arr1 = DataArrayInt([0,1,1,2,2,3,4,4,5,5,5,11])
self.assertTrue(DataArrayInt.FindPermutationFromFirstToSecondDuplicate(arr0,arr1).isEqual(DataArrayInt([8,5,3,1,6,9,4,2,0,11,10,7])))
self.assertTrue(DataArrayInt.FindPermutationFromFirstToSecondDuplicate(arr1,arr0).isEqual(DataArrayInt([8,3,7,2,6,1,4,11,0,5,10,9])))
-
+
def testDAIIndexOfSameConsecutiveValueGroups(self):
arr = DataArrayInt([0,1,1,2,2,3,4,4,5,5,5,11])
self.assertTrue(arr.indexOfSameConsecutiveValueGroups().isEqual(DataArrayInt([0,1,3,5,6,8,11,12])))
self.assertTrue(sk2.getValuesArray().isEqual(arr))
self.assertTrue(sk2.getIndexArray().isEqual(DataArrayInt([0,13,16,37,84])))
- def testSkyLineUniqueNotSortedByPack(self):
+ def testSkyLineUniqueNotSortedByPack(self):
arrI = DataArrayInt([0,3,9,15,18,24,36,48,54])
arr = DataArrayInt([1,4,5,0,4,5,2,5,6,3,6,7,1,5,6,2,6,7,0,1,5,5,8,9,0,1,4,6,9,10,1,2,4,6,8,9,2,3,5,7,9,10,1,2,5,7,10,11,2,3,6,6,10,11])
sk = MEDCouplingSkyLineArray(arrI,arr)
sk2 = sk.uniqueNotSortedByPack()
self.assertTrue(sk2.getIndexArray().isEqual(DataArrayInt([0,3,8,13,16,21,29,37,42])))
self.assertTrue(sk2.getValuesArray().isEqual(DataArrayInt([1,4,5,0,2,4,5,6,1,3,5,6,7,2,6,7,0,1,5,8,9,0,1,2,4,6,8,9,10,1,2,3,5,7,9,10,11,2,3,6,10,11])))
-
+
def testSkyLineAggregatePacks1(self):
arr = DataArrayDouble(3) ; arr.iota()
m = MEDCouplingCMesh() ; m.setCoords(arr,arr) ; m = m.buildUnstructured()
self.assertTrue(lsk.getIndexArray().isEqual(DataArrayInt([0, 3, 7, 9])))
self.assertTrue(rsk.getValuesArray().isEqual(DataArrayInt([11, 12, 13, 14, 15, 16, 17, 18, 19])))
self.assertTrue(rsk.getIndexArray().isEqual(DataArrayInt([0, 3, 7, 9])))
-
+
def testPenta18GaussNE(self):
conn = [1,0,2,4,3,5,6,7,8,9,13,14,11,10,15,12,17,16]
coo = DataArrayDouble([(27.237499999999997, 9.8, 0.0), (26.974999999999994, 9.8, 0.0), (27.111517409545634, 9.532083869948877, 0.0), (27.237499999999997, 9.8, 0.5000000000000001), (26.974999999999994, 9.8, 0.5000000000000002), (27.111517409545634, 9.532083869948877, 0.5), (27.106249999999996, 9.8, 0.0), (27.17450870477282, 9.666041934974439, 0.0), (27.04325870477281, 9.666041934974439, 0.0), (27.106249999999996, 9.8, 0.5000000000000001), (27.237499999999997, 9.8, 0.25), (26.974999999999994, 9.8, 0.2500000000000001), (27.106249999999996, 9.8, 0.2500000000000001), (27.174508704772816, 9.666041934974439, 0.5), (27.043258704772814, 9.666041934974439, 0.5000000000000001), (27.111517409545634, 9.532083869948877, 0.25), (27.043258704772818, 9.666041934974436, 0.25000000000000006), (27.174508704772816, 9.666041934974436, 0.25)])
See https://www.code-aster.org/V2/doc/v10/fr/man_r/r3/r3.01.01.pdf
"""
import numpy as np
-
+
ref_coords_hexa27_med = [[-1.0, -1.0, -1.0], [-1.0, 1.0, -1.0], [1.0, 1.0, -1.0], [1.0, -1.0, -1.0], [-1.0, -1.0, 1.0], [-1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, -1.0, 1.0], [-1.0, 0.0, -1.0], [0.0, 1.0, -1.0], [1.0, 0.0, -1.0], [0.0, -1.0, -1.0], [-1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [1.0, 0.0, 1.0], [0.0, -1.0, 1.0], [-1.0, -1.0, 0.0], [-1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [1.0, -1.0, 0.0], [0.0, 0.0, -1.0], [-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]
def coor2index(coor):
self.assertTrue(delta_Z.findIdsNotInRange(-1e-5,+1e-5).empty())
for gt,ref_coord in [(NORM_TETRA4,[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0]]),(NORM_TETRA10,[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [0.0, 0.5, 0.0], [0.0, 0.0, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.5]]),(NORM_HEXA8,[[-1.0, -1.0, -1.0], [-1.0, 1.0, -1.0], [1.0, 1.0, -1.0], [1.0, -1.0, -1.0], [-1.0, -1.0, 1.0], [-1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, -1.0, 1.0]]),(NORM_HEXA8,[[-1.0, 1.0, 0.0], [-1.0, -1.0, 0.0], [1.0, -1.0, 0.0], [1.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]),(NORM_HEXA8,[[-1.0, -1.0, 0.0], [-1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [1.0, -1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]),(NORM_PENTA6,[[-1.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [-1.0, -0.0, 1.0], [1.0, 1.0, 0.0], [1.0, 0.0, 0.0], [1.0, 0.0, 1.0]]),(NORM_PENTA6,[[-1.0, 1.0, 0.0], [-1.0, -1.0, 0.0], [1.0, -1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]),(NORM_PENTA6,[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]),(NORM_PYRA5,[[1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]),(NORM_PYRA13, [[1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [0.5, -0.5, 0.0], [-0.5, -0.5, 0.0], [-0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.0, -0.5, 0.5], [-0.5, 0.0, 0.5], [0.0, 0.5, 0.5]]),(NORM_PENTA15,[[-1.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [-1.0, -0.0, 1.0], [1.0, 1.0, 0.0], [1.0, 0.0, 0.0], [1.0, 0.0, 1.0], [-1.0, 0.5, 0.0], [-1.0, 0.0, 0.5], [-1.0, 0.5, 0.5], [1.0, 0.5, 0.0], [1.0, 0.0, 0.5], [1.0, 0.5, 0.5], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]),(NORM_PENTA18,[[-1.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [-1.0, -0.0, 1.0], [1.0, 1.0, 0.0], [1.0, 0.0, 0.0], [1.0, 0.0, 1.0], [-1.0, 0.5, 0.0], [-1.0, 0.0, 0.5], [-1.0, 0.5, 0.5], [1.0, 0.5, 0.0], [1.0, 0.0, 0.5], [1.0, 0.5, 0.5], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.5, 0.0], [0.0, 0.0, 0.5], [0.0, 0.5, 0.5]]),(NORM_HEXA20,[[-1.0, -1.0, -1.0], [-1.0, 1.0, -1.0], [1.0, 1.0, -1.0], [1.0, -1.0, -1.0], [-1.0, -1.0, 1.0], [-1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, -1.0, 1.0], [-1.0, 0.0, -1.0], [0.0, 1.0, -1.0], [1.0, 0.0, -1.0], [0.0, -1.0, -1.0], [-1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [1.0, 0.0, 1.0], [0.0, -1.0, 1.0], [-1.0, -1.0, 0.0], [-1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [1.0, -1.0, 0.0]])]: # type of cell for which derivatives are implemented
-
+
der_computed = GetDerivative(ref_coord,vec)
der_computed.rearrange(3)
delta_Y = der_computed[:,1]-der_deduced
delta_Y.abs()
self.assertTrue(delta_Y.findIdsNotInRange(-1e-5,+1e-5).empty())
-
+
# 1D cells
vec = [0.64]
delta_X = der_computed[:,0]-der_deduced
delta_X.abs()
self.assertTrue(delta_X.findIdsNotInRange(-1e-5,+1e-5).empty())
-
+
#B version of SEG2
for gt,ref_coord in [(NORM_SEG2,[[0.], [1.]])]:
der_computed = GetDerivative(ref_coord,vec)
delta_X = der_computed[:,0]-der_deduced
delta_X.abs()
self.assertTrue(delta_X.findIdsNotInRange(-1e-5,+1e-5).empty())
-
+
def testComputeTriangleHeight0(self):
arr = DataArrayDouble([0,1])
res = m.computeTriangleHeight()
expected = DataArrayDouble([(10,0,0)])
self.assertTrue( res.isEqual(expected,1e-12) )
-
+
def testDAILocateComponentId0(self):
arr = DataArrayInt( [(0, 1, 2), (3, 4, 5), (6, 2, 3), (7, 8, 9), (9, 0, 10), (11, 12, 13), (14, 5, 11), (15, 16, 17)] )
valToSearchIntoTuples = DataArrayInt( [1, 4, 6, 8, 10, 12, 14, 16, 17] )
c,d = DataArrayInt.ExtractFromIndexedArrays( cell, pE3[1], pE3[2] )
self.assertTrue( ref_c.isEqual(c) )
self.assertTrue( ref_d.isEqual(d) )
-
+
def testGetCellContainingPointRelativeEps(self):
"""
See EDF27860 : This test checks that detection of point inside a cell works by normalizing cell around origin with factor equal to the max delta of bbox along axis X, Y or Z.
self.assertTrue(a1.isEqual(DataArrayInt([0])))
self.assertTrue(b1.isEqual(DataArrayInt([0,1])))
- pass
+ def testGetCellContainingPointOnPolyhedronWithPlanarFace(self):
+ """
+ See CEA spns #40783
+ In case of polyhedron with a face defined by several colinear points,
+ we must use other non colinear points to be able to define a face from these three points
+ to define the relative position of the test point to this face
+ """
+ eps = 1.0e-12
+ coo = DataArrayDouble( [ (0.176, 0.1125, 1.05),
+ (0.176, 0.120375, 1.05),
+ (0.176, 0.120375, 1.0),
+ (0.176, 0.1125, 1.0),
+ (0.176000000000000018, 0.12825, 1.05),
+ (0.176000000000000018, 0.12825, 1.0),
+ (0.207, 0.1125, 1.05),
+ (0.207, 0.1125, 1.0),
+ (0.207, 0.12825, 1.05),
+ (0.207, 0.12825, 1.0)] )
+
+ m = MEDCouplingUMesh("Mesh",3)
+ m.setCoords(coo)
+ m.allocateCells()
+ # put -1 to separate faces connectivity
+ # substract -1 from mdump table ids
+ m.insertNextCell(NORM_POLYHED,[0, 1, 2, 3, -1,
+ 1, 4, 5, 2, -1,
+ 6, 7, 9, 8, -1,
+ 3, 7, 6, 0, -1,
+ 9, 5, 4, 8, -1,
+ 3, 2, 5, 9, 7, -1, # PB in this order
+ #7, 3, 2, 5, 9, -1, # OK in this order
+ 1, 0, 6, 8, 4])
+
+ # test point inside the box
+ pt_above = (0.2, 0.12, 1.07)
+ pt_below = (0.2, 0.12, 0.9)
+ pt_inside = (0.2, 0.12, 1.025)
+ pts = DataArrayDouble([pt_above, pt_below, pt_inside])
+ a,b = m.getCellsContainingPoints(pts, eps)
+ self.assertTrue(a.isEqual(DataArrayInt([0])))
+ # only the third point is inside
+ self.assertTrue(b.isEqual(DataArrayInt([0,0,0,1])))
+
+ # rotate the mesh to see if getCellsContainingPoints works
+ # even if point is not inside bounding box
+ center=coo[0]
+ vector=[1.,0.,0.]
+ m.rotate(center,vector,-pi/4.);
+
+ # test 3 points: above, below and inside
+ pt_above = (0.19, 0.09, 1.04)
+ pt_below = (0.19, 0.11, 1.02)
+ pt_inside = (0.19, 0.10, 1.02)
+ pts_rotated = DataArrayDouble([pt_above, pt_below, pt_inside])
+
+ a,b = m.getCellsContainingPoints(pts_rotated, eps)
+ self.assertTrue(a.isEqual(DataArrayInt([0])))
+ # only the third point is inside
+ self.assertTrue(b.isEqual(DataArrayInt([0,0,0,1])))
+
+ def testGetCellContainingPointOnPolyhedronWithPlanarFaceWithManyNodes(self):
+ """
+ Similar test with many colinear nodes on the planar face
+ """
+ eps = 1.0e-12
+ coo = DataArrayDouble( [(0.176000000000000018, 0.120375, 1.0 ),
+ (0.176000000000000018, 0.128250, 1.0 ),
+ (0.176000000000000018, 0.136125, 1.0 ),
+ (0.176000000000000018, 0.144, 1.0 ),
+ (0.176000000000000018, 0.151875, 1.0 ),
+ (0.176000000000000018, 0.159750, 1.0 ),
+ (0.176000000000000018, 0.167625, 1.0 ),
+ (0.176000000000000018, 0.1755, 1.0 ),
+ (0.176000000000000018, 0.183375, 1.0 ),
+ (0.176000000000000018, 0.191250, 1.0 ),
+ (0.176000000000000018, 0.199125, 1.0 ),
+ (0.176, 0.207, 1.0 ),
+ (0.207, 0.207, 1.0 ),
+ (0.176, 0.1125, 1.0 ),
+ (0.207, 0.1125, 1.0 ),
+ (0.176, 0.120375, 1.05),
+ (0.176000000000000018, 0.128250, 1.05),
+ (0.176000000000000018, 0.136125, 1.05),
+ (0.176000000000000018, 0.144, 1.05),
+ (0.176000000000000018, 0.151875, 1.05),
+ (0.176000000000000018, 0.159750, 1.05),
+ (0.176000000000000018, 0.167625, 1.05),
+ (0.176000000000000018, 0.1755, 1.05),
+ (0.176000000000000018, 0.183375, 1.05),
+ (0.176000000000000018, 0.191250, 1.05),
+ (0.176000000000000018, 0.199125, 1.05),
+ (0.176, 0.207, 1.05),
+ (0.207, 0.207, 1.05),
+ (0.176, 0.1125, 1.05),
+ (0.207, 0.1125, 1.05)])
+
+ m = MEDCouplingUMesh("Mesh",3)
+ m.setCoords(coo)
+ m.allocateCells()
+ # put -1 to separate faces connectivity
+ # substract -1 from mdump table ids
+ m.insertNextCell(NORM_POLYHED,
+ [13, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, -1, #1
+ 29, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 28, -1, #2
+ 14, 29, 28, 13, -1, #3
+ 11, 26, 27, 12, -1, #4
+ 12, 27, 29, 14, -1, #5
+ 13, 28, 15, 0, -1, #6
+ 0, 15, 16, 1, -1, #7
+ 1, 16, 17, 2, -1, #8
+ 2, 17, 18, 3, -1, #9
+ 3, 18, 19, 4, -1, #10
+ 4, 19, 20, 5, -1, #11
+ 5, 20, 21, 6, -1, #12
+ 6, 21, 22, 7, -1, #13
+ 7, 22, 23, 8, -1, #14
+ 8, 23, 24, 9, -1, #15
+ 9, 24, 25, 10, -1, #16
+ 10, 25, 26, 11] )
+
+ ##### See CEA 40783: error with polyhedrons (box split by on edge on its face)
+ pt_above = (0.1915, 0.15975, 1.07)
+ pt_below = (0.1915, 0.15975, 0.9)
+ pt_inside = (0.1915, 0.15975, 1.025)
+ pts = DataArrayDouble([pt_above, pt_below, pt_inside])
+ a,b = m.getCellsContainingPoints(pts,eps)
+ self.assertTrue(a.isEqual(DataArrayInt([0])))
+ # only the third point is inside
+ self.assertTrue(b.isEqual(DataArrayInt([0,0,0,1])))
+
if __name__ == '__main__':
unittest.main()