# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
import logging
-from daCore import BasicObjects
+from daCore import BasicObjects, NumericObjects
import numpy
# ==============================================================================
if self._toStore("MahalanobisConsistency"):
self.StoredVariables["MahalanobisConsistency"].store( float( 2.*J/d.size ) )
if self._toStore("SimulationQuantiles"):
- nech = self._parameters["NumberOfSamplesForQuantiles"]
- EXr = None
- YfQ = None
- for i in range(nech):
- if self._parameters["SimulationForQuantiles"] == "Linear":
- dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
- dYr = numpy.matrix(numpy.ravel( Hm * dXr )).T
- Yr = HXa + dYr
- if self._toStore("SampledStateForQuantiles"): Xr = Xa+dXr
- elif self._parameters["SimulationForQuantiles"] == "NonLinear":
- Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
- Yr = numpy.matrix(numpy.ravel( Hm * Xr )).T
- if YfQ is None:
- YfQ = Yr
- if self._toStore("SampledStateForQuantiles"): EXr = numpy.ravel(Xr)
- else:
- YfQ = numpy.hstack((YfQ,Yr))
- if self._toStore("SampledStateForQuantiles"): EXr = numpy.vstack((EXr,numpy.ravel(Xr)))
- YfQ.sort(axis=-1)
- YQ = None
- for quantile in self._parameters["Quantiles"]:
- if not (0. <= float(quantile) <= 1.): continue
- indice = int(nech * float(quantile) - 1./nech)
- if YQ is None: YQ = YfQ[:,indice]
- else: YQ = numpy.hstack((YQ,YfQ[:,indice]))
- self.StoredVariables["SimulationQuantiles"].store( YQ )
- if self._toStore("SampledStateForQuantiles"):
- self.StoredVariables["SampledStateForQuantiles"].store( EXr.T )
+ H = HO["Direct"].appliedTo
+ NumericObjects.QuantilesEstimations(self, A, Xa, HXa, H, Hm)
if self._toStore("SimulatedObservationAtBackground"):
self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
if self._toStore("SimulatedObservationAtCurrentState"):
#
return OutputCovOrEns
+# ==============================================================================
+def QuantilesEstimations(selfA, A, Xa, HXa = None, Hm = None, HtM = None):
+ "Estimation des quantiles a posteriori (selfA est modifié)"
+ nbsamples = selfA._parameters["NumberOfSamplesForQuantiles"]
+ #
+ # Échantillonnage des états
+ YfQ = None
+ EXr = None
+ if selfA._parameters["SimulationForQuantiles"] == "Linear":
+ HXa = numpy.matrix(numpy.ravel( HXa )).T
+ for i in range(nbsamples):
+ if selfA._parameters["SimulationForQuantiles"] == "Linear" and HtM is not None:
+ dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
+ dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
+ Yr = HXa + dYr
+ if selfA._toStore("SampledStateForQuantiles"): Xr = Xa+dXr
+ elif selfA._parameters["SimulationForQuantiles"] == "NonLinear" and Hm is not None:
+ Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
+ Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
+ if YfQ is None:
+ YfQ = Yr
+ if selfA._toStore("SampledStateForQuantiles"): EXr = numpy.ravel(Xr)
+ else:
+ YfQ = numpy.hstack((YfQ,Yr))
+ if selfA._toStore("SampledStateForQuantiles"): EXr = numpy.vstack((EXr,numpy.ravel(Xr)))
+ #
+ # Extraction des quantiles
+ YfQ.sort(axis=-1)
+ YQ = None
+ for quantile in selfA._parameters["Quantiles"]:
+ if not (0. <= float(quantile) <= 1.): continue
+ indice = int(nbsamples * float(quantile) - 1./nbsamples)
+ if YQ is None: YQ = YfQ[:,indice]
+ else: YQ = numpy.hstack((YQ,YfQ[:,indice]))
+ selfA.StoredVariables["SimulationQuantiles"].store( YQ )
+ if selfA._toStore("SampledStateForQuantiles"):
+ selfA.StoredVariables["SampledStateForQuantiles"].store( EXr.T )
+ #
+ return 0
+
# ==============================================================================
def enks(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="EnKS16-KalmanFilterFormula"):
"""
if selfA._toStore("MahalanobisConsistency"):
selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
if selfA._toStore("SimulationQuantiles"):
- nech = selfA._parameters["NumberOfSamplesForQuantiles"]
- HXa = numpy.matrix(numpy.ravel( HXa )).T
- EXr = None
- YfQ = None
- for i in range(nech):
- if selfA._parameters["SimulationForQuantiles"] == "Linear":
- dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
- dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
- Yr = HXa + dYr
- if selfA._toStore("SampledStateForQuantiles"): Xr = Xa+dXr
- elif selfA._parameters["SimulationForQuantiles"] == "NonLinear":
- Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
- Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
- if YfQ is None:
- YfQ = Yr
- if selfA._toStore("SampledStateForQuantiles"): EXr = numpy.ravel(Xr)
- else:
- YfQ = numpy.hstack((YfQ,Yr))
- if selfA._toStore("SampledStateForQuantiles"): EXr = numpy.vstack((EXr,numpy.ravel(Xr)))
- YfQ.sort(axis=-1)
- YQ = None
- for quantile in selfA._parameters["Quantiles"]:
- if not (0. <= float(quantile) <= 1.): continue
- indice = int(nech * float(quantile) - 1./nech)
- if YQ is None: YQ = YfQ[:,indice]
- else: YQ = numpy.hstack((YQ,YfQ[:,indice]))
- selfA.StoredVariables["SimulationQuantiles"].store( YQ )
- if selfA._toStore("SampledStateForQuantiles"):
- selfA.StoredVariables["SampledStateForQuantiles"].store( EXr.T )
+ QuantilesEstimations(selfA, A, Xa, HXa, Hm, HtM)
if selfA._toStore("SimulatedObservationAtBackground"):
selfA.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
if selfA._toStore("SimulatedObservationAtOptimum"):