"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJAtCurrentOptimum",
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJAtCurrentOptimum",
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"ForecastState",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"ForecastState",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"ForecastState",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
the following list: [
"Analysis",
"BMA",
- "CurrentState",
"CostFunctionJ",
"CostFunctionJb",
"CostFunctionJo",
+ "CurrentIterationNumber",
+ "CurrentState",
"Innovation",
"OMA",
"OMB",
.. include:: snippets/BMA.rst
-.. include:: snippets/CurrentState.rst
-
.. include:: snippets/CostFunctionJ.rst
.. include:: snippets/CostFunctionJb.rst
.. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
+.. include:: snippets/CurrentState.rst
+
.. include:: snippets/Innovation.rst
.. include:: snippets/OMA.rst
"CostFunctionJ",
"CostFunctionJb",
"CostFunctionJo",
+ "CurrentIterationNumber",
"CurrentState",
"Innovation",
"OMA",
.. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. ------------------------------------ ..
.. include:: snippets/Header2Algo05.rst
.. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentState.rst
.. include:: snippets/Innovation.rst
the following list: [
"Analysis",
"BMA",
- "CurrentState",
"CostFunctionJ",
"CostFunctionJb",
"CostFunctionJo",
+ "CurrentIterationNumber",
+ "CurrentState",
"Innovation",
"OMA",
"OMB",
.. include:: snippets/BMA.rst
-.. include:: snippets/CurrentState.rst
-
.. include:: snippets/CostFunctionJ.rst
.. include:: snippets/CostFunctionJb.rst
.. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
+.. include:: snippets/CurrentState.rst
+
.. include:: snippets/Innovation.rst
.. include:: snippets/OMA.rst
"CostFunctionJ",
"CostFunctionJb",
"CostFunctionJo",
+ "CurrentIterationNumber",
"CurrentState",
"InnovationAtCurrentState",
].
.. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentState.rst
.. include:: snippets/InnovationAtCurrentState.rst
--- /dev/null
+.. index:: single: CurrentIterationNumber
+
+CurrentIterationNumber
+ *List of integers*. Each element is the iteration index at the current step during the
+ iterative algorithm procedure.
+
+ Example:
+ ``i = ADD.get("CurrentIterationNumber")[-1]``
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJAtCurrentOptimum",
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJAtCurrentOptimum",
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"ForecastState",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"ForecastState",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"ForecastState",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
.. include:: snippets/CostFunctionJoAtCurrentOptimum.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentOptimum.rst
.. include:: snippets/CurrentState.rst
Les noms possibles sont dans la liste suivante : [
"Analysis",
"BMA",
- "CurrentState",
"CostFunctionJ",
"CostFunctionJb",
"CostFunctionJo",
+ "CurrentIterationNumber",
+ "CurrentState",
"Innovation",
"OMA",
"OMB",
.. include:: snippets/BMA.rst
-.. include:: snippets/CurrentState.rst
-
.. include:: snippets/CostFunctionJ.rst
.. include:: snippets/CostFunctionJb.rst
.. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
+.. include:: snippets/CurrentState.rst
+
.. include:: snippets/Innovation.rst
.. include:: snippets/OMA.rst
"CostFunctionJ",
"CostFunctionJb",
"CostFunctionJo",
+ "CurrentIterationNumber",
"CurrentState",
"Innovation",
"OMA",
.. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. ------------------------------------ ..
.. include:: snippets/Header2Algo05.rst
.. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentState.rst
.. include:: snippets/Innovation.rst
Les noms possibles sont dans la liste suivante : [
"Analysis",
"BMA",
- "CurrentState",
"CostFunctionJ",
"CostFunctionJb",
"CostFunctionJo",
+ "CurrentIterationNumber",
+ "CurrentState",
"Innovation",
"OMA",
"OMB",
.. include:: snippets/BMA.rst
-.. include:: snippets/CurrentState.rst
-
.. include:: snippets/CostFunctionJ.rst
.. include:: snippets/CostFunctionJb.rst
.. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
+.. include:: snippets/CurrentState.rst
+
.. include:: snippets/Innovation.rst
.. include:: snippets/OMA.rst
"CostFunctionJ",
"CostFunctionJb",
"CostFunctionJo",
+ "CurrentIterationNumber",
"CurrentState",
"InnovationAtCurrentState",
].
.. include:: snippets/CostFunctionJo.rst
+.. include:: snippets/CurrentIterationNumber.rst
+
.. include:: snippets/CurrentState.rst
.. include:: snippets/InnovationAtCurrentState.rst
--- /dev/null
+.. index:: single: CurrentIterationNumber
+
+CurrentIterationNumber
+ *Liste d'entiers*. Chaque élément est l'index d'itération courant au cours du
+ déroulement itératif de l'algorithme utilisé.
+
+ Exemple :
+ ``i = ADD.get("CurrentIterationNumber")[-1]``
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
Jo = float( 0.5 * _Innovation.T * RI * _Innovation )
J = Jb + Jo
#
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
Jo = Jo + _YmHMX.T * RI * _YmHMX
Jo = 0.5 * Jo
J = float( Jb ) + float( Jo )
+ #
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
"CostFunctionJAtCurrentOptimum",
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
#
J = float( Jb ) + float( Jo )
#
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
"CostFunctionJAtCurrentOptimum",
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
#
J = float( Jb ) + float( Jo )
#
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"ForecastState",
_HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
_Innovation = Ynpu - _HXa
#
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
# ---> avec analysis
self.StoredVariables["Analysis"].store( Xa )
if self._toStore("SimulatedObservationAtCurrentAnalysis"):
# Stockage final supplémentaire de l'optimum en estimation de paramètres
# ----------------------------------------------------------------------
if self._parameters["EstimationOf"] == "Parameters":
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
self.StoredVariables["Analysis"].store( XaMin )
if self._toStore("APosterioriCovariance"):
self.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"ForecastState",
Pn = B
#
if len(self.StoredVariables["Analysis"])==0 or not self._parameters["nextStep"]:
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
self.StoredVariables["Analysis"].store( numpy.ravel(Xn) )
if self._toStore("APosterioriCovariance"):
self.StoredVariables["APosterioriCovariance"].store( Pn.asfullmatrix(Xn.size) )
Pn = Pn_predicted - Kn * Ht * Pn_predicted
Xa, _HXa = Xn, _HX # Pointeurs
#
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
# ---> avec analysis
self.StoredVariables["Analysis"].store( Xa )
if self._toStore("SimulatedObservationAtCurrentAnalysis"):
# Stockage final supplémentaire de l'optimum en estimation de paramètres
# ----------------------------------------------------------------------
if self._parameters["EstimationOf"] == "Parameters":
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
self.StoredVariables["Analysis"].store( XaMin )
if self._toStore("APosterioriCovariance"):
self.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"ForecastState",
Pn = B
#
if len(self.StoredVariables["Analysis"])==0 or not self._parameters["nextStep"]:
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
self.StoredVariables["Analysis"].store( numpy.ravel(Xn) )
if self._toStore("APosterioriCovariance"):
self.StoredVariables["APosterioriCovariance"].store( Pn.asfullmatrix(Xn.size) )
Pn = Pn_predicted - Kn * Ht * Pn_predicted
Xa, _HXa = Xn, _HX # Pointeurs
#
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
# ---> avec analysis
self.StoredVariables["Analysis"].store( Xa )
if self._toStore("SimulatedObservationAtCurrentAnalysis"):
# Stockage final supplémentaire de l'optimum en estimation de paramètres
# ----------------------------------------------------------------------
if self._parameters["EstimationOf"] == "Parameters":
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
self.StoredVariables["Analysis"].store( XaMin )
if self._toStore("APosterioriCovariance"):
self.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
"CostFunctionJbAtCurrentOptimum",
"CostFunctionJo",
"CostFunctionJoAtCurrentOptimum",
+ "CurrentIterationNumber",
"CurrentOptimum",
"CurrentState",
"IndexOfOptimum",
Jo = float( 0.5 * _Innovation.T * RI * _Innovation )
J = Jb + Jo
#
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
listval = [
"Analysis",
"BMA",
- "CurrentState",
"CostFunctionJ",
"CostFunctionJb",
"CostFunctionJo",
+ "CurrentIterationNumber",
+ "CurrentState",
"Innovation",
"OMA",
"OMB",
qBest = copy.copy( quality )
logging.debug("%s Initialisation, Insecte = %s, Qualité = %s"%(self._name, str(Best), str(qBest)))
#
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
self.StoredVariables["CurrentState"].store( Best )
self.StoredVariables["CostFunctionJb"].store( 0. )
qBest = copy.copy( quality )
logging.debug("%s Etape %i, Insecte = %s, Qualité = %s"%(self._name, n, str(Best), str(qBest)))
#
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
self.StoredVariables["CurrentState"].store( Best )
if self._toStore("SimulatedObservationAtCurrentState"):
"CostFunctionJ",
"CostFunctionJb",
"CostFunctionJo",
+ "CurrentIterationNumber",
"CurrentState",
"Innovation",
"OMA",
Jb = 0.
Jo = 0.
J = Jb + Jo
+ #
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
listval = [
"Analysis",
"BMA",
- "CurrentState",
"CostFunctionJ",
"CostFunctionJb",
"CostFunctionJo",
+ "CurrentIterationNumber",
+ "CurrentState",
"Innovation",
"OMA",
"OMB",
_HmX = Hm( numpy.asmatrix(numpy.ravel( _Best )).T )
_HmX = numpy.asmatrix(numpy.ravel( _HmX )).T
self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HmX )
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
self.StoredVariables["CostFunctionJb"].store( 0. )
self.StoredVariables["CostFunctionJo"].store( 0. )
self.StoredVariables["CostFunctionJ" ].store( _qualityBest )
"CostFunctionJ",
"CostFunctionJb",
"CostFunctionJo",
+ "CurrentIterationNumber",
"CurrentState",
"InnovationAtCurrentState",
]
Xn = numpy.min(numpy.hstack((Xn,numpy.asmatrix(self._parameters["Bounds"])[:,1])),axis=1)
Xa = Xn # Pointeurs
#
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
# ---> avec analysis
self.StoredVariables["Analysis"].store( Xa )
if self._toStore("APosterioriCovariance"):
# Stockage final supplémentaire de l'optimum en estimation de paramètres
# ----------------------------------------------------------------------
if self._parameters["EstimationOf"] == "Parameters":
+ self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
self.StoredVariables["Analysis"].store( XaMin )
if self._toStore("APosterioriCovariance"):
self.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
- CostFunctionJbAtCurrentOptimum : partie ébauche à l'état optimal courant lors d'itérations
- CostFunctionJo : partie observations de la fonction-coût : Jo
- CostFunctionJoAtCurrentOptimum : partie observations à l'état optimal courant lors d'itérations
+ - CurrentIterationNumber : numéro courant d'itération dans les algorithmes itératifs, à partir de 0
- CurrentOptimum : état optimal courant lors d'itérations
- CurrentState : état courant lors d'itérations
- GradientOfCostFunctionJ : gradient de la fonction-coût globale
self.StoredVariables["CostFunctionJbAtCurrentOptimum"] = Persistence.OneScalar(name = "CostFunctionJbAtCurrentOptimum")
self.StoredVariables["CostFunctionJo"] = Persistence.OneScalar(name = "CostFunctionJo")
self.StoredVariables["CostFunctionJoAtCurrentOptimum"] = Persistence.OneScalar(name = "CostFunctionJoAtCurrentOptimum")
+ self.StoredVariables["CurrentIterationNumber"] = Persistence.OneIndex(name = "CurrentIterationNumber")
self.StoredVariables["CurrentOptimum"] = Persistence.OneVector(name = "CurrentOptimum")
self.StoredVariables["CurrentState"] = Persistence.OneVector(name = "CurrentState")
self.StoredVariables["ForecastState"] = Persistence.OneVector(name = "ForecastState")