypDump2;
- list <const SMESHDS_Hypothesis*>::const_iterator hyp1 = hyps1.begin();
- for ( ; hyp1 != hyps1.end(); ++hyp1 )
- const_cast<SMESHDS_Hypothesis*>(*hyp1)->SaveTo( hypDump1 );
- list <const SMESHDS_Hypothesis*>::const_iterator hyp2 = hyps2.begin();
- for ( ; hyp2 != hyps2.end(); ++hyp2 )
- const_cast<SMESHDS_Hypothesis*>(*hyp2)->SaveTo( hypDump2 );
- return hypDump1.str() == hypDump2.str();
- }
- }
- return false;
- }
+// bool isEdgeCompatiballyMeshed(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh)
+// {
+// if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge ))
+// {
+// if ( SMESH_subMeshEventListenerData* otherFaceData =
+// edgeSM->GetEventListenerData( TEdgeMarker::getListener() ))
+// {
+// // compare hypothesis aplied to two disk faces sharing radial edges
+// SMESH_Mesh& mesh = *faceSubMesh->GetFather();
+// SMESH_Algo* radialQuadAlgo = mesh.GetGen()->GetAlgo(mesh, faceSubMesh->GetSubShape() );
+// SMESH_subMesh* otherFaceSubMesh = otherFaceData->mySubMeshes.front();
+// list <const SMESHDS_Hypothesis *> hyps1 =
+// radialQuadAlgo->GetUsedHypothesis( mesh, faceSubMesh->GetSubShape());
+// list <const SMESHDS_Hypothesis *> hyps2 =
+// radialQuadAlgo->GetUsedHypothesis( mesh, otherFaceSubMesh->GetSubShape());
+// if( hyps1.empty() && hyps2.empty() )
+// return true; // defaul hyps
+// if ( hyps1.size() != hyps2.size() )
+// return false;
+// return *hyps1.front() == *hyps2.front();
+// }
+// }
+// return false;
+// }
//================================================================================
/*!
}
return nbe;
}
+
+//================================================================================
+//================================================================================
+/*!
+ * \brief Class computing layers distribution using data of
+ * StdMeshers_LayerDistribution hypothesis
+ */
+//================================================================================
+//================================================================================
+
+class TNodeDistributor: public StdMeshers_Regular_1D
+{
+ list <const SMESHDS_Hypothesis *> myUsedHyps;
+public:
+ // -----------------------------------------------------------------------------
+ static TNodeDistributor* GetDistributor(SMESH_Mesh& aMesh)
+ {
+ const int myID = -1000;
+ map < int, SMESH_1D_Algo * > & algoMap = aMesh.GetGen()->_map1D_Algo;
+ map < int, SMESH_1D_Algo * >::iterator id_algo = algoMap.find( myID );
+ if ( id_algo == algoMap.end() )
+ return new TNodeDistributor( myID, 0, aMesh.GetGen() );
+ return static_cast< TNodeDistributor* >( id_algo->second );
+ }
+ // -----------------------------------------------------------------------------
+ //! Computes distribution of nodes on a straight line ending at pIn and pOut
+ bool Compute( vector< double > & positions,
+ gp_Pnt pIn,
+ gp_Pnt pOut,
+ SMESH_Mesh& aMesh,
+ const SMESH_Hypothesis* hyp1d)
+ {
+ if ( !hyp1d ) return error( "Invalid LayerDistribution hypothesis");
+
+ double len = pIn.Distance( pOut );
+ if ( len <= DBL_MIN ) return error("Too close points of inner and outer shells");
+
+ myUsedHyps.clear();
+ myUsedHyps.push_back( hyp1d );
+
+ TopoDS_Edge edge = BRepBuilderAPI_MakeEdge( pIn, pOut );
+ SMESH_Hypothesis::Hypothesis_Status aStatus;
+ if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, edge, aStatus ))
+ return error( "StdMeshers_Regular_1D::CheckHypothesis() failed "
+ "with LayerDistribution hypothesis");
+
+ BRepAdaptor_Curve C3D(edge);
+ double f = C3D.FirstParameter(), l = C3D.LastParameter();
+ list< double > params;
+ if ( !StdMeshers_Regular_1D::computeInternalParameters( aMesh, C3D, len, f, l, params, false ))
+ return error("StdMeshers_Regular_1D failed to compute layers distribution");
+
+ positions.clear();
+ positions.reserve( params.size() );
+ for (list<double>::iterator itU = params.begin(); itU != params.end(); itU++)
+ positions.push_back( *itU / len );
+ return true;
+ }
+ // -----------------------------------------------------------------------------
+ //! Make mesh on an adge using assigned 1d hyp or defaut nb of segments
+ bool ComputeCircularEdge(SMESH_Mesh& aMesh,
+ const TopoDS_Edge& anEdge)
+ {
+ _gen->Compute( aMesh, anEdge);
+ SMESH_subMesh *sm = aMesh.GetSubMesh(anEdge);
+ if ( sm->GetComputeState() != SMESH_subMesh::COMPUTE_OK)
+ {
+ // find any 1d hyp assigned (there can be a hyp w/o algo)
+ myUsedHyps = SMESH_Algo::GetUsedHypothesis(aMesh, anEdge, /*ignoreAux=*/true);
+ Hypothesis_Status aStatus;
+ if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, anEdge, aStatus ))
+ {
+ // no valid 1d hyp assigned, use default nb of segments
+ _hypType = NB_SEGMENTS;
+ _ivalue[ DISTR_TYPE_IND ] = StdMeshers_NumberOfSegments::DT_Regular;
+ _ivalue[ NB_SEGMENTS_IND ] = _gen->GetDefaultNbSegments();
+ }
+ return StdMeshers_Regular_1D::Compute( aMesh, anEdge );
+ }
+ return true;
+ }
+ // -----------------------------------------------------------------------------
+ //! Make mesh on an adge using assigned 1d hyp or defaut nb of segments
+ bool EvaluateCircularEdge(SMESH_Mesh& aMesh,
+ const TopoDS_Edge& anEdge,
+ MapShapeNbElems& aResMap)
+ {
+ _gen->Evaluate( aMesh, anEdge, aResMap );
+ if ( aResMap.count( aMesh.GetSubMesh( anEdge )))
+ return true;
+
+ // find any 1d hyp assigned
+ myUsedHyps = SMESH_Algo::GetUsedHypothesis(aMesh, anEdge, /*ignoreAux=*/true);
+ Hypothesis_Status aStatus;
+ if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, anEdge, aStatus ))
+ {
+ // no valid 1d hyp assigned, use default nb of segments
+ _hypType = NB_SEGMENTS;
+ _ivalue[ DISTR_TYPE_IND ] = StdMeshers_NumberOfSegments::DT_Regular;
+ _ivalue[ NB_SEGMENTS_IND ] = _gen->GetDefaultNbSegments();
+ }
+ return StdMeshers_Regular_1D::Evaluate( aMesh, anEdge, aResMap );
+ }
+protected:
+ // -----------------------------------------------------------------------------
+ TNodeDistributor( int hypId, int studyId, SMESH_Gen* gen)
+ : StdMeshers_Regular_1D( hypId, studyId, gen)
+ {
+ }
+ // -----------------------------------------------------------------------------
+ virtual const list <const SMESHDS_Hypothesis *> &
+ GetUsedHypothesis(SMESH_Mesh &, const TopoDS_Shape &, const bool)
+ {
+ return myUsedHyps;
+ }
+ // -----------------------------------------------------------------------------
+};
}
//=======================================================================
* \brief Allow algo to do something after persistent restoration
* \param subMesh - restored submesh
*
- * call markLinEdgeAsComputedByMe()
+ * call markEdgeAsComputedByMe()
*/
//=======================================================================
{
TopoDS_Edge CircEdge, LinEdge1, LinEdge2;
analyseFace( faceSubMesh->GetSubShape(), CircEdge, LinEdge1, LinEdge2 );
- if ( !LinEdge1.IsNull() ) markLinEdgeAsComputedByMe( LinEdge1, faceSubMesh );
- if ( !LinEdge2.IsNull() ) markLinEdgeAsComputedByMe( LinEdge2, faceSubMesh );
+ if ( !CircEdge.IsNull() ) markEdgeAsComputedByMe( CircEdge, faceSubMesh );
+ if ( !LinEdge1.IsNull() ) markEdgeAsComputedByMe( LinEdge1, faceSubMesh );
+ if ( !LinEdge2.IsNull() ) markEdgeAsComputedByMe( LinEdge2, faceSubMesh );
}
}
// to delete helper at exit from Compute()
auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper );
- myLayerPositions.clear();
+ TNodeDistributor* algo1d = TNodeDistributor::GetDistributor(aMesh);
TopoDS_Edge CircEdge, LinEdge1, LinEdge2;
int nbe = analyseFace( aShape, CircEdge, LinEdge1, LinEdge2 );
- if( nbe>3 || nbe < 1 || CircEdge.IsNull() )
+ Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));
+ if( nbe>3 || nbe < 1 || aCirc.IsNull() )
return error("The face must be a full circle or a part of circle (i.e. the number of edges is less or equal to 3 and one of them is a circle curve)");
- gp_Pnt P0,P1;
+ gp_Pnt P0, P1;
// points for rotation
TColgp_SequenceOfPnt Points;
// angles for rotation
TopoDS_Face F = TopoDS::Face(aShape);
Handle(Geom_Surface) S = BRep_Tool::Surface(F);
+
if(nbe==1)
{
- Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));
-
- bool ok = _gen->Compute( aMesh, CircEdge );
- if( !ok ) return false;
+ if (!algo1d->ComputeCircularEdge( aMesh, CircEdge ))
+ return error( algo1d->GetComputeError() );
map< double, const SMDS_MeshNode* > theNodes;
- ok = GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes);
- if( !ok ) return false;
+ if ( !GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes))
+ return error("Circular edge is incorrectly meshed");
CNodes.clear();
map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() );
P0 = aCirc->Location();
- myLayerPositions.clear();
- computeLayerPositions(P0,P1);
+ if ( !computeLayerPositions(P0,P1))
+ return false;
exp.Init( CircEdge, TopAbs_VERTEX );
TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() );
// other curve not line
return error(COMPERR_BAD_SHAPE);
}
- bool linEdgeComputed = false;
- if( SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1) ) {
- if( !sm1->IsEmpty() )
- if( isEdgeCompitaballyMeshed( LinEdge1, aMesh.GetSubMesh(F) ))
- linEdgeComputed = true;
- else
- return error("Invalid set of hypotheses");
- }
- bool ok = _gen->Compute( aMesh, CircEdge );
- if( !ok ) return false;
+ if ( !algo1d->ComputeCircularEdge( aMesh, CircEdge ))
+ return error( algo1d->GetComputeError() );
map< double, const SMDS_MeshNode* > theNodes;
- GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes);
-
+ if ( !GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes) ||
+ theNodes.size()%2 == 0 )
+ return error("Circular edge is incorrectly meshed");
+
CNodes.clear();
map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
double fang = (*itn).first;
gp_Pnt P2( NL->X(), NL->Y(), NL->Z() );
P0 = aCirc->Location();
- myLayerPositions.clear();
- computeLayerPositions(P0,P1);
+ bool linEdgeComputed;
+ if ( !computeLayerPositions(P0,P1,LinEdge1,&linEdgeComputed))
+ return false;
if ( linEdgeComputed )
{
SMDS_MeshEdge* ME = myHelper->AddEdge( tmpNodes[i-1], tmpNodes[i] );
if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
}
- markLinEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F ));
+ markEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F ));
}
}
else // nbe==3 or ( nbe==2 && linEdge is INTERNAL )
// segments of line
double fp, lp;
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));
- Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
- Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast( getCurve( LinEdge2 ));
- if( aLine1.IsNull() || aLine2.IsNull() ) {
- // other curve not line
+ Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
+ Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast( getCurve( LinEdge2 ));
+ if( aCirc.IsNull() || aLine1.IsNull() || aLine2.IsNull() )
return error(COMPERR_BAD_SHAPE);
- }
-
- bool linEdge1Computed = false;
- if ( SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1))
- if( !sm1->IsEmpty() )
- if( isEdgeCompitaballyMeshed( LinEdge1, aMesh.GetSubMesh(F) ))
- linEdge1Computed = true;
- else
- return error("Invalid set of hypotheses");
-
- bool linEdge2Computed = false;
- if ( SMESH_subMesh* sm2 = aMesh.GetSubMesh(LinEdge2))
- if( !sm2->IsEmpty() )
- if( isEdgeCompitaballyMeshed( LinEdge2, aMesh.GetSubMesh(F) ))
- linEdge2Computed = true;
- else
- return error("Invalid set of hypotheses");
- bool ok = _gen->Compute( aMesh, CircEdge );
- if( !ok ) return false;
+ if ( !algo1d->ComputeCircularEdge( aMesh, CircEdge ))
+ return error( algo1d->GetComputeError() );
map< double, const SMDS_MeshNode* > theNodes;
- GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes);
+ if ( !GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes))
+ return error("Circular edge is incorrectly meshed");
const SMDS_MeshNode* NF = theNodes.begin()->second;
const SMDS_MeshNode* NL = theNodes.rbegin()->second;
gp_Pnt P2( NL->X(), NL->Y(), NL->Z() );
P0 = aCirc->Location();
- myLayerPositions.clear();
- computeLayerPositions(P0,P1);
+ bool linEdge1Computed, linEdge2Computed;
+ if ( !computeLayerPositions(P0,P1,LinEdge1,&linEdge1Computed))
+ return false;
Nodes1.resize( myLayerPositions.size()+1 );
Nodes2.resize( myLayerPositions.size()+1 );
+ // check that both linear edges have same hypotheses
+ if ( !computeLayerPositions(P0,P1,LinEdge2, &linEdge2Computed))
+ return false;
+ if ( Nodes1.size() != myLayerPositions.size()+1 )
+ return error("Different hypotheses apply to radial edges");
+
exp.Init( LinEdge1, TopAbs_VERTEX );
TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() );
exp.Next();
if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL )
Nodes2 = Nodes1;
}
- markLinEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F ));
+ markEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F ));
// LinEdge2
if ( linEdge2Computed )
if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
}
}
- markLinEdgeAsComputedByMe( LinEdge2, aMesh.GetSubMesh( F ));
+ markEdgeAsComputedByMe( LinEdge2, aMesh.GetSubMesh( F ));
}
+ markEdgeAsComputedByMe( CircEdge, aMesh.GetSubMesh( F ));
// orientation
bool IsForward = ( CircEdge.Orientation()==TopAbs_FORWARD );
return true;
}
-
-//================================================================================
//================================================================================
/*!
- * \brief Class computing layers distribution using data of
- * StdMeshers_LayerDistribution hypothesis
+ * \brief Compute positions of nodes on the radial edge
+ * \retval bool - is a success
*/
//================================================================================
-//================================================================================
-class TNodeDistributor: public StdMeshers_Regular_1D
+bool StdMeshers_RadialQuadrangle_1D2D::computeLayerPositions(const gp_Pnt& p1,
+ const gp_Pnt& p2,
+ const TopoDS_Edge& linEdge,
+ bool* linEdgeComputed)
{
- list <const SMESHDS_Hypothesis *> myUsedHyps;
-public:
- // -----------------------------------------------------------------------------
- static TNodeDistributor* GetDistributor(SMESH_Mesh& aMesh)
- {
- const int myID = -1000;
- map < int, SMESH_1D_Algo * > & algoMap = aMesh.GetGen()->_map1D_Algo;
- map < int, SMESH_1D_Algo * >::iterator id_algo = algoMap.find( myID );
- if ( id_algo == algoMap.end() )
- return new TNodeDistributor( myID, 0, aMesh.GetGen() );
- return static_cast< TNodeDistributor* >( id_algo->second );
- }
- // -----------------------------------------------------------------------------
- bool Compute( vector< double > & positions,
- gp_Pnt pIn,
- gp_Pnt pOut,
- SMESH_Mesh& aMesh,
- const StdMeshers_LayerDistribution* hyp)
- {
- double len = pIn.Distance( pOut );
- if ( len <= DBL_MIN ) return error("Too close points of inner and outer shells");
+ // First, try to compute positions of layers
- if ( !hyp || !hyp->GetLayerDistribution() )
- return error( "Invalid LayerDistribution hypothesis");
- myUsedHyps.clear();
- myUsedHyps.push_back( hyp->GetLayerDistribution() );
+ myLayerPositions.clear();
- TopoDS_Edge edge = BRepBuilderAPI_MakeEdge( pIn, pOut );
- SMESH_Hypothesis::Hypothesis_Status aStatus;
- if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, edge, aStatus ))
- return error( "StdMeshers_Regular_1D::CheckHypothesis() failed "
- "with LayerDistribution hypothesis");
+ SMESH_Mesh * mesh = myHelper->GetMesh();
- BRepAdaptor_Curve C3D(edge);
- double f = C3D.FirstParameter(), l = C3D.LastParameter();
- list< double > params;
- if ( !StdMeshers_Regular_1D::computeInternalParameters( aMesh, C3D, len, f, l, params, false ))
- return error("StdMeshers_Regular_1D failed to compute layers distribution");
+ const SMESH_Hypothesis* hyp1D = myDistributionHypo ? myDistributionHypo->GetLayerDistribution() : 0;
+ int nbLayers = myNbLayerHypo ? myNbLayerHypo->GetNumberOfLayers() : 0;
- positions.clear();
- positions.reserve( params.size() );
- for (list<double>::iterator itU = params.begin(); itU != params.end(); itU++)
- positions.push_back( *itU / len );
- return true;
+ if ( !hyp1D && !nbLayers )
+ {
+ // No own algo hypotheses assigned, so first try to find any 1D hypothesis.
+ // We need some edge
+ TopoDS_Shape edge = linEdge;
+ if ( edge.IsNull() && !myHelper->GetSubShape().IsNull())
+ for ( TopExp_Explorer e(myHelper->GetSubShape(), TopAbs_EDGE); e.More(); e.Next())
+ edge = e.Current();
+ if ( !edge.IsNull() )
+ {
+ // find a hyp usable by TNodeDistributor
+ SMESH_HypoFilter hypKind;
+ TNodeDistributor::GetDistributor(*mesh)->InitCompatibleHypoFilter(hypKind,/*ignoreAux=*/1);
+ hyp1D = mesh->GetHypothesis( edge, hypKind, /*fromAncestors=*/true);
+ }
}
-protected:
- // -----------------------------------------------------------------------------
- TNodeDistributor( int hypId, int studyId, SMESH_Gen* gen)
- : StdMeshers_Regular_1D( hypId, studyId, gen)
+ if ( hyp1D ) // try to compute with hyp1D
{
+ if ( !TNodeDistributor::GetDistributor(*mesh)->Compute( myLayerPositions,p1,p2,*mesh,hyp1D ))
+ if ( myDistributionHypo ) { // bad hyp assigned
+ return error( TNodeDistributor::GetDistributor(*mesh)->GetComputeError() );
+ }
+ else {
+ // bad hyp found, its Ok, lets try with default nb of segnents
+ }
}
- // -----------------------------------------------------------------------------
- virtual const list <const SMESHDS_Hypothesis *> &
- GetUsedHypothesis(SMESH_Mesh &, const TopoDS_Shape &, const bool)
+
+ if ( myLayerPositions.empty() ) // try to use nb of layers
{
- return myUsedHyps;
+ if ( !nbLayers )
+ nbLayers = _gen->GetDefaultNbSegments();
+
+ if ( nbLayers )
+ {
+ myLayerPositions.resize( nbLayers - 1 );
+ for ( int z = 1; z < nbLayers; ++z )
+ myLayerPositions[ z - 1 ] = double( z )/ double( nbLayers );
+ }
}
- // -----------------------------------------------------------------------------
-};
-//================================================================================
-/*!
- * \brief Compute positions of nodes between the internal and the external surfaces
- * \retval bool - is a success
- */
-//================================================================================
+ // Second, check presence of a mesh built by other algo on linEdge
+ // and mesh conformity to my hypothesis
-bool StdMeshers_RadialQuadrangle_1D2D::computeLayerPositions(const gp_Pnt& pIn,
- const gp_Pnt& pOut)
-{
- if ( myNbLayerHypo )
+ bool meshComputed = (!linEdge.IsNull() && !mesh->GetSubMesh(linEdge)->IsEmpty() );
+ if ( linEdgeComputed ) *linEdgeComputed = meshComputed;
+
+ if ( meshComputed )
{
- int nbSegments = myNbLayerHypo->GetNumberOfLayers();
- myLayerPositions.resize( nbSegments - 1 );
- for ( int z = 1; z < nbSegments; ++z )
- myLayerPositions[ z - 1 ] = double( z )/ double( nbSegments );
- return true;
- }
- if ( myDistributionHypo ) {
- SMESH_Mesh * mesh = myHelper->GetMesh();
- if ( !TNodeDistributor::GetDistributor(*mesh)->Compute( myLayerPositions, pIn, pOut,
- *mesh, myDistributionHypo ))
+ vector< double > nodeParams;
+ GetNodeParamOnEdge( mesh->GetMeshDS(), linEdge, nodeParams );
+
+ if ( myLayerPositions.empty() )
{
- error( TNodeDistributor::GetDistributor(*mesh)->GetComputeError() );
- return false;
+ myLayerPositions.resize( nodeParams.size() - 2 );
+ }
+ else if ( myDistributionHypo || myNbLayerHypo )
+ {
+ // linEdge is computed by other algo. Check if there is a meshed face
+ // using nodes on linEdge
+ bool nodesAreUsed = false;
+ TopTools_ListIteratorOfListOfShape ancestIt = mesh->GetAncestors( linEdge );
+ for ( ; ancestIt.More() && !nodesAreUsed; ancestIt.Next() )
+ if ( ancestIt.Value().ShapeType() == TopAbs_FACE )
+ nodesAreUsed = (!mesh->GetSubMesh( ancestIt.Value() )->IsEmpty());
+ if ( !nodesAreUsed ) {
+ // rebuild them
+ mesh->GetSubMesh( linEdge )->ComputeStateEngine( SMESH_subMesh::CLEAN );
+ if ( linEdgeComputed ) *linEdgeComputed = false;
+ }
+ else if ( myLayerPositions.size() != nodeParams.size()-2 ) {
+ return error("Radial edge is meshed by other algorithm");
+ }
}
}
- RETURN_BAD_RESULT("Bad hypothesis");
+
+ return !myLayerPositions.empty();
}
if( aShape.ShapeType() != TopAbs_FACE ) {
return false;
}
- SMESH_subMesh * smf = aMesh.GetSubMesh(aShape);
- MapShapeNbElemsItr anIt = aResMap.find(smf);
- if( anIt != aResMap.end() ) {
+ SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
+ if( aResMap.count(sm) )
return false;
- }
- myLayerPositions.clear();
- gp_Pnt P0(0,0,0);
- gp_Pnt P1(100,0,0);
- computeLayerPositions(P0,P1);
-
- TopoDS_Edge E1,E2,E3;
- Handle(Geom_Curve) C1,C2,C3;
- double f1,l1,f2,l2,f3,l3;
- int nbe = 0;
- TopExp_Explorer exp;
- for ( exp.Init( aShape, TopAbs_EDGE ); exp.More(); exp.Next() ) {
- nbe++;
- TopoDS_Edge E = TopoDS::Edge( exp.Current() );
- if(nbe==1) {
- E1 = E;
- C1 = BRep_Tool::Curve(E,f1,l1);
- }
- else if(nbe==2) {
- E2 = E;
- C2 = BRep_Tool::Curve(E,f2,l2);
- }
- else if(nbe==3) {
- E3 = E;
- C3 = BRep_Tool::Curve(E,f3,l3);
- }
- }
+ vector<int>& aResVec =
+ aResMap.insert( make_pair(sm, vector<int>(SMDSEntity_Last,0))).first->second;
+
+ myHelper = new SMESH_MesherHelper( aMesh );
+ myHelper->SetSubShape( aShape );
+ auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper );
+
+ TNodeDistributor* algo1d = TNodeDistributor::GetDistributor(aMesh);
TopoDS_Edge CircEdge, LinEdge1, LinEdge2;
+ int nbe = analyseFace( aShape, CircEdge, LinEdge1, LinEdge2 );
+ if( nbe>3 || nbe < 1 || CircEdge.IsNull() )
+ return false;
+
+ Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));
+ if( aCirc.IsNull() )
+ return error(COMPERR_BAD_SHAPE);
+
+ gp_Pnt P0 = aCirc->Location();
+ gp_Pnt P1 = aCirc->Value(0.);
+ computeLayerPositions( P0, P1, LinEdge1 );
+
int nb0d=0, nb2d_tria=0, nb2d_quad=0;
- bool isQuadratic = false;
- if(nbe==1) {
+ bool isQuadratic = false, ok = true;
+ if(nbe==1)
+ {
// C1 must be a circle
- Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1);
- if( !aCirc.IsNull() ) {
- bool ok = _gen->Evaluate( aMesh, CircEdge, aResMap );
- if(ok) {
- SMESH_subMesh * sm = aMesh.GetSubMesh(CircEdge);
- MapShapeNbElemsItr anIt = aResMap.find(sm);
- vector<int> aVec = (*anIt).second;
- isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge];
- if(isQuadratic) {
- // main nodes
- nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
- // radial medium nodes
- nb0d += (aVec[SMDSEntity_Node]+1) * (myLayerPositions.size()+1);
- // other medium nodes
- nb0d += (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
- }
- else {
- nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
- }
- nb2d_tria = aVec[SMDSEntity_Node] + 1;
- nb2d_quad = nb0d;
+ ok = algo1d->EvaluateCircularEdge( aMesh, CircEdge, aResMap );
+ if(ok) {
+ const vector<int>& aVec = aResMap[aMesh.GetSubMesh(CircEdge)];
+ isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge];
+ if(isQuadratic) {
+ // main nodes
+ nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
+ // radial medium nodes
+ nb0d += (aVec[SMDSEntity_Node]+1) * (myLayerPositions.size()+1);
+ // other medium nodes
+ nb0d += (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
+ }
+ else {
+ nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
}
+ nb2d_tria = aVec[SMDSEntity_Node] + 1;
+ nb2d_quad = nb0d;
}
}
- else if(nbe==2) {
+ else if(nbe==2 && LinEdge1.Orientation() != TopAbs_INTERNAL)
+ {
// one curve must be a half of circle and other curve must be
// a segment of line
- Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(C1);
- while( !tc.IsNull() ) {
- C1 = tc->BasisCurve();
- tc = Handle(Geom_TrimmedCurve)::DownCast(C1);
- }
- tc = Handle(Geom_TrimmedCurve)::DownCast(C2);
- while( !tc.IsNull() ) {
- C2 = tc->BasisCurve();
- tc = Handle(Geom_TrimmedCurve)::DownCast(C2);
- }
- Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1);
- Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast(C2);
- CircEdge = E1;
- LinEdge1 = E2;
- double fp = f1;
- double lp = l1;
- if( aCirc.IsNull() ) {
- aCirc = Handle(Geom_Circle)::DownCast(C2);
- CircEdge = E2;
- LinEdge1 = E1;
- fp = f2;
- lp = l2;
- aLine = Handle(Geom_Line)::DownCast(C3);
- }
- bool ok = !aCirc.IsNull() && !aLine.IsNull();
+ double fp, lp;
+ Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge, &fp, &lp ));
if( fabs(fabs(lp-fp)-PI) > Precision::Confusion() ) {
// not half of circle
- ok = false;
+ return error(COMPERR_BAD_SHAPE);
+ }
+ Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
+ if( aLine.IsNull() ) {
+ // other curve not line
+ return error(COMPERR_BAD_SHAPE);
}
- SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1);
- MapShapeNbElemsItr anIt = aResMap.find(sm1);
- if( anIt!=aResMap.end() ) {
- ok = false;
+ ok = !aResMap.count( aMesh.GetSubMesh(LinEdge1) );
+ if ( !ok ) {
+ const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(LinEdge1) ];
+ ok = ( aVec[SMDSEntity_Node] == myLayerPositions.size() );
}
if(ok) {
- ok = _gen->Evaluate( aMesh, CircEdge, aResMap );
+ ok = algo1d->EvaluateCircularEdge( aMesh, CircEdge, aResMap );
}
if(ok) {
- SMESH_subMesh * sm = aMesh.GetSubMesh(CircEdge);
- MapShapeNbElemsItr anIt = aResMap.find(sm);
- vector<int> aVec = (*anIt).second;
- isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge];
+ const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(CircEdge) ];
+ isQuadratic = aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge];
if(isQuadratic) {
// main nodes
nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size();
nb2d_tria = aVec[SMDSEntity_Node] + 1;
nb2d_quad = nb2d_tria * myLayerPositions.size();
// add evaluation for edges
- vector<int> aResVec(SMDSEntity_Last);
- for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
+ vector<int> aResVec(SMDSEntity_Last,0);
if(isQuadratic) {
aResVec[SMDSEntity_Node] = 4*myLayerPositions.size() + 3;
aResVec[SMDSEntity_Quad_Edge] = 2*myLayerPositions.size() + 2;
aResVec[SMDSEntity_Node] = 2*myLayerPositions.size() + 1;
aResVec[SMDSEntity_Edge] = 2*myLayerPositions.size() + 2;
}
- sm = aMesh.GetSubMesh(LinEdge1);
- aResMap.insert(make_pair(sm,aResVec));
+ aResMap[ aMesh.GetSubMesh(LinEdge1) ] = aResVec;
}
}
- else { // nbe==3
+ else // nbe==3 or ( nbe==2 && linEdge is INTERNAL )
+ {
+ if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL )
+ LinEdge2 = LinEdge1;
+
// one curve must be a part of circle and other curves must be
// segments of line
- Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(C1);
- while( !tc.IsNull() ) {
- C1 = tc->BasisCurve();
- tc = Handle(Geom_TrimmedCurve)::DownCast(C1);
- }
- tc = Handle(Geom_TrimmedCurve)::DownCast(C2);
- while( !tc.IsNull() ) {
- C2 = tc->BasisCurve();
- tc = Handle(Geom_TrimmedCurve)::DownCast(C2);
- }
- tc = Handle(Geom_TrimmedCurve)::DownCast(C3);
- while( !tc.IsNull() ) {
- C3 = tc->BasisCurve();
- tc = Handle(Geom_TrimmedCurve)::DownCast(C3);
+ Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
+ Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast( getCurve( LinEdge2 ));
+ if( aLine1.IsNull() || aLine2.IsNull() ) {
+ // other curve not line
+ return error(COMPERR_BAD_SHAPE);
}
- Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1);
- Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast(C2);
- Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast(C3);
- CircEdge = E1;
- LinEdge1 = E2;
- LinEdge2 = E3;
- double fp = f1;
- double lp = l1;
- if( aCirc.IsNull() ) {
- aCirc = Handle(Geom_Circle)::DownCast(C2);
- CircEdge = E2;
- LinEdge1 = E3;
- LinEdge2 = E1;
- fp = f2;
- lp = l2;
- aLine1 = Handle(Geom_Line)::DownCast(C3);
- aLine2 = Handle(Geom_Line)::DownCast(C1);
- if( aCirc.IsNull() ) {
- aCirc = Handle(Geom_Circle)::DownCast(C3);
- CircEdge = E3;
- LinEdge1 = E1;
- LinEdge2 = E2;
- fp = f3;
- lp = l3;
- aLine1 = Handle(Geom_Line)::DownCast(C1);
- aLine2 = Handle(Geom_Line)::DownCast(C2);
+ int nbLayers = myLayerPositions.size();
+ computeLayerPositions( P0, P1, LinEdge2 );
+ if ( nbLayers != myLayerPositions.size() )
+ return error("Different hypotheses apply to radial edges");
+
+ bool ok = !aResMap.count( aMesh.GetSubMesh(LinEdge1));
+ if ( !ok ) {
+ if ( myDistributionHypo || myNbLayerHypo )
+ ok = true; // override other 1d hyps
+ else {
+ const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(LinEdge1) ];
+ ok = ( aVec[SMDSEntity_Node] == myLayerPositions.size() );
}
}
- bool ok = !aCirc.IsNull() && !aLine1.IsNull() && !aLine1.IsNull();
- SMESH_subMesh* sm = aMesh.GetSubMesh(LinEdge1);
- MapShapeNbElemsItr anIt = aResMap.find(sm);
- if( anIt!=aResMap.end() ) {
- ok = false;
- }
- sm = aMesh.GetSubMesh(LinEdge2);
- anIt = aResMap.find(sm);
- if( anIt!=aResMap.end() ) {
- ok = false;
+ if( ok && aResMap.count( aMesh.GetSubMesh(LinEdge2) )) {
+ if ( myDistributionHypo || myNbLayerHypo )
+ ok = true; // override other 1d hyps
+ else {
+ const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(LinEdge2) ];
+ ok = ( aVec[SMDSEntity_Node] == myLayerPositions.size() );
+ }
}
if(ok) {
- ok = _gen->Evaluate( aMesh, CircEdge, aResMap );
+ ok = algo1d->EvaluateCircularEdge( aMesh, CircEdge, aResMap );
}
if(ok) {
- SMESH_subMesh * sm = aMesh.GetSubMesh(CircEdge);
- MapShapeNbElemsItr anIt = aResMap.find(sm);
- vector<int> aVec = (*anIt).second;
+ const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(CircEdge) ];
isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge];
if(isQuadratic) {
// main nodes
nb2d_tria = aVec[SMDSEntity_Node] + 1;
nb2d_quad = nb2d_tria * myLayerPositions.size();
// add evaluation for edges
- vector<int> aResVec(SMDSEntity_Last);
- for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
+ vector<int> aResVec(SMDSEntity_Last, 0);
if(isQuadratic) {
aResVec[SMDSEntity_Node] = 2*myLayerPositions.size() + 1;
aResVec[SMDSEntity_Quad_Edge] = myLayerPositions.size() + 1;
aResVec[SMDSEntity_Edge] = myLayerPositions.size() + 1;
}
sm = aMesh.GetSubMesh(LinEdge1);
- aResMap.insert(make_pair(sm,aResVec));
+ aResMap[sm] = aResVec;
sm = aMesh.GetSubMesh(LinEdge2);
- aResMap.insert(make_pair(sm,aResVec));
+ aResMap[sm] = aResVec;
}
}
- vector<int> aResVec(SMDSEntity_Last);
- for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
- SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
-
- //cout<<"nb0d = "<<nb0d<<" nb2d_tria = "<<nb2d_tria<<" nb2d_quad = "<<nb2d_quad<<endl;
if(nb0d>0) {
aResVec[0] = nb0d;
if(isQuadratic) {
aResVec[SMDSEntity_Triangle] = nb2d_tria;
aResVec[SMDSEntity_Quadrangle] = nb2d_quad;
}
- aResMap.insert(make_pair(sm,aResVec));
return true;
}
// invalid case
- aResMap.insert(make_pair(sm,aResVec));
+ sm = aMesh.GetSubMesh(aShape);
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,
"Submesh can not be evaluated",this));