const double& theSize,
std::vector<ControlPnt>& thePoints );
- std::vector<gp_Pnt> computePointsForSplitting( const gp_Pnt& p1,
- const gp_Pnt& p2,
- const gp_Pnt& p3 );
+ void computePointsForSplitting( const gp_Pnt& p1,
+ const gp_Pnt& p2,
+ const gp_Pnt& p3,
+ gp_Pnt midPoints[3]);
gp_Pnt tangencyPoint(const gp_Pnt& p1,
const gp_Pnt& p2,
const gp_Pnt& Center);
// Get triangles
int nbTriangles = aTri->NbTriangles();
- Poly_Array1OfTriangle triangles(1,nbTriangles);
- triangles=aTri->Triangles();
+ const Poly_Array1OfTriangle& triangles = aTri->Triangles();
// GetNodes
int nbNodes = aTri->NbNodes();
nodes = aTri->Nodes();
// Iterate on triangles and subdivide them
- for(int i=1; i<=nbTriangles; i++)
+ thePoints.reserve( thePoints.size() + nbTriangles );
+ for ( int i = 1; i <= nbTriangles; i++ )
{
- Poly_Triangle aTriangle = triangles.Value(i);
+ const Poly_Triangle& aTriangle = triangles.Value(i);
gp_Pnt p1 = nodes.Value(aTriangle.Value(1));
gp_Pnt p2 = nodes.Value(aTriangle.Value(2));
gp_Pnt p3 = nodes.Value(aTriangle.Value(3));
p2.Transform(aTrsf);
p3.Transform(aTrsf);
- subdivideTriangle(p1, p2, p3, theSize, thePoints);
+ subdivideTriangle( p1, p2, p3, theSize, thePoints );
}
}
// Step2 : for each face of theSolid:
std::set<double> intersections;
- std::set<double>::iterator it = intersections.begin();
- TopExp_Explorer Ex;
- for (Ex.Init(theSolid,TopAbs_FACE); Ex.More(); Ex.Next())
+ for ( TopExp_Explorer Ex( theSolid, TopAbs_FACE ); Ex.More(); Ex.Next() )
{
// check if there is an intersection
IntCurvesFace_Intersector anIntersector(TopoDS::Face(Ex.Current()), Precision::Confusion());
// get the intersection's parameter and store it
int nbPoints = anIntersector.NbPnt();
- for(int i = 0 ; i < nbPoints ; i++ )
+ for ( int i = 0 ; i < nbPoints; i++ )
{
- it = intersections.insert( it, anIntersector.WParameter(i+1) );
+ intersections.insert( anIntersector.WParameter(i+1) );
}
}
// Step3 : go through the line chunk by chunk
- if ( intersections.begin() != intersections.end() )
+ if ( intersections.size() > 1 )
{
std::set<double>::iterator intersectionsIterator=intersections.begin();
double first = *intersectionsIterator;
double localStep = (second -first) / ceil( (second - first) / step );
for ( double z = Zmin + first; z < Zmin + second; z = z + localStep )
{
- thePoints.push_back(ControlPnt( x, y, z, theSize ));
+ thePoints.emplace_back( x, y, z, theSize );
}
- thePoints.push_back(ControlPnt( x, y, Zmin + second, theSize ));
+ thePoints.emplace_back( x, y, Zmin + second, theSize );
}
first = second;
innerPoints = !innerPoints;
// and the distance between two mass centers of two neighbouring triangles
// sharing an edge is < 2 * 1/2 * S = S
// If the traingles share a Vertex and no Edge the distance of the mass centers
- // to the Vertices is 2*D < S so the mass centers are distant of less than 2*S
+ // to the Vertices is 2*D < S so the mass centers are distant of less than 2*S
double threshold = sqrt( 3. ) * theSize;
- if ( (p1.Distance(p2) > threshold ||
- p2.Distance(p3) > threshold ||
- p3.Distance(p1) > threshold))
- {
- std::vector<gp_Pnt> midPoints = computePointsForSplitting(p1, p2, p3);
-
- subdivideTriangle( midPoints[0], midPoints[1], midPoints[2], theSize, thePoints );
- subdivideTriangle( midPoints[0], p2, midPoints[1], theSize, thePoints );
- subdivideTriangle( midPoints[2], midPoints[1], p3, theSize, thePoints );
- subdivideTriangle( p1, midPoints[0], midPoints[2], theSize, thePoints );
- }
- else
- {
- double x = (p1.X() + p2.X() + p3.X()) / 3 ;
- double y = (p1.Y() + p2.Y() + p3.Y()) / 3 ;
- double z = (p1.Z() + p2.Z() + p3.Z()) / 3 ;
+ if ( p1.Distance(p2) > threshold ||
+ p2.Distance(p3) > threshold ||
+ p3.Distance(p1) > threshold )
+ try
+ {
+ gp_Pnt midPoints[3];
+ computePointsForSplitting( p1, p2, p3, midPoints );
+
+ subdivideTriangle( midPoints[0], midPoints[1], midPoints[2], theSize, thePoints );
+ subdivideTriangle( midPoints[0], p2, midPoints[1], theSize, thePoints );
+ subdivideTriangle( midPoints[2], midPoints[1], p3, theSize, thePoints );
+ subdivideTriangle( p1, midPoints[0], midPoints[2], theSize, thePoints );
+ return;
+ }
+ catch (...)
+ {
+ }
- ControlPnt massCenter( x ,y ,z, theSize );
- thePoints.push_back( massCenter );
- }
+ gp_Pnt massCenter = ( p1.XYZ() + p2.XYZ() + p3.XYZ() ) / 3.;
+ thePoints.emplace_back( massCenter, theSize );
}
//================================================================================
/*!
* \brief Returns the appropriate points for splitting a triangle
- * \brief the tangency points of the incircle are used in order to have mostly
- * \brief well-shaped sub-triangles
+ * the tangency points of the incircle are used in order to have mostly
+ * well-shaped sub-triangles
*/
//================================================================================
-std::vector<gp_Pnt> SMESHUtils::computePointsForSplitting( const gp_Pnt& p1,
- const gp_Pnt& p2,
- const gp_Pnt& p3 )
+void SMESHUtils::computePointsForSplitting( const gp_Pnt& p1,
+ const gp_Pnt& p2,
+ const gp_Pnt& p3,
+ gp_Pnt midPoints[3])
{
- std::vector<gp_Pnt> midPoints;
//Change coordinates
gp_Trsf Trsf_1; // Identity transformation
gp_Ax3 reference_system(gp::Origin(), gp::DZ(), gp::DX()); // OXY
gp_Pnt T2 = tangencyPoint( B, C, Center);
gp_Pnt T3 = tangencyPoint( C, A, Center);
- gp_Pnt p1_2 = T1.Transformed(Trsf_1.Inverted());
- gp_Pnt p2_3 = T2.Transformed(Trsf_1.Inverted());
- gp_Pnt p3_1 = T3.Transformed(Trsf_1.Inverted());
-
- midPoints.push_back(p1_2);
- midPoints.push_back(p2_3);
- midPoints.push_back(p3_1);
+ midPoints[0] = T1.Transformed(Trsf_1.Inverted());
+ midPoints[1] = T2.Transformed(Trsf_1.Inverted());
+ midPoints[2] = T3.Transformed(Trsf_1.Inverted());
- return midPoints;
+ return;
}
//================================================================================
{
ControlPnt()
: gp_Pnt(), size(0) {}
- ControlPnt( const gp_Pnt& aPnt, double theSize)
+ ControlPnt( const gp_Pnt& aPnt, double theSize=0)
: gp_Pnt( aPnt ), size( theSize ) {}
- ControlPnt(double theX,double theY,double theZ)
- : gp_Pnt(theX, theY, theZ), size(0) {}
- ControlPnt(double theX,double theY,double theZ, double theSize)
+ ControlPnt(double theX,double theY,double theZ, double theSize=0)
: gp_Pnt(theX, theY, theZ), size( theSize ) {}
double Size() const { return size; };
// Functions to get sample point from shapes
SMESHUtils_EXPORT void createControlPoints( const TopoDS_Shape& theShape,
- const double& theSize,
- std::vector< ControlPnt >& thePoints );
+ const double& theSize,
+ std::vector< ControlPnt >& thePoints );
- SMESHUtils_EXPORT void createPointsSampleFromEdge( const TopoDS_Edge& theEdge,
- const double& theSize,
- std::vector<ControlPnt>& thePoints );
+ SMESHUtils_EXPORT void createPointsSampleFromEdge( const TopoDS_Edge& theEdge,
+ const double& theSize,
+ std::vector<ControlPnt>& thePoints );
- SMESHUtils_EXPORT void createPointsSampleFromFace( const TopoDS_Face& theFace,
- const double& theSize,
- std::vector<ControlPnt>& thePoints );
+ SMESHUtils_EXPORT void createPointsSampleFromFace( const TopoDS_Face& theFace,
+ const double& theSize,
+ std::vector<ControlPnt>& thePoints );
- SMESHUtils_EXPORT void createPointsSampleFromSolid( const TopoDS_Solid& theSolid,
- const double& theSize,
- std::vector<ControlPnt>& thePoints );
+ SMESHUtils_EXPORT void createPointsSampleFromSolid( const TopoDS_Solid& theSolid,
+ const double& theSize,
+ std::vector<ControlPnt>& thePoints );
}
#endif