if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
d = d - Cm * Un
#
- _A = R + Ht * Pn_predicted * Ha
+ _A = R + numpy.dot(Ht, Pn_predicted * Ha)
_u = numpy.linalg.solve( _A , d )
Xn = Xn_predicted + Pn_predicted * Ha * _u
- Kn = Pn_predicted * Ha * (R + Ht * Pn_predicted * Ha).I
+ Kn = Pn_predicted * Ha * (R + numpy.dot(Ht, Pn_predicted * Ha)).I
Pn = Pn_predicted - Kn * Ht * Pn_predicted
#
self.StoredVariables["Analysis"].store( Xn.A1 )
if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
d = d - Cm * Un
#
- _A = R + Ht * Pn_predicted * Ha
+ _A = R + numpy.dot(Ht, Pn_predicted * Ha)
_u = numpy.linalg.solve( _A , d )
Xn = Xn_predicted + Pn_predicted * Ha * _u
- Kn = Pn_predicted * Ha * (R + Ht * Pn_predicted * Ha).I
+ Kn = Pn_predicted * Ha * (R + numpy.dot(Ht, Pn_predicted * Ha)).I
Pn = Pn_predicted - Kn * Ht * Pn_predicted
#
self.StoredVariables["Analysis"].store( Xn.A1 )
__alc = False
__HxV = None
for i in range(min(len(self.__listOPCV),self.__lenghtOR)-1,-1,-1):
- if xValue.size != self.__listOPCV[i][0].size:
+ if not hasattr(xValue, 'size') or (xValue.size != self.__listOPCV[i][0].size):
# logging.debug("CM Différence de la taille %s de X et de celle %s du point %i déjà calculé", xValue.shape,i,self.__listOPCP[i].shape)
continue
if numpy.linalg.norm(numpy.ravel(xValue) - self.__listOPCV[i][0]) < self.__tolerBP * self.__listOPCV[i][2]:
test6711
test6901
test6902
+ test6903
)
include $(top_srcdir)/adm_local/make_common_starter.am
-EXTRA_DIST = test1001 test1002 test6701 test6702 test6703 test6901 test6902 CTestTestfileInstall.cmake.in
+EXTRA_DIST = test1001 test1002 test6701 test6702 test6703 test6901 test6902 test6903 CTestTestfileInstall.cmake.in
DIR = $(top_srcdir)/test/
cp -R $(DIR)test6711 $(SALOMETESTDIR)
cp -R $(DIR)test6901 $(SALOMETESTDIR)
cp -R $(DIR)test6902 $(SALOMETESTDIR)
+ cp -R $(DIR)test6903 $(SALOMETESTDIR)
cp $(DIR)CTestTestfileInstall.cmake.in $(SALOMETESTDIR)/CTestTestfile.cmake
uninstall-local:
rm -rf $(SALOMETESTDIR)/test6711
rm -rf $(SALOMETESTDIR)/test6901
rm -rf $(SALOMETESTDIR)/test6902
+ rm -rf $(SALOMETESTDIR)/test6903
rm $(SALOMETESTDIR)/CTestTestfile.cmake
--- /dev/null
+# Copyright (C) 2008-2018 EDF R&D
+#
+# This file is part of SALOME ADAO module
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License, or (at your option) any later version.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+
+SET(TEST_NAMES
+ Verification_des_mono_et_multi_fonctions_A
+ Verification_des_mono_et_multi_fonctions_B
+ Verification_des_mono_et_multi_fonctions_C
+ Verification_des_mono_et_multi_fonctions_D
+ Verification_des_mono_et_multi_fonctions_E
+ Verification_des_mono_et_multi_fonctions_F
+ )
+
+FOREACH(tfile ${TEST_NAMES})
+ SET(TEST_NAME ADAO_${tfile})
+ ADD_TEST(${TEST_NAME} python ${tfile}.py)
+ #ADD_TEST(${TEST_NAME} python ${SALOME_TEST_DRIVER} ${TIMEOUT} ${tfile}.py)
+ SET_TESTS_PROPERTIES(${TEST_NAME} PROPERTIES LABELS "${COMPONENT_NAME}")
+ENDFOREACH()
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2018 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+"Verification du fonctionnement correct d'entrees en mono ou multi-fonctions"
+
+# ==============================================================================
+import numpy, sys
+from adao import adaoBuilder
+
+M = numpy.matrix("1 0 0;0 2 0;0 0 3")
+def MonoFonction( x ):
+ return M * numpy.asmatrix(numpy.ravel( x )).T
+
+def MultiFonction( xserie ):
+ _mulHX = []
+ for _subX in xserie:
+ _mulHX.append( M * numpy.asmatrix(numpy.ravel( _subX )).T )
+ return _mulHX
+
+# ==============================================================================
+def test1():
+ """
+ Verification du fonctionnement identique pour les algorithmes non-temporels
+ en utilisant une fonction lineaire et carree
+ """
+ print(test1.__doc__)
+ Xa = {}
+ #
+ for algo in ("3DVAR", "Blue", "ExtendedBlue", "NonLinearLeastSquares", "DerivativeFreeOptimization"):
+ print("")
+ msg = "Algorithme en test en MonoFonction : %s"%algo
+ print(msg+"\n"+"-"*len(msg))
+ #
+ adaopy = adaoBuilder.New()
+ adaopy.setAlgorithmParameters(Algorithm=algo, Parameters={"EpsilonMinimumExponent":-10, "Bounds":[[-1,10.],[-1,10.],[-1,10.]]})
+ adaopy.setBackground (Vector = [0,1,2])
+ adaopy.setBackgroundError (ScalarSparseMatrix = 1.)
+ adaopy.setObservation (Vector = [0.5,1.5,2.5])
+ adaopy.setObservationError (DiagonalSparseMatrix = "1 1 1")
+ adaopy.setObservationOperator(OneFunction = MonoFonction)
+ adaopy.setObserver("Analysis",Template="ValuePrinter")
+ adaopy.execute()
+ Xa["Mono/"+algo] = adaopy.get("Analysis")[-1]
+ del adaopy
+ #
+ for algo in ("3DVAR", "Blue", "ExtendedBlue", "NonLinearLeastSquares", "DerivativeFreeOptimization"):
+ print("")
+ msg = "Algorithme en test en MultiFonction : %s"%algo
+ print(msg+"\n"+"-"*len(msg))
+ #
+ adaopy = adaoBuilder.New()
+ adaopy.setAlgorithmParameters(Algorithm=algo, Parameters={"EpsilonMinimumExponent":-10, "Bounds":[[-1,10.],[-1,10.],[-1,10.]]})
+ adaopy.setBackground (Vector = [0,1,2])
+ adaopy.setBackgroundError (ScalarSparseMatrix = 1.)
+ adaopy.setObservation (Vector = [0.5,1.5,2.5])
+ adaopy.setObservationError (DiagonalSparseMatrix = "1 1 1")
+ adaopy.setObservationOperator(OneFunction = MultiFonction, InputAsMF = True)
+ adaopy.setObserver("Analysis",Template="ValuePrinter")
+ adaopy.execute()
+ Xa["Multi/"+algo] = adaopy.get("Analysis")[-1]
+ del adaopy
+ #
+ print("")
+ msg = "Tests des ecarts attendus :"
+ print(msg+"\n"+"="*len(msg))
+ for algo in ("3DVAR", "Blue", "ExtendedBlue", "NonLinearLeastSquares", "DerivativeFreeOptimization"):
+ verify_similarity_of_algo_results(("Multi/"+algo, "Mono/"+algo), Xa, 1.e-20)
+ print(" Les resultats obtenus sont corrects.")
+ print("")
+ #
+ return 0
+
+# ==============================================================================
+def almost_equal_vectors(v1, v2, precision = 1.e-15, msg = ""):
+ """Comparaison de deux vecteurs"""
+ print(" Difference maximale %s: %.2e"%(msg, max(abs(v2 - v1))))
+ return max(abs(v2 - v1)) < precision
+
+def verify_similarity_of_algo_results(serie = [], Xa = {}, precision = 1.e-15):
+ print(" Comparaisons :")
+ for algo1 in serie:
+ for algo2 in serie:
+ if algo1 is algo2: break
+ assert almost_equal_vectors( Xa[algo1], Xa[algo2], precision, "entre %s et %s "%(algo1, algo2) )
+ print(" Algorithmes dont les resultats sont similaires a %.0e : %s\n"%(precision, serie,))
+ sys.stdout.flush()
+
+#===============================================================================
+if __name__ == "__main__":
+ print('\nAUTODIAGNOSTIC\n')
+ test1()
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2018 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+"Verification du fonctionnement correct d'entrees en mono ou multi-fonctions"
+
+# ==============================================================================
+import numpy, sys
+from adao import adaoBuilder
+
+M = numpy.matrix("1 0 0;0 2 0;0 0 3")
+def MonoFonction( x ):
+ return M * numpy.asmatrix(numpy.ravel( x )).T
+
+def MultiFonction( xserie ):
+ _mulHX = []
+ for _subX in xserie:
+ _mulHX.append( M * numpy.asmatrix(numpy.ravel( _subX )).T )
+ return _mulHX
+
+# ==============================================================================
+def test1():
+ """
+ Verification du fonctionnement identique pour les algorithmes temporels
+ en utilisant une fonction lineaire et carree
+ """
+ print(test1.__doc__)
+ Xa = {}
+ #
+ for algo in ("ExtendedKalmanFilter", "KalmanFilter", "EnsembleKalmanFilter", "UnscentedKalmanFilter", "4DVAR"):
+ print("")
+ msg = "Algorithme en test en MonoFonction : %s"%algo
+ print(msg+"\n"+"-"*len(msg))
+ #
+ adaopy = adaoBuilder.New()
+ adaopy.setAlgorithmParameters(Algorithm=algo, Parameters={"EpsilonMinimumExponent":-10, "SetSeed":1000})
+ adaopy.setBackground (Vector = [0,1,2])
+ adaopy.setBackgroundError (ScalarSparseMatrix = 1.)
+ adaopy.setObservation (Vector = [0.5,1.5,2.5])
+ adaopy.setObservationError (DiagonalSparseMatrix = "1 1 1")
+ adaopy.setObservationOperator(OneFunction = MonoFonction)
+ adaopy.setEvolutionError (ScalarSparseMatrix = 1.)
+ adaopy.setEvolutionModel (Matrix = "1 0 0;0 1 0;0 0 1")
+ adaopy.setObserver("Analysis",Template="ValuePrinter")
+ adaopy.execute()
+ Xa["Mono/"+algo] = adaopy.get("Analysis")[-1]
+ del adaopy
+ #
+ for algo in ("ExtendedKalmanFilter", "KalmanFilter", "EnsembleKalmanFilter", "UnscentedKalmanFilter", "4DVAR"):
+ print("")
+ msg = "Algorithme en test en MultiFonction : %s"%algo
+ print(msg+"\n"+"-"*len(msg))
+ #
+ adaopy = adaoBuilder.New()
+ adaopy.setAlgorithmParameters(Algorithm=algo, Parameters={"EpsilonMinimumExponent":-10, "SetSeed":1000})
+ adaopy.setBackground (Vector = [0,1,2])
+ adaopy.setBackgroundError (ScalarSparseMatrix = 1.)
+ adaopy.setObservation (Vector = [0.5,1.5,2.5])
+ adaopy.setObservationError (DiagonalSparseMatrix = "1 1 1")
+ adaopy.setObservationOperator(OneFunction = MultiFonction, InputAsMF = True)
+ adaopy.setEvolutionError (ScalarSparseMatrix = 1.)
+ adaopy.setEvolutionModel (Matrix = "1 0 0;0 1 0;0 0 1")
+ adaopy.setObserver("Analysis",Template="ValuePrinter")
+ adaopy.execute()
+ Xa["Multi/"+algo] = adaopy.get("Analysis")[-1]
+ del adaopy
+ #
+ print("")
+ msg = "Tests des ecarts attendus :"
+ print(msg+"\n"+"="*len(msg))
+ for algo in ("ExtendedKalmanFilter", "KalmanFilter", "EnsembleKalmanFilter", "UnscentedKalmanFilter", "4DVAR"):
+ verify_similarity_of_algo_results(("Multi/"+algo, "Mono/"+algo), Xa, 1.e-20)
+ print(" Les resultats obtenus sont corrects.")
+ print("")
+ #
+ return 0
+
+# ==============================================================================
+def almost_equal_vectors(v1, v2, precision = 1.e-15, msg = ""):
+ """Comparaison de deux vecteurs"""
+ print(" Difference maximale %s: %.2e"%(msg, max(abs(v2 - v1))))
+ return max(abs(v2 - v1)) < precision
+
+def verify_similarity_of_algo_results(serie = [], Xa = {}, precision = 1.e-15):
+ print(" Comparaisons :")
+ for algo1 in serie:
+ for algo2 in serie:
+ if algo1 is algo2: break
+ assert almost_equal_vectors( Xa[algo1], Xa[algo2], precision, "entre %s et %s "%(algo1, algo2) )
+ print(" Algorithmes dont les resultats sont similaires a %.0e : %s\n"%(precision, serie,))
+ sys.stdout.flush()
+
+#===============================================================================
+if __name__ == "__main__":
+ print('\nAUTODIAGNOSTIC\n')
+ test1()
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2018 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+"Verification du fonctionnement correct d'entrees en mono ou multi-fonctions"
+
+# ==============================================================================
+import numpy, sys
+from adao import adaoBuilder
+
+M = numpy.matrix("1 0 0;0 2 0;0 0 3")
+def MonoFonction( x ):
+ return M * numpy.asmatrix(numpy.ravel( x )).T
+
+def MultiFonction( xserie ):
+ _mulHX = []
+ for _subX in xserie:
+ _mulHX.append( M * numpy.asmatrix(numpy.ravel( _subX )).T )
+ return _mulHX
+
+# ==============================================================================
+def test1():
+ """
+ Verification du fonctionnement identique pour les algorithmes autres
+ en utilisant une fonction lineaire et carree
+ """
+ print(test1.__doc__)
+ Xa = {}
+ #
+ for algo in ("ParticleSwarmOptimization", "QuantileRegression", ):
+ print("")
+ msg = "Algorithme en test en MonoFonction : %s"%algo
+ print(msg+"\n"+"-"*len(msg))
+ #
+ adaopy = adaoBuilder.New()
+ adaopy.setAlgorithmParameters(Algorithm=algo, Parameters={"BoxBounds":3*[[-1,3]], "SetSeed":1000})
+ adaopy.setBackground (Vector = [0,1,2])
+ adaopy.setBackgroundError (ScalarSparseMatrix = 1.)
+ adaopy.setObservation (Vector = [0.5,1.5,2.5])
+ adaopy.setObservationError (DiagonalSparseMatrix = "1 2 3")
+ adaopy.setObservationOperator(OneFunction = MonoFonction)
+ adaopy.setObserver("Analysis",Template="ValuePrinter")
+ adaopy.execute()
+ Xa["Mono/"+algo] = adaopy.get("Analysis")[-1]
+ del adaopy
+ #
+ for algo in ("ParticleSwarmOptimization", "QuantileRegression", ):
+ print("")
+ msg = "Algorithme en test en MultiFonction : %s"%algo
+ print(msg+"\n"+"-"*len(msg))
+ #
+ adaopy = adaoBuilder.New()
+ adaopy.setAlgorithmParameters(Algorithm=algo, Parameters={"BoxBounds":3*[[-1,3]], "SetSeed":1000})
+ adaopy.setBackground (Vector = [0,1,2])
+ adaopy.setBackgroundError (ScalarSparseMatrix = 1.)
+ adaopy.setObservation (Vector = [0.5,1.5,2.5])
+ adaopy.setObservationError (DiagonalSparseMatrix = "1 2 3")
+ adaopy.setObservationOperator(OneFunction = MultiFonction, InputAsMF = True)
+ adaopy.setObserver("Analysis",Template="ValuePrinter")
+ adaopy.execute()
+ Xa["Multi/"+algo] = adaopy.get("Analysis")[-1]
+ del adaopy
+ #
+ print("")
+ msg = "Tests des ecarts attendus :"
+ print(msg+"\n"+"="*len(msg))
+ for algo in ("ParticleSwarmOptimization", "QuantileRegression"):
+ verify_similarity_of_algo_results(("Multi/"+algo, "Mono/"+algo), Xa, 1.e-20)
+ print(" Les resultats obtenus sont corrects.")
+ print("")
+ #
+ return 0
+
+# ==============================================================================
+def almost_equal_vectors(v1, v2, precision = 1.e-15, msg = ""):
+ """Comparaison de deux vecteurs"""
+ print(" Difference maximale %s: %.2e"%(msg, max(abs(v2 - v1))))
+ return max(abs(v2 - v1)) < precision
+
+def verify_similarity_of_algo_results(serie = [], Xa = {}, precision = 1.e-15):
+ print(" Comparaisons :")
+ for algo1 in serie:
+ for algo2 in serie:
+ if algo1 is algo2: break
+ assert almost_equal_vectors( Xa[algo1], Xa[algo2], precision, "entre %s et %s "%(algo1, algo2) )
+ print(" Algorithmes dont les resultats sont similaires a %.0e : %s\n"%(precision, serie,))
+ sys.stdout.flush()
+
+#===============================================================================
+if __name__ == "__main__":
+ print('\nAUTODIAGNOSTIC\n')
+ test1()
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2018 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+"Verification du fonctionnement correct d'entrees en mono ou multi-fonctions"
+
+# ==============================================================================
+import numpy, sys
+from adao import adaoBuilder
+
+def ElementaryFunction01( InputArgument ):
+ """
+ Exemple de fonction non-lineaire et non-carree
+
+ L'argument en entree est un vecteur au sens mathematique, c'est-a-dire
+ une suite ordonnee de valeurs reelles. Au sens informatique, c'est tout
+ objet qui peut se transformer en une serie continue unidimensionnelle de
+ valeurs reelles. L'argument en sortie est un vecteur Numpy 1D.
+ """
+ #
+ if isinstance( InputArgument, (numpy.ndarray, numpy.matrix, list, tuple) ) or type(InputArgument).__name__ in ('generator','range'):
+ _subX = numpy.ravel(InputArgument)
+ else:
+ raise ValueError("ElementaryFunction01 unkown input type: %s"%(type(InputArgument).__name__,))
+ #
+ _OutputArgument = []
+ _OutputArgument.extend( (-1 + _subX).tolist() )
+ _OutputArgument.extend( numpy.cos(_subX/2).tolist() )
+ _OutputArgument.extend( numpy.exp((3.14 * _subX)).tolist() )
+ #
+ return numpy.ravel( _OutputArgument )
+
+def MultiFonction01( xSerie ):
+ """
+ Exemple de multi-fonction
+
+ Pour une liste ordonnee de vecteurs en entree, renvoie en sortie la liste
+ correspondante de valeurs de la fonction en argument
+ """
+ if not (isinstance( xSerie, (list, tuple) ) or type(xSerie).__name__ in ('generator','range')):
+ raise ValueError("MultiFonction01 unkown input type: %s"%(type(xSerie),))
+ #
+ _ySerie = []
+ for _subX in xSerie:
+ _ySerie.append( ElementaryFunction01( _subX ) )
+ #
+ return _ySerie
+
+# ==============================================================================
+def test1():
+ """
+ Verification du fonctionnement identique pour les algorithmes non-temporels
+ en utilisant une fonction non-lineaire et non-carree
+ """
+ print(test1.__doc__)
+ Xa = {}
+ #
+ for algo in ("3DVAR", "Blue", "ExtendedBlue", "NonLinearLeastSquares", "DerivativeFreeOptimization"):
+ print("")
+ msg = "Algorithme en test en MonoFonction : %s"%algo
+ print(msg+"\n"+"-"*len(msg))
+ #
+ adaopy = adaoBuilder.New()
+ adaopy.setAlgorithmParameters(Algorithm=algo, Parameters={"EpsilonMinimumExponent":-10, "Bounds":[[-1,10.],[-1,10.],[-1,10.]]})
+ adaopy.setBackground (Vector = [0,1,2])
+ adaopy.setBackgroundError (ScalarSparseMatrix = 1.)
+ adaopy.setObservation (Vector = [0.5,1.5,2.5,0.5,1.5,2.5,0.5,1.5,2.5])
+ adaopy.setObservationError (DiagonalSparseMatrix = "1 1 1 1 1 1 1 1 1")
+ adaopy.setObservationOperator(OneFunction = ElementaryFunction01)
+ adaopy.setObserver("Analysis",Template="ValuePrinter")
+ adaopy.execute()
+ Xa["Mono/"+algo] = adaopy.get("Analysis")[-1]
+ del adaopy
+ #
+ for algo in ("3DVAR", "Blue", "ExtendedBlue", "NonLinearLeastSquares", "DerivativeFreeOptimization"):
+ print("")
+ msg = "Algorithme en test en MultiFonction : %s"%algo
+ print(msg+"\n"+"-"*len(msg))
+ #
+ adaopy = adaoBuilder.New()
+ adaopy.setAlgorithmParameters(Algorithm=algo, Parameters={"EpsilonMinimumExponent":-10, "Bounds":[[-1,10.],[-1,10.],[-1,10.]]})
+ adaopy.setBackground (Vector = [0,1,2])
+ adaopy.setBackgroundError (ScalarSparseMatrix = 1.)
+ adaopy.setObservation (Vector = [0.5,1.5,2.5,0.5,1.5,2.5,0.5,1.5,2.5])
+ adaopy.setObservationError (DiagonalSparseMatrix = "1 1 1 1 1 1 1 1 1")
+ adaopy.setObservationOperator(OneFunction = MultiFonction01, InputAsMF = True)
+ adaopy.setObserver("Analysis",Template="ValuePrinter")
+ adaopy.execute()
+ Xa["Multi/"+algo] = adaopy.get("Analysis")[-1]
+ del adaopy
+ #
+ print("")
+ msg = "Tests des ecarts attendus :"
+ print(msg+"\n"+"="*len(msg))
+ for algo in ("3DVAR", "Blue", "ExtendedBlue", "NonLinearLeastSquares", "DerivativeFreeOptimization"):
+ verify_similarity_of_algo_results(("Multi/"+algo, "Mono/"+algo), Xa, 1.e-20)
+ print(" Les resultats obtenus sont corrects.")
+ print("")
+ #
+ return 0
+
+# ==============================================================================
+def almost_equal_vectors(v1, v2, precision = 1.e-15, msg = ""):
+ """Comparaison de deux vecteurs"""
+ print(" Difference maximale %s: %.2e"%(msg, max(abs(v2 - v1))))
+ return max(abs(v2 - v1)) < precision
+
+def verify_similarity_of_algo_results(serie = [], Xa = {}, precision = 1.e-15):
+ print(" Comparaisons :")
+ for algo1 in serie:
+ for algo2 in serie:
+ if algo1 is algo2: break
+ assert almost_equal_vectors( Xa[algo1], Xa[algo2], precision, "entre %s et %s "%(algo1, algo2) )
+ print(" Algorithmes dont les resultats sont similaires a %.0e : %s\n"%(precision, serie,))
+ sys.stdout.flush()
+
+#===============================================================================
+if __name__ == "__main__":
+ print('\nAUTODIAGNOSTIC\n')
+ test1()
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2018 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+"Verification du fonctionnement correct d'entrees en mono ou multi-fonctions"
+
+# ==============================================================================
+import numpy, sys
+from adao import adaoBuilder
+
+def ElementaryFunction01( InputArgument ):
+ """
+ Exemple de fonction non-lineaire et non-carree
+
+ L'argument en entree est un vecteur au sens mathematique, c'est-a-dire
+ une suite ordonnee de valeurs reelles. Au sens informatique, c'est tout
+ objet qui peut se transformer en une serie continue unidimensionnelle de
+ valeurs reelles. L'argument en sortie est un vecteur Numpy 1D.
+ """
+ #
+ if isinstance( InputArgument, (numpy.ndarray, numpy.matrix, list, tuple) ) or type(InputArgument).__name__ in ('generator','range'):
+ _subX = numpy.ravel(InputArgument)
+ else:
+ raise ValueError("ElementaryFunction01 unkown input type: %s"%(type(InputArgument).__name__,))
+ #
+ _OutputArgument = []
+ _OutputArgument.extend( (-1 + _subX).tolist() )
+ _OutputArgument.extend( numpy.cos(_subX/2).tolist() )
+ _OutputArgument.extend( numpy.exp((3.14 * _subX)).tolist() )
+ #
+ return numpy.ravel( _OutputArgument )
+
+def MultiFonction01( xSerie ):
+ """
+ Exemple de multi-fonction
+
+ Pour une liste ordonnee de vecteurs en entree, renvoie en sortie la liste
+ correspondante de valeurs de la fonction en argument
+ """
+ if not (isinstance( xSerie, (list, tuple) ) or type(xSerie).__name__ in ('generator','range')):
+ raise ValueError("MultiFonction01 unkown input type: %s"%(type(xSerie),))
+ #
+ _ySerie = []
+ for _subX in xSerie:
+ _ySerie.append( ElementaryFunction01( _subX ) )
+ #
+ return _ySerie
+
+# ==============================================================================
+def test1():
+ """
+ Verification du fonctionnement identique pour les algorithmes temporels
+ en utilisant une fonction non-lineaire et non-carree
+ """
+ print(test1.__doc__)
+ Xa = {}
+ #
+ for algo in ("ExtendedKalmanFilter", "KalmanFilter", "EnsembleKalmanFilter", "UnscentedKalmanFilter", "4DVAR"):
+ print("")
+ msg = "Algorithme en test en MonoFonction : %s"%algo
+ print(msg+"\n"+"-"*len(msg))
+ #
+ adaopy = adaoBuilder.New()
+ adaopy.setAlgorithmParameters(Algorithm=algo, Parameters={"EpsilonMinimumExponent":-10, "SetSeed":1000})
+ adaopy.setBackground (Vector = [0,1,2])
+ adaopy.setBackgroundError (ScalarSparseMatrix = 1.)
+ adaopy.setObservation (Vector = [0.5,1.5,2.5,0.5,1.5,2.5,0.5,1.5,2.5])
+ adaopy.setObservationError (DiagonalSparseMatrix = "1 1 1 1 1 1 1 1 1")
+ adaopy.setObservationOperator(OneFunction = ElementaryFunction01)
+ adaopy.setEvolutionError (ScalarSparseMatrix = 1.)
+ adaopy.setEvolutionModel (Matrix = "1 0 0;0 1 0;0 0 1")
+ adaopy.setObserver("Analysis",Template="ValuePrinter")
+ adaopy.execute()
+ Xa["Mono/"+algo] = adaopy.get("Analysis")[-1]
+ del adaopy
+ #
+ for algo in ("ExtendedKalmanFilter", "KalmanFilter", "EnsembleKalmanFilter", "UnscentedKalmanFilter", "4DVAR"):
+ print("")
+ msg = "Algorithme en test en MultiFonction : %s"%algo
+ print(msg+"\n"+"-"*len(msg))
+ #
+ adaopy = adaoBuilder.New()
+ adaopy.setAlgorithmParameters(Algorithm=algo, Parameters={"EpsilonMinimumExponent":-10, "SetSeed":1000})
+ adaopy.setBackground (Vector = [0,1,2])
+ adaopy.setBackgroundError (ScalarSparseMatrix = 1.)
+ adaopy.setObservation (Vector = [0.5,1.5,2.5,0.5,1.5,2.5,0.5,1.5,2.5])
+ adaopy.setObservationError (DiagonalSparseMatrix = "1 1 1 1 1 1 1 1 1")
+ adaopy.setObservationOperator(OneFunction = MultiFonction01, InputAsMF = True)
+ adaopy.setEvolutionError (ScalarSparseMatrix = 1.)
+ adaopy.setEvolutionModel (Matrix = "1 0 0;0 1 0;0 0 1")
+ adaopy.setObserver("Analysis",Template="ValuePrinter")
+ adaopy.execute()
+ Xa["Multi/"+algo] = adaopy.get("Analysis")[-1]
+ del adaopy
+ #
+ print("")
+ msg = "Tests des ecarts attendus :"
+ print(msg+"\n"+"="*len(msg))
+ for algo in ("ExtendedKalmanFilter", "KalmanFilter", "EnsembleKalmanFilter", "UnscentedKalmanFilter", "4DVAR"):
+ verify_similarity_of_algo_results(("Multi/"+algo, "Mono/"+algo), Xa, 1.e-20)
+ print(" Les resultats obtenus sont corrects.")
+ print("")
+ #
+ return 0
+
+# ==============================================================================
+def almost_equal_vectors(v1, v2, precision = 1.e-15, msg = ""):
+ """Comparaison de deux vecteurs"""
+ print(" Difference maximale %s: %.2e"%(msg, max(abs(v2 - v1))))
+ return max(abs(v2 - v1)) < precision
+
+def verify_similarity_of_algo_results(serie = [], Xa = {}, precision = 1.e-15):
+ print(" Comparaisons :")
+ for algo1 in serie:
+ for algo2 in serie:
+ if algo1 is algo2: break
+ assert almost_equal_vectors( Xa[algo1], Xa[algo2], precision, "entre %s et %s "%(algo1, algo2) )
+ print(" Algorithmes dont les resultats sont similaires a %.0e : %s\n"%(precision, serie,))
+ sys.stdout.flush()
+
+#===============================================================================
+if __name__ == "__main__":
+ print('\nAUTODIAGNOSTIC\n')
+ test1()
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2018 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+"Verification du fonctionnement correct d'entrees en mono ou multi-fonctions"
+
+# ==============================================================================
+import numpy, sys
+from adao import adaoBuilder
+
+def ElementaryFunction01( InputArgument ):
+ """
+ Exemple de fonction non-lineaire et non-carree
+
+ L'argument en entree est un vecteur au sens mathematique, c'est-a-dire
+ une suite ordonnee de valeurs reelles. Au sens informatique, c'est tout
+ objet qui peut se transformer en une serie continue unidimensionnelle de
+ valeurs reelles. L'argument en sortie est un vecteur Numpy 1D.
+ """
+ #
+ if isinstance( InputArgument, (numpy.ndarray, numpy.matrix, list, tuple) ) or type(InputArgument).__name__ in ('generator','range'):
+ _subX = numpy.ravel(InputArgument)
+ else:
+ raise ValueError("ElementaryFunction01 unkown input type: %s"%(type(InputArgument).__name__,))
+ #
+ _OutputArgument = []
+ _OutputArgument.extend( (-1 + _subX).tolist() )
+ _OutputArgument.extend( numpy.cos(_subX/2).tolist() )
+ _OutputArgument.extend( numpy.exp((3.14 * _subX)).tolist() )
+ #
+ return numpy.ravel( _OutputArgument )
+
+def MultiFonction01( xSerie ):
+ """
+ Exemple de multi-fonction
+
+ Pour une liste ordonnee de vecteurs en entree, renvoie en sortie la liste
+ correspondante de valeurs de la fonction en argument
+ """
+ if not (isinstance( xSerie, (list, tuple) ) or type(xSerie).__name__ in ('generator','range')):
+ raise ValueError("MultiFonction01 unkown input type: %s"%(type(xSerie),))
+ #
+ _ySerie = []
+ for _subX in xSerie:
+ _ySerie.append( ElementaryFunction01( _subX ) )
+ #
+ return _ySerie
+
+# ==============================================================================
+def test1():
+ """
+ Verification du fonctionnement identique pour les algorithmes autres
+ en utilisant une fonction non-lineaire et non-carree
+ """
+ print(test1.__doc__)
+ Xa = {}
+ #
+ for algo in ("ParticleSwarmOptimization", "QuantileRegression", ):
+ print("")
+ msg = "Algorithme en test en MonoFonction : %s"%algo
+ print(msg+"\n"+"-"*len(msg))
+ #
+ adaopy = adaoBuilder.New()
+ adaopy.setAlgorithmParameters(Algorithm=algo, Parameters={"BoxBounds":3*[[-1,3]], "SetSeed":1000})
+ adaopy.setBackground (Vector = [0,1,2])
+ adaopy.setBackgroundError (ScalarSparseMatrix = 1.)
+ adaopy.setObservation (Vector = [0.5,1.5,2.5,0.5,1.5,2.5,0.5,1.5,2.5])
+ adaopy.setObservationError (DiagonalSparseMatrix = "1 1 1 1 1 1 1 1 1")
+ adaopy.setObservationOperator(OneFunction = ElementaryFunction01)
+ adaopy.setObserver("Analysis",Template="ValuePrinter")
+ adaopy.execute()
+ Xa["Mono/"+algo] = adaopy.get("Analysis")[-1]
+ del adaopy
+ #
+ for algo in ("ParticleSwarmOptimization", "QuantileRegression", ):
+ print("")
+ msg = "Algorithme en test en MultiFonction : %s"%algo
+ print(msg+"\n"+"-"*len(msg))
+ #
+ adaopy = adaoBuilder.New()
+ adaopy.setAlgorithmParameters(Algorithm=algo, Parameters={"BoxBounds":3*[[-1,3]], "SetSeed":1000})
+ adaopy.setBackground (Vector = [0,1,2])
+ adaopy.setBackgroundError (ScalarSparseMatrix = 1.)
+ adaopy.setObservation (Vector = [0.5,1.5,2.5,0.5,1.5,2.5,0.5,1.5,2.5])
+ adaopy.setObservationError (DiagonalSparseMatrix = "1 1 1 1 1 1 1 1 1")
+ adaopy.setObservationOperator(OneFunction = MultiFonction01, InputAsMF = True)
+ adaopy.setObserver("Analysis",Template="ValuePrinter")
+ adaopy.execute()
+ Xa["Multi/"+algo] = adaopy.get("Analysis")[-1]
+ del adaopy
+ #
+ print("")
+ msg = "Tests des ecarts attendus :"
+ print(msg+"\n"+"="*len(msg))
+ for algo in ("ParticleSwarmOptimization", "QuantileRegression"):
+ verify_similarity_of_algo_results(("Multi/"+algo, "Mono/"+algo), Xa, 1.e-20)
+ print(" Les resultats obtenus sont corrects.")
+ print("")
+ #
+ return 0
+
+# ==============================================================================
+def almost_equal_vectors(v1, v2, precision = 1.e-15, msg = ""):
+ """Comparaison de deux vecteurs"""
+ print(" Difference maximale %s: %.2e"%(msg, max(abs(v2 - v1))))
+ return max(abs(v2 - v1)) < precision
+
+def verify_similarity_of_algo_results(serie = [], Xa = {}, precision = 1.e-15):
+ print(" Comparaisons :")
+ for algo1 in serie:
+ for algo2 in serie:
+ if algo1 is algo2: break
+ assert almost_equal_vectors( Xa[algo1], Xa[algo2], precision, "entre %s et %s "%(algo1, algo2) )
+ print(" Algorithmes dont les resultats sont similaires a %.0e : %s\n"%(precision, serie,))
+ sys.stdout.flush()
+
+#===============================================================================
+if __name__ == "__main__":
+ print('\nAUTODIAGNOSTIC\n')
+ test1()