libqwt_name=qwt
if test -z $QWTHOME; then
AC_MSG_RESULT(QWTHOME not defined)
+ AC_MSG_NOTICE(Trying native Qwt...)
exist_ok=no
if test "x$exist_ok" = "xno"; then
for d in /usr /usr/local ; do
- for extension in qwt qwt-qt4; do
+ for extension in qwt-qt4 qwt; do
AC_CHECK_FILE(${d}/lib${LIB_LOCATION_SUFFIX}/lib${extension}.so,exist_ok=yes,exist_ok=no)
if test "x$exist_ok" = "xyes"; then
QWTHOME=$d
AC_MSG_RESULT(lib${extension}.so detected in $d/lib)
libqwt_name=${extension}
- dnl No break here, libqwt-qt4.so is choosen even if libqwt.so is present: if 2 are present, in most of cases, libqwt.so is Qt3 version.
+ dnl break, libqwt-qt4.so is choosen before libqwt.so since it is surely the Qt4 version.
+ break
fi
done
if test "x$exist_ok" = "xyes"; then
fi
if test "x$exist_ok" = "xyes"; then
if test -z $QWT_INCDIR; then
- QWT_INCDIR=$QWTHOME"/include/qwt"
+ QWT_INCDIR=$QWTHOME"/include/qwt-qt4"
if test ! -f $QWT_INCDIR/qwt.h ; then
- QWT_INCDIR=$QWTHOME"/include"
+ QWT_INCDIR=/usr/include/qwt
fi
if test ! -f $QWT_INCDIR/qwt.h ; then
- QWT_INCDIR=/usr/lib/qt4/include/qwt
+ QWT_INCDIR=$QWTHOME"/include"
fi
if test ! -f $QWT_INCDIR/qwt.h ; then
- QWT_INCDIR=/usr/include/qwt-qt4
+ QWT_INCDIR=/usr/lib/qt4/include/qwt
fi
fi
else
qwt_ok=no
fi
else
+ AC_MSG_NOTICE(Trying Qwt from $QWTHOME ...)
if test -z $QWT_INCDIR; then
QWT_INCDIR="$QWTHOME/include"
fi
\anchor fixed_points_1d_anchor
<h2>Fixed points 1D hypothesis</h2>
-<b>Fixed points 1D</b> hypothesis allows to split edges into segments
-using set of fixed points given by normalized parameters on edge and
-set of numbers of segments for splitting each sub-segment between
-fixed points. Optionally it is possible to set flag
-<b>Same Nb. Segments for all intervals</b> and
-only one value for mentioned number of segments.
-
-The direction of the splitting is defined by the orientation of the
+<b>Fixed points 1D</b> hypothesis allows splitting edges through a
+set of points parameterized on the edge (from 1 to 0) and a number of segments for each
+interval limited by the points.
+
+\image html hypo_fixedpnt_dlg.png
+
+It is possible to check in <b>Same Nb. Segments for all intervals</b>
+option and to define one value for all intervals.
+
+The splitting direction is defined by the orientation of the
underlying geometrical edge. <b>"Reverse Edges"</b> list box allows to
specify the edges for which the splitting should be made in the
-direction opposing to their orientation. This list box is enabled only
-if the geometry object is selected for the meshing. In this case the
-user can select edges to be reversed either directly picking them in
-the 3D viewer or by selecting the edges or groups of edges in the
+direction opposite to their orientation. This list box is enabled only
+if the geometrical object is selected for meshing. In this case it is
+possible to select the edges to be reversed either directly picking them in
+the 3D viewer or selecting the edges or groups of edges in the
Object browser.
-Using of this hypothesis for quadrangle face where main mesh is
-created using <b>Quadrangle(Mapping)</b> and <b>NumberOfSegments</b>
-hypothesises. Creation hypothesis <b>FixedPoint_1D</b> for submesh on
-one edge:
+\image html mesh_fixedpnt.png "Example of a submesh on the edge built using Fixed points 1D hypothesis"
-\image html hypo_fixedpnt_dlg.png
-
-Resulting 2D mesh:
-
-\image html mesh_fixedpnt.png
+<b>See Also</b> a sample TUI Script of a
+\ref tui_fixed_points "Defining Fixed Points" hypothesis operation.
*/
\image html a-maxelarea.png
+\n
+
\image html max_el_area.png "In this example, Max. element area is very small compared to the 1D hypothesis"
<b>See Also</b> a sample TUI Script of a
\image html hypo_quad_params_res.png "The resulting mesh"
+This hypothesis can be also used to mesh a segment of a circular face.
+Please, consider that there is a limitation on the selectiion of the degenerated
+vertex for the faces built with the angle > 180 degrees (see the picture).
+
+\image html hypo_quad_params_2.png "3/4 of a circular face"
+
+In this case, selection of a wrong vertex for the <b>Quadrangle parameters</b>
+hypothesis will generate a wrong mesh. The picture below
+shows the good (left) and the bad (right) results of meshing.
+
+\image html hypo_quad_params_res_2.png "The resulting meshes"
+
<br>
\anchor quadrangle_preference_anchor
<h2>Quadrangle Preference</h2>
<ul>
<li>\ref max_element_area_anchor "Max Element Area"</li>
<li>\ref length_from_edges_anchor "Length from Edges"</li>
+<li>\ref hypo_quad_params_anchor "Quadrangle Parameters"</li>
<li>\ref quadrangle_preference_anchor "Quadrangle Preference"</li>
<li>\ref triangle_preference_anchor "Triangle Preference"</li>
</ul>
\image html image126.gif "Example of a hexahedral 3D mesh"
</ul>
-\Note that BLSURF and GHS3D are commercial meshers and require a
+\note BLSURF and GHS3D are commercial meshers and require a
license to be used within the Mesh module.
There is also a number of more specific algorithms:
\image html blsurf_parameters_sizemap.png
-It is possible to define user sizes on faces, edges or verteces.
+User sizes can be defined on faces, edges or vertices.
<ul>
-<li>Those faces, edges and verteces must be sub-shapes (from explode command) of the meshed geometry object.</li>
-<li>Groups of faces, edges and verteces are also handled.</li>
-<li>Multi-selection is possible.</li>
-<li>The sizes are constant values.</li>
+<li>The faces, edges and vertices can belong to the meshed geometrical
+object or to its sub-shapes (created using <b>Explode</b> command).</li>
+<li>Groups of faces, edges and vertices are also handled.</li>
+<li>It is possible to attribute the same size to several geometries using multi-selection.</li>
+<li>The sizes are constant values or python functions.</li>
+<li>In case of a python function, the following rules must be respected:
+<ul>
+<li>The name of the function is f.</li>
+<li>If geometry is a face or a group of faces, the function is f(u,v).</li>
+<li>If geometry is an edge or a group of edges, the function is f(t).</li>
+<li>If geometry is a vertex or a group of vertices, the function is f().</li>
+<li>The function must return a double.</li>
+</ul></li>
</ul>
<br><b>See Also</b> a sample TUI Script of the \ref tui_blsurf "creation of a BLSurf hypothesis", including size map.
\anchor blsurf_sizemap_computation
<h2>Computation of the physical size</h2>
-Here is the detail on the calculation of the size (from BLSurf documentation).
\n
-The size is obtained by querying sizemap functions associated to the input CAD object for surfaces, curves and points.
-Each function can either return a value h (which is then trimmed between the two bounds hphymin and hphymax), or "no answer" (by not assigning a value to h), thus providing great flexibility in the specification of the sizes. The computation depends whether point P is internal to a surface, internal to a curve, or at the end of several curves:
+The physical size is obtained by querying sizemap functions associated to the input CAD object for surfaces, curves and points.
+Each function can either return a value h (which is then trimmed
+between the two bounds hphymin and hphymax), or "no answer" (by not
+assigning a value to h), thus providing great flexibility in the
+specification of the sizes. The computation depends on whether point P is internal to a surface, internal to a curve, or at the end of several curves:
<ul>
<li> If point P is internal to a surface, the CAD surface size function is queried. If no answer is returned, one interpolates with the values at the vertices of the discretized interface curves.</li>
<li> If point P is internal to a curve, the CAD curve size function is queried first. If no answer is returned, the surface size function is queried for every adjacent surface and the mean value of the returned values is computed. If no answer is returned, sizes h1 and h2 at both ends of the curve are considered (see next item) and the interpolated value is computed.</li>
\image html blsurf_parameters_enforced_vertices.png
-It is possible to define some enforced vertices to BLSurf algorithm without any vertex creation into the CAD.
+It is possible to define some enforced vertices to BLSurf algorithm
+without creating any vertices by CAD algorithms.
<ul>
-<li>Enforced vertices are the projection of a given point defines by its (x,y,z) coordinates on the concerned face.</li>
-<li>It is possible to define several enforced vertices on 1 face.</li>
-<li>Group of faces are also handled.</li>
-<li>If the projection point is on the boundary or outside the face, then it will be ignored.</li>
+<li>The enforced vertex is the projection of a point defined by its
+(x,y,z) coordinates on the selected face.</li>
+<li>It is possible to define several enforced vertices on a face or a group of faces.</li>
+<li>If the projected point is on the boundary or outside of the face, it will be ignored.</li>
</ul>
<br><b>See Also</b> a sample TUI Script of the \ref tui_blsurf "creation of a BLSurf hypothesis", including enforced vertices.
\image html image160.gif "Example of a compound of two meshed cubes"
+<b>See Also</b> a sample
+\ref tui_building_compound "TUI Example of building compounds."
*/
\image html failed_computation.png "Example of the invalid input mesh"
-\Note Mesh Computation Information box does not appear if you set
+\note Mesh Computation Information box does not appear if you set
"Mesh computation/Show a computation result notification" preference
to the "Never" value. This option gives the possibility to control mesh
computation reporting. There are the following possibilities: always
<li>Click the \b Apply or \b OK button.</li>
</ol>
-*/
\ No newline at end of file
+<br><b>See Also</b> a sample TUI Script of a \ref tui_quadratic "Convert to/from quadratic" operation.
+
+*/
\page editing_groups_page Editing groups
-\n <em>To edit an existing group of elements:</em>
+<em>To edit an existing group of elements:</em>
<ol>
<li>Select your group in the Object Browser and in the \b Mesh menu click
the <b>Edit Group</b> item or <em>"Edit Group"</em> button in the toolbar.</li>
In this dialog box you can modify the name of your group and add or
remove the elements forming it. For more information see
\ref creating_groups_page "Creating Groups" page.
+
<li>Click the \b Apply or <b>Apply and Close</b> button to confirm modification of the
group.</li>
</ol>
-\n <em>To convert an existing group on geometry into standalone group
+<em>To convert an existing group on geometry into standalone group
of elements and modify:</em>
<ol>
<li>Select your group on geometry in the Object Browser and in the \b Mesh menu click
<center><em>"Edit Group as Standalone" button</em></center>
The group on geometry will be converted into standalone group and can
-be modified as group of elements
+be modified as group of elements.
+
<li>Click the \b Apply or <b>Apply and Close</b> button to confirm modification of the
group.</li>
+</ol>
-<br><b>See Also</b> a sample TUI Script of an
-\ref tui_edit_group "Edit Group" operation.
+\sa A sample TUI Script of an \ref tui_edit_group "Edit Group" operation.
*/
\page free_faces_page Free faces
-\n This mesh quality control highlights the faces connected to
+This mesh quality control highlights the faces connected to
less than two mesh volume elements. The free faces are shown with a
color different from the color of shared faces.
\image html free_faces.png
-<center>In this picture some volume mesh elements have been removed, as
+
+In this picture some volume mesh elements have been removed, as
a result some faces became connected only to one
volume. i.e. became free.
-<br><b>See Also</b> a sample TUI Script of a
-\ref tui_free_faces "Free Faces quality control" operation.
+\sa A sample TUI Script of a \ref tui_free_faces "Free Faces quality control"
+operation.
*/
\page free_nodes_page Free nodes
-\n This mesh quality control highlights the nodes which are not connected
+This mesh quality control highlights the nodes which are not connected
to any mesh element.
\image html free_nodes.png
-<center>In this picture some nodes are not connected to any mesh
+
+In this picture some nodes are not connected to any mesh
element after deleting some elements and adding several isolated nodes.
-<br><b>See Also</b> a sample TUI Script of a
-\ref tui_free_nodes "Free Nodes quality control" operation.
+\sa A sample TUI Script of a \ref tui_free_nodes "Free Nodes quality control"
+operation.
*/
<li><b>To create new nodes</b> - if this option is checked off, ghs3d
tries to create tetrahedrons using only the nodes of the 2D mesh.</li>
-<li><b>To remove initial central point</b> - TetMesh-GHS3D adds an internal point
-at the centre of gravity of the bounding box in order to speed up and to simplify
-the meshing process. It is however possible for TetMesh-GHS3D to refrain from creating
+<li><b>To remove the initial central point</b> TetMesh-GHS3D adds an internal point
+at the gravity centre of the bounding box to speed up and to simplify
+the meshing process. However, it is possible to refrain from creating
this point by using the command line option -no initial central point. This can be
-particularly useful to generate a volume mesh without internal points at all, and in some rare cases,
-to help the boundary regeneration phase when it failed with the standard options (for example when
-one dimension of the domain is large compared to the other two, with a ratio of 20 or more).
-Use this option when the boundary regeneration failed with the standard parameters and before using
+particularly useful to generate a volume mesh without internal points at all and in some rare cases
+at the boundary regeneration phase when it is impossible to proceed
+with the standard options
+(for example, when one dimension of the domain is more than 20 times greater than the other two).
+Use this option if the boundary regeneration has failed with the standard parameters and before using
the recovery version (command line option -C).
-Note: when using this option, the speed of the meshing process may decrease, and quality may change.
+Note: when using this option, the speed of the meshing process may
+decrease, and the quality may change.
Note: the boundary regeneration may fail with this option, in some rare cases.</li>
<li><b>To use boundary recovery version</b> - enables using a
positive volume).</li>
<li><b>To use FEM correction</b> - Applies finite-element correction by
-replacing overconstrained elements where it is possible. The process is
-first slicing the overconstrained edges and second the overconstrained
-facets. This ensures that no edges have two boundary vertices and that
-no facets have three boundary vertices. TetMesh-GHS3D gives the initial
+replacing overconstrained elements where it is possible. At first the process
+slices the overconstrained edges and at second the overconstrained
+facets. This ensures that there are no edges with two boundary
+vertices and that there are no facets with three boundary vertices. TetMesh-GHS3D gives the initial
and final overconstrained edges and facets. It also gives the facets
which have three edges on the boundary.
Note: when using this option, the speed of the meshing process may
decrease, quality may change, and the smallest volume may be smaller.
-The default is no correction.</li>
+By default, the FEM correction is not used.</li>
-<li><b>Option as text</b> - allows input of any text as command line
-for ghs3d. This allows the input of advanced options in a free from. </li>
+<li><b>Option as text</b> - allows to input in the command line any text
+for ghs3d, for example, advanced options. </li>
</ul>
\image html ghs3d_enforced_vertices.png
-GHS3D algorithm can locally raffine the mesh. It is possible to define enforced vertices in the volume where the mesh will be raffined.
+GHS3D algorithm can locally make the mesh finer. It is possible to define enforced vertices in the volume where the mesh will be detailed.
-A node will be created at the enforced vertex coordinates. There is no need to create a vertex in the CAD.
+A node will be created at the enforced vertex coordinates. There is no need to create a vertex in CAD.
An enforced vertex is defined by:
<ul>
<br><b>See Also</b> a sample TUI Script of the \ref tui_ghs3d "creation of a Ghs3D hypothesis", including enforced vertices.
-*/
\ No newline at end of file
+*/
<li> by creating a group of elements of the selected type from all
such elements of the chosen geometrical object - <b>Group on
geometry</b> tab of \ref creating_groups_page "Create group" dialog.</li>
-
<li> by creating a group including all types of elements from an
existing geometrical object - using \subpage create_groups_from_geometry_page "Create Groups from Geometry" dialog.</li>
-
<li> by creating several groups of elements (nodes,
edges, faces and volumes) from the chosen submesh - using <b>Mesh -> Construct
Group</b> Menu item. In this case groups of elements are created
automatically.</li>
-
<li> by creating groups of entities from existing groups of superior
dimensions - using \subpage group_of_underlying_elements_page "Create Group of Underlying Elements"
dialog.</li>
-
</ul>
<ul>
<li>\subpage editing_groups_page "Edited"</li>
-<li>\subpage using_operations_on_groups_page "Subjected to Boolean operations", or</li>
+<li>\subpage using_operations_on_groups_page "Subjected to Boolean operations"</li>
<li>\subpage deleting_groups_page "Deleted"</li>
</ul>
An important tool, providing filters for creation of \b Standalone
-groups is \subpage selection_filter_library_page</li>.
+groups is \subpage selection_filter_library_page.
*/
\page make_2dmesh_from_3d_page Generate the skin elements (2D) of a mesh having 3D elements
-\n This functionality allows you to generate 2D mesh elements as skin
-on existing 3D mesh elements
+\n This functionality allows to generate 2D mesh elements as a skin
+on the existing 3D mesh elements.
<em>To generate 2D mesh:</em>
<ol>
-<li>From the Modification menu choose the "Create 2D mesh from 3D"
-Mesh item, or invoke from popup menu.
+<li>From the Modification menu choose "Create 2D mesh from 3D"
+item, or choose from the popup menu.
\image html 2d_from_3d_menu.png
The algorithm detects boundary volume faces without connections to
-other volumes and create 2D mesh elements on face nodes. If mesh
-already contains 2D elements on detected nodes - no new element
-created. The result dialog shows mesh information statistic about new
-created 2D mesh elements.
+other volumes and creates 2D mesh elements on face nodes. If the mesh
+already contains 2D elements on the detected nodes, new elements are not
+created. The the resulting dialog shows mesh information statistics
+about the newly created 2D mesh elements.
</ol>
*/
\image html advanced_mesh_infos.png
-In case you get Mesh Infos via a \ref tui_viewing_mesh_infos "TUI script",
-the information is displayed in Python Console.
-
-\image html b-mesh_infos.png
-
<br>
\anchor mesh_element_info_anchor
<h2>Mesh Element Info</h2>
\image html eleminfo2.png
+In case you get Mesh Infos via a TUI script the information is displayed in Python Console.
+<b>See the</b> \ref tui_viewing_mesh_infos "TUI Example",
+
*/
\ No newline at end of file
\page netgen_2d_3d_hypo_page Netgen 2D and 3D hypotheses
-\n <b>Netgen 2D</b> and <b>Netgen 3D</b> hypotheses work only with <b>Netgen 1D-2D</b> and
+<b>Netgen 2D</b> and <b>Netgen 3D</b> hypotheses work only with <b>Netgen 1D-2D</b> and
<b>Netgen 1D-2D-3D</b> algorithms. These algorithms do not require
definition of lower-level hypotheses and algorithms (2D and 1D for
meshing 3D objects and 1D for meshing 2D objects). They prove to be
\image html netgen2d.png
-<ul>
-<li><b>Name</b> - allows to define the name for the algorithm (Netgen
-2D (or 3D) Parameters by default).</li>
-<li><b>Max Size</b> - maximum linear dimensions for mesh cells.</li>
-<li><b>Second Order</b> - if this box is checked in, the algorithm will
+- <b>Name</b> - allows to define the name for the algorithm (Netgen
+2D (or 3D) Parameters by default).
+- <b>Max Size</b> - maximum linear dimensions for mesh cells.
+- <b>Second Order</b> - if this box is checked in, the algorithm will
create second order nodes on the mesh, which actually will become
-\ref adding_quadratic_elements_page "Quadratic".</li>
-<li><b>Fineness</b> - ranging from Very Coarse to Very Fine allows to set the
+\ref adding_quadratic_elements_page "Quadratic".
+- <b>Fineness</b> - ranging from Very Coarse to Very Fine allows to set the
level of meshing detalization using the three parameters below. You
-can select Custom to define them manually.</li>
-<li><b>Growth rate</b> - allows to define how much the linear dimensions of
-two adjacent cells can differ (i.e. 0.3 means 30%).</li>
-<li><b>Nb. Segs per Edge</b> and <b>Nb Segs per Radius</b> - allows to define the
+can select Custom to define them manually.
+- <b>Growth rate</b> - allows to define how much the linear dimensions of
+two adjacent cells can differ (i.e. 0.3 means 30%).
+- <b>Nb. Segs per Edge</b> and <b>Nb Segs per Radius</b> - allows to define the
minimum number of mesh segments in which edges and radiuses will be
-split.</li>
-<li><b>Allow Quadrangles</b> - allows to use quadrangle elements in a
+split.
+- <b>Allow Quadrangles</b> - allows to use quadrangle elements in a
triangle 2D mesh. This checkbox is not present in Netgen 3D parameters
because currently building a tetrahedral mesh with quadrangle faces is
-not possible.</li>
-<li><b>Optimize</b> - if this box is checked in, the algorithm will try to
-create regular (possessing even sides) elements.</li>
-</ul>
+not possible.
+- <b>Optimize</b> - if this box is checked in, the algorithm will try to
+create regular (possessing even sides) elements.
\image html netgen3d_simple.png
-<b>Netgen 2D simple parameters</b> and <b>Netgen 3D simple parameters</b> allow defining the size of elements for each dimension. <br>
+<b>Netgen 2D simple parameters</b> and <b>Netgen 3D simple
+parameters</b> allow defining the size of elements for each
+dimension.
\b 1D group allows defining the size of 1D elements in either of two ways:
-<ul>
-<li><b>Number of Segments</b> has the same sense as \ref
+- <b>Number of Segments</b> has the same sense as \ref
number_of_segments_anchor "Number of segments" hypothesis with
-equidistant distribution.</li>
-<li><b>Average Length</b> has the same sense as \ref
-average_length_anchor "Average Length" hypothesis.</li>
-</ul>
+equidistant distribution.
+- <b>Average Length</b> has the same sense as \ref
+average_length_anchor "Average Length" hypothesis.
\b 2D group allows defining the size of 2D elements
-<ul>
-<li><b>Length from edges</b> if checked in, acts like \ref
-length_from_edges_anchor "Length from Edges" hypothesis, else </li>
-<li><b>Max. Element Area</b> defines the maximum element area like \ref
-max_element_area_anchor "Max Element Area" hypothesis. </li>
-</ul>
+- <b>Length from edges</b> if checked in, acts like \ref
+length_from_edges_anchor "Length from Edges" hypothesis, else
+- <b>Max. Element Area</b> defines the maximum element area like \ref
+max_element_area_anchor "Max Element Area" hypothesis.
\b 3D groups allows defining the size of 3D elements.
-<ul>
-<li><b>Length from faces</b> if checked in, the area of sides of
-volumic elements will be equal to an average area of 2D elements, else </li>
-<li><b>Max. Element Volume</b> defines the maximum element volume like
+- <b>Length from faces</b> if checked in, the area of sides of
+volumic elements will be equal to an average area of 2D elements, else
+- <b>Max. Element Volume</b> defines the maximum element volume like
\ref max_element_volume_hypo_page "Max Element Volume"
-hypothesis.</li>
-<ul>
+hypothesis.
-\n Note that Netgen algorithm does not strictly follow the input
-parameters. The actual mesh can be more or less dense than required. There are several factors in it:
-<ol>
-<li> NETGEN does not actually use "NbOfSegments" parameter for discretization of
-edge. This parameter is used only to define the local element size (size at the given point), so local sizes of adjacent edges influence each other. </li>
-<li> NETGEN additionally restricts the element size according to edge curvature.</li>
-<li> The local size of edges influences the size of close triangles.</li>
-<li> The order of elements and their size in the 1D mesh generated by
+\note Netgen algorithm does not strictly follow the input
+parameters. The actual mesh can be more or less dense than
+required. There are several factors in it:
+- NETGEN does not actually use "NbOfSegments" parameter for discretization of
+edge. This parameter is used only to define the local element size
+(size at the given point), so local sizes of adjacent edges influence
+each other.
+- NETGEN additionally restricts the element size according to edge curvature.
+- The local size of edges influences the size of close triangles.
+- The order of elements and their size in the 1D mesh generated by
NETGEN differ from those in the 1D mesh generated by Regular_1D
-algorithm, resulting in different 2D and 3D meshes.</li>
-</ol>
-*/
\ No newline at end of file
+algorithm, resulting in different 2D and 3D meshes.
+
+*/
3D extrusion algorithm can be used for meshing prisms, i.e. <b>3D Shapes</b>
defined by two opposing faces having the same number of vertices and
-edges and meshed using the \ref projection_algos_page "2D Projection"
-algorithm. These two faces should be connected by quadrangle "side"
-faces.
+edges and meshed using, for example, the \ref projection_algos_page
+"2D Projection" algorithm. These two faces should be connected by
+quadrangle "side" faces.
The opposing faces can be meshed with either quadrangles or triangles,
while the side faces should be meshed with quadrangles only.
have in the same 3D mesh such elements as hexahedrons, prisms and
polyhedrons.
-*/
\ No newline at end of file
+\note This algorithm works correctly only if the opposing faces have
+the same (or similar) meshing topography. Otherwise, 3D extrusion
+algorithm can fail to build mesh volumes.
+
+*/
\page radial_quadrangle_1D2D_algo_page Radial Quadrangle 1D2D
-\n This algorithm applies to the meshing of a 2D shapes.
-Required conditions: Face must be a full circle or part of circle
-(i.e. number of edges <= 3 and one of them must be a circle curve).
-The resulting mesh consists of triangles (near center point) and
+\n This algorithm applies to the meshing of 2D shapes under the
+following conditions: the face must be a full circle or a part of circle
+(i.e. the number of edges is less or equal to 3 and one of them is a circle curve).
+The resulting mesh consists of triangles (near the center point) and
quadrangles.
-This algorithm also requires the information concerning the number and
-distribution of mesh layers alond a radius of circle. Distribution of
-layers can be set with any of 1D Hypotheses.
-
-Creation hypothesis:
+This algorithm requires the hypothesis indicating the number
+of mesh layers along the radius. The distribution of layers can be set with any 1D Hypothesis.
\image html hypo_radquad_dlg.png
-Resulting 3D mesh for the cylinder with <b>RadialQuadrangle_1D2D</b>
-hypothesis for top and bottom faces:
-
-\image html mesh_radquad_01.png
+\image html mesh_radquad_01.png "Radial Quadrangle 2D mesh on the top and the bottom faces of a cylinder"
-Resulting 2D mesh for the part of circle:
+\image html mesh_radquad_02.png "Radial Quadrangle 2D mesh on a part of circle"
-\image html mesh_radquad_02.png
+\sa A sample \ref tui_radial_quadrangle "TUI Script".
*/
\page smeshpy_interface_page Python interface
-\n Python package smesh defines several classes, destined for easy and
+Python package smesh defines several classes, destined for easy and
clear mesh creation and edition.
-\n Documentation for smesh package is available in two forms:
-
-\n The <a href="smeshpy_doc/modules.html"> structured
- documentation for smesh package</a>, where all methods and
- classes are grouped by their functionality, like it is done in the GUI documentation
-\n and the \ref smeshDC "linear documentation for smesh package"
- grouped only by classes, declared in the smesh.py file.
-
-\n The main page of the \ref smeshDC "linear documentation for smesh package"
- contains a list of data structures and a list of
- functions, provided by the package smesh.py. The first item in
- the list of data structures (\ref smeshDC::smeshDC "class smesh")
- also represents documentation for the methods of the package smesh.py itself.
-
-\n The package smesh.py provides an interface to create and handle
- meshes. Use it to create an empty mesh or to import it from the data file.
-
-\n Once a mesh has been created, it is possible to manage it via its own
- methods, described at \ref smeshDC::Mesh "class Mesh" documentation
- (it is also accessible by the second item "class Mesh" in the list of data structures).
-
-\n Class Mesh allows assigning algorithms to a mesh.
-\n Please note, that some algorithms,
- included in the standard Salome installation are always available:
- - REGULAR(1D), COMPOSITE(1D), MEFISTO(2D), Quadrangle(2D), Hexa(3D), etc.
-
-\n There are also some algorithms, which can be installed optionally,
-\n some of them are based on open-source meshers:
- - NETGEN(1D-2D,2D,1D-2D-3D,3D),
-
-\n others are based on commercial meshers:
- - GHS3D(3D), BLSURF(2D).
-
-\n To add hypotheses, use the interfaces, provided by the assigned
+Documentation for smesh package is available in two forms:
+
+The <a href="smeshpy_doc/modules.html"> structured
+documentation for smesh package</a>, where all methods and
+classes are grouped by their functionality, like it is done in the GUI documentation
+and the \ref smeshDC "linear documentation for smesh package"
+grouped only by classes, declared in the smesh.py file.
+
+The main page of the \ref smeshDC "linear documentation for smesh package"
+contains a list of data structures and a list of
+functions, provided by the package smesh.py. The first item in
+the list of data structures (\ref smeshDC::smeshDC "class smesh")
+also represents documentation for the methods of the package smesh.py itself.
+
+The package smesh.py provides an interface to create and handle
+meshes. Use it to create an empty mesh or to import it from the data file.
+
+Once a mesh has been created, it is possible to manage it via its own
+methods, described at \ref smeshDC::Mesh "class Mesh" documentation
+(it is also accessible by the second item "class Mesh" in the list of data structures).
+
+Class \b Mesh allows assigning algorithms to a mesh.
+Please note, that some algorithms, included in the standard SALOME
+distribution are always available:
+- REGULAR (1D)
+- COMPOSITE (1D)
+- MEFISTO (2D)
+- Quadrangle (2D)
+- Hexa(3D)
+- etc...
+
+There are also some algorithms, which can be installed optionally,
+some of them are based on open-source meshers:
+- NETGEN (1D-2D, 2D, 1D-2D-3D, 3D)
+
+... and others are based on commercial meshers:
+- GHS3D (3D)
+- BLSURF (2D)
+
+To add hypotheses, use the interfaces, provided by the assigned
algorithms.
-\n Below you can see an example of usage of the package smesh for 3d mesh generation.
+Below you can see an example of usage of the package smesh for 3d mesh generation.
+\anchor example_3d_mesh
<h2>Example of 3d mesh generation with NETGEN:</h2>
-\n from geompy import *
-\n import smesh
+\code
+from geompy import *
+import smesh
-<b># Geometry</b>
-\n <b># an assembly of a box, a cylinder and a truncated cone meshed with tetrahedral</b>.
+###
+# Geometry: an assembly of a box, a cylinder and a truncated cone
+# meshed with tetrahedral
+###
-<b># Define values</b>
-\n name = "ex21_lamp"
-\n cote = 60
-\n section = 20
-\n size = 200
-\n radius_1 = 80
-\n radius_2 = 40
-\n height = 100
+# Define values
+name = "ex21_lamp"
+cote = 60
+section = 20
+size = 200
+radius_1 = 80
+radius_2 = 40
+height = 100
-<b># Build a box</b>
-\n box = MakeBox(-cote, -cote, -cote, +cote, +cote, +cote)
+# Build a box
+box = MakeBox(-cote, -cote, -cote, +cote, +cote, +cote)
-<b># Build a cylinder</b>
-\n pt1 = MakeVertex(0, 0, cote/3)
-\n di1 = MakeVectorDXDYDZ(0, 0, 1)
-\n cyl = MakeCylinder(pt1, di1, section, size)
+# Build a cylinder
+pt1 = MakeVertex(0, 0, cote/3)
+di1 = MakeVectorDXDYDZ(0, 0, 1)
+cyl = MakeCylinder(pt1, di1, section, size)
-<b># Build a truncated cone</b>
-\n pt2 = MakeVertex(0, 0, size)
-\n cone = MakeCone(pt2, di1, radius_1, radius_2, height)
+# Build a truncated cone
+pt2 = MakeVertex(0, 0, size)
+cone = MakeCone(pt2, di1, radius_1, radius_2, height)
-<b># Fuse </b>
-\n box_cyl = MakeFuse(box, cyl)
-\n piece = MakeFuse(box_cyl, cone)
+# Fuse
+box_cyl = MakeFuse(box, cyl)
+piece = MakeFuse(box_cyl, cone)
-<b># Add in study</b>
-\n addToStudy(piece, name)
+# Add to the study
+addToStudy(piece, name)
-<b># Create a group of faces</b>
-\n group = CreateGroup(piece, ShapeType["FACE"])
-\n group_name = name + "_grp"
-\n addToStudy(group, group_name)
-\n group.SetName(group_name)
+# Create a group of faces
+group = CreateGroup(piece, ShapeType["FACE"])
+group_name = name + "_grp"
+addToStudy(group, group_name)
+group.SetName(group_name)
-<b># Add faces in the group</b>
-\n faces = SubShapeAllIDs(piece, ShapeType["FACE"])
-\n UnionIDs(group, faces)
+# Add faces to the group
+faces = SubShapeAllIDs(piece, ShapeType["FACE"])
+UnionIDs(group, faces)
-<b># Create a mesh</b>
+###
+# Create a mesh
+###
-<b># Define a mesh on a geometry</b>
-\n tetra = smesh.Mesh(piece, name)
+# Define a mesh on a geometry
+tetra = smesh.Mesh(piece, name)
-<b># Define 1D hypothesis</b>
-\n algo1d = tetra.Segment()
-\n algo1d.LocalLength(10)
+# Define 1D hypothesis
+algo1d = tetra.Segment()
+algo1d.LocalLength(10)
-<b># Define 2D hypothesis</b>
-\n algo2d = tetra.Triangle()
-\n algo2d.LengthFromEdges()
+# Define 2D hypothesis
+algo2d = tetra.Triangle()
+algo2d.LengthFromEdges()
-<b># Define 3D hypothesis</b>
-\n algo3d = tetra.Tetrahedron(smesh.NETGEN)
-\n algo3d.MaxElementVolume(100)
+# Define 3D hypothesis
+algo3d = tetra.Tetrahedron(smesh.NETGEN)
+algo3d.MaxElementVolume(100)
-<b># Compute the mesh</b>
-\n tetra.Compute()
+# Compute the mesh
+tetra.Compute()
-<b># Create a groupe of faces</b>
-\n tetra.Group(group)
+# Create a groupe of faces
+tetra.Group(group)
-\n Examples of Python scripts for all Mesh operations are available by
-the following links:
+\endcode
-<ul>
-<li>\subpage tui_creating_meshes_page</li>
-<li>\subpage tui_viewing_meshes_page</li>
-<li>\subpage tui_defining_hypotheses_page</li>
-<li>\subpage tui_quality_controls_page</li>
-<li>\subpage tui_grouping_elements_page</li>
-<li>\subpage tui_modifying_meshes_page</li>
-<li>\subpage tui_transforming_meshes_page</li>
-<li>\subpage tui_notebook_smesh_page</li>
-</ul>
+Examples of Python scripts for all Mesh operations are available by
+the following links:
+- \subpage tui_creating_meshes_page
+- \subpage tui_viewing_meshes_page
+- \subpage tui_defining_hypotheses_page
+- \subpage tui_quality_controls_page
+- \subpage tui_grouping_elements_page
+- \subpage tui_modifying_meshes_page
+- \subpage tui_transforming_meshes_page
+- \subpage tui_notebook_smesh_page
*/
</ul>
</li>
-<li>Click \b Apply or <b> Apply and Close</b> button to confirm the
-operation.</li>
-
+<li>Click \b Apply or <b> Apply and Close</b> button to confirm the operation.</li>
</ol>
-
-<br><b>See Also</b> a sample TUI Script of a
-\ref tui_translation "Translation" operation.
+<br><b>See Also</b> a sample TUI Script of a \ref tui_translation "Translation" operation.
*/
\page tui_creating_meshes_page Creating Meshes
-\n First of all see \ref introduction_to_mesh_python_page "Example of 3d mesh generation",
+\n First of all see \ref example_3d_mesh "Example of 3d mesh generation",
which is an example of good python script style for Mesh module.
<br>
\endcode
+<br>
+
+\anchor tui_fixed_points
+
+<h2>1D Mesh with Fixed Points example</h2>
+
+\code
+import salome
+import geompy
+import smesh
+import StdMeshers
+
+# Create face and explode it on edges
+face = geompy.MakeFaceHW(100, 100, 1)
+edges = geompy.SubShapeAllSorted(face, geompy.ShapeType["EDGE"])
+geompy.addToStudy( face, "Face" )
+
+# get the first edge from exploded result
+edge1 = geompy.GetSubShapeID(face, edges[0])
+
+# Define Mesh on previously created face
+Mesh_1 = smesh.Mesh(face)
+
+# Create Fixed Point 1D hypothesis and define parameters.
+# Note: values greater than 1.0 and less than 0.0 are not taken into account;
+# duplicated values are removed. Also, if not specified explicitly, values 0.0 and 1.0
+# add added automatically.
+# The number of segments should correspond to the number of points (NbSeg = NbPnt-1);
+# extra values of segments splitting parameter are not taken into account,
+# while missing values are considered to be equal to 1.
+Fixed_points_1D_1 = smesh.CreateHypothesis('FixedPoints1D')
+Fixed_points_1D_1.SetPoints( [ 1.1, 0.9, 0.5, 0.0, 0.5, -0.3 ] )
+Fixed_points_1D_1.SetNbSegments( [ 3, 1, 2 ] )
+Fixed_points_1D_1.SetReversedEdges( [edge1] )
+
+# Add hypothesis to mesh and define 2D parameters
+Mesh_1.AddHypothesis(Fixed_points_1D_1)
+Regular_1D = Mesh_1.Segment()
+Quadrangle_2D = Mesh_1.Quadrangle()
+# Compute mesh
+Mesh_1.Compute()
+\endcode
+
+\anchor tui_radial_quadrangle
+<h2> Radial Quadrangle 1D2D example </h2>
+\code
+import salome
+import geompy
+import smesh
+import StdMeshers
+
+# Create face from the wire and add to study
+WirePath = geompy.MakeSketcher("Sketcher:F 0 0:TT 20 0:R 90:C 20 90:WW", [0, 0, 0, 1, 0, 0, 0, 0, 1])
+Face = geompy.MakeFace(WirePath,1)
+geompy.addToStudy(Face,"Face")
+
+# Define geometry for mesh, and 1D parameters
+mesh = smesh.Mesh(Face)
+Wire_discretisation = mesh.Segment()
+Nb_Segments = Wire_discretisation.NumberOfSegments(5)
+Nb_Segments.SetDistrType( 0 )
+
+# Define 2D parameters and Radial Quadrange hypothesis
+Number_of_Layers = smesh.CreateHypothesis('NumberOfLayers2D')
+Number_of_Layers.SetNumberOfLayers( 4 )
+mesh.AddHypothesis(Number_of_Layers)
+RadialQuadrangle_1D2D = smesh.CreateHypothesis('RadialQuadrangle_1D2D')
+mesh.AddHypothesis(RadialQuadrangle_1D2D)
+
+mesh.Compute()
+\endcode
+
+
\n Other meshing algorithms:
<ul>
<li>\subpage tui_defining_blsurf_hypotheses_page</li>
+<li>\subpage tui_defining_ghs3d_hypotheses_page</li>
</ul>
*/
-/*!
+ /*!
\page tui_grouping_elements_page Grouping Elements
\endcode
\image html dimgroup_tui1.png
-<center>Source groups of faces<\center>
+<center>Source groups of faces</center>
\image html dimgroup_tui2.png
-<center>Result groups of edges and nodes<\center>
+<center>Result groups of edges and nodes</center>
-*/
\ No newline at end of file
+*/
if (isDone != 1): print 'MakeMesh :', pattern.GetErrorCode()
\endcode
-*/
\ No newline at end of file
+<br>
+\anchor tui_quadratic
+<h2>Convert mesh to/from quadratic</h2>
+
+\code
+import geompy
+import smesh
+
+# create sphere of radius 100
+
+Sphere = geompy.MakeSphereR( 100 )
+geompy.addToStudy( Sphere, "Sphere" )
+
+# create simple trihedral mesh
+
+Mesh = smesh.Mesh(Sphere)
+Regular_1D = Mesh.Segment()
+Nb_Segments = Regular_1D.NumberOfSegments(5)
+MEFISTO_2D = Mesh.Triangle()
+Tetrahedron_Netgen = Mesh.Tetrahedron(algo=smesh.NETGEN)
+
+# compute mesh
+
+isDone = Mesh.Compute()
+
+# convert to quadratic
+# theForce3d = 1; this results in the medium node lying at the
+# middle of the line segments connecting start and end node of a mesh
+# element
+
+Mesh.ConvertToQuadratic( theForce3d=1 )
+
+# revert back to the non-quadratic mesh
+
+Mesh.ConvertFromQuadratic()
+
+# convert to quadratic
+# theForce3d = 0; this results in the medium node lying at the
+# geometrical edge from which the mesh element is built
+
+Mesh.ConvertToQuadratic( theForce3d=0 )
+
+\endcode
+
+*/
\code
import geompy
import smesh
+import SMESH
# create a box
box = geompy.MakeBox(0., 0., 0., 20., 20., 20.)
geompy.addToStudy(box, "box")
+[Face_1,Face_2,Face_3,Face_4,Face_5,Face_5] = geompy.SubShapeAll(box, geompy.ShapeType["FACE"])
# create a mesh
tetra = smesh.Mesh(box, "MeshBox")
algo3D = tetra.Tetrahedron(smesh.NETGEN)
algo3D.MaxElementVolume(900.)
+# Creation of SubMesh
+Regular_1D_1_1 = tetra.Segment(geom=Face_1)
+Nb_Segments_1 = Regular_1D_1_1.NumberOfSegments(5)
+Nb_Segments_1.SetDistrType( 0 )
+Quadrangle_2D = tetra.Quadrangle(geom=Face_1)
+isDone = tetra.Compute()
+submesh = Regular_1D_1_1.GetSubMesh()
+
# compute the mesh
tetra.Compute()
-# print information about the mesh
+# Creation of group
+group = tetra.CreateEmptyGroup( SMESH.FACE, 'Group' )
+nbAdd = group.Add( [ 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 ] )
+
+# Print information about the mesh
print "Information about mesh:"
print "Number of nodes : ", tetra.NbNodes()
print "Number of edges : ", tetra.NbEdges()
print " prisms : ", tetra.NbPrisms()
print " pyramids : ", tetra.NbPyramids()
print " polyhedrons : ", tetra.NbPolyhedrons()
+
+# Get Information About Mesh by GetMeshInfo
+print "\nInformation about mesh by GetMeshInfo:"
+info = smesh.GetMeshInfo(tetra)
+keys = info.keys(); keys.sort()
+for i in keys:
+ print " %s : %d" % ( i, info[i] )
+ pass
+
+# Get Information About Group by GetMeshInfo
+print "\nInformation about group by GetMeshInfo:"
+info = smesh.GetMeshInfo(group)
+keys = info.keys(); keys.sort()
+for i in keys:
+ print " %s : %d" % ( i, info[i] )
+ pass
+
+# Get Information About SubMesh by GetMeshInfo
+print "\nInformation about Submesh by GetMeshInfo:"
+info = smesh.GetMeshInfo(submesh)
+keys = info.keys(); keys.sort()
+for i in keys:
+ print " %s : %d" % ( i, info[i] )
+ pass
\endcode
-*/
\ No newline at end of file
+
+*/
<li>\subpage transparency_page "Transparency" - allows to change the
transparency of mesh elements.</li>
<li>\subpage clipping_page "Clipping" - allows to create cross-sections of the selected objects.</li>
-<li>\ref about_quality_controls_page "Controls" - graphically
+<li>\ref quality_page "Controls" - graphically
presents various information about meshes.</li>
<li><b>Hide</b> - allows to hide the selected mesh from the viewer.</li>
<li><b>Show Only</b> -allows to display only the selected mesh, hiding all other from the viewer.</li>
enum log_command
{
ADD_NODE,
- ADD_ELEM0D,
ADD_EDGE,
ADD_TRIANGLE,
ADD_QUADRANGLE,
ADD_QUADTETRAHEDRON,
ADD_QUADPYRAMID,
ADD_QUADPENTAHEDRON,
- ADD_QUADHEXAHEDRON
+ ADD_QUADHEXAHEDRON,
+ ADD_ELEM0D
};
struct log_block
* not creared - returns empty list
*/
long_array GetLastCreatedElems();
+
+ /*!
+ * \brief Creates a hole in a mesh by doubling the nodes of some particular elements
+ * \param theNodes - identifiers of nodes to be doubled
+ * \param theModifiedElems - identifiers of elements to be updated by the new (doubled)
+ * nodes. If list of element identifiers is empty then nodes are doubled but
+ * they not assigned to elements
+ * \return TRUE if operation has been completed successfully, FALSE otherwise
+ * \sa DoubleNode(), DoubleNodeGroup(), DoubleNodeGroups()
+ */
+ boolean DoubleNodes( in long_array theNodes, in long_array theModifiedElems );
+
+ /*!
+ * \brief Creates a hole in a mesh by doubling the nodes of some particular elements
+ * This method provided for convenience works as DoubleNodes() described above.
+ * \param theNodeId - identifier of node to be doubled.
+ * \param theModifiedElems - identifiers of elements to be updated.
+ * \return TRUE if operation has been completed successfully, FALSE otherwise
+ * \sa DoubleNodes(), DoubleNodeGroup(), DoubleNodeGroups()
+ */
+ boolean DoubleNode( in long theNodeId, in long_array theModifiedElems );
+
+ /*!
+ * \brief Creates a hole in a mesh by doubling the nodes of some particular elements
+ * This method provided for convenience works as DoubleNodes() described above.
+ * \param theNodes - group of nodes to be doubled.
+ * \param theModifiedElems - group of elements to be updated.
+ * \return TRUE if operation has been completed successfully, FALSE otherwise
+ * \sa DoubleNode(), DoubleNodes(), DoubleNodeGroups()
+ */
+ boolean DoubleNodeGroup( in SMESH_GroupBase theNodes,
+ in SMESH_GroupBase theModifiedElems );
+
+ /*!
+ \brief Creates a hole in a mesh by doubling the nodes of some particular elements
+ This method provided for convenience works as DoubleNodes() described above.
+ \param theNodes - list of groups of nodes to be doubled
+ \param theModifiedElems - list of groups of elements to be updated.
+ \return TRUE if operation has been completed successfully, FALSE otherwise
+ \sa DoubleNode(), DoubleNodeGroup(), DoubleNodes()
+ */
+ boolean DoubleNodeGroups( in ListOfGroups theNodes,
+ in ListOfGroups theModifiedElems );
/*!
* \brief Creates a hole in a mesh by doubling the nodes of some particular elements
* \return TRUE if operation has been completed successfully, FALSE otherwise
* \sa DoubleNodeGroup(), DoubleNodeGroups()
*/
- boolean DoubleNodes( in long_array theElems,
- in long_array theNodesNot,
- in long_array theAffectedElems );
+ boolean DoubleNodeElem( in long_array theElems,
+ in long_array theNodesNot,
+ in long_array theAffectedElems );
/*!
* \brief Creates a hole in a mesh by doubling the nodes of some particular elements
* \return TRUE if operation has been completed successfully, FALSE otherwise
* \sa DoubleNodeGroupInRegion(), DoubleNodeGroupsInRegion()
*/
- boolean DoubleNodesInRegion( in long_array theElems,
- in long_array theNodesNot,
- in GEOM::GEOM_Object theShape );
+ boolean DoubleNodeElemInRegion( in long_array theElems,
+ in long_array theNodesNot,
+ in GEOM::GEOM_Object theShape );
/*!
* \brief Creates a hole in a mesh by doubling the nodes of some particular elements
* \return TRUE if operation has been completed successfully, FALSE otherwise
* \sa DoubleNodes(), DoubleNodeGroups()
*/
- boolean DoubleNodeGroup( in SMESH_GroupBase theElems,
- in SMESH_GroupBase theNodesNot,
- in SMESH_GroupBase theAffectedElems );
+ boolean DoubleNodeElemGroup( in SMESH_GroupBase theElems,
+ in SMESH_GroupBase theNodesNot,
+ in SMESH_GroupBase theAffectedElems );
/*!
* \brief Creates a hole in a mesh by doubling the nodes of some particular elements
* \return TRUE if operation has been completed successfully, FALSE otherwise
* \sa DoubleNodesInRegion(), DoubleNodeGroupsInRegion()
*/
- boolean DoubleNodeGroupInRegion( in SMESH_GroupBase theElems,
+ boolean DoubleNodeElemGroupInRegion( in SMESH_GroupBase theElems,
in SMESH_GroupBase theNodesNot,
in GEOM::GEOM_Object theShape );
* \return TRUE if operation has been completed successfully, FALSE otherwise
* \sa DoubleNodeGroup(), DoubleNodes()
*/
- boolean DoubleNodeGroups( in ListOfGroups theElems,
- in ListOfGroups theNodesNot,
- in ListOfGroups theAffectedElems );
+ boolean DoubleNodeElemGroups( in ListOfGroups theElems,
+ in ListOfGroups theNodesNot,
+ in ListOfGroups theAffectedElems );
/*!
* \brief Creates a hole in a mesh by doubling the nodes of some particular elements
* \return TRUE if operation has been completed successfully, FALSE otherwise
* \sa DoubleNodeGroupInRegion(), DoubleNodesInRegion()
*/
- boolean DoubleNodeGroupsInRegion( in ListOfGroups theElems,
- in ListOfGroups theNodesNot,
- in GEOM::GEOM_Object theShape );
+ boolean DoubleNodeElemGroupsInRegion( in ListOfGroups theElems,
+ in ListOfGroups theNodesNot,
+ in GEOM::GEOM_Object theShape );
/*!
* \brief Generated skin mesh (containing 2D cells) from 3D mesh
// SMDS_ElemIteratorPtr anIter = anEdge->nodesIterator();
// if ( anIter != 0 ) {
// while( anIter->more() ) {
-// const SMDS_MeshNode* aNode = (SMDS_MeshNode*)anIter->next();
-// if ( aNode == 0 )
-// return 0;
-// SMDS_ElemIteratorPtr anElemIter = aNode->GetInverseElementIterator();
-// while( anElemIter->more() ) {
-// const SMDS_MeshElement* anElem = anElemIter->next();
-// if ( anElem != 0 && anElem->GetType() != SMDSAbs_Edge ) {
-// int anId = anElem->GetID();
-
-// if ( anIter->more() ) // i.e. first node
-// aMap.Add( anId );
-// else if ( aMap.Contains( anId ) )
-// aResult++;
-// }
-// }
+// const SMDS_MeshNode* aNode = (SMDS_MeshNode*)anIter->next();
+// if ( aNode == 0 )
+// return 0;
+// SMDS_ElemIteratorPtr anElemIter = aNode->GetInverseElementIterator();
+// while( anElemIter->more() ) {
+// const SMDS_MeshElement* anElem = anElemIter->next();
+// if ( anElem != 0 && anElem->GetType() != SMDSAbs_Edge ) {
+// int anId = anElem->GetID();
+
+// if ( anIter->more() ) // i.e. first node
+// aMap.Add( anId );
+// else if ( aMap.Contains( anId ) )
+// aResult++;
+// }
+// }
// }
// }
inline double getArea(double theHalfPerim, double theTria[3]){
return sqrt(theHalfPerim*
- (theHalfPerim-theTria[0])*
- (theHalfPerim-theTria[1])*
- (theHalfPerim-theTria[2]));
+ (theHalfPerim-theTria[0])*
+ (theHalfPerim-theTria[1])*
+ (theHalfPerim-theTria[2]));
}
inline double getVolume(double theLen[6]){
case SMDSAbs_Node:
case SMDSAbs_Edge:
if (len == 2){
- aVal = getDistance( P( 1 ), P( 2 ) );
+ aVal = getDistance( P( 1 ), P( 2 ) );
break;
}
else if (len == 3){ // quadratic edge
- aVal = getDistance(P( 1 ),P( 3 )) + getDistance(P( 3 ),P( 2 ));
+ aVal = getDistance(P( 1 ),P( 3 )) + getDistance(P( 3 ),P( 2 ));
break;
}
case SMDSAbs_Face:
if (len == 3){ // triangles
- double L1 = getDistance(P( 1 ),P( 2 ));
- double L2 = getDistance(P( 2 ),P( 3 ));
- double L3 = getDistance(P( 3 ),P( 1 ));
- aVal = Max(L1,Max(L2,L3));
- break;
+ double L1 = getDistance(P( 1 ),P( 2 ));
+ double L2 = getDistance(P( 2 ),P( 3 ));
+ double L3 = getDistance(P( 3 ),P( 1 ));
+ aVal = Max(L1,Max(L2,L3));
+ break;
}
else if (len == 4){ // quadrangles
- double L1 = getDistance(P( 1 ),P( 2 ));
- double L2 = getDistance(P( 2 ),P( 3 ));
- double L3 = getDistance(P( 3 ),P( 4 ));
- double L4 = getDistance(P( 4 ),P( 1 ));
- aVal = Max(Max(L1,L2),Max(L3,L4));
- break;
+ double L1 = getDistance(P( 1 ),P( 2 ));
+ double L2 = getDistance(P( 2 ),P( 3 ));
+ double L3 = getDistance(P( 3 ),P( 4 ));
+ double L4 = getDistance(P( 4 ),P( 1 ));
+ aVal = Max(Max(L1,L2),Max(L3,L4));
+ break;
}
if (len == 6){ // quadratic triangles
- double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 ));
- double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 ));
- double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 1 ));
- aVal = Max(L1,Max(L2,L3));
+ double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 ));
+ double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 ));
+ double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 1 ));
+ aVal = Max(L1,Max(L2,L3));
//cout<<"L1="<<L1<<" L2="<<L2<<"L3="<<L3<<" aVal="<<aVal<<endl;
- break;
+ break;
}
else if (len == 8){ // quadratic quadrangles
- double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 ));
- double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 ));
- double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 7 ));
- double L4 = getDistance(P( 7 ),P( 8 )) + getDistance(P( 8 ),P( 1 ));
- aVal = Max(Max(L1,L2),Max(L3,L4));
- break;
+ double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 ));
+ double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 ));
+ double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 7 ));
+ double L4 = getDistance(P( 7 ),P( 8 )) + getDistance(P( 8 ),P( 1 ));
+ aVal = Max(Max(L1,L2),Max(L3,L4));
+ break;
}
case SMDSAbs_Volume:
if (len == 4){ // tetraidrs
- double L1 = getDistance(P( 1 ),P( 2 ));
- double L2 = getDistance(P( 2 ),P( 3 ));
- double L3 = getDistance(P( 3 ),P( 1 ));
- double L4 = getDistance(P( 1 ),P( 4 ));
- double L5 = getDistance(P( 2 ),P( 4 ));
- double L6 = getDistance(P( 3 ),P( 4 ));
- aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
- break;
+ double L1 = getDistance(P( 1 ),P( 2 ));
+ double L2 = getDistance(P( 2 ),P( 3 ));
+ double L3 = getDistance(P( 3 ),P( 1 ));
+ double L4 = getDistance(P( 1 ),P( 4 ));
+ double L5 = getDistance(P( 2 ),P( 4 ));
+ double L6 = getDistance(P( 3 ),P( 4 ));
+ aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
+ break;
}
else if (len == 5){ // piramids
- double L1 = getDistance(P( 1 ),P( 2 ));
- double L2 = getDistance(P( 2 ),P( 3 ));
- double L3 = getDistance(P( 3 ),P( 1 ));
- double L4 = getDistance(P( 4 ),P( 1 ));
- double L5 = getDistance(P( 1 ),P( 5 ));
- double L6 = getDistance(P( 2 ),P( 5 ));
- double L7 = getDistance(P( 3 ),P( 5 ));
- double L8 = getDistance(P( 4 ),P( 5 ));
-
- aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
- aVal = Max(aVal,Max(L7,L8));
- break;
+ double L1 = getDistance(P( 1 ),P( 2 ));
+ double L2 = getDistance(P( 2 ),P( 3 ));
+ double L3 = getDistance(P( 3 ),P( 1 ));
+ double L4 = getDistance(P( 4 ),P( 1 ));
+ double L5 = getDistance(P( 1 ),P( 5 ));
+ double L6 = getDistance(P( 2 ),P( 5 ));
+ double L7 = getDistance(P( 3 ),P( 5 ));
+ double L8 = getDistance(P( 4 ),P( 5 ));
+
+ aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
+ aVal = Max(aVal,Max(L7,L8));
+ break;
}
else if (len == 6){ // pentaidres
- double L1 = getDistance(P( 1 ),P( 2 ));
- double L2 = getDistance(P( 2 ),P( 3 ));
- double L3 = getDistance(P( 3 ),P( 1 ));
- double L4 = getDistance(P( 4 ),P( 5 ));
- double L5 = getDistance(P( 5 ),P( 6 ));
- double L6 = getDistance(P( 6 ),P( 4 ));
- double L7 = getDistance(P( 1 ),P( 4 ));
- double L8 = getDistance(P( 2 ),P( 5 ));
- double L9 = getDistance(P( 3 ),P( 6 ));
-
- aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
- aVal = Max(aVal,Max(Max(L7,L8),L9));
- break;
+ double L1 = getDistance(P( 1 ),P( 2 ));
+ double L2 = getDistance(P( 2 ),P( 3 ));
+ double L3 = getDistance(P( 3 ),P( 1 ));
+ double L4 = getDistance(P( 4 ),P( 5 ));
+ double L5 = getDistance(P( 5 ),P( 6 ));
+ double L6 = getDistance(P( 6 ),P( 4 ));
+ double L7 = getDistance(P( 1 ),P( 4 ));
+ double L8 = getDistance(P( 2 ),P( 5 ));
+ double L9 = getDistance(P( 3 ),P( 6 ));
+
+ aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
+ aVal = Max(aVal,Max(Max(L7,L8),L9));
+ break;
}
else if (len == 8){ // hexaider
- double L1 = getDistance(P( 1 ),P( 2 ));
- double L2 = getDistance(P( 2 ),P( 3 ));
- double L3 = getDistance(P( 3 ),P( 4 ));
- double L4 = getDistance(P( 4 ),P( 1 ));
- double L5 = getDistance(P( 5 ),P( 6 ));
- double L6 = getDistance(P( 6 ),P( 7 ));
- double L7 = getDistance(P( 7 ),P( 8 ));
- double L8 = getDistance(P( 8 ),P( 5 ));
- double L9 = getDistance(P( 1 ),P( 5 ));
- double L10= getDistance(P( 2 ),P( 6 ));
- double L11= getDistance(P( 3 ),P( 7 ));
- double L12= getDistance(P( 4 ),P( 8 ));
-
- aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
- aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10)));
- aVal = Max(aVal,Max(L11,L12));
- break;
+ double L1 = getDistance(P( 1 ),P( 2 ));
+ double L2 = getDistance(P( 2 ),P( 3 ));
+ double L3 = getDistance(P( 3 ),P( 4 ));
+ double L4 = getDistance(P( 4 ),P( 1 ));
+ double L5 = getDistance(P( 5 ),P( 6 ));
+ double L6 = getDistance(P( 6 ),P( 7 ));
+ double L7 = getDistance(P( 7 ),P( 8 ));
+ double L8 = getDistance(P( 8 ),P( 5 ));
+ double L9 = getDistance(P( 1 ),P( 5 ));
+ double L10= getDistance(P( 2 ),P( 6 ));
+ double L11= getDistance(P( 3 ),P( 7 ));
+ double L12= getDistance(P( 4 ),P( 8 ));
+
+ aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
+ aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10)));
+ aVal = Max(aVal,Max(L11,L12));
+ break;
}
if (len == 10){ // quadratic tetraidrs
- double L1 = getDistance(P( 1 ),P( 5 )) + getDistance(P( 5 ),P( 2 ));
- double L2 = getDistance(P( 2 ),P( 6 )) + getDistance(P( 6 ),P( 3 ));
- double L3 = getDistance(P( 3 ),P( 7 )) + getDistance(P( 7 ),P( 1 ));
- double L4 = getDistance(P( 1 ),P( 8 )) + getDistance(P( 8 ),P( 4 ));
- double L5 = getDistance(P( 2 ),P( 9 )) + getDistance(P( 9 ),P( 4 ));
- double L6 = getDistance(P( 3 ),P( 10 )) + getDistance(P( 10 ),P( 4 ));
- aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
- break;
+ double L1 = getDistance(P( 1 ),P( 5 )) + getDistance(P( 5 ),P( 2 ));
+ double L2 = getDistance(P( 2 ),P( 6 )) + getDistance(P( 6 ),P( 3 ));
+ double L3 = getDistance(P( 3 ),P( 7 )) + getDistance(P( 7 ),P( 1 ));
+ double L4 = getDistance(P( 1 ),P( 8 )) + getDistance(P( 8 ),P( 4 ));
+ double L5 = getDistance(P( 2 ),P( 9 )) + getDistance(P( 9 ),P( 4 ));
+ double L6 = getDistance(P( 3 ),P( 10 )) + getDistance(P( 10 ),P( 4 ));
+ aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
+ break;
}
else if (len == 13){ // quadratic piramids
- double L1 = getDistance(P( 1 ),P( 6 )) + getDistance(P( 6 ),P( 2 ));
- double L2 = getDistance(P( 2 ),P( 7 )) + getDistance(P( 7 ),P( 3 ));
- double L3 = getDistance(P( 3 ),P( 8 )) + getDistance(P( 8 ),P( 1 ));
- double L4 = getDistance(P( 4 ),P( 9 )) + getDistance(P( 9 ),P( 1 ));
- double L5 = getDistance(P( 1 ),P( 10 )) + getDistance(P( 10 ),P( 5 ));
- double L6 = getDistance(P( 2 ),P( 11 )) + getDistance(P( 11 ),P( 5 ));
- double L7 = getDistance(P( 3 ),P( 12 )) + getDistance(P( 12 ),P( 5 ));
- double L8 = getDistance(P( 4 ),P( 13 )) + getDistance(P( 13 ),P( 5 ));
- aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
- aVal = Max(aVal,Max(L7,L8));
- break;
+ double L1 = getDistance(P( 1 ),P( 6 )) + getDistance(P( 6 ),P( 2 ));
+ double L2 = getDistance(P( 2 ),P( 7 )) + getDistance(P( 7 ),P( 3 ));
+ double L3 = getDistance(P( 3 ),P( 8 )) + getDistance(P( 8 ),P( 1 ));
+ double L4 = getDistance(P( 4 ),P( 9 )) + getDistance(P( 9 ),P( 1 ));
+ double L5 = getDistance(P( 1 ),P( 10 )) + getDistance(P( 10 ),P( 5 ));
+ double L6 = getDistance(P( 2 ),P( 11 )) + getDistance(P( 11 ),P( 5 ));
+ double L7 = getDistance(P( 3 ),P( 12 )) + getDistance(P( 12 ),P( 5 ));
+ double L8 = getDistance(P( 4 ),P( 13 )) + getDistance(P( 13 ),P( 5 ));
+ aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
+ aVal = Max(aVal,Max(L7,L8));
+ break;
}
else if (len == 15){ // quadratic pentaidres
- double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 ));
- double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 ));
- double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 ));
- double L4 = getDistance(P( 4 ),P( 10 )) + getDistance(P( 10 ),P( 5 ));
- double L5 = getDistance(P( 5 ),P( 11 )) + getDistance(P( 11 ),P( 6 ));
- double L6 = getDistance(P( 6 ),P( 12 )) + getDistance(P( 12 ),P( 4 ));
- double L7 = getDistance(P( 1 ),P( 13 )) + getDistance(P( 13 ),P( 4 ));
- double L8 = getDistance(P( 2 ),P( 14 )) + getDistance(P( 14 ),P( 5 ));
- double L9 = getDistance(P( 3 ),P( 15 )) + getDistance(P( 15 ),P( 6 ));
- aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
- aVal = Max(aVal,Max(Max(L7,L8),L9));
- break;
+ double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 ));
+ double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 ));
+ double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 ));
+ double L4 = getDistance(P( 4 ),P( 10 )) + getDistance(P( 10 ),P( 5 ));
+ double L5 = getDistance(P( 5 ),P( 11 )) + getDistance(P( 11 ),P( 6 ));
+ double L6 = getDistance(P( 6 ),P( 12 )) + getDistance(P( 12 ),P( 4 ));
+ double L7 = getDistance(P( 1 ),P( 13 )) + getDistance(P( 13 ),P( 4 ));
+ double L8 = getDistance(P( 2 ),P( 14 )) + getDistance(P( 14 ),P( 5 ));
+ double L9 = getDistance(P( 3 ),P( 15 )) + getDistance(P( 15 ),P( 6 ));
+ aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
+ aVal = Max(aVal,Max(Max(L7,L8),L9));
+ break;
}
else if (len == 20){ // quadratic hexaider
- double L1 = getDistance(P( 1 ),P( 9 )) + getDistance(P( 9 ),P( 2 ));
- double L2 = getDistance(P( 2 ),P( 10 )) + getDistance(P( 10 ),P( 3 ));
- double L3 = getDistance(P( 3 ),P( 11 )) + getDistance(P( 11 ),P( 4 ));
- double L4 = getDistance(P( 4 ),P( 12 )) + getDistance(P( 12 ),P( 1 ));
- double L5 = getDistance(P( 5 ),P( 13 )) + getDistance(P( 13 ),P( 6 ));
- double L6 = getDistance(P( 6 ),P( 14 )) + getDistance(P( 14 ),P( 7 ));
- double L7 = getDistance(P( 7 ),P( 15 )) + getDistance(P( 15 ),P( 8 ));
- double L8 = getDistance(P( 8 ),P( 16 )) + getDistance(P( 16 ),P( 5 ));
- double L9 = getDistance(P( 1 ),P( 17 )) + getDistance(P( 17 ),P( 5 ));
- double L10= getDistance(P( 2 ),P( 18 )) + getDistance(P( 18 ),P( 6 ));
- double L11= getDistance(P( 3 ),P( 19 )) + getDistance(P( 19 ),P( 7 ));
- double L12= getDistance(P( 4 ),P( 20 )) + getDistance(P( 20 ),P( 8 ));
- aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
- aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10)));
- aVal = Max(aVal,Max(L11,L12));
- break;
+ double L1 = getDistance(P( 1 ),P( 9 )) + getDistance(P( 9 ),P( 2 ));
+ double L2 = getDistance(P( 2 ),P( 10 )) + getDistance(P( 10 ),P( 3 ));
+ double L3 = getDistance(P( 3 ),P( 11 )) + getDistance(P( 11 ),P( 4 ));
+ double L4 = getDistance(P( 4 ),P( 12 )) + getDistance(P( 12 ),P( 1 ));
+ double L5 = getDistance(P( 5 ),P( 13 )) + getDistance(P( 13 ),P( 6 ));
+ double L6 = getDistance(P( 6 ),P( 14 )) + getDistance(P( 14 ),P( 7 ));
+ double L7 = getDistance(P( 7 ),P( 15 )) + getDistance(P( 15 ),P( 8 ));
+ double L8 = getDistance(P( 8 ),P( 16 )) + getDistance(P( 16 ),P( 5 ));
+ double L9 = getDistance(P( 1 ),P( 17 )) + getDistance(P( 17 ),P( 5 ));
+ double L10= getDistance(P( 2 ),P( 18 )) + getDistance(P( 18 ),P( 6 ));
+ double L11= getDistance(P( 3 ),P( 19 )) + getDistance(P( 19 ),P( 7 ));
+ double L12= getDistance(P( 4 ),P( 20 )) + getDistance(P( 20 ),P( 8 ));
+ aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6));
+ aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10)));
+ aVal = Max(aVal,Max(L11,L12));
+ break;
}
Value aValue(aNodeId[1],aNodeId[2]);
MValues::iterator aItr = theValues.find(aValue);
if (aItr != theValues.end()){
- aItr->second += 1;
- //aNbConnects = nb;
+ aItr->second += 1;
+ //aNbConnects = nb;
}
else {
- theValues[aValue] = 1;
- //aNbConnects = 1;
+ theValues[aValue] = 1;
+ //aNbConnects = 1;
}
//cout << "NodeIds: "<<aNodeId[1]<<","<<aNodeId[2]<<" nbconn="<<aNbConnects<<endl;
aNodeId[1] = aNodeId[2];
}
inline void UpdateBorders(const FreeEdges::Border& theBorder,
- FreeEdges::TBorders& theRegistry,
- FreeEdges::TBorders& theContainer)
+ FreeEdges::TBorders& theRegistry,
+ FreeEdges::TBorders& theContainer)
{
if(theRegistry.find(theBorder) == theRegistry.end()){
theRegistry.insert(theBorder);
{
if (!myMesh) return false;
const SMDS_MeshElement* anElem = myMesh->FindElement( theId );
+ if ( !anElem )
+ return false;
const SMDSAbs_ElementType anElemType = anElem->GetType();
- if ( !anElem || (myType != SMDSAbs_All && anElemType != myType) )
+ if ( myType != SMDSAbs_All && anElemType != myType )
return false;
const int aNbNode = anElem->NbNodes();
bool isOk = false;
template<class TElement, class TIterator, class TPredicate>
inline void FillSequence(const TIterator& theIterator,
- TPredicate& thePredicate,
- Filter::TIdSequence& theSequence)
+ TPredicate& thePredicate,
+ Filter::TIdSequence& theSequence)
{
if ( theIterator ) {
while( theIterator->more() ) {
TElement anElem = theIterator->next();
long anId = anElem->GetID();
if ( thePredicate->IsSatisfy( anId ) )
- theSequence.push_back( anId );
+ theSequence.push_back( anId );
}
}
}
void
Filter::
GetElementsId( const SMDS_Mesh* theMesh,
- PredicatePtr thePredicate,
- TIdSequence& theSequence )
+ PredicatePtr thePredicate,
+ TIdSequence& theSequence )
{
theSequence.clear();
void
Filter::GetElementsId( const SMDS_Mesh* theMesh,
- Filter::TIdSequence& theSequence )
+ Filter::TIdSequence& theSequence )
{
GetElementsId(theMesh,myPredicate,theSequence);
}
void SetPrecision( const long thePrecision );
bool GetPoints(const int theId,
- TSequenceOfXYZ& theRes) const;
+ TSequenceOfXYZ& theRes) const;
static bool GetPoints(const SMDS_MeshElement* theElem,
- TSequenceOfXYZ& theRes);
+ TSequenceOfXYZ& theRes);
protected:
const SMDS_Mesh* myMesh;
const SMDS_MeshElement* myCurrElement;
virtual double GetBadRate( double Value, int nbNodes ) const;
virtual SMDSAbs_ElementType GetType() const;
struct Value{
- double myLength;
- long myPntId[2];
- Value(double theLength, long thePntId1, long thePntId2);
- bool operator<(const Value& x) const;
+ double myLength;
+ long myPntId[2];
+ Value(double theLength, long thePntId1, long thePntId2);
+ bool operator<(const Value& x) const;
};
typedef std::set<Value> TValues;
void GetValues(TValues& theValues);
virtual double GetBadRate( double Value, int nbNodes ) const;
virtual SMDSAbs_ElementType GetType() const;
struct Value{
- long myPntId[2];
- Value(long thePntId1, long thePntId2);
- bool operator<(const Value& x) const;
+ long myPntId[2];
+ Value(long thePntId1, long thePntId2);
+ bool operator<(const Value& x) const;
};
typedef std::map<Value,int> MValues;
static bool IsFreeEdge( const SMDS_MeshNode** theNodes, const int theFaceId );
typedef long TElemId;
struct Border{
- TElemId myElemId;
- TElemId myPntId[2];
- Border(long theElemId, long thePntId1, long thePntId2);
- bool operator<(const Border& x) const;
+ TElemId myElemId;
+ TElemId myPntId[2];
+ Border(long theElemId, long thePntId1, long thePntId2);
+ bool operator<(const Border& x) const;
};
typedef std::set<Border> TBorders;
void GetBoreders(TBorders& theBorders);
virtual
void
GetElementsId( const SMDS_Mesh* theMesh,
- TIdSequence& theSequence );
+ TIdSequence& theSequence );
static
void
GetElementsId( const SMDS_Mesh* theMesh,
- PredicatePtr thePredicate,
- TIdSequence& theSequence );
+ PredicatePtr thePredicate,
+ TIdSequence& theSequence );
protected:
PredicatePtr myPredicate;
#include "utilities.h"
+#include <Basics_Utils.hxx>
+
using namespace std;
Driver_Mesh::Status DriverDAT_R_SMDS_Mesh::Perform()
{
+ Kernel_Utils::Localizer loc;
Status aResult = DRS_OK;
int i, j;
#include "utilities.h"
+#include <Basics_Utils.hxx>
+
using namespace std;
Driver_Mesh::Status DriverDAT_W_SMDS_Mesh::Perform()
{
+ Kernel_Utils::Localizer loc;
Status aResult = DRS_OK;
int nbNodes, nbCells;
libMeshDriverDAT_la_LDFLAGS = \
../Driver/libMeshDriver.la \
+ $(KERNEL_LDFLAGS) -lSALOMEBasics \
$(CAS_KERNEL)
DAT_Test_CPPFLAGS = \
// File : DriverMED_Family.cxx
// Author : Julia DOROVSKIKH
// Module : SMESH
-// $Header$
//
#include "DriverMED_Family.h"
#include "MED_Factory.hxx"
-#include <sstream>
+#include <sstream>
using namespace std;
DriverMED_Family
::SetType(const SMDSAbs_ElementType theType)
{
- myType = theType;
+ myTypes.insert( myType = theType );
}
SMDSAbs_ElementType
return myType;
}
+const std::set< SMDSAbs_ElementType >&
+DriverMED_Family
+::GetTypes() const
+{
+ return myTypes;
+}
+
bool
DriverMED_Family
::MemberOf(std::string theGroupName) const
DriverMED_FamilyPtrList
DriverMED_Family
::MakeFamilies(const SMESHDS_SubMeshPtrMap& theSubMeshes,
- const SMESHDS_GroupBasePtrList& theGroups,
- const bool doGroupOfNodes,
- const bool doGroupOfEdges,
- const bool doGroupOfFaces,
- const bool doGroupOfVolumes)
+ const SMESHDS_GroupBasePtrList& theGroups,
+ const bool doGroupOfNodes,
+ const bool doGroupOfEdges,
+ const bool doGroupOfFaces,
+ const bool doGroupOfVolumes)
{
DriverMED_FamilyPtrList aFamilies;
aFamilies.erase(aCurrIter);
}
if (aFam2->IsEmpty())
- break;
+ break;
}
}
// The rest elements of family
aFam1->Split(aFam2, aCommon);
if (!aCommon->IsEmpty())
{
- aCommon->SetGroupAttributVal(0);
+ aCommon->SetGroupAttributVal(0);
aFamilies.push_back(aCommon);
}
if (aFam1->IsEmpty())
aFamilies.erase(aCurrIter);
}
if (aFam2->IsEmpty())
- break;
+ break;
}
}
// The rest elements of group
//=============================================================================
MED::PFamilyInfo
DriverMED_Family::GetFamilyInfo(const MED::PWrapper& theWrapper,
- const MED::PMeshInfo& theMeshInfo) const
+ const MED::PMeshInfo& theMeshInfo) const
{
ostringstream aStr;
aStr << "FAM_" << myId;
MED::PFamilyInfo anInfo;
if(myId == 0 || myGroupAttributVal == 0){
anInfo = theWrapper->CrFamilyInfo(theMeshInfo,
- aValue,
- myId,
- myGroupNames);
+ aValue,
+ myId,
+ myGroupNames);
}else{
MED::TStringVector anAttrDescs (1, ""); // 1 attribute with empty description,
MED::TIntVector anAttrIds (1, myId); // Id=0,
MED::TIntVector anAttrVals (1, myGroupAttributVal);
anInfo = theWrapper->CrFamilyInfo(theMeshInfo,
- aValue,
- myId,
- myGroupNames,
- anAttrDescs,
- anAttrIds,
- anAttrVals);
+ aValue,
+ myId,
+ myGroupNames,
+ anAttrDescs,
+ anAttrIds,
+ anAttrVals);
}
// cout << endl;
DriverMED_FamilyPtrList
DriverMED_Family
::SplitByType (SMESHDS_SubMesh* theSubMesh,
- const int theId)
+ const int theId)
{
DriverMED_FamilyPtrList aFamilies;
DriverMED_FamilyPtr aNodesFamily (new DriverMED_Family);
// File : DriverMED_Family.hxx
// Author : Julia DOROVSKIKH
// Module : SMESH
-// $Header$
//
#ifndef _INCLUDE_DRIVERMED_FAMILY
#define _INCLUDE_DRIVERMED_FAMILY
static
DriverMED_FamilyPtrList
MakeFamilies (const SMESHDS_SubMeshPtrMap& theSubMeshes,
- const SMESHDS_GroupBasePtrList& theGroups,
- const bool doGroupOfNodes,
- const bool doGroupOfEdges,
- const bool doGroupOfFaces,
- const bool doGroupOfVolumes);
+ const SMESHDS_GroupBasePtrList& theGroups,
+ const bool doGroupOfNodes,
+ const bool doGroupOfEdges,
+ const bool doGroupOfFaces,
+ const bool doGroupOfVolumes);
//! Create TFamilyInfo for this family
MED::PFamilyInfo
GetFamilyInfo (const MED::PWrapper& theWrapper,
- const MED::PMeshInfo& theMeshInfo) const;
+ const MED::PMeshInfo& theMeshInfo) const;
//! Returns elements of this family
const ElementsSet& GetElements () const;
void SetType(const SMDSAbs_ElementType theType);
SMDSAbs_ElementType GetType();
+ const std::set< SMDSAbs_ElementType >& GetTypes() const;
bool MemberOf(std::string theGroupName) const;
static
DriverMED_FamilyPtrList
SplitByType(SMESHDS_SubMesh* theSubMesh,
- const int theId);
+ const int theId);
/*! Remove from <Elements> elements, common with <by>,
Create family <common> from common elements, with combined groups list.
*/
void Split (DriverMED_FamilyPtr by,
- DriverMED_FamilyPtr common);
+ DriverMED_FamilyPtr common);
//! Check, if this family has empty list of elements
bool IsEmpty () const;
ElementsSet myElements;
MED::TStringSet myGroupNames;
int myGroupAttributVal;
+ std::set<SMDSAbs_ElementType> myTypes; // Issue 0020576
};
#endif
#define _EDF_NODE_IDS_
using namespace MED;
+using namespace std;
void
DriverMED_R_SMESHDS_Mesh
-::SetMeshName(std::string theMeshName)
+::SetMeshName(string theMeshName)
{
myMeshName = theMeshName;
}
FindNode(const SMDS_Mesh* theMesh, TInt theId){
const SMDS_MeshNode* aNode = theMesh->FindNode(theId);
if(aNode) return aNode;
- EXCEPTION(std::runtime_error,"SMDS_Mesh::FindNode - cannot find a SMDS_MeshNode for ID = "<<theId);
+ EXCEPTION(runtime_error,"SMDS_Mesh::FindNode - cannot find a SMDS_MeshNode for ID = "<<theId);
}
aResult = DRS_EMPTY;
if(TInt aNbMeshes = aMed->GetNbMeshes()){
for(int iMesh = 0; iMesh < aNbMeshes; iMesh++){
- // Reading the MED mesh
- //---------------------
- PMeshInfo aMeshInfo = aMed->GetPMeshInfo(iMesh+1);
+ // Reading the MED mesh
+ //---------------------
+ PMeshInfo aMeshInfo = aMed->GetPMeshInfo(iMesh+1);
- std::string aMeshName;
+ string aMeshName;
if (myMeshId != -1) {
- std::ostringstream aMeshNameStr;
+ ostringstream aMeshNameStr;
aMeshNameStr<<myMeshId;
aMeshName = aMeshNameStr.str();
} else {
aMeshName = myMeshName;
}
- if(MYDEBUG) MESSAGE("Perform - aMeshName : "<<aMeshName<<"; "<<aMeshInfo->GetName());
- if(aMeshName != aMeshInfo->GetName()) continue;
+ if(MYDEBUG) MESSAGE("Perform - aMeshName : "<<aMeshName<<"; "<<aMeshInfo->GetName());
+ if(aMeshName != aMeshInfo->GetName()) continue;
aResult = DRS_OK;
- //TInt aMeshDim = aMeshInfo->GetDim();
-
+ //TInt aMeshDim = aMeshInfo->GetDim();
+
// Reading MED families to the temporary structure
- //------------------------------------------------
- TErr anErr;
- TInt aNbFams = aMed->GetNbFamilies(aMeshInfo);
+ //------------------------------------------------
+ TErr anErr;
+ TInt aNbFams = aMed->GetNbFamilies(aMeshInfo);
if(MYDEBUG) MESSAGE("Read " << aNbFams << " families");
for (TInt iFam = 0; iFam < aNbFams; iFam++) {
- PFamilyInfo aFamilyInfo = aMed->GetPFamilyInfo(aMeshInfo,iFam+1,&anErr);
- if(anErr >= 0){
- TInt aFamId = aFamilyInfo->GetId();
- if(MYDEBUG) MESSAGE("Family " << aFamId << " :");
-
+ PFamilyInfo aFamilyInfo = aMed->GetPFamilyInfo(aMeshInfo,iFam+1,&anErr);
+ if(anErr >= 0){
+ TInt aFamId = aFamilyInfo->GetId();
+ if(MYDEBUG) MESSAGE("Family " << aFamId << " :");
+
DriverMED_FamilyPtr aFamily (new DriverMED_Family);
-
+
TInt aNbGrp = aFamilyInfo->GetNbGroup();
if(MYDEBUG) MESSAGE("belong to " << aNbGrp << " groups");
- bool isAttrOk = false;
- if(aFamilyInfo->GetNbAttr() == aNbGrp)
- isAttrOk = true;
+ bool isAttrOk = false;
+ if(aFamilyInfo->GetNbAttr() == aNbGrp)
+ isAttrOk = true;
for (TInt iGr = 0; iGr < aNbGrp; iGr++) {
- std::string aGroupName = aFamilyInfo->GetGroupName(iGr);
+ string aGroupName = aFamilyInfo->GetGroupName(iGr);
if(isAttrOk){
- TInt anAttrVal = aFamilyInfo->GetAttrVal(iGr);
- aFamily->SetGroupAttributVal(anAttrVal);
- }
-
+ TInt anAttrVal = aFamilyInfo->GetAttrVal(iGr);
+ aFamily->SetGroupAttributVal(anAttrVal);
+ }
+
if(MYDEBUG) MESSAGE(aGroupName);
aFamily->AddGroupName(aGroupName);
-
+
}
aFamily->SetId( aFamId );
myFamilies[aFamId] = aFamily;
- }
+ }
}
- if (aMeshInfo->GetType() == MED::eSTRUCTURE){
- /*bool aRes = */buildMeshGrille(aMed,aMeshInfo);
- continue;
- }
+ if (aMeshInfo->GetType() == MED::eSTRUCTURE){
+ /*bool aRes = */buildMeshGrille(aMed,aMeshInfo);
+ continue;
+ }
// Reading MED nodes to the corresponding SMDS structure
- //------------------------------------------------------
+ //------------------------------------------------------
PNodeInfo aNodeInfo = aMed->GetPNodeInfo(aMeshInfo);
- if (!aNodeInfo) {
+ if (!aNodeInfo) {
aResult = DRS_FAIL;
- continue;
+ continue;
}
- PCoordHelper aCoordHelper = GetCoordHelper(aNodeInfo);
+ PCoordHelper aCoordHelper = GetCoordHelper(aNodeInfo);
- EBooleen anIsNodeNum = aNodeInfo->IsElemNum();
- TInt aNbElems = aNodeInfo->GetNbElem();
- if(MYDEBUG) MESSAGE("Perform - aNodeInfo->GetNbElem() = "<<aNbElems<<"; anIsNodeNum = "<<anIsNodeNum);
+ EBooleen anIsNodeNum = aNodeInfo->IsElemNum();
+ TInt aNbElems = aNodeInfo->GetNbElem();
+ if(MYDEBUG) MESSAGE("Perform - aNodeInfo->GetNbElem() = "<<aNbElems<<"; anIsNodeNum = "<<anIsNodeNum);
DriverMED_FamilyPtr aFamily;
for(TInt iElem = 0; iElem < aNbElems; iElem++){
- TCCoordSlice aCoordSlice = aNodeInfo->GetCoordSlice(iElem);
+ TCCoordSlice aCoordSlice = aNodeInfo->GetCoordSlice(iElem);
double aCoords[3] = {0.0, 0.0, 0.0};
for(TInt iDim = 0; iDim < 3; iDim++)
aCoords[iDim] = aCoordHelper->GetCoord(aCoordSlice,iDim);
const SMDS_MeshNode* aNode;
if(anIsNodeNum) {
- aNode = myMesh->AddNodeWithID
+ aNode = myMesh->AddNodeWithID
(aCoords[0],aCoords[1],aCoords[2],aNodeInfo->GetElemNum(iElem));
} else {
- aNode = myMesh->AddNode
+ aNode = myMesh->AddNode
(aCoords[0],aCoords[1],aCoords[2]);
}
//cout<<aNode->GetID()<<": "<<aNode->X()<<", "<<aNode->Y()<<", "<<aNode->Z()<<endl;
}
}
- // Reading pre information about all MED cells
- //--------------------------------------------
- typedef MED::TVector<int> TNodeIds;
+ // Reading pre information about all MED cells
+ //--------------------------------------------
+ typedef MED::TVector<int> TNodeIds;
bool takeNumbers = true; // initially we trust the numbers from file
- MED::TEntityInfo aEntityInfo = aMed->GetEntityInfo(aMeshInfo);
- MED::TEntityInfo::iterator anEntityIter = aEntityInfo.begin();
- for(; anEntityIter != aEntityInfo.end(); anEntityIter++){
- const EEntiteMaillage& anEntity = anEntityIter->first;
- if(anEntity == eNOEUD) continue;
- // Reading MED cells to the corresponding SMDS structure
- //------------------------------------------------------
- const MED::TGeom2Size& aGeom2Size = anEntityIter->second;
- MED::TGeom2Size::const_iterator aGeom2SizeIter = aGeom2Size.begin();
- for(; aGeom2SizeIter != aGeom2Size.end(); aGeom2SizeIter++){
- const EGeometrieElement& aGeom = aGeom2SizeIter->first;
-
- switch(aGeom) {
-// case ePOINT1: ## PAL16410
-// break;
- case ePOLYGONE: {
+ MED::TEntityInfo aEntityInfo = aMed->GetEntityInfo(aMeshInfo);
+ MED::TEntityInfo::iterator anEntityIter = aEntityInfo.begin();
+ for(; anEntityIter != aEntityInfo.end(); anEntityIter++){
+ const EEntiteMaillage& anEntity = anEntityIter->first;
+ if(anEntity == eNOEUD) continue;
+ // Reading MED cells to the corresponding SMDS structure
+ //------------------------------------------------------
+ const MED::TGeom2Size& aGeom2Size = anEntityIter->second;
+ MED::TGeom2Size::const_iterator aGeom2SizeIter = aGeom2Size.begin();
+ for(; aGeom2SizeIter != aGeom2Size.end(); aGeom2SizeIter++){
+ const EGeometrieElement& aGeom = aGeom2SizeIter->first;
+
+ switch(aGeom) {
+// case ePOINT1: ## PAL16410
+// break;
+ case ePOLYGONE: {
PPolygoneInfo aPolygoneInfo = aMed->GetPPolygoneInfo(aMeshInfo,anEntity,aGeom);
EBooleen anIsElemNum = takeNumbers ? aPolygoneInfo->IsElemNum() : eFAUX;
-
- TInt aNbElem = aPolygoneInfo->GetNbElem();
- for(TInt iElem = 0; iElem < aNbElem; iElem++){
- MED::TCConnSlice aConnSlice = aPolygoneInfo->GetConnSlice(iElem);
- TInt aNbConn = aPolygoneInfo->GetNbConn(iElem);
- TNodeIds aNodeIds(aNbConn);
+
+ TInt aNbElem = aPolygoneInfo->GetNbElem();
+ for(TInt iElem = 0; iElem < aNbElem; iElem++){
+ MED::TCConnSlice aConnSlice = aPolygoneInfo->GetConnSlice(iElem);
+ TInt aNbConn = aPolygoneInfo->GetNbConn(iElem);
+ TNodeIds aNodeIds(aNbConn);
#ifdef _EDF_NODE_IDS_
- if(anIsNodeNum)
- for(TInt iConn = 0; iConn < aNbConn; iConn++)
- aNodeIds[iConn] = aNodeInfo->GetElemNum(aConnSlice[iConn] - 1);
- else
- for(TInt iConn = 0; iConn < aNbConn; iConn++)
- aNodeIds[iConn] = aConnSlice[iConn];
+ if(anIsNodeNum)
+ for(TInt iConn = 0; iConn < aNbConn; iConn++)
+ aNodeIds[iConn] = aNodeInfo->GetElemNum(aConnSlice[iConn] - 1);
+ else
+ for(TInt iConn = 0; iConn < aNbConn; iConn++)
+ aNodeIds[iConn] = aConnSlice[iConn];
#else
- for(TInt iConn = 0; iConn < aNbConn; iConn++)
- aNodeIds[iConn] = aConnSlice[iConn];
+ for(TInt iConn = 0; iConn < aNbConn; iConn++)
+ aNodeIds[iConn] = aConnSlice[iConn];
#endif
bool isRenum = false;
SMDS_MeshElement* anElement = NULL;
try{
#endif
if(anIsElemNum){
- TInt anElemId = aPolygoneInfo->GetElemNum(iElem);
+ TInt anElemId = aPolygoneInfo->GetElemNum(iElem);
anElement = myMesh->AddPolygonalFaceWithID(aNodeIds,anElemId);
- }
+ }
if(!anElement){
- std::vector<const SMDS_MeshNode*> aNodes(aNbConn);
- for(TInt iConn = 0; iConn < aNbConn; iConn++)
+ vector<const SMDS_MeshNode*> aNodes(aNbConn);
+ for(TInt iConn = 0; iConn < aNbConn; iConn++)
aNodes[iConn] = FindNode(myMesh,aNodeIds[iConn]);
anElement = myMesh->AddPolygonalFace(aNodes);
isRenum = anIsElemNum;
}
}
break;
- }
- case ePOLYEDRE: {
+ }
+ case ePOLYEDRE: {
PPolyedreInfo aPolyedreInfo = aMed->GetPPolyedreInfo(aMeshInfo,anEntity,aGeom);
EBooleen anIsElemNum = takeNumbers ? aPolyedreInfo->IsElemNum() : eFAUX;
- TInt aNbElem = aPolyedreInfo->GetNbElem();
- for(TInt iElem = 0; iElem < aNbElem; iElem++){
- MED::TCConnSliceArr aConnSliceArr = aPolyedreInfo->GetConnSliceArr(iElem);
- TInt aNbFaces = aConnSliceArr.size();
+ TInt aNbElem = aPolyedreInfo->GetNbElem();
+ for(TInt iElem = 0; iElem < aNbElem; iElem++){
+ MED::TCConnSliceArr aConnSliceArr = aPolyedreInfo->GetConnSliceArr(iElem);
+ TInt aNbFaces = aConnSliceArr.size();
typedef MED::TVector<int> TQuantities;
- TQuantities aQuantities(aNbFaces);
- TInt aNbNodes = aPolyedreInfo->GetNbNodes(iElem);
- TNodeIds aNodeIds(aNbNodes);
- for(TInt iFace = 0, iNode = 0; iFace < aNbFaces; iFace++){
- MED::TCConnSlice aConnSlice = aConnSliceArr[iFace];
- TInt aNbConn = aConnSlice.size();
+ TQuantities aQuantities(aNbFaces);
+ TInt aNbNodes = aPolyedreInfo->GetNbNodes(iElem);
+ TNodeIds aNodeIds(aNbNodes);
+ for(TInt iFace = 0, iNode = 0; iFace < aNbFaces; iFace++){
+ MED::TCConnSlice aConnSlice = aConnSliceArr[iFace];
+ TInt aNbConn = aConnSlice.size();
aQuantities[iFace] = aNbConn;
#ifdef _EDF_NODE_IDS_
- if(anIsNodeNum)
- for(TInt iConn = 0; iConn < aNbConn; iConn++)
- aNodeIds[iNode++] = aNodeInfo->GetElemNum(aConnSlice[iConn] - 1);
- else
- for(TInt iConn = 0; iConn < aNbConn; iConn++)
- aNodeIds[iNode++] = aConnSlice[iConn];
+ if(anIsNodeNum)
+ for(TInt iConn = 0; iConn < aNbConn; iConn++)
+ aNodeIds[iNode++] = aNodeInfo->GetElemNum(aConnSlice[iConn] - 1);
+ else
+ for(TInt iConn = 0; iConn < aNbConn; iConn++)
+ aNodeIds[iNode++] = aConnSlice[iConn];
#else
- for(TInt iConn = 0; iConn < aNbConn; iConn++)
- aNodeIds[iNode++] = aConnSlice[iConn];
-#endif
- }
-
- bool isRenum = false;
- SMDS_MeshElement* anElement = NULL;
- TInt aFamNum = aPolyedreInfo->GetFamNum(iElem);
-
+ for(TInt iConn = 0; iConn < aNbConn; iConn++)
+ aNodeIds[iNode++] = aConnSlice[iConn];
+#endif
+ }
+
+ bool isRenum = false;
+ SMDS_MeshElement* anElement = NULL;
+ TInt aFamNum = aPolyedreInfo->GetFamNum(iElem);
+
#ifndef _DEXCEPT_
- try{
+ try{
#endif
- if(anIsElemNum){
- TInt anElemId = aPolyedreInfo->GetElemNum(iElem);
- anElement = myMesh->AddPolyhedralVolumeWithID(aNodeIds,aQuantities,anElemId);
- }
- if(!anElement){
- std::vector<const SMDS_MeshNode*> aNodes(aNbNodes);
- for(TInt iConn = 0; iConn < aNbNodes; iConn++)
- aNodes[iConn] = FindNode(myMesh,aNodeIds[iConn]);
- anElement = myMesh->AddPolyhedralVolume(aNodes,aQuantities);
- isRenum = anIsElemNum;
- }
+ if(anIsElemNum){
+ TInt anElemId = aPolyedreInfo->GetElemNum(iElem);
+ anElement = myMesh->AddPolyhedralVolumeWithID(aNodeIds,aQuantities,anElemId);
+ }
+ if(!anElement){
+ vector<const SMDS_MeshNode*> aNodes(aNbNodes);
+ for(TInt iConn = 0; iConn < aNbNodes; iConn++)
+ aNodes[iConn] = FindNode(myMesh,aNodeIds[iConn]);
+ anElement = myMesh->AddPolyhedralVolume(aNodes,aQuantities);
+ isRenum = anIsElemNum;
+ }
#ifndef _DEXCEPT_
- }catch(const std::exception& exc){
- aResult = DRS_FAIL;
- }catch(...){
- aResult = DRS_FAIL;
- }
-#endif
- if(!anElement){
- aResult = DRS_WARN_SKIP_ELEM;
- }else{
- if(isRenum){
- anIsElemNum = eFAUX;
- takeNumbers = false;
- if (aResult < DRS_WARN_RENUMBER)
- aResult = DRS_WARN_RENUMBER;
- }
- if ( checkFamilyID ( aFamily, aFamNum )) {
- // Save reference to this element from its family
- aFamily->AddElement(anElement);
- aFamily->SetType(anElement->GetType());
- }
- }
- }
+ }catch(const std::exception& exc){
+ aResult = DRS_FAIL;
+ }catch(...){
+ aResult = DRS_FAIL;
+ }
+#endif
+ if(!anElement){
+ aResult = DRS_WARN_SKIP_ELEM;
+ }else{
+ if(isRenum){
+ anIsElemNum = eFAUX;
+ takeNumbers = false;
+ if (aResult < DRS_WARN_RENUMBER)
+ aResult = DRS_WARN_RENUMBER;
+ }
+ if ( checkFamilyID ( aFamily, aFamNum )) {
+ // Save reference to this element from its family
+ aFamily->AddElement(anElement);
+ aFamily->SetType(anElement->GetType());
+ }
+ }
+ }
break;
}
- default: {
+ default: {
PCellInfo aCellInfo = aMed->GetPCellInfo(aMeshInfo,anEntity,aGeom);
EBooleen anIsElemNum = takeNumbers ? aCellInfo->IsElemNum() : eFAUX;
TInt aNbElems = aCellInfo->GetNbElem();
if(MYDEBUG) MESSAGE("Perform - anEntity = "<<anEntity<<"; anIsElemNum = "<<anIsElemNum);
if(MYDEBUG) MESSAGE("Perform - aGeom = "<<aGeom<<"; aNbElems = "<<aNbElems);
+ TInt aNbNodes = -1;
+ switch(aGeom){
+ case eSEG2: aNbNodes = 2; break;
+ case eSEG3: aNbNodes = 3; break;
+ case eTRIA3: aNbNodes = 3; break;
+ case eTRIA6: aNbNodes = 6; break;
+ case eQUAD4: aNbNodes = 4; break;
+ case eQUAD8: aNbNodes = 8; break;
+ case eTETRA4: aNbNodes = 4; break;
+ case eTETRA10: aNbNodes = 10; break;
+ case ePYRA5: aNbNodes = 5; break;
+ case ePYRA13: aNbNodes = 13; break;
+ case ePENTA6: aNbNodes = 6; break;
+ case ePENTA15: aNbNodes = 15; break;
+ case eHEXA8: aNbNodes = 8; break;
+ case eHEXA20: aNbNodes = 20; break;
+ case ePOINT1: aNbNodes = 1; break;
+ default:;
+ }
+ vector<TInt> aNodeIds(aNbNodes);
for(int iElem = 0; iElem < aNbElems; iElem++){
- TInt aNbNodes = -1;
- switch(aGeom){
- case eSEG2: aNbNodes = 2; break;
- case eSEG3: aNbNodes = 3; break;
- case eTRIA3: aNbNodes = 3; break;
- case eTRIA6: aNbNodes = 6; break;
- case eQUAD4: aNbNodes = 4; break;
- case eQUAD8: aNbNodes = 8; break;
- case eTETRA4: aNbNodes = 4; break;
- case eTETRA10: aNbNodes = 10; break;
- case ePYRA5: aNbNodes = 5; break;
- case ePYRA13: aNbNodes = 13; break;
- case ePENTA6: aNbNodes = 6; break;
- case ePENTA15: aNbNodes = 15; break;
- case eHEXA8: aNbNodes = 8; break;
- case eHEXA20: aNbNodes = 20; break;
- case ePOINT1: aNbNodes = 1; break;
- default:;
- }
- std::vector<TInt> aNodeIds(aNbNodes);
bool anIsValidConnect = false;
TCConnSlice aConnSlice = aCellInfo->GetConnSlice(iElem);
#ifndef _DEXCEPT_
return aResult;
}
-std::list<std::string> DriverMED_R_SMESHDS_Mesh::GetMeshNames(Status& theStatus)
+list<string> DriverMED_R_SMESHDS_Mesh::GetMeshNames(Status& theStatus)
{
- std::list<std::string> aMeshNames;
+ list<string> aMeshNames;
try {
if(MYDEBUG) MESSAGE("GetMeshNames - myFile : " << myFile);
if (TInt aNbMeshes = aMed->GetNbMeshes()) {
for (int iMesh = 0; iMesh < aNbMeshes; iMesh++) {
- // Reading the MED mesh
- //---------------------
- PMeshInfo aMeshInfo = aMed->GetPMeshInfo(iMesh+1);
- aMeshNames.push_back(aMeshInfo->GetName());
+ // Reading the MED mesh
+ //---------------------
+ PMeshInfo aMeshInfo = aMed->GetPMeshInfo(iMesh+1);
+ aMeshNames.push_back(aMeshInfo->GetName());
}
}
}catch(const std::exception& exc){
return aMeshNames;
}
-std::list<TNameAndType> DriverMED_R_SMESHDS_Mesh::GetGroupNamesAndTypes()
+list<TNameAndType> DriverMED_R_SMESHDS_Mesh::GetGroupNamesAndTypes()
{
- std::list<TNameAndType> aResult;
- std::set<TNameAndType> aResGroupNames;
+ list<TNameAndType> aResult;
+ set<TNameAndType> aResGroupNames;
- std::map<int, DriverMED_FamilyPtr>::iterator aFamsIter = myFamilies.begin();
+ map<int, DriverMED_FamilyPtr>::iterator aFamsIter = myFamilies.begin();
for (; aFamsIter != myFamilies.end(); aFamsIter++)
{
DriverMED_FamilyPtr aFamily = (*aFamsIter).second;
const MED::TStringSet& aGroupNames = aFamily->GetGroupNames();
- std::set<std::string>::const_iterator aGrNamesIter = aGroupNames.begin();
+ set<string>::const_iterator aGrNamesIter = aGroupNames.begin();
for (; aGrNamesIter != aGroupNames.end(); aGrNamesIter++)
{
- TNameAndType aNameAndType = make_pair( *aGrNamesIter, aFamily->GetType() );
- // Check, if this is a Group or SubMesh name
-//if (aName.substr(0, 5) == string("Group")) {
+ const set< SMDSAbs_ElementType >& types = aFamily->GetTypes();
+ set< SMDSAbs_ElementType >::const_iterator type = types.begin();
+ for ( ; type != types.end(); ++type )
+ {
+ TNameAndType aNameAndType = make_pair( *aGrNamesIter, *type );
if ( aResGroupNames.insert( aNameAndType ).second ) {
aResult.push_back( aNameAndType );
}
-// }
+ }
}
}
void DriverMED_R_SMESHDS_Mesh::GetGroup(SMESHDS_Group* theGroup)
{
- std::string aGroupName (theGroup->GetStoreName());
+ string aGroupName (theGroup->GetStoreName());
if(MYDEBUG) MESSAGE("Get Group " << aGroupName);
- std::map<int, DriverMED_FamilyPtr>::iterator aFamsIter = myFamilies.begin();
+ map<int, DriverMED_FamilyPtr>::iterator aFamsIter = myFamilies.begin();
for (; aFamsIter != myFamilies.end(); aFamsIter++)
{
DriverMED_FamilyPtr aFamily = (*aFamsIter).second;
- if (aFamily->GetType() == theGroup->GetType() && aFamily->MemberOf(aGroupName))
+ if (aFamily->GetTypes().count( theGroup->GetType() ) && aFamily->MemberOf(aGroupName))
{
- const std::set<const SMDS_MeshElement *>& anElements = aFamily->GetElements();
- std::set<const SMDS_MeshElement *>::const_iterator anElemsIter = anElements.begin();
- const SMDS_MeshElement * element = 0;
+ const set<const SMDS_MeshElement *>& anElements = aFamily->GetElements();
+ set<const SMDS_MeshElement *>::const_iterator anElemsIter = anElements.begin();
for (; anElemsIter != anElements.end(); anElemsIter++)
{
- element = *anElemsIter;
- theGroup->SMDSGroup().Add(element);
- int aGroupAttrVal = aFamily->GetGroupAttributVal();
- if( aGroupAttrVal != 0)
- theGroup->SetColorGroup(aGroupAttrVal);
+ const SMDS_MeshElement * element = *anElemsIter;
+ if ( element->GetType() == theGroup->GetType() ) // Issue 0020576
+ theGroup->SMDSGroup().Add(element);
}
- if ( element )
- theGroup->SetType( theGroup->SMDSGroup().GetType() );
+ int aGroupAttrVal = aFamily->GetGroupAttributVal();
+ if( aGroupAttrVal != 0)
+ theGroup->SetColorGroup(aGroupAttrVal);
+// if ( element ) -- Issue 0020576
+// theGroup->SetType( theGroup->SMDSGroup().GetType() );
}
}
}
{
char submeshGrpName[ 30 ];
sprintf( submeshGrpName, "SubMesh %d", theId );
- std::string aName (submeshGrpName);
- std::map<int, DriverMED_FamilyPtr>::iterator aFamsIter = myFamilies.begin();
+ string aName (submeshGrpName);
+ map<int, DriverMED_FamilyPtr>::iterator aFamsIter = myFamilies.begin();
for (; aFamsIter != myFamilies.end(); aFamsIter++)
{
DriverMED_FamilyPtr aFamily = (*aFamsIter).second;
if (aFamily->MemberOf(aName))
{
- const std::set<const SMDS_MeshElement *>& anElements = aFamily->GetElements();
- std::set<const SMDS_MeshElement *>::const_iterator anElemsIter = anElements.begin();
+ const set<const SMDS_MeshElement *>& anElements = aFamily->GetElements();
+ set<const SMDS_MeshElement *>::const_iterator anElemsIter = anElements.begin();
if (aFamily->GetType() == SMDSAbs_Node)
{
for (; anElemsIter != anElements.end(); anElemsIter++)
void DriverMED_R_SMESHDS_Mesh::CreateAllSubMeshes ()
{
- std::map<int, DriverMED_FamilyPtr>::iterator aFamsIter = myFamilies.begin();
+ map<int, DriverMED_FamilyPtr>::iterator aFamsIter = myFamilies.begin();
for (; aFamsIter != myFamilies.end(); aFamsIter++)
{
DriverMED_FamilyPtr aFamily = (*aFamsIter).second;
MED::TStringSet aGroupNames = aFamily->GetGroupNames();
- std::set<std::string>::iterator aGrNamesIter = aGroupNames.begin();
+ set<string>::iterator aGrNamesIter = aGroupNames.begin();
for (; aGrNamesIter != aGroupNames.end(); aGrNamesIter++)
{
- std::string aName = *aGrNamesIter;
+ string aName = *aGrNamesIter;
// Check, if this is a Group or SubMesh name
- if (aName.substr(0, 7) == std::string("SubMesh"))
+ if (aName.substr(0, 7) == string("SubMesh"))
{
- int Id = atoi(std::string(aName).substr(7).c_str());
- std::set<const SMDS_MeshElement *> anElements = aFamily->GetElements();
- std::set<const SMDS_MeshElement *>::iterator anElemsIter = anElements.begin();
+ int Id = atoi(string(aName).substr(7).c_str());
+ set<const SMDS_MeshElement *> anElements = aFamily->GetElements();
+ set<const SMDS_MeshElement *>::iterator anElemsIter = anElements.begin();
if (aFamily->GetType() == SMDSAbs_Node)
{
for (; anElemsIter != anElements.end(); anElemsIter++)
bool DriverMED_R_SMESHDS_Mesh::checkFamilyID(DriverMED_FamilyPtr & aFamily, int anID) const
{
if ( !aFamily || aFamily->GetId() != anID ) {
- std::map<int, DriverMED_FamilyPtr>::const_iterator i_fam = myFamilies.find(anID);
+ map<int, DriverMED_FamilyPtr>::const_iterator i_fam = myFamilies.find(anID);
if ( i_fam == myFamilies.end() )
return false;
aFamily = i_fam->second;
* \return TRUE, if successfully. Else FALSE
*/
bool DriverMED_R_SMESHDS_Mesh::buildMeshGrille(const MED::PWrapper& theWrapper,
- const MED::PMeshInfo& theMeshInfo)
+ const MED::PMeshInfo& theMeshInfo)
{
bool res = true;
if((aGrilleInfo->myFamNumNode).size() > 0){
TInt aFamNum = aGrilleInfo->GetFamNumNode(iNode);
if ( checkFamilyID ( aFamily, aFamNum ))
- {
- aFamily->AddElement(aNode);
- aFamily->SetType(SMDSAbs_Node);
- }
+ {
+ aFamily->AddElement(aNode);
+ aFamily->SetType(SMDSAbs_Node);
+ }
}
}
switch(aGrilleInfo->GetGeom()){
case MED::eSEG2:
if(aNodeIds.size() != 2){
- res = false;
- EXCEPTION(std::runtime_error,"buildMeshGrille Error. Incorrect size of ids 2!="<<aNodeIds.size());
+ res = false;
+ EXCEPTION(runtime_error,"buildMeshGrille Error. Incorrect size of ids 2!="<<aNodeIds.size());
}
anElement = myMesh->AddEdgeWithID(aNodeIds[0],
- aNodeIds[1],
- iCell);
+ aNodeIds[1],
+ iCell);
break;
case MED::eQUAD4:
if(aNodeIds.size() != 4){
- res = false;
- EXCEPTION(std::runtime_error,"buildMeshGrille Error. Incorrect size of ids 4!="<<aNodeIds.size());
+ res = false;
+ EXCEPTION(runtime_error,"buildMeshGrille Error. Incorrect size of ids 4!="<<aNodeIds.size());
}
anElement = myMesh->AddFaceWithID(aNodeIds[0],
- aNodeIds[2],
- aNodeIds[3],
- aNodeIds[1],
- iCell);
+ aNodeIds[2],
+ aNodeIds[3],
+ aNodeIds[1],
+ iCell);
break;
case MED::eHEXA8:
if(aNodeIds.size() != 8){
- res = false;
- EXCEPTION(std::runtime_error,"buildMeshGrille Error. Incorrect size of ids 8!="<<aNodeIds.size());
+ res = false;
+ EXCEPTION(runtime_error,"buildMeshGrille Error. Incorrect size of ids 8!="<<aNodeIds.size());
}
anElement = myMesh->AddVolumeWithID(aNodeIds[0],
- aNodeIds[2],
- aNodeIds[3],
- aNodeIds[1],
- aNodeIds[4],
- aNodeIds[6],
- aNodeIds[7],
- aNodeIds[5],
- iCell);
+ aNodeIds[2],
+ aNodeIds[3],
+ aNodeIds[1],
+ aNodeIds[4],
+ aNodeIds[6],
+ aNodeIds[7],
+ aNodeIds[5],
+ iCell);
break;
default:
break;
if((aGrilleInfo->myFamNum).size() > 0){
TInt aFamNum = aGrilleInfo->GetFamNum(iCell);
if ( checkFamilyID ( aFamily, aFamNum )){
- aFamily->AddElement(anElement);
- aFamily->SetType(anElement->GetType());
+ aFamily->AddElement(anElement);
+ aFamily->SetType(anElement->GetType());
}
}
}
bool checkFamilyID(DriverMED_FamilyPtr & aFamily, int anID) const;
bool buildMeshGrille(const MED::PWrapper& theWrapper,
- const MED::PMeshInfo& theMeshInfo);
+ const MED::PMeshInfo& theMeshInfo);
private:
std::string myMeshName;
{}
void DriverMED_W_SMESHDS_Mesh::SetFile(const std::string& theFileName,
- MED::EVersion theId)
+ MED::EVersion theId)
{
myMed = CrWrapper(theFileName,theId);
Driver_SMESHDS_Mesh::SetFile(theFileName);
TUnit* myUnit;
public:
TCoordHelper(const SMDS_NodeIteratorPtr& theNodeIter,
- TGetCoord* theGetCoord,
- TName* theName,
- TUnit* theUnit = aUnit):
+ TGetCoord* theGetCoord,
+ TName* theName,
+ TUnit* theUnit = aUnit):
myNodeIter(theNodeIter),
myGetCoord(theGetCoord),
myName(theName),
virtual ~TCoordHelper(){}
bool Next(){
return myNodeIter->more() &&
- (myCurrentNode = myNodeIter->next());
+ (myCurrentNode = myNodeIter->next());
}
const SMDS_MeshNode* GetNode(){
return myCurrentNode;
bool anIsYDimension = false;
bool anIsZDimension = false;
{
- SMDS_NodeIteratorPtr aNodesIter = myMesh->nodesIterator();
- double aBounds[6];
- if(aNodesIter->more()){
- const SMDS_MeshNode* aNode = aNodesIter->next();
- aBounds[0] = aBounds[1] = aNode->X();
- aBounds[2] = aBounds[3] = aNode->Y();
- aBounds[4] = aBounds[5] = aNode->Z();
- }
- while(aNodesIter->more()){
- const SMDS_MeshNode* aNode = aNodesIter->next();
- aBounds[0] = min(aBounds[0],aNode->X());
- aBounds[1] = max(aBounds[1],aNode->X());
-
- aBounds[2] = min(aBounds[2],aNode->Y());
- aBounds[3] = max(aBounds[3],aNode->Y());
-
- aBounds[4] = min(aBounds[4],aNode->Z());
- aBounds[5] = max(aBounds[5],aNode->Z());
- }
-
- double EPS = 1.0E-7;
- anIsXDimension = (aBounds[1] - aBounds[0]) + abs(aBounds[1]) + abs(aBounds[0]) > EPS;
- anIsYDimension = (aBounds[3] - aBounds[2]) + abs(aBounds[3]) + abs(aBounds[2]) > EPS;
- anIsZDimension = (aBounds[5] - aBounds[4]) + abs(aBounds[5]) + abs(aBounds[4]) > EPS;
- aMeshDimension = anIsXDimension + anIsYDimension + anIsZDimension;
- if(!aMeshDimension)
- aMeshDimension = 3;
+ SMDS_NodeIteratorPtr aNodesIter = myMesh->nodesIterator();
+ double aBounds[6];
+ if(aNodesIter->more()){
+ const SMDS_MeshNode* aNode = aNodesIter->next();
+ aBounds[0] = aBounds[1] = aNode->X();
+ aBounds[2] = aBounds[3] = aNode->Y();
+ aBounds[4] = aBounds[5] = aNode->Z();
+ }
+ while(aNodesIter->more()){
+ const SMDS_MeshNode* aNode = aNodesIter->next();
+ aBounds[0] = min(aBounds[0],aNode->X());
+ aBounds[1] = max(aBounds[1],aNode->X());
+
+ aBounds[2] = min(aBounds[2],aNode->Y());
+ aBounds[3] = max(aBounds[3],aNode->Y());
+
+ aBounds[4] = min(aBounds[4],aNode->Z());
+ aBounds[5] = max(aBounds[5],aNode->Z());
+ }
+
+ double EPS = 1.0E-7;
+ anIsXDimension = (aBounds[1] - aBounds[0]) + abs(aBounds[1]) + abs(aBounds[0]) > EPS;
+ anIsYDimension = (aBounds[3] - aBounds[2]) + abs(aBounds[3]) + abs(aBounds[2]) > EPS;
+ anIsZDimension = (aBounds[5] - aBounds[4]) + abs(aBounds[5]) + abs(aBounds[4]) > EPS;
+ aMeshDimension = anIsXDimension + anIsYDimension + anIsZDimension;
+ if(!aMeshDimension)
+ aMeshDimension = 3;
// PAL16857(SMESH not conform to the MED convention):
if ( aMeshDimension == 2 && anIsZDimension ) // 2D only if mesh is in XOY plane
aMeshDimension = 3;
SMDS_NodeIteratorPtr aNodesIter = myMesh->nodesIterator();
switch(aMeshDimension){
case 3:
- aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aXYZGetCoord,aXYZName));
- break;
+ aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aXYZGetCoord,aXYZName));
+ break;
case 2:
- if(anIsXDimension && anIsYDimension)
- aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aXYGetCoord,aXYName));
- if(anIsYDimension && anIsZDimension)
- aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aYZGetCoord,aYZName));
- if(anIsXDimension && anIsZDimension)
- aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aXZGetCoord,aXZName));
- break;
+ if(anIsXDimension && anIsYDimension)
+ aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aXYGetCoord,aXYName));
+ if(anIsYDimension && anIsZDimension)
+ aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aYZGetCoord,aYZName));
+ if(anIsXDimension && anIsZDimension)
+ aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aXZGetCoord,aXZName));
+ break;
case 1:
- if(anIsXDimension)
- aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aXGetCoord,aXName));
- if(anIsYDimension)
- aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aYGetCoord,aYName));
- if(anIsZDimension)
- aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aZGetCoord,aZName));
- break;
+ if(anIsXDimension)
+ aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aXGetCoord,aXName));
+ if(anIsYDimension)
+ aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aYGetCoord,aYName));
+ if(anIsZDimension)
+ aCoordHelperPtr.reset(new TCoordHelper(aNodesIter,aZGetCoord,aZName));
+ break;
}
}
// coordinates
TCoordSlice aTCoordSlice = aNodeInfo->GetCoordSlice( iNode );
for(TInt iCoord = 0; iCoord < aMeshDimension; iCoord++){
- aTCoordSlice[iCoord] = aCoordHelperPtr->GetCoord(iCoord);
+ aTCoordSlice[iCoord] = aCoordHelperPtr->GetCoord(iCoord);
}
// node number
int aNodeID = aCoordHelperPtr->GetID();
#include "UNV2417_Structure.hxx"
#include "UNV_Utilities.hxx"
+#include <Basics_Utils.hxx>
+
using namespace std;
Driver_Mesh::Status DriverUNV_R_SMDS_Mesh::Perform()
{
+ Kernel_Utils::Localizer loc;
Status aResult = DRS_OK;
std::ifstream in_stream(myFile.c_str());
try{
#include "UNV2417_Structure.hxx"
#include "UNV_Utilities.hxx"
+#include <Basics_Utils.hxx>
+
using namespace std;
using namespace UNV;
Driver_Mesh::Status DriverUNV_W_SMDS_Mesh::Perform()
{
+ Kernel_Utils::Localizer loc;
Status aResult = DRS_OK;
std::ofstream out_stream(myFile.c_str());
try{
libMeshDriverUNV_la_LDFLAGS = \
../Driver/libMeshDriver.la \
+ $(KERNEL_LDFLAGS) -lSALOMEBasics \
$(CAS_KERNEL)
UNV_Test_CPPFLAGS = \
#include <vtkImplicitBoolean.h>
#include <vtkImplicitFunctionCollection.h>
+#include <vtkConfigure.h>
+#if !defined(VTK_XVERSION)
+#define VTK_XVERSION (VTK_MAJOR_VERSION<<16)+(VTK_MINOR_VERSION<<8)+(VTK_BUILD_VERSION)
+#endif
+
#include "utilities.h"
#ifdef _DEBUG_
SMESH_Actor* SMESH_Actor::New(TVisualObjPtr theVisualObj,
- const char* theEntry,
- const char* theName,
- int theIsClear)
+ const char* theEntry,
+ const char* theName,
+ int theIsClear)
{
SMESH_ActorDef* anActor = SMESH_ActorDef::New();
if(!anActor->Init(theVisualObj,theEntry,theName,theIsClear)){
myPtsLabeledDataMapper = vtkLabeledDataMapper::New();
myPtsLabeledDataMapper->SetInput(myPtsSelectVisiblePoints->GetOutput());
+#if (VTK_XVERSION >= 0x050200)
+ myPtsLabeledDataMapper->SetLabelFormat("%d");
+#else
myPtsLabeledDataMapper->SetLabelFormat("%g");
+#endif
myPtsLabeledDataMapper->SetLabelModeToLabelScalars();
vtkTextProperty* aPtsTextProp = vtkTextProperty::New();
myClsLabeledDataMapper = vtkLabeledDataMapper::New();
myClsLabeledDataMapper->SetInput(myClsSelectVisiblePoints->GetOutput());
+#if (VTK_XVERSION >= 0x050200)
+ myClsLabeledDataMapper->SetLabelFormat("%d");
+#else
myClsLabeledDataMapper->SetLabelFormat("%g");
+#endif
myClsLabeledDataMapper->SetLabelModeToLabelScalars();
vtkTextProperty* aClsTextProp = vtkTextProperty::New();
vtkIntArray *anArray = vtkIntArray::New();
anArray->SetNumberOfValues( aNbElem );
- for ( int anId = 0; anId < aNbElem; anId++ )
+ for ( vtkIdType anId = 0; anId < aNbElem; anId++ )
{
int aSMDSId = myVisualObj->GetNodeObjId( anId );
anArray->SetValue( anId, aSMDSId );
void
SMESH_ActorDef::
SetControlMode(eControl theMode,
- bool theCheckEntityMode)
+ bool theCheckEntityMode)
{
SUIT_ResourceMgr* mgr = SUIT_Session::session()->resourceMgr();
if( !mgr )
myControlMode = theMode;
switch(myControlMode){
case eFreeNodes:
- myNodeExtActor->SetExtControlMode(aFunctor);
- break;
+ myNodeExtActor->SetExtControlMode(aFunctor);
+ break;
case eFreeEdges:
case eFreeBorders:
- my1DExtActor->SetExtControlMode(aFunctor);
- break;
+ my1DExtActor->SetExtControlMode(aFunctor);
+ break;
case eFreeFaces:
- my2DExtActor->SetExtControlMode(aFunctor);
- break;
+ my2DExtActor->SetExtControlMode(aFunctor);
+ break;
case eLength2D:
case eMultiConnection2D:
- my1DExtActor->SetExtControlMode(aFunctor,myScalarBarActor,myLookupTable);
- break;
+ my1DExtActor->SetExtControlMode(aFunctor,myScalarBarActor,myLookupTable);
+ break;
default:
- myControlActor->SetControlMode(aFunctor,myScalarBarActor,myLookupTable);
+ myControlActor->SetControlMode(aFunctor,myScalarBarActor,myLookupTable);
}
}
if(theCheckEntityMode){
if(myControlActor == my1DActor)
- SetEntityMode(eEdges);
+ SetEntityMode(eEdges);
else if(myControlActor == my2DActor){
- switch(myControlMode){
- case eLength2D:
- case eFreeEdges:
- case eFreeFaces:
- case eMultiConnection2D:
- //SetEntityMode(eEdges);
- SetEntityMode(eFaces);
- break;
- default:
- SetEntityMode(eFaces);
- }
+ switch(myControlMode){
+ case eLength2D:
+ case eFreeEdges:
+ case eFreeFaces:
+ case eMultiConnection2D:
+ //SetEntityMode(eEdges);
+ SetEntityMode(eFaces);
+ break;
+ default:
+ SetEntityMode(eFaces);
+ }
}else if(myControlActor == my3DActor)
- SetEntityMode(eVolumes);
+ SetEntityMode(eVolumes);
}
}else if(theCheckEntityMode){
bool SMESH_ActorDef::Init(TVisualObjPtr theVisualObj,
- const char* theEntry,
- const char* theName,
- int theIsClear)
+ const char* theEntry,
+ const char* theName,
+ int theIsClear)
{
Handle(SALOME_InteractiveObject) anIO = new SALOME_InteractiveObject(theEntry,"SMESH",theName);
setIO(anIO);
vtkDataSet *aDataSet = myPickableActor->GetUnstructuredGrid();
aDataSet->Update();
myIsInfinite = aDataSet->GetNumberOfCells() == 0 ||
- aDataSet->GetNumberOfCells() == 1 &&
- aDataSet->GetCell(0)->GetCellType() == VTK_VERTEX;
+ ( aDataSet->GetNumberOfCells() == 1 &&
+ aDataSet->GetCell(0)->GetCellType() == VTK_VERTEX );
return SALOME_Actor::IsInfinitive();
}
if(myControlMode != eNone){
switch(myControlMode){
case eFreeNodes:
- myNodeExtActor->VisibilityOn();
- break;
+ myNodeExtActor->VisibilityOn();
+ break;
case eFreeEdges:
case eFreeBorders:
- my1DExtActor->VisibilityOn();
- break;
+ my1DExtActor->VisibilityOn();
+ break;
case eFreeFaces:
- my2DExtActor->VisibilityOn();
- break;
+ my2DExtActor->VisibilityOn();
+ break;
case eLength2D:
case eMultiConnection2D:
- my1DExtActor->VisibilityOn();
+ my1DExtActor->VisibilityOn();
default:
- if(myControlActor->GetUnstructuredGrid()->GetNumberOfCells())
- myScalarBarActor->VisibilityOn();
+ if(myControlActor->GetUnstructuredGrid()->GetNumberOfCells())
+ myScalarBarActor->VisibilityOn();
}
}
myHighlitableActor->SetHighlited(anIsVisible);
myHighlitableActor->SetVisibility(anIsVisible);
myHighlitableActor->GetExtractUnstructuredGrid()->
- SetModeOfExtraction(VTKViewer_ExtractUnstructuredGrid::eCells);
+ SetModeOfExtraction(VTKViewer_ExtractUnstructuredGrid::eCells);
myHighlitableActor->SetRepresentation(SMESH_DeviceActor::eWireframe);
}else if(myRepresentation == ePoint || GetPointRepresentation()){
myHighlitableActor->SetHighlited(anIsVisible);
myHighlitableActor->GetExtractUnstructuredGrid()->
- SetModeOfExtraction(VTKViewer_ExtractUnstructuredGrid::ePoints);
+ SetModeOfExtraction(VTKViewer_ExtractUnstructuredGrid::ePoints);
myHighlitableActor->SetVisibility(anIsVisible);
myHighlitableActor->SetRepresentation(SMESH_DeviceActor::ePoint);
}
mySurfaceProp->SetColor(r,g,b);
if( SMESH_GroupObj* aGroupObj = dynamic_cast<SMESH_GroupObj*>( myVisualObj.get() ) )
if( aGroupObj->GetElementType() == SMDSAbs_Face ||
- aGroupObj->GetElementType() == SMDSAbs_Volume )
+ aGroupObj->GetElementType() == SMDSAbs_Volume )
myNameActor->SetBackgroundColor(r,g,b);
Modified();
}
static void ComputeBoundsParam(vtkDataSet* theDataSet,
- vtkFloatingPointType theDirection[3], vtkFloatingPointType theMinPnt[3],
- vtkFloatingPointType& theMaxBoundPrj, vtkFloatingPointType& theMinBoundPrj)
+ vtkFloatingPointType theDirection[3], vtkFloatingPointType theMinPnt[3],
+ vtkFloatingPointType& theMaxBoundPrj, vtkFloatingPointType& theMinBoundPrj)
{
vtkFloatingPointType aBounds[6];
theDataSet->GetBounds(aBounds);
}
vtkFloatingPointType aBoundPoints[8][3] = { {aBounds[0],aBounds[2],aBounds[4]},
- {aBounds[1],aBounds[2],aBounds[4]},
- {aBounds[0],aBounds[3],aBounds[4]},
- {aBounds[1],aBounds[3],aBounds[4]},
- {aBounds[0],aBounds[2],aBounds[5]},
- {aBounds[1],aBounds[2],aBounds[5]},
- {aBounds[0],aBounds[3],aBounds[5]},
- {aBounds[1],aBounds[3],aBounds[5]}};
+ {aBounds[1],aBounds[2],aBounds[4]},
+ {aBounds[0],aBounds[3],aBounds[4]},
+ {aBounds[1],aBounds[3],aBounds[4]},
+ {aBounds[0],aBounds[2],aBounds[5]},
+ {aBounds[1],aBounds[2],aBounds[5]},
+ {aBounds[0],aBounds[3],aBounds[5]},
+ {aBounds[1],aBounds[3],aBounds[5]}};
int aMaxId = 0, aMinId = aMaxId;
theMaxBoundPrj = vtkMath::Dot(theDirection,aBoundPoints[aMaxId]);
static void DistanceToPosition(vtkDataSet* theDataSet,
- vtkFloatingPointType theDirection[3], vtkFloatingPointType theDist, vtkFloatingPointType thePos[3])
+ vtkFloatingPointType theDirection[3], vtkFloatingPointType theDist, vtkFloatingPointType thePos[3])
{
vtkFloatingPointType aMaxBoundPrj, aMinBoundPrj, aMinPnt[3];
ComputeBoundsParam(theDataSet,theDirection,aMinPnt,aMaxBoundPrj,aMinBoundPrj);
static void PositionToDistance(vtkDataSet* theDataSet,
- vtkFloatingPointType theDirection[3], vtkFloatingPointType thePos[3], vtkFloatingPointType& theDist)
+ vtkFloatingPointType theDirection[3], vtkFloatingPointType thePos[3], vtkFloatingPointType& theDist)
{
vtkFloatingPointType aMaxBoundPrj, aMinBoundPrj, aMinPnt[3];
ComputeBoundsParam(theDataSet,theDirection,aMinPnt,aMaxBoundPrj,aMinBoundPrj);
public:
vtkTypeMacro(SMESH_Actor,SALOME_Actor);
static SMESH_Actor* New(TVisualObjPtr theVisualObj,
- const char* theEntry,
- const char* theName,
- int theIsClear);
+ const char* theEntry,
+ const char* theName,
+ int theIsClear);
virtual void SetSufaceColor(vtkFloatingPointType r,vtkFloatingPointType g,vtkFloatingPointType b) = 0;
virtual void GetSufaceColor(vtkFloatingPointType& r,vtkFloatingPointType& g,vtkFloatingPointType& b) = 0;
enum eControl{eNone, eLength, eLength2D, eFreeBorders, eFreeEdges, eFreeNodes,
eFreeFaces, eMultiConnection, eArea, eTaper, eAspectRatio,
- eMinimumAngle, eWarping, eSkew, eAspectRatio3D, eMultiConnection2D, eVolume3D};
+ eMinimumAngle, eWarping, eSkew, eAspectRatio3D, eMultiConnection2D, eVolume3D};
virtual void SetControlMode(eControl theMode) = 0;
virtual eControl GetControlMode() = 0;
~SMESH_ActorDef();
bool Init(TVisualObjPtr theVisualObj,
- const char* theEntry,
- const char* theName,
- int theIsClear);
+ const char* theEntry,
+ const char* theName,
+ int theIsClear);
void SetIsShrunkable(bool theShrunkable);
void UpdateHighlight();
vtkFloatingPointType
GetFloat( const QString& theValue,
- vtkFloatingPointType theDefault )
+ vtkFloatingPointType theDefault )
{
int pos = theValue.indexOf( ":" );
vtkFloatingPointType val = theDefault;
QString name = theValue.right( theValue.length()-pos-1 ),
sect = theValue.left( pos );
if( !name.isEmpty() && !sect.isEmpty() )
- val = GetFloat( name, sect, theDefault );
+ val = GetFloat( name, sect, theDefault );
}
return val;
}
vtkFloatingPointType
GetFloat( const QString& theValue,
- const QString& theSection,
- vtkFloatingPointType theDefault )
+ const QString& theSection,
+ vtkFloatingPointType theDefault )
{
vtkFloatingPointType val = theDefault;
SUIT_ResourceMgr* mgr = SUIT_Session::session()->resourceMgr();
void
WriteUnstructuredGrid(vtkUnstructuredGrid* theGrid,
- const char* theFileName)
+ const char* theFileName)
{
vtkUnstructuredGridWriter* aWriter = vtkUnstructuredGridWriter::New();
aWriter->SetFileName(theFileName);
QColor
GetColor( const QString& theSect,
- const QString& theName,
- const QColor& def )
+ const QString& theName,
+ const QColor& def )
{
QColor c = def;
SUIT_ResourceMgr* mgr = SUIT_Session::session()->resourceMgr();
void
GetColor( const QString& theSect,
- const QString& theName,
- int& r,
- int& g,
- int& b,
- const QColor& def )
+ const QString& theName,
+ int& r,
+ int& g,
+ int& b,
+ const QColor& def )
{
QColor c = def;
SUIT_ResourceMgr* mgr = SUIT_Session::session()->resourceMgr();
void
GetColor( const QString& theSect,
- const QString& theName,
- vtkFloatingPointType& r,
- vtkFloatingPointType& g,
- vtkFloatingPointType& b,
- const QColor& def )
+ const QString& theName,
+ vtkFloatingPointType& r,
+ vtkFloatingPointType& g,
+ vtkFloatingPointType& b,
+ const QColor& def )
{
int ir( 0 ), ig( 0 ), ib( 0 );
GetColor( theSect, theName, ir, ig, ib, def );
SMESHOBJECT_EXPORT
vtkFloatingPointType
GetFloat( const QString& theValue,
- vtkFloatingPointType theDefault = 0 );
+ vtkFloatingPointType theDefault = 0 );
SMESHOBJECT_EXPORT
vtkFloatingPointType
GetFloat( const QString& theName,
- const QString& theSection,
- vtkFloatingPointType theDefault = 0 );
+ const QString& theSection,
+ vtkFloatingPointType theDefault = 0 );
SMESHOBJECT_EXPORT
QColor
GetColor( const QString& theSect,
- const QString& theName,
- const QColor& = QColor() );
+ const QString& theName,
+ const QColor& = QColor() );
SMESHOBJECT_EXPORT
void
GetColor( const QString& theSect,
- const QString& theName,
- int&,
- int&,
- int&,
- const QColor& = QColor() );
+ const QString& theName,
+ int&,
+ int&,
+ int&,
+ const QColor& = QColor() );
SMESHOBJECT_EXPORT
void
GetColor( const QString& theSect,
- const QString& theName,
- vtkFloatingPointType&,
- vtkFloatingPointType&,
- vtkFloatingPointType&,
- const QColor& = QColor() );
+ const QString& theName,
+ vtkFloatingPointType&,
+ vtkFloatingPointType&,
+ vtkFloatingPointType&,
+ const QColor& = QColor() );
SMESHOBJECT_EXPORT
void
WriteUnstructuredGrid(vtkUnstructuredGrid* theGrid,
- const char* theFileName);
+ const char* theFileName);
}
myMapper = vtkPolyDataMapper::New();
vtkMapper::GetResolveCoincidentTopologyPolygonOffsetParameters(myPolygonOffsetFactor,
- myPolygonOffsetUnits);
+ myPolygonOffsetUnits);
myMapper->UseLookupTableScalarRangeOn();
myMapper->SetColorModeToMapScalars();
void
SMESH_DeviceActor
::SetControlMode(SMESH::Controls::FunctorPtr theFunctor,
- vtkScalarBarActor* theScalarBarActor,
- vtkLookupTable* theLookupTable)
+ vtkScalarBarActor* theScalarBarActor,
+ vtkLookupTable* theLookupTable)
{
bool anIsInitialized = theFunctor;
if(anIsInitialized){
using namespace SMESH::Controls;
if(NumericalFunctor* aNumericalFunctor = dynamic_cast<NumericalFunctor*>(theFunctor.get())){
for(vtkIdType i = 0; i < aNbCells; i++){
- vtkIdType anId = myExtractUnstructuredGrid->GetInputId(i);
- vtkIdType anObjId = myVisualObj->GetElemObjId(anId);
- double aValue = aNumericalFunctor->GetValue(anObjId);
- aScalars->SetValue(i,aValue);
+ vtkIdType anId = myExtractUnstructuredGrid->GetInputId(i);
+ vtkIdType anObjId = myVisualObj->GetElemObjId(anId);
+ double aValue = aNumericalFunctor->GetValue(anObjId);
+ aScalars->SetValue(i,aValue);
}
}else if(Predicate* aPredicate = dynamic_cast<Predicate*>(theFunctor.get())){
for(vtkIdType i = 0; i < aNbCells; i++){
- vtkIdType anId = myExtractUnstructuredGrid->GetInputId(i);
- vtkIdType anObjId = myVisualObj->GetElemObjId(anId);
- bool aValue = aPredicate->IsSatisfy(anObjId);
- aScalars->SetValue(i,aValue);
+ vtkIdType anId = myExtractUnstructuredGrid->GetInputId(i);
+ vtkIdType anObjId = myVisualObj->GetElemObjId(anId);
+ bool aValue = aPredicate->IsSatisfy(anObjId);
+ aScalars->SetValue(i,aValue);
}
}
aDataSet->GetCellData()->SetScalars(aScalars);
aScalars->Delete();
-
+
theLookupTable->SetRange(aScalars->GetRange());
theLookupTable->SetNumberOfTableValues(theScalarBarActor->GetMaximumNumberOfColors());
theLookupTable->Build();
void
SMESH_DeviceActor
::SetExtControlMode(SMESH::Controls::FunctorPtr theFunctor,
- vtkScalarBarActor* theScalarBarActor,
- vtkLookupTable* theLookupTable)
+ vtkScalarBarActor* theScalarBarActor,
+ vtkLookupTable* theLookupTable)
{
bool anIsInitialized = theFunctor;
myExtractUnstructuredGrid->ClearRegisteredCells();
Length2D::TValues::const_iterator anIter = aValues.begin();
for(vtkIdType aVtkId = 0; anIter != aValues.end(); anIter++,aVtkId++){
- const Length2D::Value& aValue = *anIter;
- int aNode[2] = {
- myVisualObj->GetNodeVTKId(aValue.myPntId[0]),
- myVisualObj->GetNodeVTKId(aValue.myPntId[1])
- };
- if(aNode[0] >= 0 && aNode[1] >= 0){
- anIdList->SetId( 0, aNode[0] );
- anIdList->SetId( 1, aNode[1] );
- aConnectivity->InsertNextCell( anIdList );
- aCellTypesArray->InsertNextValue( VTK_LINE );
- aScalars->SetValue(aVtkId,aValue.myLength);
- }
+ const Length2D::Value& aValue = *anIter;
+ int aNode[2] = {
+ myVisualObj->GetNodeVTKId(aValue.myPntId[0]),
+ myVisualObj->GetNodeVTKId(aValue.myPntId[1])
+ };
+ if(aNode[0] >= 0 && aNode[1] >= 0){
+ anIdList->SetId( 0, aNode[0] );
+ anIdList->SetId( 1, aNode[1] );
+ aConnectivity->InsertNextCell( anIdList );
+ aCellTypesArray->InsertNextValue( VTK_LINE );
+ aScalars->SetValue(aVtkId,aValue.myLength);
+ }
}
VTKViewer_CellLocationsArray* aCellLocationsArray = VTKViewer_CellLocationsArray::New();
aConnectivity->InitTraversal();
for( vtkIdType idType = 0, *pts, npts; aConnectivity->GetNextCell( npts, pts ); idType++ )
- aCellLocationsArray->SetValue( idType, aConnectivity->GetTraversalLocation( npts ) );
+ aCellLocationsArray->SetValue( idType, aConnectivity->GetTraversalLocation( npts ) );
aDataSet->SetCells( aCellTypesArray, aCellLocationsArray,aConnectivity );
SetUnstructuredGrid(aDataSet);
MultiConnection2D::MValues::const_iterator anIter = aValues.begin();
for(vtkIdType aVtkId = 0; anIter != aValues.end(); anIter++,aVtkId++){
- const MultiConnection2D::Value& aValue = (*anIter).first;
- int aNode[2] = {
- myVisualObj->GetNodeVTKId(aValue.myPntId[0]),
- myVisualObj->GetNodeVTKId(aValue.myPntId[1])
- };
- if(aNode[0] >= 0 && aNode[1] >= 0){
- anIdList->SetId( 0, aNode[0] );
- anIdList->SetId( 1, aNode[1] );
- aConnectivity->InsertNextCell( anIdList );
- aCellTypesArray->InsertNextValue( VTK_LINE );
- aScalars->SetValue(aVtkId,(*anIter).second);
- }
+ const MultiConnection2D::Value& aValue = (*anIter).first;
+ int aNode[2] = {
+ myVisualObj->GetNodeVTKId(aValue.myPntId[0]),
+ myVisualObj->GetNodeVTKId(aValue.myPntId[1])
+ };
+ if(aNode[0] >= 0 && aNode[1] >= 0){
+ anIdList->SetId( 0, aNode[0] );
+ anIdList->SetId( 1, aNode[1] );
+ aConnectivity->InsertNextCell( anIdList );
+ aCellTypesArray->InsertNextValue( VTK_LINE );
+ aScalars->SetValue(aVtkId,(*anIter).second);
+ }
}
VTKViewer_CellLocationsArray* aCellLocationsArray = VTKViewer_CellLocationsArray::New();
aConnectivity->InitTraversal();
for( vtkIdType idType = 0, *pts, npts; aConnectivity->GetNextCell( npts, pts ); idType++ )
- aCellLocationsArray->SetValue( idType, aConnectivity->GetTraversalLocation( npts ) );
+ aCellLocationsArray->SetValue( idType, aConnectivity->GetTraversalLocation( npts ) );
aDataSet->SetCells( aCellTypesArray, aCellLocationsArray,aConnectivity );
SetUnstructuredGrid(aDataSet);
for( vtkIdType i = 0; i < aNbCells; i++ ){
vtkIdType anObjId = myVisualObj->GetElemObjId(i);
if(aFreePredicate->IsSatisfy(anObjId))
- myExtractUnstructuredGrid->RegisterCell(i);
+ myExtractUnstructuredGrid->RegisterCell(i);
}
if(!myExtractUnstructuredGrid->IsCellsRegistered())
myExtractUnstructuredGrid->RegisterCell(-1);
for(; anIter != aBorders.end(); anIter++){
const FreeEdges::Border& aBorder = *anIter;
int aNode[2] = {
- myVisualObj->GetNodeVTKId(aBorder.myPntId[0]),
- myVisualObj->GetNodeVTKId(aBorder.myPntId[1])
+ myVisualObj->GetNodeVTKId(aBorder.myPntId[0]),
+ myVisualObj->GetNodeVTKId(aBorder.myPntId[1])
};
//cout<<"aNode = "<<aBorder.myPntId[0]<<"; "<<aBorder.myPntId[1]<<endl;
if(aNode[0] >= 0 && aNode[1] >= 0){
- anIdList->SetId( 0, aNode[0] );
- anIdList->SetId( 1, aNode[1] );
- aConnectivity->InsertNextCell( anIdList );
- aCellTypesArray->InsertNextValue( VTK_LINE );
+ anIdList->SetId( 0, aNode[0] );
+ anIdList->SetId( 1, aNode[1] );
+ aConnectivity->InsertNextCell( anIdList );
+ aCellTypesArray->InsertNextValue( VTK_LINE );
}
}
for( vtkIdType i = 0; i < aNbNodes; i++ ){
vtkIdType anObjId = myVisualObj->GetNodeObjId(i);
if(aFreeNodes->IsSatisfy(anObjId))
- myExtractUnstructuredGrid->RegisterCell(i);
+ myExtractUnstructuredGrid->RegisterCell(i);
}
if(!myExtractUnstructuredGrid->IsCellsRegistered())
myExtractUnstructuredGrid->RegisterCell(-1);
void
SMESH_DeviceActor
::SetPolygonOffsetParameters(vtkFloatingPointType factor,
- vtkFloatingPointType units)
+ vtkFloatingPointType units)
{
myPolygonOffsetFactor = factor;
myPolygonOffsetUnits = units;
vtkUnstructuredGrid* GetUnstructuredGrid();
void SetControlMode(SMESH::Controls::FunctorPtr theFunctor,
- vtkScalarBarActor* theScalarBarActor,
- vtkLookupTable* theLookupTable);
+ vtkScalarBarActor* theScalarBarActor,
+ vtkLookupTable* theLookupTable);
void SetExtControlMode(SMESH::Controls::FunctorPtr theFunctor,
- vtkScalarBarActor* theScalarBarActor,
- vtkLookupTable* theLookupTable);
+ vtkScalarBarActor* theScalarBarActor,
+ vtkLookupTable* theLookupTable);
void SetExtControlMode(SMESH::Controls::FunctorPtr theFunctor);
bool IsHighlited() { return myIsHighlited;}
void
SetPolygonOffsetParameters(vtkFloatingPointType factor,
- vtkFloatingPointType units);
+ vtkFloatingPointType units);
void
GetPolygonOffsetParameters(vtkFloatingPointType& factor,
- vtkFloatingPointType& units)
+ vtkFloatingPointType& units)
{
factor = myPolygonOffsetFactor;
units = myPolygonOffsetUnits;
{
newId = newPts->InsertNextPoint(x);
pointMap[ptId] = newId;
- myNodeVTK2ObjIds.push_back(ptId);
+ myNodeVTK2ObjIds.push_back(ptId);
outputPD->CopyData(pd,ptId,newId);
}
}
{
newId = newPts->InsertNextPoint(x);
pointMap[ptId] = newId;
- myNodeVTK2ObjIds.push_back(ptId);
+ myNodeVTK2ObjIds.push_back(ptId);
outputPD->CopyData(pd,ptId,newId);
}
}
x = input->GetPoint(ptId);
newId = newPts->InsertNextPoint(x);
pointMap[ptId] = newId;
- myNodeVTK2ObjIds.push_back(ptId);
+ myNodeVTK2ObjIds.push_back(ptId);
outputPD->CopyData(pd,ptId,newId);
}
newCellPts->InsertId(i,pointMap[ptId]);
double* aBounds = theFace->GetBounds();
theSize = pow( pow( aBounds[1] - aBounds[0], 2 ) +
- pow( aBounds[3] - aBounds[2], 2 ) +
- pow( aBounds[5] - aBounds[4], 2 ), 0.5 );
+ pow( aBounds[3] - aBounds[2], 2 ) +
+ pow( aBounds[5] - aBounds[4], 2 ), 0.5 );
}
/*!
input->GetCellNeighbors( aCellId, aFace->PointIds, aNeighborIds );
if( aNeighborIds->GetNumberOfIds() > 0 )
- continue;
+ continue;
double aSize, aNormal[3];
GetFaceParams( aFace, aNormal, aSize );
#include <vtkUnstructuredGrid.h>
#include <memory>
-#include <sstream>
+#include <sstream>
#include <stdexcept>
#include <set>
// purpose : Get type of VTK cell
//=================================================================================
static inline vtkIdType getCellType( const SMDSAbs_ElementType theType,
- const bool thePoly,
+ const bool thePoly,
const int theNbNodes )
{
switch( theType )
typedef std::vector<const SMDS_MeshElement*> TConnect;
int GetConnect(const SMDS_ElemIteratorPtr& theNodesIter,
- TConnect& theConnect)
+ TConnect& theConnect)
{
theConnect.clear();
for(; theNodesIter->more();)
inline
void SetId(vtkIdList *theIdList,
- const SMESH_VisualObjDef::TMapOfIds& theSMDS2VTKNodes,
- const TConnect& theConnect,
- int thePosition,
- int theId)
+ const SMESH_VisualObjDef::TMapOfIds& theSMDS2VTKNodes,
+ const TConnect& theConnect,
+ int thePosition,
+ int theId)
{
theIdList->SetId(thePosition,theSMDS2VTKNodes.find(theConnect[theId]->GetID())->second);
}
myVTK2SMDSElems.insert( TMapOfIds::value_type( iElem, anId ) );
SMDS_ElemIteratorPtr aNodesIter = anElem->nodesIterator();
- switch (aType) {
- case SMDSAbs_Volume:{
+ switch (aType) {
+ case SMDSAbs_Volume:{
aConnect.clear();
- std::vector<int> aConnectivities;
- // Convertions connectivities from SMDS to VTK
- if (anElem->IsPoly() && aNbNodes > 3) { // POLYEDRE
+ std::vector<int> aConnectivities;
+ // Convertions connectivities from SMDS to VTK
+ if (anElem->IsPoly() && aNbNodes > 3) { // POLYEDRE
if ( const SMDS_PolyhedralVolumeOfNodes* ph =
dynamic_cast<const SMDS_PolyhedralVolumeOfNodes*> (anElem))
aNbNodes = GetConnect(ph->uniqueNodesIterator(),aConnect);
anIdList->SetNumberOfIds( aNbNodes );
}
- for (int k = 0; k < aNbNodes; k++)
- aConnectivities.push_back(k);
+ for (int k = 0; k < aNbNodes; k++)
+ aConnectivities.push_back(k);
} else if (aNbNodes == 4) {
- static int anIds[] = {0,2,1,3};
- for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
+ static int anIds[] = {0,2,1,3};
+ for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
- } else if (aNbNodes == 5) {
- static int anIds[] = {0,3,2,1,4};
- for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
+ } else if (aNbNodes == 5) {
+ static int anIds[] = {0,3,2,1,4};
+ for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
- } else if (aNbNodes == 6) {
- static int anIds[] = {0,1,2,3,4,5};
- for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
+ } else if (aNbNodes == 6) {
+ static int anIds[] = {0,1,2,3,4,5};
+ for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
- }
+ }
else if (aNbNodes == 8) {
- static int anIds[] = {0,3,2,1,4,7,6,5};
- for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
+ static int anIds[] = {0,3,2,1,4,7,6,5};
+ for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
- }
+ }
else if (aNbNodes == 10) {
- static int anIds[] = {0,2,1,3,6,5,4,7,9,8};
- for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
- }
+ static int anIds[] = {0,2,1,3,6,5,4,7,9,8};
+ for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
+ }
else if (aNbNodes == 13) {
- static int anIds[] = {0,3,2,1,4,8,7,6,5,9,12,11,10};
- for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
- }
+ static int anIds[] = {0,3,2,1,4,8,7,6,5,9,12,11,10};
+ for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
+ }
else if (aNbNodes == 15) {
//static int anIds[] = {0,2,1,3,5,4,8,7,6,11,10,9,12,14,13};
static int anIds[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14};
- for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
- //for (int k = 0; k < aNbNodes; k++) {
+ for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
+ //for (int k = 0; k < aNbNodes; k++) {
// int nn = aConnectivities[k];
// const SMDS_MeshNode* N = static_cast<const SMDS_MeshNode*> (aConnect[nn]);
// cout<<"k="<<k<<" N("<<N->X()<<","<<N->Y()<<","<<N->Z()<<")"<<endl;
//}
- }
+ }
else if (aNbNodes == 20) {
- static int anIds[] = {0,3,2,1,4,7,6,5,11,10,9,8,15,14,13,12,16,19,18,17};
- for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
- }
+ static int anIds[] = {0,3,2,1,4,7,6,5,11,10,9,8,15,14,13,12,16,19,18,17};
+ for (int k = 0; k < aNbNodes; k++) aConnectivities.push_back(anIds[k]);
+ }
else {
}
if ( aConnect.empty() )
GetConnect(aNodesIter,aConnect);
- if (aConnectivities.size() > 0) {
- for (vtkIdType aNodeId = 0; aNodeId < aNbNodes; aNodeId++)
- SetId(anIdList,mySMDS2VTKNodes,aConnect,aNodeId,aConnectivities[aNodeId]);
- }
- break;
- }
- default:
- for( vtkIdType aNodeId = 0; aNodesIter->more(); aNodeId++ ){
- const SMDS_MeshElement* aNode = aNodesIter->next();
- anIdList->SetId( aNodeId, mySMDS2VTKNodes[aNode->GetID()] );
- }
- }
+ if (aConnectivities.size() > 0) {
+ for (vtkIdType aNodeId = 0; aNodeId < aNbNodes; aNodeId++)
+ SetId(anIdList,mySMDS2VTKNodes,aConnect,aNodeId,aConnectivities[aNodeId]);
+ }
+ break;
+ }
+ default:
+ for( vtkIdType aNodeId = 0; aNodesIter->more(); aNodeId++ ){
+ const SMDS_MeshElement* aNode = aNodesIter->next();
+ anIdList->SetId( aNodeId, mySMDS2VTKNodes[aNode->GetID()] );
+ }
+ }
aConnectivity->InsertNextCell( anIdList );
aCellTypesArray->InsertNextValue( getCellType( aType, anElem->IsPoly(), aNbNodes ) );
// purpose : Retrieve ids of nodes from edge of elements ( edge is numbered from 1 )
//=================================================================================
bool SMESH_VisualObjDef::GetEdgeNodes( const int theElemId,
- const int theEdgeNum,
- int& theNodeId1,
- int& theNodeId2 ) const
+ const int theEdgeNum,
+ int& theNodeId1,
+ int& theNodeId2 ) const
{
const SMDS_Mesh* aMesh = GetMesh();
if ( aMesh == 0 )
return true;
}
+//=================================================================================
+// function : IsValid
+// purpose : Return true if there are some entities
+//=================================================================================
+bool SMESH_VisualObjDef::IsValid() const
+{
+ return GetNbEntities(SMDSAbs_Node) > 0 ||
+ GetNbEntities(SMDSAbs_0DElement) > 0 ||
+ GetNbEntities(SMDSAbs_Edge) > 0 ||
+ GetNbEntities(SMDSAbs_Face) > 0 ||
+ GetNbEntities(SMDSAbs_Volume) > 0 ;
+}
+
/*
Class : SMESH_MeshObj
Description : Class for visualisation of mesh
case SMDSAbs_Volume:
{
SMESH::long_array_var anIds =
- mySubMeshServer->GetElementsByType( SMESH::ElementType(theType) );
+ mySubMeshServer->GetElementsByType( SMESH::ElementType(theType) );
return anIds->length();
}
default:
else
{
SMESH::long_array_var anIds =
- mySubMeshServer->GetElementsByType( SMESH::ElementType(theType) );
+ mySubMeshServer->GetElementsByType( SMESH::ElementType(theType) );
return getPointers( theType, anIds, aMesh, theResList );
}
}
virtual SMDS_Mesh* GetMesh() const = 0;
virtual bool GetEdgeNodes( const int theElemId,
- const int theEdgeNum,
- int& theNodeId1,
- int& theNodeId2 ) const = 0;
+ const int theEdgeNum,
+ int& theNodeId1,
+ int& theNodeId2 ) const = 0;
+ virtual bool IsValid() const = 0;
virtual vtkUnstructuredGrid* GetUnstructuredGrid() = 0;
virtual bool IsNodePrs() const = 0;
virtual SMDS_Mesh* GetMesh() const = 0;
+ virtual bool IsValid() const;
+
virtual bool GetEdgeNodes( const int theElemId,
const int theEdgeNum,
int& theNodeId1,
actor->SetShape(shape,0,0);
//Color Properties
- /*
- vtkProperty* aProp = vtkProperty::New();
- vtkProperty* aHLProp = vtkProperty::New();
- vtkProperty* aPHLProp = vtkProperty::New();
-
- aProp->SetColor( 255, 0, 0);
- actor->SetProperty(aProp);
-
- aHLProp->SetColor( 255, 255, 255);
- actor->SetHighlightProperty(aHLProp);
-
- aPHLProp->SetColor( 155, 155, 155);
- aPHLProp->SetLineWidth ( 3 );
- aPHLProp->SetOpacity ( 0.75 );
- actor->SetPreHighlightProperty(aPHLProp);
-
- aProp->Delete();
- aHLProp->Delete();
- aPHLProp->Delete();
+ /*
+ vtkProperty* aProp = vtkProperty::New();
+ vtkProperty* aHLProp = vtkProperty::New();
+ vtkProperty* aPHLProp = vtkProperty::New();
+
+ aProp->SetColor( 255, 0, 0);
+ actor->SetProperty(aProp);
+
+ aHLProp->SetColor( 255, 255, 255);
+ actor->SetHighlightProperty(aHLProp);
+
+ aPHLProp->SetColor( 155, 155, 155);
+ aPHLProp->SetLineWidth ( 3 );
+ aPHLProp->SetOpacity ( 0.75 );
+ actor->SetPreHighlightProperty(aPHLProp);
+
+ aProp->Delete();
+ aHLProp->Delete();
+ aPHLProp->Delete();
*/
return actor;
for ( iE = 0; wExp.More(); wExp.Next(), iE++ )
{
TopoDS_Edge edge = wExp.Current();
- edge = TopoDS::Edge( edge.Oriented( wExp.Orientation() ));
+ // commented for issue 0020557, other related ones: 0020526, PAL19080
+ // edge = TopoDS::Edge( edge.Oriented( wExp.Orientation() ));
theEdges.push_back( edge );
}
theNbVertexInWires.push_back( iE );
const SMESH_Algo* aGlobIgnoAlgo,
const SMESH_Algo* aLocIgnoAlgo,
bool & checkConform,
- map<int, SMESH_subMesh*>& aCheckedMap,
+ set<SMESH_subMesh*>& aCheckedMap,
list< SMESH_Gen::TAlgoStateError > & theErrors)
{
ASSERT( aSubMesh );
}
// sub-algos will be hidden by a local <algo>
- const map<int, SMESH_subMesh*>& smMap = aSubMesh->DependsOn();
- map<int, SMESH_subMesh*>::const_reverse_iterator revItSub;
+ SMESH_subMeshIteratorPtr revItSub =
+ aSubMesh->getDependsOnIterator( /*includeSelf=*/false, /*complexShapeFirst=*/true);
bool checkConform2 = false;
- for ( revItSub = smMap.rbegin(); revItSub != smMap.rend(); revItSub++)
+ while ( revItSub->more() )
{
- checkConformIgnoredAlgos (aMesh, (*revItSub).second, aGlobIgnoAlgo,
+ SMESH_subMesh* sm = revItSub->next();
+ checkConformIgnoredAlgos (aMesh, sm, aGlobIgnoAlgo,
algo, checkConform2, aCheckedMap, theErrors);
- int key = (*revItSub).first;
- SMESH_subMesh* sm = (*revItSub).second;
- if ( aCheckedMap.find( key ) == aCheckedMap.end() )
- {
- aCheckedMap[ key ] = sm;
- }
+ aCheckedMap.insert( sm );
}
}
}
const int aTopAlgoDim,
bool* globalChecked,
const bool checkNoAlgo,
- map<int, SMESH_subMesh*>& aCheckedMap,
+ set<SMESH_subMesh*>& aCheckedMap,
list< SMESH_Gen::TAlgoStateError > & theErrors)
{
if ( aSubMesh->GetSubShape().ShapeType() == TopAbs_VERTEX)
if (!algo->NeedDescretBoundary() || isTopLocalAlgo)
{
bool checkNoAlgo2 = ( algo->NeedDescretBoundary() );
- const map<int, SMESH_subMesh*>& subMeshes = aSubMesh->DependsOn();
- map<int, SMESH_subMesh*>::const_iterator itsub;
- for (itsub = subMeshes.begin(); itsub != subMeshes.end(); itsub++)
+ SMESH_subMeshIteratorPtr itsub = aSubMesh->getDependsOnIterator( /*includeSelf=*/false,
+ /*complexShapeFirst=*/false);
+ while ( itsub->more() )
{
// sub-meshes should not be checked further more
- int key = (*itsub).first;
- SMESH_subMesh* sm = (*itsub).second;
- if ( aCheckedMap.find( key ) == aCheckedMap.end() )
- aCheckedMap[ key ] = sm;
+ SMESH_subMesh* sm = itsub->next();
+ aCheckedMap.insert( sm );
if (isTopLocalAlgo)
{
}
}
- const map<int, SMESH_subMesh*>& smMap = sm->DependsOn();
- map<int, SMESH_subMesh*>::const_reverse_iterator revItSub = smMap.rbegin();
- map<int, SMESH_subMesh*> aCheckedMap;
+ set<SMESH_subMesh*> aCheckedSubs;
bool checkConform = ( !theMesh.IsNotConformAllowed() );
- int aKey = 1;
- SMESH_subMesh* smToCheck = sm;
// loop on theShape and its sub-shapes
- while ( smToCheck )
+ SMESH_subMeshIteratorPtr revItSub = sm->getDependsOnIterator( /*includeSelf=*/true,
+ /*complexShapeFirst=*/true);
+ while ( revItSub->more() )
{
+ SMESH_subMesh* smToCheck = revItSub->next();
if ( smToCheck->GetSubShape().ShapeType() == TopAbs_VERTEX)
break;
- if ( aCheckedMap.find( aKey ) == aCheckedMap.end() )
+ if ( aCheckedSubs.insert( smToCheck ).second ) // not yet checked
if (!checkConformIgnoredAlgos (theMesh, smToCheck, aGlobIgnoAlgo,
- 0, checkConform, aCheckedMap, theErrors))
+ 0, checkConform, aCheckedSubs, theErrors))
ret = false;
if ( smToCheck->GetAlgoState() != SMESH_subMesh::NO_ALGO )
hasAlgo = true;
-
- // next subMesh
- if (revItSub != smMap.rend())
- {
- aKey = (*revItSub).first;
- smToCheck = (*revItSub).second;
- revItSub++;
- }
- else
- {
- smToCheck = 0;
- }
-
}
// ----------------------------------------------------------------
break;
}
}
- aCheckedMap.clear();
- smToCheck = sm;
- revItSub = smMap.rbegin();
bool checkNoAlgo = theMesh.HasShapeToMesh() ? bool( aTopAlgoDim ) : false;
bool globalChecked[] = { false, false, false, false };
// loop on theShape and its sub-shapes
- while ( smToCheck )
+ aCheckedSubs.clear();
+ revItSub = sm->getDependsOnIterator( /*includeSelf=*/true, /*complexShapeFirst=*/true);
+ while ( revItSub->more() )
{
+ SMESH_subMesh* smToCheck = revItSub->next();
if ( smToCheck->GetSubShape().ShapeType() == TopAbs_VERTEX)
break;
- if ( aCheckedMap.find( aKey ) == aCheckedMap.end() )
+ if ( aCheckedSubs.insert( smToCheck ).second ) // not yet checked
if (!checkMissing (this, theMesh, smToCheck, aTopAlgoDim,
- globalChecked, checkNoAlgo, aCheckedMap, theErrors))
+ globalChecked, checkNoAlgo, aCheckedSubs, theErrors))
{
ret = false;
if (smToCheck->GetAlgoState() == SMESH_subMesh::NO_ALGO )
checkNoAlgo = false;
}
-
- // next subMesh
- if (revItSub != smMap.rend())
- {
- aKey = (*revItSub).first;
- smToCheck = (*revItSub).second;
- revItSub++;
- }
- else
- smToCheck = 0;
}
if ( !hasAlgo ) {
class SMESH_EXPORT SMESH_Gen
{
- public:
+public:
SMESH_Gen();
~SMESH_Gen();
bool Compute(::SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const bool anUpward=false,
- const ::MeshDimension aDim=::MeshDim_3D,
- TSetOfInt* aShapesId=0);
+ const ::MeshDimension aDim=::MeshDim_3D,
+ TSetOfInt* aShapesId=0);
/*!
* \brief evaluates size of prospective mesh on a shape
* \retval bool - is a success
*/
bool Evaluate(::SMESH_Mesh & aMesh,
- const TopoDS_Shape & aShape,
- MapShapeNbElems& aResMap,
+ const TopoDS_Shape & aShape,
+ MapShapeNbElems& aResMap,
const bool anUpward=false,
TSetOfInt* aShapesId=0);
*/
void SetDefaultNbSegments(int nb) { _nbSegments = nb; }
int GetDefaultNbSegments() const { return _nbSegments; }
-
+
struct TAlgoStateError
{
TAlgoStateErrorName _name;
SMESH_Algo* GetAlgo(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, TopoDS_Shape* assignedTo=0);
static bool IsGlobalHypothesis(const SMESH_Hypothesis* theHyp, SMESH_Mesh& aMesh);
- // inherited methods from SALOMEDS::Driver
-
-// void Save(int studyId, const char *aUrlOfFile);
-// void Load(int studyId, const char *aUrlOfFile);
-// void Close(int studyId);
-// const char *ComponentDataType();
-
-// const char *IORToLocalPersistentID(const char *IORString, bool & IsAFile);
-// const char *LocalPersistentIDToIOR(const char *aLocalPersistentID);
-
int GetANewId();
std::map < int, SMESH_Algo * >_mapAlgo;
std::map < int, SMESH_2D_Algo * >_map2D_Algo;
std::map < int, SMESH_3D_Algo * >_map3D_Algo;
- private:
+private:
int _localId; // unique Id of created objects, within SMESH_Gen entity
std::map < int, StudyContextStruct * >_mapStudyContext;
return;
}
- issimple[iNode] = (listNewNodes.size()==nbSteps);
+ issimple[iNode] = (listNewNodes.size()==nbSteps); // is node medium
itNN[ iNode ] = listNewNodes.begin();
prevNod[ iNode ] = node;
nextNod[ iNode ] = listNewNodes.front();
- if( !issimple[iNode] ) {
+ if( !elem->IsQuadratic() || !issimple[iNode] ) {
if ( prevNod[ iNode ] != nextNod [ iNode ])
iNotSameNode = iNode;
else {
//cout<<" nbSame = "<<nbSame<<endl;
if ( nbSame == nbNodes || nbSame > 2) {
- //MESSAGE( " Too many same nodes of element " << elem->GetID() );
- INFOS( " Too many same nodes of element " << elem->GetID() );
+ MESSAGE( " Too many same nodes of element " << elem->GetID() );
+ //INFOS( " Too many same nodes of element " << elem->GetID() );
return;
}
case 4:
NewElem = theHelper.AddVolume(aNds[0], aNds[1], aNds[2], aNds[3], id, theForce3d);
break;
+ case 5:
+ NewElem = theHelper.AddVolume(aNds[0], aNds[1], aNds[2], aNds[3], aNds[4], id, theForce3d);
+ break;
case 6:
NewElem = theHelper.AddVolume(aNds[0], aNds[1], aNds[2], aNds[3], aNds[4], aNds[5], id, theForce3d);
break;
NewVolume = aHelper.AddVolume(aNds[0], aNds[1], aNds[2],
aNds[3], id, theForce3d );
break;
+ case 5:
+ NewVolume = aHelper.AddVolume(aNds[0], aNds[1], aNds[2],
+ aNds[3], aNds[4], id, theForce3d);
+ break;
case 6:
NewVolume = aHelper.AddVolume(aNds[0], aNds[1], aNds[2],
aNds[3], aNds[4], aNds[5], id, theForce3d);
theNodeNodeMap[ aCurrNode ] = aNewNode;
myLastCreatedNodes.Append( aNewNode );
}
- isDuplicate |= (aCurrNode == aNewNode);
+ isDuplicate |= (aCurrNode != aNewNode);
newNodes[ ind++ ] = aNewNode;
}
if ( !isDuplicate )
return (aState == TopAbs_IN || aState == TopAbs_ON );
}
+/*!
+ \brief Creates a hole in a mesh by doubling the nodes of some particular elements
+ \param theNodes - identifiers of nodes to be doubled
+ \param theModifiedElems - identifiers of elements to be updated by the new (doubled)
+ nodes. If list of element identifiers is empty then nodes are doubled but
+ they not assigned to elements
+ \return TRUE if operation has been completed successfully, FALSE otherwise
+*/
+bool SMESH_MeshEditor::DoubleNodes( const std::list< int >& theListOfNodes,
+ const std::list< int >& theListOfModifiedElems )
+{
+ myLastCreatedElems.Clear();
+ myLastCreatedNodes.Clear();
+
+ if ( theListOfNodes.size() == 0 )
+ return false;
+
+ SMESHDS_Mesh* aMeshDS = GetMeshDS();
+ if ( !aMeshDS )
+ return false;
+
+ // iterate through nodes and duplicate them
+
+ std::map< const SMDS_MeshNode*, const SMDS_MeshNode* > anOldNodeToNewNode;
+
+ std::list< int >::const_iterator aNodeIter;
+ for ( aNodeIter = theListOfNodes.begin(); aNodeIter != theListOfNodes.end(); ++aNodeIter )
+ {
+ int aCurr = *aNodeIter;
+ SMDS_MeshNode* aNode = (SMDS_MeshNode*)aMeshDS->FindNode( aCurr );
+ if ( !aNode )
+ continue;
+
+ // duplicate node
+
+ const SMDS_MeshNode* aNewNode = aMeshDS->AddNode( aNode->X(), aNode->Y(), aNode->Z() );
+ if ( aNewNode )
+ {
+ anOldNodeToNewNode[ aNode ] = aNewNode;
+ myLastCreatedNodes.Append( aNewNode );
+ }
+ }
+
+ // Create map of new nodes for modified elements
+
+ std::map< SMDS_MeshElement*, vector<const SMDS_MeshNode*> > anElemToNodes;
+
+ std::list< int >::const_iterator anElemIter;
+ for ( anElemIter = theListOfModifiedElems.begin();
+ anElemIter != theListOfModifiedElems.end(); ++anElemIter )
+ {
+ int aCurr = *anElemIter;
+ SMDS_MeshElement* anElem = (SMDS_MeshElement*)aMeshDS->FindElement( aCurr );
+ if ( !anElem )
+ continue;
+
+ vector<const SMDS_MeshNode*> aNodeArr( anElem->NbNodes() );
+
+ SMDS_ElemIteratorPtr anIter = anElem->nodesIterator();
+ int ind = 0;
+ while ( anIter->more() )
+ {
+ SMDS_MeshNode* aCurrNode = (SMDS_MeshNode*)anIter->next();
+ if ( aCurr && anOldNodeToNewNode.find( aCurrNode ) != anOldNodeToNewNode.end() )
+ {
+ const SMDS_MeshNode* aNewNode = anOldNodeToNewNode[ aCurrNode ];
+ aNodeArr[ ind++ ] = aNewNode;
+ }
+ else
+ aNodeArr[ ind++ ] = aCurrNode;
+ }
+ anElemToNodes[ anElem ] = aNodeArr;
+ }
+
+ // Change nodes of elements
+
+ std::map< SMDS_MeshElement*, vector<const SMDS_MeshNode*> >::iterator
+ anElemToNodesIter = anElemToNodes.begin();
+ for ( ; anElemToNodesIter != anElemToNodes.end(); ++anElemToNodesIter )
+ {
+ const SMDS_MeshElement* anElem = anElemToNodesIter->first;
+ vector<const SMDS_MeshNode*> aNodeArr = anElemToNodesIter->second;
+ if ( anElem )
+ aMeshDS->ChangeElementNodes( anElem, &aNodeArr[ 0 ], anElem->NbNodes() );
+ }
+
+ return true;
+}
+
/*!
\brief Creates a hole in a mesh by doubling the nodes of some particular elements
\param theElems - group of of elements (edges or faces) to be replicated
const SMESH_SequenceOfElemPtr& GetLastCreatedNodes() const { return myLastCreatedNodes; }
const SMESH_SequenceOfElemPtr& GetLastCreatedElems() const { return myLastCreatedElems; }
+
+ bool DoubleNodes( const std::list< int >& theListOfNodes,
+ const std::list< int >& theListOfModifiedElems );
bool DoubleNodes( const TIDSortedElemSet& theElems,
const TIDSortedElemSet& theNodesNot,
bool DoubleNodesInRegion( const TIDSortedElemSet& theElems,
const TIDSortedElemSet& theNodesNot,
const TopoDS_Shape& theShape );
-
+
/*!
* \brief Generated skin mesh (containing 2D cells) from 3D mesh
* The created 2D mesh elements based on nodes of free faces of boundary volumes
static_cast<const SMDS_EdgePosition*>(n->GetPosition().get());
int edgeID = Pos->GetShapeId();
TopoDS_Edge E = TopoDS::Edge(GetMeshDS()->IndexToShape(edgeID));
- double f, l;
+ double f, l, u = epos->GetUParameter();
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, F, f, l);
- uv = C2d->Value( epos->GetUParameter() );
+ if ( f < u && u < l )
+ uv = C2d->Value( u );
+ else
+ uv.SetCoord(0.,0.);
uvOK = CheckNodeUV( F, n, uv.ChangeCoord(), BRep_Tool::Tolerance( E ));
// for a node on a seam edge select one of UVs on 2 pcurves
// File : SMESH_subMesh.hxx
// Author : Paul RASCLE, EDF
// Module : SMESH
-// $Header$
//
#ifndef _SMESH_SUBMESH_HXX_
#define _SMESH_SUBMESH_HXX_
enum SMESHDS_CommandType {
SMESHDS_AddNode,
- SMESHDS_Add0DElement,
SMESHDS_AddEdge,
SMESHDS_AddTriangle,
SMESHDS_AddQuadrangle,
SMESHDS_AddQuadTetrahedron,
SMESHDS_AddQuadPyramid,
SMESHDS_AddQuadPentahedron,
- SMESHDS_AddQuadHexahedron
+ SMESHDS_AddQuadHexahedron,
+ // special type for 0D elements
+ SMESHDS_Add0DElement
};
if (!isValid())
return false;
+ SMESH::SMESH_Mesh_var aCompoundMesh;
+
if (!myMesh->_is_nil()) {
QStringList aParameters;
aParameters << (CheckBoxMerge->isChecked() ? SpinBoxTol->text() : QString(" "));
SMESH::SMESH_Gen_var aSMESHGen = SMESHGUI::GetSMESHGen();
// concatenate meshes
- SMESH::SMESH_Mesh_var aCompoundMesh;
if(CheckBoxCommon->isChecked())
aCompoundMesh = aSMESHGen->ConcatenateWithGroups(myMeshArray,
!(ComboBoxUnion->currentIndex()),
LineEditName->setText(GetDefaultName(tr("COMPOUND_MESH")));
- //mySelectionMgr->clearSelected();
- SMESH::UpdateView();
+ // IPAL21468 Compound is hidden after creation.
+ if ( SMESHGUI::automaticUpdate() ) {
+ mySelectionMgr->clearSelected();
+ SMESH::UpdateView();
+
+ _PTR(SObject) aSO = SMESH::FindSObject(aCompoundMesh.in());
+ if ( SMESH_Actor* anActor = SMESH::CreateActor(aSO->GetStudy(), aSO->GetID().c_str()) )
+ SMESH::DisplayActor(SMESH::GetActiveWindow(), anActor);
+ }// end IPAL21468
+
return true;
}
return false;
class OrientedPlane: public vtkPlane
{
- SVTK_ViewWindow* myViewWindow;
+ QPointer<SVTK_ViewWindow> myViewWindow;
vtkDataSetMapper* myMapper;
}
~OrientedPlane(){
- myViewWindow->RemoveActor(myActor);
+ if (myViewWindow)
+ myViewWindow->RemoveActor(myActor);
myActor->Delete();
myMapper->RemoveAllInputs();
#include <SMESH_TypeFilter.hxx>
// SALOME GUI includes
-#include <SalomeApp_Tools.h>
-#include <SUIT_MessageBox.h>
#include <LightApp_UpdateFlags.h>
+#include <SUIT_MessageBox.h>
+#include <SUIT_OverrideCursor.h>
+#include <SalomeApp_Tools.h>
// IDL includes
#include <SALOMEconfig.h>
//================================================================================
bool SMESHGUI_ConvToQuadOp::onApply()
{
+ SUIT_OverrideCursor aWaitCursor;
QString aMess;
//=======================================================================
void SMESHGUI_FilterDlg::SetMesh (SMESH::SMESH_Mesh_var theMesh)
{
- myMesh = theMesh;
+ if ( !theMesh->_is_nil() ) {
+ myMesh = theMesh;
+ if ( !myFilter[ myTable->GetType() ]->_is_nil() && !myFilter[ myTable->GetType() ]->GetPredicate()->_is_nil() ) {
+ SMESH::Predicate_ptr aPred = myFilter[ myTable->GetType() ]->GetPredicate();
+ aPred->SetMesh(myMesh);
+ }
+ }
const bool isEnable = !(myMesh->_is_nil());
myButtons[BTN_OK]->setEnabled(isEnable);
myButtons[BTN_Apply]->setEnabled(isEnable);
myIsBusy = false;
return;
}
+
+ if ( myFilterDlg && !myMesh->_is_nil()){
+ myFilterDlg->SetMesh( myMesh );
+ }
myGroup = SMESH::SMESH_Group::_nil();
// NPAL19389: create a group with a selection in another group
return;
}
myIsBusy = false;
- myCurrentLineEdit = 0;
myGroup = SMESH::SMESH_Group::_nil();
myGroupOnGeom = SMESH::SMESH_GroupOnGeom::_nil();
QPushButton* send = (QPushButton*)sender();
myCurrentLineEdit = 0;
if (send == myMeshGroupBtn) {
- myCurrentLineEdit = myMeshGroupLine;
+ disconnect(myMeshGroupBtn, SIGNAL(clicked()), this, SLOT(setCurrentSelection()));
+ mySelectionMgr->clearSelected();
if (myCreate)
setSelectionMode(6);
else
setSelectionMode(5);
+ connect(myMeshGroupBtn, SIGNAL(clicked()), this, SLOT(setCurrentSelection()));
+ myCurrentLineEdit = myMeshGroupLine;
onObjectSelectionChanged();
}
else if (send == mySubMeshBtn) {
else if ( aHypType == "NumberOfLayers")
aHelpFileName = "radial_prism_algo_page.html";
else if ( aHypType == "NumberOfLayers2D")
- aHelpFileName = "radial_prism_algo_page.html";
+ aHelpFileName = "radial_quadrangle_1D2D_algo_page.html";
else if ( aHypType == "LayerDistribution")
aHelpFileName = "radial_prism_algo_page.html";
else if ( aHypType == "LayerDistribution2D")
- aHelpFileName = "radial_prism_algo_page.html";
+ aHelpFileName = "radial_quadrangle_1D2D_algo_page.html";
else if ( aHypType == "SegmentLengthAroundVertex")
aHelpFileName = "segments_around_vertex_algo_page.html";
-
+ else if ( aHypType == "QuadrangleParams")
+ aHelpFileName = "a2d_meshing_hypo_page.html#hypo_quad_params_anchor";
return aHelpFileName;
}
_PTR(Study) aDocument = aStudy->studyDS();
// Pass non-visual objects (hypotheses, etc.), return true in this case
CORBA::Long anId = aDocument->StudyId();
- if (TVisualObjPtr aVisualObj = GetVisualObj(anId,theEntry))
+ TVisualObjPtr aVisualObj;
+ if ( (aVisualObj = GetVisualObj(anId,theEntry)) && aVisualObj->IsValid())
{
if ((anActor = CreateActor(aDocument,theEntry,true))) {
bool needFitAll = noSmeshActors(theWnd); // fit for the first object only
TCollection_AsciiString
SMESH_2smeshpy::ConvertScript(const TCollection_AsciiString& theScript,
Resource_DataMapOfAsciiStringAsciiString& theEntry2AccessorMethod,
- Resource_DataMapOfAsciiStringAsciiString& theObjectNames)
+ Resource_DataMapOfAsciiStringAsciiString& theObjectNames)
{
theGen = new _pyGen( theEntry2AccessorMethod, theObjectNames );
//================================================================================
_pyGen::_pyGen(Resource_DataMapOfAsciiStringAsciiString& theEntry2AccessorMethod,
- Resource_DataMapOfAsciiStringAsciiString& theObjectNames)
+ Resource_DataMapOfAsciiStringAsciiString& theObjectNames)
: _pyObject( new _pyCommand( TPythonDump::SMESHGenName(), 0 )),
myID2AccessorMethod( theEntry2AccessorMethod ),
myObjectNames( theObjectNames )
if ( !hyp->IsNull() &&
(*hyp)->IsAlgo() &&
theHypothesis->CanBeCreatedBy( (*hyp)->GetAlgoType() ) &&
- (*hyp)->GetGeom() == theGeom &&
+ (*hyp)->GetGeom() == theGeom &&
(*hyp)->GetMesh() == theMesh )
return *hyp;
return 0;
//================================================================================
void _pyGen::setNeighbourCommand( Handle(_pyCommand)& theCmd,
- Handle(_pyCommand)& theOtherCmd,
- const bool theIsAfter )
+ Handle(_pyCommand)& theOtherCmd,
+ const bool theIsAfter )
{
list< Handle(_pyCommand) >::iterator pos;
pos = find( myCommands.begin(), myCommands.end(), theCmd );
while ( myObjectNames.IsBound( aNewID ) );
myObjectNames.Bind( aNewID, myObjectNames.IsBound( theID )
- ? (myObjectNames.Find( theID ) + _pyID( "_" ) + _pyID( index-1 ))
- : _pyID( "A" ) + aNewID );
+ ? (myObjectNames.Find( theID ) + _pyID( "_" ) + _pyID( index-1 ))
+ : _pyID( "A" ) + aNewID );
return aNewID;
}
if ( algo->IsWrapped() ) {
_pyID localAlgoID = theGen->GenerateNewID( algoID );
TCollection_AsciiString aNewCmdStr = localAlgoID +
- TCollection_AsciiString( " = " ) + theGen->GetID() +
- TCollection_AsciiString( ".CreateHypothesis( \"" ) + algo->GetAlgoType() +
- TCollection_AsciiString( "\" )" );
+ TCollection_AsciiString( " = " ) + theGen->GetID() +
+ TCollection_AsciiString( ".CreateHypothesis( \"" ) + algo->GetAlgoType() +
+ TCollection_AsciiString( "\" )" );
Handle(_pyCommand) newCmd = theGen->AddCommand( aNewCmdStr );
Handle(_pyAlgorithm) newAlgo = Handle(_pyAlgorithm)::DownCast(theGen->FindHyp( localAlgoID ));
if ( !newAlgo.IsNull() ) {
- newAlgo->Assign( algo, this->GetID() );
- newAlgo->SetCreationCmd( newCmd );
- algo = newAlgo;
- // set algorithm creation
- theGen->SetCommandBefore( newCmd, addCmd );
+ newAlgo->Assign( algo, this->GetID() );
+ newAlgo->SetCreationCmd( newCmd );
+ algo = newAlgo;
+ // set algorithm creation
+ theGen->SetCommandBefore( newCmd, addCmd );
}
else
- newCmd->Clear();
+ newCmd->Clear();
}
_pyID geom = addCmd->GetArg( 1 );
bool isLocalAlgo = ( geom != GetGeom() );
addCmd->SetArg( addCmd->GetNbArgs() + 1,
TCollection_AsciiString( "geom=" ) + geom );
// sm = mesh.GetSubMesh(geom, name) --> sm = ALGO.GetSubMesh()
- list < Handle(_pySubMesh) >::iterator smIt;
+ list < Handle(_pySubMesh) >::iterator smIt;
for ( smIt = mySubmeshes.begin(); smIt != mySubmeshes.end(); ++smIt ) {
- Handle(_pySubMesh) subMesh = *smIt;
+ Handle(_pySubMesh) subMesh = *smIt;
Handle(_pyCommand) subCmd = subMesh->GetCreationCmd();
if ( geom == subCmd->GetArg( 1 )) {
subCmd->SetObject( algo->GetID() );
subCmd->RemoveArgs();
- subMesh->SetCreator( algo );
+ subMesh->SetCreator( algo );
}
}
}
}
else if ( hypType == "QuadranglePreference" ) {
hyp->SetConvMethodAndType( "QuadranglePreference", "Quadrangle_2D");
- hyp->SetConvMethodAndType( "QuadranglePreference", "NETGEN_2D_ONLY");
+ hyp->SetConvMethodAndType( "SetQuadAllowed", "NETGEN_2D_ONLY");
}
else if ( hypType == "TrianglePreference" ) {
hyp->SetConvMethodAndType( "TrianglePreference", "Quadrangle_2D");
- }
+ }
// BLSURF ----------
else if ( hypType == "BLSURF" ) {
algo->SetConvMethodAndType( "Triangle", hypType.ToCString());
//================================================================================
void _pyHypothesis::Assign( const Handle(_pyHypothesis)& theOther,
- const _pyID& theMesh )
+ const _pyID& theMesh )
{
myIsWrapped = false;
myMesh = theMesh;
int nb1 = 0; // number of ' character at the left of =
int nb2 = 0; // number of " character at the left of =
for ( int i = 1; i < begPos-1; i++ ) {
- if ( myString.Value( i )=='\'' )
- nb1 += 1;
- else if ( myString.Value( i )=='"' )
- nb2 += 1;
+ if ( myString.Value( i )=='\'' )
+ nb1 += 1;
+ else if ( myString.Value( i )=='"' )
+ nb2 += 1;
}
// if number of ' or " is not divisible by 2,
// then get an object at the start of the command
if ( nb1 % 2 != 0 || nb2 % 2 != 0 )
- begPos = 1;
+ begPos = 1;
}
myObj = GetWord( myString, begPos, true );
// check if object is complex,
while ( begPos != EMPTY ) {
begPos += prevLen;
if( myString.Value( begPos ) == '(' )
- nbNestings++;
+ nbNestings++;
// check if we are looking at the closing parenthesis
while ( begPos <= Length() && isspace( myString.Value( begPos )))
++begPos;
if ( begPos > Length() )
break;
if ( myString.Value( begPos ) == ')' ) {
- nbNestings--;
- if( nbNestings == 0 )
- break;
+ nbNestings--;
+ if( nbNestings == 0 )
+ break;
}
myArgs.Append( GetWord( myString, begPos, true, true ));
SetBegPos( ARG1_IND + i, begPos );
void Process( const Handle(_pyCommand)& theCommand);
void Flush();
virtual void Assign( const Handle(_pyHypothesis)& theOther,
- const _pyID& theMesh );
+ const _pyID& theMesh );
DEFINE_STANDARD_RTTI (_pyHypothesis)
};
TCollection_AsciiString aCollection(Standard_CString(aString.c_str()));
SALOMEDS::Study_ptr aStudy = aSMESHGen->GetCurrentStudy();
if(!aStudy->_is_nil() && !aCollection.IsEmpty()){
- aSMESHGen->AddToPythonScript(aStudy->StudyId(),aCollection);
- if(MYDEBUG) MESSAGE(aString);
+ aSMESHGen->AddToPythonScript(aStudy->StudyId(),aCollection);
+ if(MYDEBUG) MESSAGE(aString);
}
}
}
isFound = Standard_False;
while((j < aLen) && ( isdigit(c) || c == ':' )) { //Check if it is an entry
- c = (int)arr[j++];
- if(c == ':') isFound = Standard_True;
+ c = (int)arr[j++];
+ if(c == ':') isFound = Standard_True;
}
if (isFound) {
}
// set initial part of aSript
- TCollection_AsciiString initPart = "import salome, SMESH\n";
+ TCollection_AsciiString initPart = "import salome, SMESH, SALOMEDS\n";
initPart += helper + "import " + aSmeshpy + "\n\n";
if ( importGeom )
{
if( !CORBA::is_nil(aGroup) )
{
SALOMEDS::Color aColor = aGroup->GetColor();
- if ( aColor.R > 0 || aColor.G > 0 || aColor.B > 0 )
+ if ( aColor.R >= 0 || aColor.G >= 0 || aColor.B >= 0 )
{
CORBA::String_var anEntry = aSObj->GetID();
anUpdatedScript += SMESH_Comment("\n\t")
pd << "aCriterion = SMESH.Filter.Criterion(" << aCriterion << "," << aCompare
<< "," << aThreshold << ",'" << aThresholdStr;
if (aThresholdID && strlen(aThresholdID))
- //pd << "',salome.ObjectToID(" << aThresholdID
+ //pd << "',salome.ObjectToID(" << aThresholdID
pd << "','" << aThresholdID
- << "'," << aUnary << "," << aBinary << "," << aTolerance
- << "," << aTypeOfElem << "," << aPrecision << ")";
+ << "'," << aUnary << "," << aBinary << "," << aTolerance
+ << "," << aTypeOfElem << "," << aPrecision << ")";
else
- pd << "',''," << aUnary << "," << aBinary << "," << aTolerance
- << "," << aTypeOfElem << "," << aPrecision << ")";
+ pd << "',''," << aUnary << "," << aBinary << "," << aTolerance
+ << "," << aTypeOfElem << "," << aPrecision << ")";
}
SMESH::Predicate_ptr aPredicate = SMESH::Predicate::_nil();
{
SMESH::LyingOnGeom_ptr tmpPred = aFilterMgr->CreateLyingOnGeom();
tmpPred->SetElementType( aTypeOfElem );
- tmpPred->SetShape( aThresholdID, aThresholdStr );
+ tmpPred->SetShape( aThresholdID, aThresholdStr );
tmpPred->SetTolerance( aTolerance );
aPredicate = tmpPred;
}
double GetTolerance();
virtual bool Contains( const SMESHDS_Mesh* theMeshDS,
- const TopoDS_Shape& theShape,
- const SMDS_MeshElement* theElem,
- TopAbs_ShapeEnum theFindShapeEnum,
- TopAbs_ShapeEnum theAvoidShapeEnum = TopAbs_SHAPE );
+ const TopoDS_Shape& theShape,
+ const SMDS_MeshElement* theElem,
+ TopAbs_ShapeEnum theFindShapeEnum,
+ TopAbs_ShapeEnum theAvoidShapeEnum = TopAbs_SHAPE );
private:
virtual void init();
Description : An abstact class for all functors
*/
class SMESH_I_EXPORT Functor_i: public virtual POA_SMESH::Functor,
- public virtual SALOME::GenericObj_i
+ public virtual SALOME::GenericObj_i
{
public:
void SetMesh( SMESH_Mesh_ptr theMesh );
Description : Base class for numerical functors
*/
class SMESH_I_EXPORT NumericalFunctor_i: public virtual POA_SMESH::NumericalFunctor,
- public virtual Functor_i
+ public virtual Functor_i
{
public:
CORBA::Double GetValue( CORBA::Long theElementId );
Description : Functor for calculation of minimum angle
*/
class SMESH_I_EXPORT MinimumAngle_i: public virtual POA_SMESH::MinimumAngle,
- public virtual NumericalFunctor_i
+ public virtual NumericalFunctor_i
{
public:
MinimumAngle_i();
Description : Functor for calculating aspect ratio
*/
class SMESH_I_EXPORT AspectRatio_i: public virtual POA_SMESH::AspectRatio,
- public virtual NumericalFunctor_i
+ public virtual NumericalFunctor_i
{
public:
AspectRatio_i();
Description : Functor for calculating aspect ratio for 3D
*/
class SMESH_I_EXPORT AspectRatio3D_i: public virtual POA_SMESH::AspectRatio3D,
- public virtual NumericalFunctor_i
+ public virtual NumericalFunctor_i
{
public:
AspectRatio3D_i();
Description : Functor for calculating warping
*/
class SMESH_I_EXPORT Warping_i: public virtual POA_SMESH::Warping,
- public virtual NumericalFunctor_i
+ public virtual NumericalFunctor_i
{
public:
Warping_i();
Description : Functor for calculating taper
*/
class SMESH_I_EXPORT Taper_i: public virtual POA_SMESH::Taper,
- public virtual NumericalFunctor_i
+ public virtual NumericalFunctor_i
{
public:
Taper_i();
Description : Functor for calculating skew in degrees
*/
class SMESH_I_EXPORT Skew_i: public virtual POA_SMESH::Skew,
- public virtual NumericalFunctor_i
+ public virtual NumericalFunctor_i
{
public:
Skew_i();
Description : Functor for calculating area
*/
class SMESH_I_EXPORT Area_i: public virtual POA_SMESH::Area,
- public virtual NumericalFunctor_i
+ public virtual NumericalFunctor_i
{
public:
Area_i();
Description : Functor for calculating length of edge
*/
class SMESH_I_EXPORT Length_i: public virtual POA_SMESH::Length,
- public virtual NumericalFunctor_i
+ public virtual NumericalFunctor_i
{
public:
Length_i();
Description : Functor for calculating length of edge
*/
class SMESH_I_EXPORT Length2D_i: public virtual POA_SMESH::Length2D,
- public virtual NumericalFunctor_i
+ public virtual NumericalFunctor_i
{
public:
Length2D_i();
Description : Functor for calculating number of faces conneted to the edge
*/
class SMESH_I_EXPORT MultiConnection_i: public virtual POA_SMESH::MultiConnection,
- public virtual NumericalFunctor_i
+ public virtual NumericalFunctor_i
{
public:
MultiConnection_i();
Description : Functor for calculating number of faces conneted to the edge
*/
class SMESH_I_EXPORT MultiConnection2D_i: public virtual POA_SMESH::MultiConnection2D,
- public virtual NumericalFunctor_i
+ public virtual NumericalFunctor_i
{
public:
MultiConnection2D_i();
Description : Base class for all predicates
*/
class SMESH_I_EXPORT Predicate_i: public virtual POA_SMESH::Predicate,
- public virtual Functor_i
+ public virtual Functor_i
{
public:
CORBA::Boolean IsSatisfy( CORBA::Long theElementId );
the point of view of MED convention
*/
class SMESH_I_EXPORT BadOrientedVolume_i: public virtual POA_SMESH::BadOrientedVolume,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
BadOrientedVolume_i();
Description : Predicate for selection on geometrical support
*/
class SMESH_I_EXPORT BelongToGeom_i: public virtual POA_SMESH::BelongToGeom,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
BelongToGeom_i();
Description : Verify whether mesh element lie in pointed Geom planar object
*/
class SMESH_I_EXPORT BelongToSurface_i: public virtual POA_SMESH::BelongToSurface,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
BelongToSurface_i( const Handle(Standard_Type)& );
Description : Verify whether mesh element lie in pointed Geom planar object
*/
class SMESH_I_EXPORT BelongToPlane_i: public virtual POA_SMESH::BelongToPlane,
- public virtual BelongToSurface_i
+ public virtual BelongToSurface_i
{
public:
BelongToPlane_i();
Description : Verify whether mesh element lie in pointed Geom cylindrical object
*/
class SMESH_I_EXPORT BelongToCylinder_i: public virtual POA_SMESH::BelongToCylinder,
- public virtual BelongToSurface_i
+ public virtual BelongToSurface_i
{
public:
BelongToCylinder_i();
Description : Predicate for selection on geometrical support(lying or partially lying)
*/
class SMESH_I_EXPORT LyingOnGeom_i: public virtual POA_SMESH::LyingOnGeom,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
LyingOnGeom_i();
Description : Predicate for free borders
*/
class SMESH_I_EXPORT FreeBorders_i: public virtual POA_SMESH::FreeBorders,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
FreeBorders_i();
Description : Predicate for free edges
*/
class SMESH_I_EXPORT FreeEdges_i: public virtual POA_SMESH::FreeEdges,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
FreeEdges_i();
Description : Predicate for free faces
*/
class SMESH_I_EXPORT FreeFaces_i: public virtual POA_SMESH::FreeFaces,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
FreeFaces_i();
Description : Predicate for free nodes
*/
class SMESH_I_EXPORT FreeNodes_i: public virtual POA_SMESH::FreeNodes,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
FreeNodes_i();
Description : Predicate for Range of Ids
*/
class SMESH_I_EXPORT RangeOfIds_i: public virtual POA_SMESH::RangeOfIds,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
RangeOfIds_i();
Description : Verify whether a mesh element is linear
*/
class SMESH_I_EXPORT LinearOrQuadratic_i: public virtual POA_SMESH::LinearOrQuadratic,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
LinearOrQuadratic_i();
Description : Functor for check color of group to whic mesh element belongs to
*/
class SMESH_I_EXPORT GroupColor_i: public virtual POA_SMESH::GroupColor,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
GroupColor_i();
Description : Functor for check element geometry type
*/
class SMESH_I_EXPORT ElemGeomType_i: public virtual POA_SMESH::ElemGeomType,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
ElemGeomType_i();
Description : Base class for comparators
*/
class SMESH_I_EXPORT Comparator_i: public virtual POA_SMESH::Comparator,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
virtual ~Comparator_i();
Description : Comparator "<"
*/
class SMESH_I_EXPORT LessThan_i: public virtual POA_SMESH::LessThan,
- public virtual Comparator_i
+ public virtual Comparator_i
{
public:
LessThan_i();
Description : Comparator ">"
*/
class SMESH_I_EXPORT MoreThan_i: public virtual POA_SMESH::MoreThan,
- public virtual Comparator_i
+ public virtual Comparator_i
{
public:
MoreThan_i();
Description : Comparator "="
*/
class SMESH_I_EXPORT EqualTo_i: public virtual POA_SMESH::EqualTo,
- public virtual Comparator_i
+ public virtual Comparator_i
{
public:
EqualTo_i();
Description : Logical NOT predicate
*/
class SMESH_I_EXPORT LogicalNOT_i: public virtual POA_SMESH::LogicalNOT,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
LogicalNOT_i();
Description : Base class for binary logical predicate
*/
class SMESH_I_EXPORT LogicalBinary_i: public virtual POA_SMESH::LogicalBinary,
- public virtual Predicate_i
+ public virtual Predicate_i
{
public:
virtual ~LogicalBinary_i();
Description : Logical AND
*/
class SMESH_I_EXPORT LogicalAND_i: public virtual POA_SMESH::LogicalAND,
- public virtual LogicalBinary_i
+ public virtual LogicalBinary_i
{
public:
LogicalAND_i();
Description : Logical OR
*/
class SMESH_I_EXPORT LogicalOR_i: public virtual POA_SMESH::LogicalOR,
- public virtual LogicalBinary_i
+ public virtual LogicalBinary_i
{
public:
LogicalOR_i();
FILTER
*/
class SMESH_I_EXPORT Filter_i: public virtual POA_SMESH::Filter,
- public virtual SALOME::GenericObj_i
+ public virtual SALOME::GenericObj_i
{
public:
Filter_i();
static
void
GetElementsId( Predicate_i*,
- const SMDS_Mesh*,
- Controls::Filter::TIdSequence& );
+ const SMDS_Mesh*,
+ Controls::Filter::TIdSequence& );
static
void
GetElementsId( Predicate_i*,
- SMESH_Mesh_ptr,
- Controls::Filter::TIdSequence& );
+ SMESH_Mesh_ptr,
+ Controls::Filter::TIdSequence& );
virtual
long_array*
FILTER LIBRARY
*/
class SMESH_I_EXPORT FilterLibrary_i: public virtual POA_SMESH::FilterLibrary,
- public virtual SALOME::GenericObj_i
+ public virtual SALOME::GenericObj_i
{
public:
FilterLibrary_i( const char* theFileName );
CORBA::Boolean AddEmpty( const char* theFilterName, ElementType theType );
CORBA::Boolean Delete ( const char* theFilterName );
CORBA::Boolean Replace ( const char* theFilterName,
- const char* theNewName,
- Filter_ptr theFilter );
+ const char* theNewName,
+ Filter_ptr theFilter );
CORBA::Boolean Save();
CORBA::Boolean SaveAs( const char* aFileName );
*/
class SMESH_I_EXPORT FilterManager_i: public virtual POA_SMESH::FilterManager,
- public virtual SALOME::GenericObj_i
+ public virtual SALOME::GenericObj_i
{
public:
FilterManager_i();
typedef map< pair<string, SMESH::ElementType>, TListOfNewGroups > TGroupsMap;
typedef std::set<SMESHDS_GroupBase*> TGroups;
- TPythonDump aPythonDump; // prevent dump of called methods
+ TPythonDump* pPythonDump = new TPythonDump;
+ TPythonDump& aPythonDump = *pPythonDump; // prevent dump of called methods
// create mesh
SMESH::SMESH_Mesh_var aNewMesh = CreateEmptyMesh();
<< theMergeNodesAndElements << ", "
<< theMergeTolerance << ")";
+ delete pPythonDump; // enable python dump from GetGroups()
+
+ // 0020577: EDF 1164 SMESH: Bad dump of concatenate with create common groups
+ if ( !aNewMesh->_is_nil() )
+ {
+ SMESH::ListOfGroups_var groups = aNewMesh->GetGroups();
+ }
+
+ // IPAL21468 Change icon of compound because it need not be computed.
+ SALOMEDS::SObject_var aMeshSObj = ObjectToSObject( myCurrentStudy, aNewMesh );
+ if( !aMeshSObj->_is_nil() ) {
+ SALOMEDS::GenericAttribute_var anAttr;
+ SALOMEDS::StudyBuilder_var aBuilder = myCurrentStudy->NewBuilder();
+ anAttr = aBuilder->FindOrCreateAttribute( aMeshSObj,"AttributePixMap" );
+ SALOMEDS::AttributePixMap_var aPixmap = SALOMEDS::AttributePixMap::_narrow(anAttr);
+ aPixmap->SetPixMap("ICON_SMESH_TREE_MESH");
+ }
+
return aNewMesh._retn();
}
// *****************************************
// Set a new Mesh object name
void SetName(const char* theIOR,
- const char* theName);
+ const char* theName);
//GEOM::GEOM_Gen_ptr SetGeomEngine( const char* containerLoc );
void SetGeomEngine( GEOM::GEOM_Gen_ptr geomcompo );
* Return mesh preview structure
*/
SMESH::MeshPreviewStruct* Precompute( SMESH::SMESH_Mesh_ptr theMesh,
- GEOM::GEOM_Object_ptr theSubObject,
- SMESH::Dimension theDimension,
- SMESH::long_array& theShapesId )
+ GEOM::GEOM_Object_ptr theSubObject,
+ SMESH::Dimension theDimension,
+ SMESH::long_array& theShapesId )
throw ( SALOME::SALOME_Exception );
// Returns errors of hypotheses definintion
// Return geometrical object the given element is built on. Don't publish it in study.
GEOM::GEOM_Object_ptr FindGeometryByMeshElement( SMESH::SMESH_Mesh_ptr theMesh,
- CORBA::Long theElementID)
+ CORBA::Long theElementID)
throw ( SALOME::SALOME_Exception );
// Concatenate the given meshes into one mesh
SMESH::SMESH_Mesh_ptr ConcatenateCommon(const SMESH::mesh_array& theMeshesArray,
- CORBA::Boolean theUniteIdenticalGroups,
- CORBA::Boolean theMergeNodesAndElements,
- CORBA::Double theMergeTolerance,
- CORBA::Boolean theCommonGroups)
+ CORBA::Boolean theUniteIdenticalGroups,
+ CORBA::Boolean theMergeNodesAndElements,
+ CORBA::Double theMergeTolerance,
+ CORBA::Boolean theCommonGroups)
throw ( SALOME::SALOME_Exception );
// Concatenate the given meshes into one mesh
SMESH::SMESH_Mesh_ptr Concatenate(const SMESH::mesh_array& theMeshesArray,
- CORBA::Boolean theUniteIdenticalGroups,
- CORBA::Boolean theMergeNodesAndElements,
- CORBA::Double theMergeTolerance)
+ CORBA::Boolean theUniteIdenticalGroups,
+ CORBA::Boolean theMergeNodesAndElements,
+ CORBA::Double theMergeTolerance)
throw ( SALOME::SALOME_Exception );
// Concatenate the given meshes into one mesh
// Create the groups of all elements from initial meshes
SMESH::SMESH_Mesh_ptr ConcatenateWithGroups(const SMESH::mesh_array& theMeshesArray,
- CORBA::Boolean theUniteIdenticalGroups,
- CORBA::Boolean theMergeNodesAndElements,
- CORBA::Double theMergeTolerance)
+ CORBA::Boolean theUniteIdenticalGroups,
+ CORBA::Boolean theMergeNodesAndElements,
+ CORBA::Double theMergeTolerance)
throw ( SALOME::SALOME_Exception );
// ****************************************************
// Save SMESH data
SALOMEDS::TMPFile* Save( SALOMEDS::SComponent_ptr theComponent,
- const char* theURL,
- bool isMultiFile );
+ const char* theURL,
+ bool isMultiFile );
// Load SMESH data
bool Load( SALOMEDS::SComponent_ptr theComponent,
- const SALOMEDS::TMPFile& theStream,
- const char* theURL,
- bool isMultiFile );
+ const SALOMEDS::TMPFile& theStream,
+ const char* theURL,
+ bool isMultiFile );
// Save SMESH data in ASCII format
SALOMEDS::TMPFile* SaveASCII( SALOMEDS::SComponent_ptr theComponent,
- const char* theURL,
- bool isMultiFile );
+ const char* theURL,
+ bool isMultiFile );
// Load SMESH data in ASCII format
bool LoadASCII( SALOMEDS::SComponent_ptr theComponent,
- const SALOMEDS::TMPFile& theStream,
- const char* theURL,
- bool isMultiFile );
+ const SALOMEDS::TMPFile& theStream,
+ const char* theURL,
+ bool isMultiFile );
// Create filter manager
SMESH::FilterManager_ptr CreateFilterManager();
// Transform data from transient form to persistent
char* IORToLocalPersistentID( SALOMEDS::SObject_ptr theSObject,
- const char* IORString,
- CORBA::Boolean isMultiFile,
- CORBA::Boolean isASCII );
+ const char* IORString,
+ CORBA::Boolean isMultiFile,
+ CORBA::Boolean isASCII );
// Transform data from persistent form to transient
char* LocalPersistentIDToIOR( SALOMEDS::SObject_ptr theSObject,
- const char* aLocalPersistentID,
- CORBA::Boolean isMultiFile,
- CORBA::Boolean isASCII );
+ const char* aLocalPersistentID,
+ CORBA::Boolean isMultiFile,
+ CORBA::Boolean isASCII );
// Returns true if object can be published in the study
bool CanPublishInStudy( CORBA::Object_ptr theIOR );
// Publish object in the study
SALOMEDS::SObject_ptr PublishInStudy( SALOMEDS::Study_ptr theStudy,
- SALOMEDS::SObject_ptr theSObject,
- CORBA::Object_ptr theObject,
- const char* theName )
+ SALOMEDS::SObject_ptr theSObject,
+ CORBA::Object_ptr theObject,
+ const char* theName )
throw ( SALOME::SALOME_Exception );
// Copy-paste methods - returns true if object can be copied to the clipboard
CORBA::Boolean CanPaste( const char* theComponentName, CORBA::Long theObjectID ) { return false; }
// Copy-paste methods - paste object from the clipboard
SALOMEDS::SObject_ptr PasteInto( const SALOMEDS::TMPFile& theStream,
- CORBA::Long theObjectID,
- SALOMEDS::SObject_ptr theObject ) {
+ CORBA::Long theObjectID,
+ SALOMEDS::SObject_ptr theObject ) {
SALOMEDS::SObject_var aResultSO;
return aResultSO._retn();
}
// ============
virtual Engines::TMPFile* DumpPython(CORBA::Object_ptr theStudy,
- CORBA::Boolean isPublished,
- CORBA::Boolean& isValidScript);
+ CORBA::Boolean isPublished,
+ CORBA::Boolean& isValidScript);
void AddToPythonScript (int theStudyID, const TCollection_AsciiString& theString);
SMESH::SMESH_Mesh_ptr theMesh,
SMESH::SMESH_subMesh_ptr theSubMesh,
GEOM::GEOM_Object_ptr theShapeObject,
- const char* theName = 0);
+ const char* theName = 0);
SALOMEDS::SObject_ptr PublishGroup (SALOMEDS::Study_ptr theStudy,
SMESH::SMESH_Mesh_ptr theMesh,
SMESH::SMESH_GroupBase_ptr theGroup,
CORBA::Long
ChangeByPredicate( SMESH::Predicate_i* thePredicate,
- SMESHDS_GroupBase* theGroupBase,
- TFunChangeGroup theFun)
+ SMESHDS_GroupBase* theGroupBase,
+ TFunChangeGroup theFun)
{
CORBA::Long aNb = 0;
if(SMESHDS_Group* aGroupDS = dynamic_cast<SMESHDS_Group*>(theGroupBase)){
CORBA::Long i = 0, iEnd = aSequence.size();
for(; i < iEnd; i++)
if((aGroupDS->*theFun)(aSequence[i]))
- aNb++;
+ aNb++;
return aNb;
}
return aNb;
*/
//=============================================================================
SMESH_MEDFamily_i::SMESH_MEDFamily_i(int identifier, SMESH_subMesh_i* sm,
- string name, string description, SALOME_MED::medEntityMesh entity):
+ string name, string description, SALOME_MED::medEntityMesh entity):
SMESH_MEDSupport_i( sm, name, description, entity ),
_subMesh_i(sm),
{
if (_subMeshDS==NULL)
THROW_SALOME_CORBA_EXCEPTION("No associated Family",\
- SALOME::INTERNAL_ERROR);
+ SALOME::INTERNAL_ERROR);
return _identifier;
}
{
if (_subMeshDS==NULL)
THROW_SALOME_CORBA_EXCEPTION("No associated Family",\
- SALOME::INTERNAL_ERROR);
+ SALOME::INTERNAL_ERROR);
return _numberOfAttribute;
}
//=============================================================================
{
if (_subMeshDS==NULL)
THROW_SALOME_CORBA_EXCEPTION("No associated Family",\
- SALOME::INTERNAL_ERROR);
+ SALOME::INTERNAL_ERROR);
if (_numberOfAttribute == 0)
{
MESSAGE("Les familles SMESH n ont pas d attribut");
THROW_SALOME_CORBA_EXCEPTION("No attributes"\
- ,SALOME::BAD_PARAM);
+ ,SALOME::BAD_PARAM);
};
SALOME_MED::long_array_var myseq= new SALOME_MED::long_array;
{
if (_subMeshDS==NULL)
THROW_SALOME_CORBA_EXCEPTION("No associated Family",\
- SALOME::INTERNAL_ERROR);
+ SALOME::INTERNAL_ERROR);
MESSAGE("Les familles SMESH n ont pas d attribut");
THROW_SALOME_CORBA_EXCEPTION("No attributes"\
- ,SALOME::BAD_PARAM);
+ ,SALOME::BAD_PARAM);
if (_numberOfAttribute == 0)
{
MESSAGE("Les familles SMESH n ont pas d attribut");
THROW_SALOME_CORBA_EXCEPTION("No attributes"\
- ,SALOME::BAD_PARAM);
+ ,SALOME::BAD_PARAM);
};
ASSERT (i <= _numberOfAttribute);
return _attributeIdentifier[i];
{
if (_subMeshDS==NULL)
THROW_SALOME_CORBA_EXCEPTION("No associated Family",\
- SALOME::INTERNAL_ERROR);
+ SALOME::INTERNAL_ERROR);
if (_numberOfAttribute == 0)
{
MESSAGE("Les familles SMESH n ont pas d attribut");
THROW_SALOME_CORBA_EXCEPTION("No attributes"\
- ,SALOME::BAD_PARAM);
+ ,SALOME::BAD_PARAM);
};
SALOME_MED::long_array_var myseq= new SALOME_MED::long_array;
{
if (_subMeshDS==NULL)
THROW_SALOME_CORBA_EXCEPTION("No associated Family",\
- SALOME::INTERNAL_ERROR);
+ SALOME::INTERNAL_ERROR);
if (_numberOfAttribute == 0)
{
MESSAGE("Les familles SMESH n ont pas d attribut");
THROW_SALOME_CORBA_EXCEPTION("No attributes"\
- ,SALOME::BAD_PARAM);
+ ,SALOME::BAD_PARAM);
}
ASSERT (i <= _numberOfAttribute);
{
if (_subMeshDS==NULL)
THROW_SALOME_CORBA_EXCEPTION("No associated Family",\
- SALOME::INTERNAL_ERROR);
+ SALOME::INTERNAL_ERROR);
if (_numberOfAttribute == 0)
{
MESSAGE("Les familles SMESH n ont pas d attribut");
THROW_SALOME_CORBA_EXCEPTION("No attributes"\
- ,SALOME::BAD_PARAM);
+ ,SALOME::BAD_PARAM);
}
SALOME_MED::string_array_var myseq = new SALOME_MED::string_array;
for (int i=0;i<_numberOfAttribute;i++)
{
if (_subMeshDS==NULL)
THROW_SALOME_CORBA_EXCEPTION("No associated Family",\
- SALOME::INTERNAL_ERROR);
+ SALOME::INTERNAL_ERROR);
if (_numberOfAttribute == 0)
{
MESSAGE("Les familles SMESH n ont pas d attribut");
THROW_SALOME_CORBA_EXCEPTION("No attributes"\
- ,SALOME::BAD_PARAM);
+ ,SALOME::BAD_PARAM);
}
ASSERT (i <= _numberOfAttribute);
return CORBA::string_dup(_attributeDescription[i].c_str());
// Constructors and associated internal methods
SMESH_MEDFamily_i(int identifier, SMESH_subMesh_i* sm,
- std::string name, std::string description, SALOME_MED::medEntityMesh entity );
+ std::string name, std::string description, SALOME_MED::medEntityMesh entity );
SMESH_MEDFamily_i(const SMESH_MEDFamily_i & f);
// IDL Methods
// Module : SMESH
//
#include "SMESH_MEDMesh_i.hxx"
+#include "SMESH_Gen_i.hxx"
#include "SMESH_Mesh_i.hxx"
#include "SMESHDS_Mesh.hxx"
// PN Est-ce un const ?
SMESH_MEDMesh_i::SMESH_MEDMesh_i()
{
- BEGIN_OF("Default Constructor SMESH_MEDMesh_i");
- END_OF("Default Constructor SMESH_MEDMesh_i");
+ BEGIN_OF("Default Constructor SMESH_MEDMesh_i");
+ END_OF("Default Constructor SMESH_MEDMesh_i");
}
//=============================================================================
*/
//=============================================================================
SMESH_MEDMesh_i::SMESH_MEDMesh_i(::SMESH_Mesh_i * m_i):_meshId(""),
- _compte(false),
- _creeFamily(false),
- _famIdent(0),
- _indexElts(0),
- _indexEnts(0)
+ _compte(false),
+ _creeFamily(false),
+ _famIdent(0),
+ _indexElts(0),
+ _indexEnts(0)
{
- BEGIN_OF("Constructor SMESH_MEDMesh_i");
+ BEGIN_OF("Constructor SMESH_MEDMesh_i");
- _mesh_i = m_i;
- _meshDS = _mesh_i->GetImpl().GetMeshDS();
+ _mesh_i = m_i;
+ _meshDS = _mesh_i->GetImpl().GetMeshDS();
- END_OF("Constructor SMESH_MEDMesh_i");
+ END_OF("Constructor SMESH_MEDMesh_i");
}
//=============================================================================
//=============================================================================
char *SMESH_MEDMesh_i::getName() throw(SALOME::SALOME_Exception)
{
- if (_meshDS == NULL)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
-
- try
- {
- // A COMPLETER PAR LE NOM DU MAILLAGE
- //return CORBA::string_dup(_mesh_i->getName().c_str());
- return CORBA::string_dup("toto");
- }
- catch(...)
- {
- MESSAGE("Exception en accedant au nom");
- THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
- SALOME::INTERNAL_ERROR);
- }
+ if (_meshDS == NULL)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+
+ try
+ {
+ SMESH_Gen_i* gen = SMESH_Gen_i::GetSMESHGen();
+ SALOMEDS::Study_var study = gen->GetCurrentStudy();
+ SALOMEDS::SObject_var meshSO = gen->ObjectToSObject( study, _mesh_i->_this());
+ if ( meshSO->_is_nil() )
+ return CORBA::string_dup("toto");
+
+ CORBA::String_var name = meshSO->GetName();
+ return CORBA::string_dup( name.in() );
+ }
+ catch(...)
+ {
+ MESSAGE("Exception en accedant au nom");
+ THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
+ SALOME::INTERNAL_ERROR);
+ }
+ return 0;
}
//=============================================================================
//=============================================================================
CORBA::Long SMESH_MEDMesh_i::getCorbaIndex()throw(SALOME::SALOME_Exception)
{
- MESSAGE("Non Implemente");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ MESSAGE("Non Implemente");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
}
//=============================================================================
//=============================================================================
CORBA::Long SMESH_MEDMesh_i::getSpaceDimension()throw(SALOME::SALOME_Exception)
{
- // PN : Il semblerait que la dimension soit fixee a 3
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- return 3;
+ // PN : Il semblerait que la dimension soit fixee a 3
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ return 3;
}
//=============================================================================
//=============================================================================
CORBA::Long SMESH_MEDMesh_i::getMeshDimension()throw(SALOME::SALOME_Exception)
{
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- // PN : Il semblerait que la dimension soit fixee a 3
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- return 3;
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ // PN : Il semblerait que la dimension soit fixee a 3
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ return 3;
}
//=============================================================================
/*!
//=============================================================================
CORBA::Boolean
SMESH_MEDMesh_i::existConnectivity(SALOME_MED::medConnectivity connectivityType,
- SALOME_MED::medEntityMesh entity)
+ SALOME_MED::medEntityMesh entity)
throw (SALOME::SALOME_Exception)
{
MESSAGE("!!!!!! IMPLEMENTED BUT ONLY PARTIALLY !!!!!!");
//=============================================================================
char *SMESH_MEDMesh_i::getCoordinatesSystem() throw(SALOME::SALOME_Exception)
{
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- // PN : En dur. Non encore prevu
- try
- {
- string systcoo = "CARTESIEN";
- return CORBA::string_dup(systcoo.c_str());
- }
- catch(...)
- {
- MESSAGE("Exception en accedant au maillage");
- THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
- SALOME::INTERNAL_ERROR);
- }
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ // PN : En dur. Non encore prevu
+ try
+ {
+ string systcoo = "CARTESIEN";
+ return CORBA::string_dup(systcoo.c_str());
+ }
+ catch(...)
+ {
+ MESSAGE("Exception en accedant au maillage");
+ THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
+ SALOME::INTERNAL_ERROR);
+ }
}
//=============================================================================
* CORBA: Accessor for Coordinates
*/
//=============================================================================
-SALOME_MED::double_array * SMESH_MEDMesh_i::getCoordinates(
- SALOME_MED::medModeSwitch typeSwitch) throw(SALOME::SALOME_Exception)
+SALOME_MED::double_array * SMESH_MEDMesh_i::getCoordinates
+(SALOME_MED::medModeSwitch typeSwitch) throw(SALOME::SALOME_Exception)
{
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- SALOME_MED::double_array_var myseq = new SALOME_MED::double_array;
- try
- {
- // PN : En dur
- int spaceDimension = 3;
- int nbNodes = _meshDS->NbNodes();
- SCRUTE(nbNodes);
- myseq->length(nbNodes * spaceDimension);
- int i = 0;
-
- SMDS_NodeIteratorPtr itNodes=_meshDS->nodesIterator();
- while(itNodes->more())
- {
- const SMDS_MeshNode* node = itNodes->next();
-
- if (typeSwitch == SALOME_MED::MED_FULL_INTERLACE)
- {
- myseq[i * 3] = node->X();
- myseq[i * 3 + 1] = node->Y();
- myseq[i * 3 + 2] = node->Z();
- SCRUTE(myseq[i * 3]);
- SCRUTE(myseq[i * 3 + 1]);
- SCRUTE(myseq[i * 3 + 2]);
- }
- else
- {
- ASSERT(typeSwitch == SALOME_MED::MED_NO_INTERLACE);
- myseq[i] = node->X();
- myseq[i + nbNodes] = node->Y();
- myseq[i + (nbNodes * 2)] = node->Z();
- SCRUTE(myseq[i]);
- SCRUTE(myseq[i + nbNodes]);
- SCRUTE(myseq[i + (nbNodes * 2)]);
- }
- i++;
- }
- }
- catch(...)
- {
- MESSAGE("Exception en accedant aux coordonnees");
- THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
- SALOME::INTERNAL_ERROR);
- }
- return myseq._retn();
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ SALOME_MED::double_array_var myseq = new SALOME_MED::double_array;
+ try
+ {
+ // PN : En dur
+ int spaceDimension = 3;
+ int nbNodes = _meshDS->NbNodes();
+ SCRUTE(nbNodes);
+ myseq->length(nbNodes * spaceDimension);
+ int i = 0;
+
+ SMDS_NodeIteratorPtr itNodes=_meshDS->nodesIterator();
+ while(itNodes->more())
+ {
+ const SMDS_MeshNode* node = itNodes->next();
+
+ if (typeSwitch == SALOME_MED::MED_FULL_INTERLACE)
+ {
+ myseq[i * 3] = node->X();
+ myseq[i * 3 + 1] = node->Y();
+ myseq[i * 3 + 2] = node->Z();
+ SCRUTE(myseq[i * 3]);
+ SCRUTE(myseq[i * 3 + 1]);
+ SCRUTE(myseq[i * 3 + 2]);
+ }
+ else
+ {
+ ASSERT(typeSwitch == SALOME_MED::MED_NO_INTERLACE);
+ myseq[i] = node->X();
+ myseq[i + nbNodes] = node->Y();
+ myseq[i + (nbNodes * 2)] = node->Z();
+ SCRUTE(myseq[i]);
+ SCRUTE(myseq[i + nbNodes]);
+ SCRUTE(myseq[i + (nbNodes * 2)]);
+ }
+ i++;
+ }
+ }
+ catch(...)
+ {
+ MESSAGE("Exception en accedant aux coordonnees");
+ THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
+ SALOME::INTERNAL_ERROR);
+ }
+ return myseq._retn();
}
//=============================================================================
*/
//=============================================================================
SALOME_MED::string_array *
- SMESH_MEDMesh_i::getCoordinatesNames()throw(SALOME::SALOME_Exception)
+SMESH_MEDMesh_i::getCoordinatesNames()throw(SALOME::SALOME_Exception)
{
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- SALOME_MED::string_array_var myseq = new SALOME_MED::string_array;
- try
- {
- // PN : en dur
- int spaceDimension = 3;
- myseq->length(spaceDimension);
- myseq[0] = CORBA::string_dup("x");
- myseq[1] = CORBA::string_dup("y");
- myseq[2] = CORBA::string_dup("z");
- }
- catch(...)
- {
- MESSAGE("Exception en accedant aux noms des coordonnees");
- THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
- SALOME::INTERNAL_ERROR);
- }
- return myseq._retn();
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ SALOME_MED::string_array_var myseq = new SALOME_MED::string_array;
+ try
+ {
+ // PN : en dur
+ int spaceDimension = 3;
+ myseq->length(spaceDimension);
+ myseq[0] = CORBA::string_dup("x");
+ myseq[1] = CORBA::string_dup("y");
+ myseq[2] = CORBA::string_dup("z");
+ }
+ catch(...)
+ {
+ MESSAGE("Exception en accedant aux noms des coordonnees");
+ THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
+ SALOME::INTERNAL_ERROR);
+ }
+ return myseq._retn();
}
*/
//=============================================================================
SALOME_MED::string_array *
- SMESH_MEDMesh_i::getCoordinatesUnits()throw(SALOME::SALOME_Exception)
+SMESH_MEDMesh_i::getCoordinatesUnits()throw(SALOME::SALOME_Exception)
{
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- SALOME_MED::string_array_var myseq = new SALOME_MED::string_array;
- try
- {
- // PN : en dur
- int spaceDimension = 3;
- myseq->length(spaceDimension);
- myseq[0] = CORBA::string_dup("m");
- myseq[1] = CORBA::string_dup("m");
- myseq[2] = CORBA::string_dup("m");
- }
- catch(...)
- {
- MESSAGE("Exception en accedant aux unites des coordonnees");
- THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
- SALOME::INTERNAL_ERROR);
- }
- return myseq._retn();
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ SALOME_MED::string_array_var myseq = new SALOME_MED::string_array;
+ try
+ {
+ // PN : en dur
+ int spaceDimension = 3;
+ myseq->length(spaceDimension);
+ myseq[0] = CORBA::string_dup("m");
+ myseq[1] = CORBA::string_dup("m");
+ myseq[2] = CORBA::string_dup("m");
+ }
+ catch(...)
+ {
+ MESSAGE("Exception en accedant aux unites des coordonnees");
+ THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
+ SALOME::INTERNAL_ERROR);
+ }
+ return myseq._retn();
}
//=============================================================================
//=============================================================================
CORBA::Long SMESH_MEDMesh_i::getNumberOfNodes()throw(SALOME::SALOME_Exception)
{
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- try
- {
- return _meshDS->NbNodes();
- }
- catch(...)
- {
- MESSAGE("Exception en accedant au nombre de noeuds");
- THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
- SALOME::INTERNAL_ERROR);
- }
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ try
+ {
+ return _meshDS->NbNodes();
+ }
+ catch(...)
+ {
+ MESSAGE("Exception en accedant au nombre de noeuds");
+ THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
+ SALOME::INTERNAL_ERROR);
+ }
}
//=============================================================================
*/
//=============================================================================
CORBA::Long SMESH_MEDMesh_i::getNumberOfTypes(SALOME_MED::medEntityMesh entity)
-throw(SALOME::SALOME_Exception)
+ throw(SALOME::SALOME_Exception)
{
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- try
- {
- if (!_compte)
- calculeNbElts();
- int retour = 0;
- if (_mapNbTypes.find(entity) != _mapNbTypes.end())
- retour = _mapNbTypes[entity];
- return retour;
- }
- catch(...)
- {
- MESSAGE("Exception en accedant au nombre de Types");
- THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
- SALOME::INTERNAL_ERROR);
- }
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ try
+ {
+ if (!_compte)
+ calculeNbElts();
+ int retour = 0;
+ if (_mapNbTypes.find(entity) != _mapNbTypes.end())
+ retour = _mapNbTypes[entity];
+ return retour;
+ }
+ catch(...)
+ {
+ MESSAGE("Exception en accedant au nombre de Types");
+ THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
+ SALOME::INTERNAL_ERROR);
+ }
}
//=============================================================================
/*!
* CORBA: Accessor for existing geometry element types
- * Not implemented for MED_ALL_ENTITIES
+ * Not implemented for MED_ALL_ENTITIES
*/
//=============================================================================
SALOME_MED::medGeometryElement_array *
- SMESH_MEDMesh_i::getTypes(SALOME_MED::medEntityMesh entity) throw(SALOME::
- SALOME_Exception)
+SMESH_MEDMesh_i::getTypes(SALOME_MED::medEntityMesh entity) throw(SALOME::
+ SALOME_Exception)
{
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- if (entity == SALOME_MED::MED_ALL_ENTITIES)
- THROW_SALOME_CORBA_EXCEPTION("Not implemented for MED_ALL_ENTITIES",
- SALOME::BAD_PARAM);
- if (!_compte)
- calculeNbElts();
- SALOME_MED::medGeometryElement_array_var myseq =
- new SALOME_MED::medGeometryElement_array;
- try
- {
- if (_mapNbTypes.find(entity) == _mapNbTypes.end())
- THROW_SALOME_CORBA_EXCEPTION("No Such Entity in the mesh",
- SALOME::BAD_PARAM);
- int nbTypes = _mapNbTypes[entity];
-
- myseq->length(nbTypes);
-
- if (_mapIndToVectTypes.find(entity) == _mapIndToVectTypes.end())
- THROW_SALOME_CORBA_EXCEPTION("No Such Entity in the mesh",
- SALOME::INTERNAL_ERROR);
-
- int index = _mapIndToVectTypes[entity];
- ASSERT(_TypesId[index].size() != 0);
- int i = 0;
- vector < SALOME_MED::medGeometryElement >::iterator it;
- for (it = _TypesId[index].begin(); it != _TypesId[index].end(); it++)
- {
- myseq[i++] = *it;
- };
- }
- catch(...)
- {
- MESSAGE("Exception en accedant aux differents types");
- THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
- SALOME::INTERNAL_ERROR);
- }
- return myseq._retn();
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ if (entity == SALOME_MED::MED_ALL_ENTITIES)
+ THROW_SALOME_CORBA_EXCEPTION("Not implemented for MED_ALL_ENTITIES",
+ SALOME::BAD_PARAM);
+ if (!_compte)
+ calculeNbElts();
+ SALOME_MED::medGeometryElement_array_var myseq =
+ new SALOME_MED::medGeometryElement_array;
+ try
+ {
+ if (_mapNbTypes.find(entity) == _mapNbTypes.end())
+ THROW_SALOME_CORBA_EXCEPTION("No Such Entity in the mesh",
+ SALOME::BAD_PARAM);
+ int nbTypes = _mapNbTypes[entity];
+
+ myseq->length(nbTypes);
+
+ if (_mapIndToVectTypes.find(entity) == _mapIndToVectTypes.end())
+ THROW_SALOME_CORBA_EXCEPTION("No Such Entity in the mesh",
+ SALOME::INTERNAL_ERROR);
+
+ int index = _mapIndToVectTypes[entity];
+ ASSERT(_TypesId[index].size() != 0);
+ int i = 0;
+ vector < SALOME_MED::medGeometryElement >::iterator it;
+ for (it = _TypesId[index].begin(); it != _TypesId[index].end(); it++)
+ {
+ myseq[i++] = *it;
+ };
+ }
+ catch(...)
+ {
+ MESSAGE("Exception en accedant aux differents types");
+ THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
+ SALOME::INTERNAL_ERROR);
+ }
+ return myseq._retn();
}
//=============================================================================
/*!
* CORBA: Returns number of elements of type medGeometryElement
- * Not implemented for MED_ALL_ELEMENTS
- * implemented for MED_ALL_ENTITIES
+ * Not implemented for MED_ALL_ELEMENTS
+ * implemented for MED_ALL_ENTITIES
*
* Dans cette implementation, il n est pas prevu de tenir compte du entity
* qui ne doit pas pouvoir avoir deux valeurs differentes pour un geomElement
*/
//=============================================================================
CORBA::Long SMESH_MEDMesh_i::getNumberOfElements(SALOME_MED::
- medEntityMesh entity,
- SALOME_MED::medGeometryElement geomElement) throw(SALOME::SALOME_Exception)
+ medEntityMesh entity,
+ SALOME_MED::medGeometryElement geomElement) throw(SALOME::SALOME_Exception)
{
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- if (geomElement == SALOME_MED::MED_ALL_ELEMENTS)
- THROW_SALOME_CORBA_EXCEPTION("Not implemented for MED_ALL_ELEMENTS",
- SALOME::BAD_PARAM);
- if (!_compte)
- calculeNbElts();
-
- try
- {
- int retour = 0;
- if (_mapIndToSeqElts.find(geomElement) != _mapIndToSeqElts.end())
- {
- int index = _mapIndToSeqElts[geomElement];
-
- retour = _seq_elemId[index]->length();
- }
- return retour;
- }
- catch(...)
- {
- MESSAGE("Exception en accedant au nombre d élements");
- THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
- SALOME::INTERNAL_ERROR);
- }
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ if (geomElement == SALOME_MED::MED_ALL_ELEMENTS)
+ THROW_SALOME_CORBA_EXCEPTION("Not implemented for MED_ALL_ELEMENTS",
+ SALOME::BAD_PARAM);
+ if (!_compte)
+ calculeNbElts();
+
+ try
+ {
+ int retour = 0;
+ if (_mapIndToSeqElts.find(geomElement) != _mapIndToSeqElts.end())
+ {
+ int index = _mapIndToSeqElts[geomElement];
+
+ retour = _seq_elemId[index]->length();
+ }
+ return retour;
+ }
+ catch(...)
+ {
+ MESSAGE("Exception en accedant au nombre d élements");
+ THROW_SALOME_CORBA_EXCEPTION("Unable to acces Mesh C++ Object",
+ SALOME::INTERNAL_ERROR);
+ }
}
//=============================================================================
//=============================================================================
SALOME_MED::long_array *
SMESH_MEDMesh_i::getConnectivity(SALOME_MED::medModeSwitch typeSwitch,
- SALOME_MED::medConnectivity mode,
- SALOME_MED::medEntityMesh entity,
- SALOME_MED::medGeometryElement geomElement)
+ SALOME_MED::medConnectivity mode,
+ SALOME_MED::medEntityMesh entity,
+ SALOME_MED::medGeometryElement geomElement)
throw(SALOME::SALOME_Exception)
{
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- if (mode != SALOME_MED::MED_NODAL)
- THROW_SALOME_CORBA_EXCEPTION("Not Implemented", SALOME::BAD_PARAM);
- if (typeSwitch == SALOME_MED::MED_NO_INTERLACE)
- THROW_SALOME_CORBA_EXCEPTION("Not Yet Implemented", SALOME::BAD_PARAM);
- if (!_compte)
- calculeNbElts();
-
- // Faut-il renvoyer un pointeur vide ???
- if (_mapIndToSeqElts.find(geomElement) != _mapIndToSeqElts.end())
- THROW_SALOME_CORBA_EXCEPTION("No Such Element in the mesh",
- SALOME::BAD_PARAM);
-
- int index = _mapIndToSeqElts[geomElement];
-
- return _seq_elemId[index]._retn();
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ if (mode != SALOME_MED::MED_NODAL)
+ THROW_SALOME_CORBA_EXCEPTION("Not Implemented", SALOME::BAD_PARAM);
+ if (typeSwitch == SALOME_MED::MED_NO_INTERLACE)
+ THROW_SALOME_CORBA_EXCEPTION("Not Yet Implemented", SALOME::BAD_PARAM);
+ if (!_compte)
+ calculeNbElts();
+
+ // Faut-il renvoyer un pointeur vide ???
+ if (_mapIndToSeqElts.find(geomElement) != _mapIndToSeqElts.end())
+ THROW_SALOME_CORBA_EXCEPTION("No Such Element in the mesh",
+ SALOME::BAD_PARAM);
+
+ int index = _mapIndToSeqElts[geomElement];
+
+ return _seq_elemId[index]._retn();
}
//=============================================================================
//=============================================================================
SALOME_MED::long_array *
SMESH_MEDMesh_i::getConnectivityIndex(SALOME_MED::medConnectivity mode,
- SALOME_MED::medEntityMesh entity)
+ SALOME_MED::medEntityMesh entity)
throw(SALOME::SALOME_Exception)
{
- MESSAGE("Pas Implemente dans SMESH");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
- return 0;
+ MESSAGE("Pas Implemente dans SMESH");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ return 0;
}
//=============================================================================
//=============================================================================
CORBA::Long
SMESH_MEDMesh_i::getElementNumber(SALOME_MED::medConnectivity mode,
- SALOME_MED::medEntityMesh entity,
- SALOME_MED::medGeometryElement type,
- const SALOME_MED::long_array & connectivity)
+ SALOME_MED::medEntityMesh entity,
+ SALOME_MED::medGeometryElement type,
+ const SALOME_MED::long_array & connectivity)
throw(SALOME::SALOME_Exception)
{
- const char *LOC = "getElementNumber ";
- MESSAGE(LOC << "Pas Implemente dans SMESH");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
- return -1;
+ const char *LOC = "getElementNumber ";
+ MESSAGE(LOC << "Pas Implemente dans SMESH");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ return -1;
}
//=============================================================================
*/
//=============================================================================
SALOME_MED::long_array *
- SMESH_MEDMesh_i::getReverseConnectivity(SALOME_MED::
- medConnectivity mode) throw(SALOME::SALOME_Exception)
+SMESH_MEDMesh_i::getReverseConnectivity(SALOME_MED::
+ medConnectivity mode) throw(SALOME::SALOME_Exception)
{
- MESSAGE("Pas Implemente dans SMESH");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
- return 0;
+ MESSAGE("Pas Implemente dans SMESH");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ return 0;
}
//=============================================================================
*/
//=============================================================================
SALOME_MED::long_array *
- SMESH_MEDMesh_i::getReverseConnectivityIndex(SALOME_MED::
- medConnectivity mode) throw(SALOME::SALOME_Exception)
+SMESH_MEDMesh_i::getReverseConnectivityIndex(SALOME_MED::
+ medConnectivity mode) throw(SALOME::SALOME_Exception)
{
- MESSAGE("Pas Implemente dans SMESH");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
- return 0;
+ MESSAGE("Pas Implemente dans SMESH");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ return 0;
}
//=============================================================================
*/
//=============================================================================
CORBA::Long SMESH_MEDMesh_i::getNumberOfFamilies(SALOME_MED::
- medEntityMesh entity) throw(SALOME::SALOME_Exception)
+ medEntityMesh entity) throw(SALOME::SALOME_Exception)
{
- if (_creeFamily == false)
- createFamilies();
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- return _families.size();
+ if (_creeFamily == false)
+ createFamilies();
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ return _families.size();
}
//=============================================================================
*/
//=============================================================================
CORBA::Long SMESH_MEDMesh_i::getNumberOfGroups(SALOME_MED::medEntityMesh entity)
-throw(SALOME::SALOME_Exception)
+ throw(SALOME::SALOME_Exception)
{
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- MESSAGE(" Pas d implementation des groupes dans SMESH");
- return 0;
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ MESSAGE(" Pas d implementation des groupes dans SMESH");
+ return 0;
}
//=============================================================================
*/
//=============================================================================
SALOME_MED::Family_array *
- SMESH_MEDMesh_i::getFamilies(SALOME_MED::
- medEntityMesh entity) throw(SALOME::SALOME_Exception)
+SMESH_MEDMesh_i::getFamilies(SALOME_MED::
+ medEntityMesh entity) throw(SALOME::SALOME_Exception)
{
- if (_creeFamily == false)
- createFamilies();
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- SALOME_MED::Family_array_var myseq = new SALOME_MED::Family_array;
- int nbfam = _families.size();
- myseq->length(nbfam);
- int i = 0;
- vector < SALOME_MED::FAMILY_ptr >::iterator it;
- for (it = _families.begin(); it != _families.end(); it++)
- {
- myseq[i++] = *it;
- };
- return myseq._retn();
+ if (_creeFamily == false)
+ createFamilies();
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ SALOME_MED::Family_array_var myseq = new SALOME_MED::Family_array;
+ int nbfam = _families.size();
+ myseq->length(nbfam);
+ int i = 0;
+ vector < SALOME_MED::FAMILY_ptr >::iterator it;
+ for (it = _families.begin(); it != _families.end(); it++)
+ {
+ myseq[i++] = *it;
+ };
+ return myseq._retn();
}
//=============================================================================
*/
//=============================================================================
SALOME_MED::FAMILY_ptr SMESH_MEDMesh_i::getFamily(SALOME_MED::
- medEntityMesh entity, CORBA::Long i) throw(SALOME::SALOME_Exception)
+ medEntityMesh entity, CORBA::Long i) throw(SALOME::SALOME_Exception)
{
- if (_creeFamily == false)
- createFamilies();
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
-
- SCRUTE(_families[i]->getName());
- MESSAGE(" SMESH_MEDMesh_i::getFamily " << i) return _families[i];
+ if (_creeFamily == false)
+ createFamilies();
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+
+ SCRUTE(_families[i]->getName());
+ MESSAGE(" SMESH_MEDMesh_i::getFamily " << i) return _families[i];
}
//=============================================================================
*/
//=============================================================================
SALOME_MED::Group_array *
- SMESH_MEDMesh_i::getGroups(SALOME_MED::medEntityMesh entity) throw(SALOME::
- SALOME_Exception)
+SMESH_MEDMesh_i::getGroups(SALOME_MED::medEntityMesh entity) throw(SALOME::
+ SALOME_Exception)
{
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- MESSAGE(" Pas d implementation des groupes dans SMESH");
- THROW_SALOME_CORBA_EXCEPTION("No group implementation", SALOME::BAD_PARAM);
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ MESSAGE(" Pas d implementation des groupes dans SMESH");
+ THROW_SALOME_CORBA_EXCEPTION("No group implementation", SALOME::BAD_PARAM);
}
//=============================================================================
*/
//=============================================================================
SALOME_MED::GROUP_ptr SMESH_MEDMesh_i::getGroup(SALOME_MED::
- medEntityMesh entity, CORBA::Long i) throw(SALOME::SALOME_Exception)
+ medEntityMesh entity, CORBA::Long i) throw(SALOME::SALOME_Exception)
{
- if (_mesh_i == 0)
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- MESSAGE(" Pas d implementation des groupes dans SMESH");
- THROW_SALOME_CORBA_EXCEPTION("No group implementation", SALOME::BAD_PARAM);
+ if (_mesh_i == 0)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ MESSAGE(" Pas d implementation des groupes dans SMESH");
+ THROW_SALOME_CORBA_EXCEPTION("No group implementation", SALOME::BAD_PARAM);
}
//=============================================================================
/*!
*/
//=============================================================================
SALOME_MED::FIELD_ptr SMESH_MEDMesh_i::getVolume(SALOME_MED::
- SUPPORT_ptr mySupport) throw(SALOME::SALOME_Exception)
+ SUPPORT_ptr mySupport) throw(SALOME::SALOME_Exception)
{
- MESSAGE("Pas Implemente dans SMESH");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
- return 0;
+ MESSAGE("Pas Implemente dans SMESH");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ return 0;
}
//=============================================================================
*/
//=============================================================================
SALOME_MED::FIELD_ptr SMESH_MEDMesh_i::getArea(SALOME_MED::
- SUPPORT_ptr mySupport) throw(SALOME::SALOME_Exception)
+ SUPPORT_ptr mySupport) throw(SALOME::SALOME_Exception)
{
- MESSAGE("Pas Implemente dans SMESH");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
- return 0;
+ MESSAGE("Pas Implemente dans SMESH");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ return 0;
}
//=============================================================================
*/
//=============================================================================
SALOME_MED::FIELD_ptr SMESH_MEDMesh_i::getLength(SALOME_MED::
- SUPPORT_ptr mySupport) throw(SALOME::SALOME_Exception)
+ SUPPORT_ptr mySupport) throw(SALOME::SALOME_Exception)
{
- MESSAGE("Pas Implemente dans SMESH");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
- return 0;
+ MESSAGE("Pas Implemente dans SMESH");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ return 0;
}
//=============================================================================
*/
//=============================================================================
SALOME_MED::FIELD_ptr SMESH_MEDMesh_i::getNormal(SALOME_MED::
- SUPPORT_ptr mySupport) throw(SALOME::SALOME_Exception)
+ SUPPORT_ptr mySupport) throw(SALOME::SALOME_Exception)
{
- MESSAGE("Pas Implemente dans SMESH");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
- return 0;
+ MESSAGE("Pas Implemente dans SMESH");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ return 0;
}
//=============================================================================
*/
//=============================================================================
SALOME_MED::FIELD_ptr SMESH_MEDMesh_i::getBarycenter(SALOME_MED::
- SUPPORT_ptr mySupport) throw(SALOME::SALOME_Exception)
+ SUPPORT_ptr mySupport) throw(SALOME::SALOME_Exception)
{
- MESSAGE("Pas Implemente dans SMESH");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
- return 0;
+ MESSAGE("Pas Implemente dans SMESH");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ return 0;
}
//=============================================================================
*/
//=============================================================================
SALOME_MED::FIELD_ptr SMESH_MEDMesh_i::getNeighbourhood(SALOME_MED::
- SUPPORT_ptr mySupport) throw(SALOME::SALOME_Exception)
+ SUPPORT_ptr mySupport) throw(SALOME::SALOME_Exception)
{
- MESSAGE("Non Implemente");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
- return 0;
+ MESSAGE("Non Implemente");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ return 0;
}
//=============================================================================
*/
//=============================================================================
void SMESH_MEDMesh_i::addInStudy(SALOMEDS::Study_ptr myStudy,
- SALOME_MED::MESH_ptr myIor) throw(SALOME::SALOME_Exception)
+ SALOME_MED::MESH_ptr myIor) throw(SALOME::SALOME_Exception)
{
- BEGIN_OF("MED_Mesh_i::addInStudy");
- if (_meshId != "")
- {
- MESSAGE("Mesh already in Study");
- THROW_SALOME_CORBA_EXCEPTION("Mesh already in Study",
- SALOME::BAD_PARAM);
- };
-
- /*
- * SALOMEDS::StudyBuilder_var myBuilder = myStudy->NewBuilder();
- *
- * // Create SComponent labelled 'MED' if it doesn't already exit
- * SALOMEDS::SComponent_var medfather = myStudy->FindComponent("MED");
- * if ( CORBA::is_nil(medfather) )
- * {
- * MESSAGE("Add Component MED");
- * medfather = myBuilder->NewComponent("MED");
- * //myBuilder->AddAttribute (medfather,SALOMEDS::Name,"MED");
- * SALOMEDS::AttributeName_var aName = SALOMEDS::AttributeName::_narrow(
- * myBuilder->FindOrCreateAttribute(medfather, "AttributeName"));
- * aName->SetValue("MED");
- *
- * myBuilder->DefineComponentInstance(medfather,myIor);
- *
- * } ;
- *
- * MESSAGE("Add a mesh Object under MED");
- * myBuilder->NewCommand();
- * SALOMEDS::SObject_var newObj = myBuilder->NewObject(medfather);
- *
- * ORB_INIT &init = *SINGLETON_<ORB_INIT>::Instance() ;
- * ASSERT(SINGLETON_<ORB_INIT>::IsAlreadyExisting()) ;
- * CORBA::ORB_var &orb = init(0,0);
- * CORBA::String_var iorStr = orb->object_to_string(myIor);
- * //myBuilder->AddAttribute(newObj,SALOMEDS::IOR,iorStr.in());
- * SALOMEDS::AttributeIOR_var aIOR = SALOMEDS::AttributeIOR::_narrow(
- * myBuilder->FindOrCreateAttribute(newObj, "AttributeIOR"));
- * aIOR->SetValue(iorStr.c_str());
- *
- * //myBuilder->AddAttribute(newObj,SALOMEDS::Name,_mesh_i->getName().c_str());
- * SALOMEDS::AttributeName_var aName = SALOMEDS::AttributeName::_narrow(
- * myBuilder->FindOrCreateAttribute(newObj, "AttributeName"));
- * aName->SetValue(_mesh_i->getName().c_str());
- *
- * _meshId = newObj->GetID();
- * myBuilder->CommitCommand();
- *
- */
- END_OF("Mesh_i::addInStudy(SALOMEDS::Study_ptr myStudy)");
+ BEGIN_OF("MED_Mesh_i::addInStudy");
+ if (_meshId != "")
+ {
+ MESSAGE("Mesh already in Study");
+ THROW_SALOME_CORBA_EXCEPTION("Mesh already in Study",
+ SALOME::BAD_PARAM);
+ };
+
+ /*
+ * SALOMEDS::StudyBuilder_var myBuilder = myStudy->NewBuilder();
+ *
+ * // Create SComponent labelled 'MED' if it doesn't already exit
+ * SALOMEDS::SComponent_var medfather = myStudy->FindComponent("MED");
+ * if ( CORBA::is_nil(medfather) )
+ * {
+ * MESSAGE("Add Component MED");
+ * medfather = myBuilder->NewComponent("MED");
+ * //myBuilder->AddAttribute (medfather,SALOMEDS::Name,"MED");
+ * SALOMEDS::AttributeName_var aName = SALOMEDS::AttributeName::_narrow(
+ * myBuilder->FindOrCreateAttribute(medfather, "AttributeName"));
+ * aName->SetValue("MED");
+ *
+ * myBuilder->DefineComponentInstance(medfather,myIor);
+ *
+ * } ;
+ *
+ * MESSAGE("Add a mesh Object under MED");
+ * myBuilder->NewCommand();
+ * SALOMEDS::SObject_var newObj = myBuilder->NewObject(medfather);
+ *
+ * ORB_INIT &init = *SINGLETON_<ORB_INIT>::Instance() ;
+ * ASSERT(SINGLETON_<ORB_INIT>::IsAlreadyExisting()) ;
+ * CORBA::ORB_var &orb = init(0,0);
+ * CORBA::String_var iorStr = orb->object_to_string(myIor);
+ * //myBuilder->AddAttribute(newObj,SALOMEDS::IOR,iorStr.in());
+ * SALOMEDS::AttributeIOR_var aIOR = SALOMEDS::AttributeIOR::_narrow(
+ * myBuilder->FindOrCreateAttribute(newObj, "AttributeIOR"));
+ * aIOR->SetValue(iorStr.c_str());
+ *
+ * //myBuilder->AddAttribute(newObj,SALOMEDS::Name,_mesh_i->getName().c_str());
+ * SALOMEDS::AttributeName_var aName = SALOMEDS::AttributeName::_narrow(
+ * myBuilder->FindOrCreateAttribute(newObj, "AttributeName"));
+ * aName->SetValue(_mesh_i->getName().c_str());
+ *
+ * _meshId = newObj->GetID();
+ * myBuilder->CommitCommand();
+ *
+ */
+ END_OF("Mesh_i::addInStudy(SALOMEDS::Study_ptr myStudy)");
}
//=============================================================================
*/
//=============================================================================
void SMESH_MEDMesh_i::write(CORBA::Long i, const char *driverMeshName)
-throw(SALOME::SALOME_Exception)
+ throw(SALOME::SALOME_Exception)
{
- MESSAGE("Non Implemente");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ MESSAGE("Non Implemente");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
}
//=============================================================================
//=============================================================================
void SMESH_MEDMesh_i::read(CORBA::Long i) throw(SALOME::SALOME_Exception)
{
- MESSAGE("Non Implemente");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ MESSAGE("Non Implemente");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
}
//=============================================================================
//=============================================================================
void SMESH_MEDMesh_i::rmDriver(CORBA::Long i) throw(SALOME::SALOME_Exception)
{
- MESSAGE("Non Implemente");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ MESSAGE("Non Implemente");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
}
//=============================================================================
*/
//=============================================================================
CORBA::Long SMESH_MEDMesh_i::addDriver(SALOME_MED::medDriverTypes driverType,
- const char *fileName, const char *meshName) throw(SALOME::SALOME_Exception)
+ const char *fileName, const char *meshName) throw(SALOME::SALOME_Exception)
{
- MESSAGE("Non Implemente");
- THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
- return 0;
+ MESSAGE("Non Implemente");
+ THROW_SALOME_CORBA_EXCEPTION("Unimplemented Method", SALOME::BAD_PARAM);
+ return 0;
}
//=============================================================================
//=============================================================================
void SMESH_MEDMesh_i::calculeNbElts() throw(SALOME::SALOME_Exception)
{
- if (!_compte)
- {
- _compte = true;
-
- _mapNbTypes[SALOME_MED::MED_NODE] = 1;
- // On compte les aretes MED_SEG2 ou MED_SEG3
- // On range les elements dans les vecteurs correspondants
-
- _mapIndToSeqElts[SALOME_MED::MED_SEG2] = _indexElts++;
- _mapIndToSeqElts[SALOME_MED::MED_SEG3] = _indexElts++;
- _mapIndToVectTypes[SALOME_MED::MED_EDGE] = _indexEnts++;
-
- int trouveSeg2 = 0;
- int trouveSeg3 = 0;
- SALOME_MED::medGeometryElement medElement;
-
- SMDS_EdgeIteratorPtr itEdges=_meshDS->edgesIterator();
- while(itEdges->more())
- {
- const SMDS_MeshEdge* elem = itEdges->next();
- int nb_of_nodes = elem->NbNodes();
-
- switch (nb_of_nodes)
- {
- case 2:
- {
- medElement = SALOME_MED::MED_SEG2;
- if (trouveSeg2 == 0)
- {
- trouveSeg2 = 1;
- _TypesId[SALOME_MED::MED_EDGE].
- push_back(SALOME_MED::MED_SEG2);
- }
- break;
- }
- case 3:
- {
- medElement = SALOME_MED::MED_SEG3;
- if (trouveSeg3 == 0)
- {
- trouveSeg3 = 1;
- _TypesId[SALOME_MED::MED_EDGE].
- push_back(SALOME_MED::MED_SEG3);
- }
- break;
- }
- }
- int index = _mapIndToSeqElts[medElement];
- SCRUTE(index);
- // Traitement de l arete
-
- int longueur = _seq_elemId[index]->length();
- _seq_elemId[index]->length(longueur + nb_of_nodes);
-
- SMDS_NodeIteratorPtr itn=_meshDS->nodesIterator();
-
- for(int k=0; itn->more(); k++)
- _seq_elemId[index][longueur + k] = itn->next()->GetID()+1;
- }
-
- _mapNbTypes[SALOME_MED::MED_EDGE] = trouveSeg2 + trouveSeg3;
-
- // On compte les faces MED_TRIA3, MED_HEXA8, MED_TRIA6
- // On range les elements dans les vecteurs correspondants
- int trouveTria3 = 0;
- int trouveTria6 = 0;
- int trouveQuad4 = 0;
-
- _mapIndToSeqElts[SALOME_MED::MED_TRIA3] = _indexElts++;
- _mapIndToSeqElts[SALOME_MED::MED_TRIA6] = _indexElts++;
- _mapIndToSeqElts[SALOME_MED::MED_QUAD4] = _indexElts++;
- _mapIndToVectTypes[SALOME_MED::MED_FACE] = _indexEnts++;
-
- SMDS_FaceIteratorPtr itFaces=_meshDS->facesIterator();
- while(itFaces->more())
- {
- const SMDS_MeshFace * elem = itFaces->next();
- int nb_of_nodes = elem->NbNodes();
-
- switch (nb_of_nodes)
- {
- case 3:
- {
- medElement = SALOME_MED::MED_TRIA3;
- if (trouveTria3 == 0)
- {
- trouveTria3 = 1;
- _TypesId[SALOME_MED::MED_FACE].
- push_back(SALOME_MED::MED_TRIA3);
- }
- break;
- }
- case 4:
- {
- medElement = SALOME_MED::MED_QUAD4;
- if (trouveQuad4 == 0)
- {
- trouveQuad4 = 1;
- _TypesId[SALOME_MED::MED_FACE].
- push_back(SALOME_MED::MED_QUAD4);
- }
- break;
- }
- case 6:
- {
- medElement = SALOME_MED::MED_TRIA6;
- if (trouveTria6 == 0)
- {
- trouveTria6 = 1;
- _TypesId[SALOME_MED::MED_FACE].
- push_back(SALOME_MED::MED_TRIA6);
- }
- break;
- }
- }
- int index = _mapIndToSeqElts[medElement];
- SCRUTE(index);
-
- // Traitement de la face
- // Attention La numérotation des noeuds Med commence a 1
-
- int longueur = _seq_elemId[index]->length();
- _seq_elemId[index]->length(longueur + nb_of_nodes);
-
- SMDS_NodeIteratorPtr itn=_meshDS->nodesIterator();
-
- for(int k=0; itn->more(); k++)
- _seq_elemId[index][longueur + k] = itn->next()->GetID()+1;
- } //itFaces
-
- _mapNbTypes[SALOME_MED::MED_FACE] =
- trouveTria3 + trouveTria6 + trouveQuad4;
-
- _mapIndToSeqElts[SALOME_MED::MED_HEXA8] = _indexElts++;
- _mapIndToVectTypes[SALOME_MED::MED_CELL] = _indexEnts++;
- int index = _mapIndToSeqElts[medElement];
-
- int trouveHexa8 = 0;
-
- SMDS_VolumeIteratorPtr itVolumes=_meshDS->volumesIterator();
- while(itVolumes->more())
- {
- const SMDS_MeshVolume * elem = itVolumes->next();
-
- int nb_of_nodes = elem->NbNodes();
- medElement = SALOME_MED::MED_HEXA8;
- ASSERT(nb_of_nodes == 8);
-
- if (trouveHexa8 == 0)
- {
- trouveHexa8 = 1;
- _TypesId[SALOME_MED::MED_CELL].push_back(SALOME_MED::MED_HEXA8);
- };
- // Traitement de la maille
- int longueur = _seq_elemId[index]->length();
- _seq_elemId[index]->length(longueur + nb_of_nodes);
-
- SMDS_NodeIteratorPtr itn=_meshDS->nodesIterator();
- for(int k=0; itn->more(); k++)
- _seq_elemId[index][longueur + k] = itn->next()->GetID()+1;
- }
-
- _mapNbTypes[SALOME_MED::MED_CELL] = trouveHexa8;
- _mapNbTypes[SALOME_MED::MED_ALL_ENTITIES]
- =
- trouveHexa8 + trouveTria3 + trouveTria6 + trouveQuad4 + trouveSeg2 +
- trouveSeg3;
- }// fin du _compte
+ if (!_compte)
+ {
+ _compte = true;
+
+ _mapNbTypes[SALOME_MED::MED_NODE] = 1;
+ // On compte les aretes MED_SEG2 ou MED_SEG3
+ // On range les elements dans les vecteurs correspondants
+
+ _mapIndToSeqElts[SALOME_MED::MED_SEG2] = _indexElts++;
+ _mapIndToSeqElts[SALOME_MED::MED_SEG3] = _indexElts++;
+ _mapIndToVectTypes[SALOME_MED::MED_EDGE] = _indexEnts++;
+
+ int trouveSeg2 = 0;
+ int trouveSeg3 = 0;
+ SALOME_MED::medGeometryElement medElement;
+
+ SMDS_EdgeIteratorPtr itEdges=_meshDS->edgesIterator();
+ while(itEdges->more())
+ {
+ const SMDS_MeshEdge* elem = itEdges->next();
+ int nb_of_nodes = elem->NbNodes();
+
+ switch (nb_of_nodes)
+ {
+ case 2:
+ {
+ medElement = SALOME_MED::MED_SEG2;
+ if (trouveSeg2 == 0)
+ {
+ trouveSeg2 = 1;
+ _TypesId[SALOME_MED::MED_EDGE].
+ push_back(SALOME_MED::MED_SEG2);
+ }
+ break;
+ }
+ case 3:
+ {
+ medElement = SALOME_MED::MED_SEG3;
+ if (trouveSeg3 == 0)
+ {
+ trouveSeg3 = 1;
+ _TypesId[SALOME_MED::MED_EDGE].
+ push_back(SALOME_MED::MED_SEG3);
+ }
+ break;
+ }
+ }
+ int index = _mapIndToSeqElts[medElement];
+ SCRUTE(index);
+ // Traitement de l arete
+
+ int longueur = _seq_elemId[index]->length();
+ _seq_elemId[index]->length(longueur + nb_of_nodes);
+
+ SMDS_NodeIteratorPtr itn=_meshDS->nodesIterator();
+
+ for(int k=0; itn->more(); k++)
+ _seq_elemId[index][longueur + k] = itn->next()->GetID()+1;
+ }
+
+ _mapNbTypes[SALOME_MED::MED_EDGE] = trouveSeg2 + trouveSeg3;
+
+ // On compte les faces MED_TRIA3, MED_HEXA8, MED_TRIA6
+ // On range les elements dans les vecteurs correspondants
+ int trouveTria3 = 0;
+ int trouveTria6 = 0;
+ int trouveQuad4 = 0;
+
+ _mapIndToSeqElts[SALOME_MED::MED_TRIA3] = _indexElts++;
+ _mapIndToSeqElts[SALOME_MED::MED_TRIA6] = _indexElts++;
+ _mapIndToSeqElts[SALOME_MED::MED_QUAD4] = _indexElts++;
+ _mapIndToVectTypes[SALOME_MED::MED_FACE] = _indexEnts++;
+
+ SMDS_FaceIteratorPtr itFaces=_meshDS->facesIterator();
+ while(itFaces->more())
+ {
+ const SMDS_MeshFace * elem = itFaces->next();
+ int nb_of_nodes = elem->NbNodes();
+
+ switch (nb_of_nodes)
+ {
+ case 3:
+ {
+ medElement = SALOME_MED::MED_TRIA3;
+ if (trouveTria3 == 0)
+ {
+ trouveTria3 = 1;
+ _TypesId[SALOME_MED::MED_FACE].
+ push_back(SALOME_MED::MED_TRIA3);
+ }
+ break;
+ }
+ case 4:
+ {
+ medElement = SALOME_MED::MED_QUAD4;
+ if (trouveQuad4 == 0)
+ {
+ trouveQuad4 = 1;
+ _TypesId[SALOME_MED::MED_FACE].
+ push_back(SALOME_MED::MED_QUAD4);
+ }
+ break;
+ }
+ case 6:
+ {
+ medElement = SALOME_MED::MED_TRIA6;
+ if (trouveTria6 == 0)
+ {
+ trouveTria6 = 1;
+ _TypesId[SALOME_MED::MED_FACE].
+ push_back(SALOME_MED::MED_TRIA6);
+ }
+ break;
+ }
+ }
+ int index = _mapIndToSeqElts[medElement];
+ SCRUTE(index);
+
+ // Traitement de la face
+ // Attention La numérotation des noeuds Med commence a 1
+
+ int longueur = _seq_elemId[index]->length();
+ _seq_elemId[index]->length(longueur + nb_of_nodes);
+
+ SMDS_NodeIteratorPtr itn=_meshDS->nodesIterator();
+
+ for(int k=0; itn->more(); k++)
+ _seq_elemId[index][longueur + k] = itn->next()->GetID()+1;
+ } //itFaces
+
+ _mapNbTypes[SALOME_MED::MED_FACE] =
+ trouveTria3 + trouveTria6 + trouveQuad4;
+
+ _mapIndToSeqElts[SALOME_MED::MED_HEXA8] = _indexElts++;
+ _mapIndToVectTypes[SALOME_MED::MED_CELL] = _indexEnts++;
+ int index = _mapIndToSeqElts[medElement];
+
+ int trouveHexa8 = 0;
+
+ SMDS_VolumeIteratorPtr itVolumes=_meshDS->volumesIterator();
+ while(itVolumes->more())
+ {
+ const SMDS_MeshVolume * elem = itVolumes->next();
+
+ int nb_of_nodes = elem->NbNodes();
+ medElement = SALOME_MED::MED_HEXA8;
+ ASSERT(nb_of_nodes == 8);
+
+ if (trouveHexa8 == 0)
+ {
+ trouveHexa8 = 1;
+ _TypesId[SALOME_MED::MED_CELL].push_back(SALOME_MED::MED_HEXA8);
+ };
+ // Traitement de la maille
+ int longueur = _seq_elemId[index]->length();
+ _seq_elemId[index]->length(longueur + nb_of_nodes);
+
+ SMDS_NodeIteratorPtr itn=_meshDS->nodesIterator();
+ for(int k=0; itn->more(); k++)
+ _seq_elemId[index][longueur + k] = itn->next()->GetID()+1;
+ }
+
+ _mapNbTypes[SALOME_MED::MED_CELL] = trouveHexa8;
+ _mapNbTypes[SALOME_MED::MED_ALL_ENTITIES]
+ =
+ trouveHexa8 + trouveTria3 + trouveTria6 + trouveQuad4 + trouveSeg2 +
+ trouveSeg3;
+ }// fin du _compte
};
//=============================================================================
void SMESH_MEDMesh_i::createFamilies() throw(SALOME::SALOME_Exception)
{
Unexpect aCatch(SALOME_SalomeException);
- string famDes = ("Je ne sais pas");
- string famName0 = "Famille_";
- string famName;
- char numero[10];
-
- if (_creeFamily == false)
- {
- _creeFamily = true;
- //SMESH_subMesh_i *subMeshServant;
-
- map < int, SMESH_subMesh_i * >::iterator it;
- for (it = _mesh_i->_mapSubMesh_i.begin();
- it != _mesh_i->_mapSubMesh_i.end(); it++)
- {
- SMESH_subMesh_i *submesh_i = (*it).second;
- int famIdent = (*it).first;
-
- ASSERT(famIdent < 999999999);
- sprintf(numero, "%d\n", famIdent);
- famName = famName0 + numero;
-
- SMESH_MEDFamily_i *famservant =
- new SMESH_MEDFamily_i(famIdent, submesh_i,
- famName, famDes, SALOME_MED::MED_NODE);
+ string famDes = ("Je ne sais pas");
+ string famName0 = "Famille_";
+ string famName;
+ char numero[10];
+
+ if (_creeFamily == false)
+ {
+ _creeFamily = true;
+ //SMESH_subMesh_i *subMeshServant;
+
+ map < int, SMESH_subMesh_i * >::iterator it;
+ for (it = _mesh_i->_mapSubMesh_i.begin();
+ it != _mesh_i->_mapSubMesh_i.end(); it++)
+ {
+ SMESH_subMesh_i *submesh_i = (*it).second;
+ int famIdent = (*it).first;
+
+ ASSERT(famIdent < 999999999);
+ sprintf(numero, "%d\n", famIdent);
+ famName = famName0 + numero;
+
+ SMESH_MEDFamily_i *famservant =
+ new SMESH_MEDFamily_i(famIdent, submesh_i,
+ famName, famDes, SALOME_MED::MED_NODE);
#ifdef WNT
SALOME_MED::FAMILY_ptr famille = SALOME_MED::FAMILY::_nil();
POA_SALOME_MED::FAMILY* servantbase = dynamic_cast<POA_SALOME_MED::FAMILY*>(famservant);
if ( servantbase )
famille = SALOME_MED::FAMILY::_narrow( servantbase->_this() );
#else
- SALOME_MED::FAMILY_ptr famille =
+ SALOME_MED::FAMILY_ptr famille =
SALOME_MED::FAMILY::_narrow( famservant->POA_SALOME_MED::FAMILY::_this() );
#endif
- _families.push_back(famille);
- }
- }
+ _families.push_back(famille);
+ }
+ }
};
//=============================================================================
/*!
//=============================================================================
SALOME_MED::medGeometryElement
SMESH_MEDMesh_i::getElementType(SALOME_MED::medEntityMesh entity,
- CORBA::Long number)
+ CORBA::Long number)
throw (SALOME::SALOME_Exception)
{
MESSAGE("!!!! NOT YET IMPLEMENTED !!!!!");
void release() {}
SALOME::SenderDouble_ptr getSenderForCoordinates(SALOME_MED::medModeSwitch) {return SALOME::SenderDouble::_nil();}
SALOME::SenderInt_ptr getSenderForConnectivity(SALOME_MED::medModeSwitch,
- SALOME_MED::medConnectivity,
- SALOME_MED::medEntityMesh,
- SALOME_MED::medGeometryElement)
+ SALOME_MED::medConnectivity,
+ SALOME_MED::medEntityMesh,
+ SALOME_MED::medGeometryElement)
{
return SALOME::SenderInt::_nil();
}
CORBA::Boolean
existConnectivity(SALOME_MED::medConnectivity connectivityType,
- SALOME_MED::medEntityMesh entity)
+ SALOME_MED::medEntityMesh entity)
throw (SALOME::SALOME_Exception);
char *getCoordinatesSystem() throw(SALOME::SALOME_Exception);
SALOME_MED::medGeometryElement_array *
getTypes(SALOME_MED::medEntityMesh entity) throw(SALOME::
- SALOME_Exception);
+ SALOME_Exception);
SALOME_MED::medGeometryElement
getElementType(SALOME_MED::medEntityMesh entity,
- CORBA::Long number)
+ CORBA::Long number)
throw (SALOME::SALOME_Exception);
CORBA::Long getNumberOfElements(SALOME_MED::medEntityMesh entity,
- SALOME_MED::medGeometryElement geomElement)
+ SALOME_MED::medGeometryElement geomElement)
throw(SALOME::SALOME_Exception);
SALOME_MED::long_array *
getConnectivity(SALOME_MED::medModeSwitch typeSwitch,
- SALOME_MED::medConnectivity mode,
- SALOME_MED::medEntityMesh entity,
- SALOME_MED::medGeometryElement geomElement)
+ SALOME_MED::medConnectivity mode,
+ SALOME_MED::medEntityMesh entity,
+ SALOME_MED::medGeometryElement geomElement)
throw(SALOME::SALOME_Exception);
SALOME_MED::long_array *
getConnectivityIndex(SALOME_MED::medConnectivity mode,
- SALOME_MED::medEntityMesh entity)
+ SALOME_MED::medEntityMesh entity)
throw(SALOME::SALOME_Exception);
SALOME_MED::long_array*
throw (SALOME::SALOME_Exception);
CORBA::Long getElementNumber(SALOME_MED::medConnectivity mode,
- SALOME_MED::medEntityMesh entity,
- SALOME_MED::medGeometryElement type,
- const SALOME_MED::long_array & connectivity)
+ SALOME_MED::medEntityMesh entity,
+ SALOME_MED::medGeometryElement type,
+ const SALOME_MED::long_array & connectivity)
throw(SALOME::SALOME_Exception);
SALOME_MED::long_array *
throw(SALOME::SALOME_Exception);
SALOME_MED::FAMILY_ptr getFamily(SALOME_MED::medEntityMesh entity,
- CORBA::Long i)
+ CORBA::Long i)
throw(SALOME::SALOME_Exception);
SALOME_MED::Group_array * getGroups(SALOME_MED::medEntityMesh entity)
throw(SALOME::SALOME_Exception);
SALOME_MED::GROUP_ptr getGroup(SALOME_MED::medEntityMesh entity,
- CORBA::Long i)
+ CORBA::Long i)
throw(SALOME::SALOME_Exception);
SALOME_MED::SUPPORT_ptr
// Others
void addInStudy(SALOMEDS::Study_ptr myStudy,
- SALOME_MED::MESH_ptr myIor)
+ SALOME_MED::MESH_ptr myIor)
throw(SALOME::SALOME_Exception);
CORBA::Long addDriver(SALOME_MED::medDriverTypes driverType,
- const char *fileName, const char *meshName)
+ const char *fileName, const char *meshName)
throw(SALOME::SALOME_Exception);
void rmDriver(CORBA::Long i) throw(SALOME::SALOME_Exception);
void read(CORBA::Long i) throw(SALOME::SALOME_Exception);
//=============================================================================
SMESH_MEDSupport_i::SMESH_MEDSupport_i()
{
- BEGIN_OF("Default Constructor SMESH_MEDSupport_i");
- END_OF("Default Constructor SMESH_MEDSupport_i");
+ BEGIN_OF("Default Constructor SMESH_MEDSupport_i");
+ END_OF("Default Constructor SMESH_MEDSupport_i");
}
//=============================================================================
*/
//=============================================================================
SMESH_MEDSupport_i::SMESH_MEDSupport_i(SMESH_subMesh_i * sm, string name,
- string description, SALOME_MED::medEntityMesh entity)
- :_subMesh_i(sm), _name(name), _description(description), _entity(entity),
- _seqNumber(false), _seqLength(0)
+ string description, SALOME_MED::medEntityMesh entity)
+ :_subMesh_i(sm), _name(name), _description(description), _entity(entity),
+ _seqNumber(false), _seqLength(0)
{
- BEGIN_OF("Constructor SMESH_MEDSupport_i");
-
- _meshDS = _subMesh_i->_mesh_i->GetImpl().GetMeshDS();
-
- int subMeshId = _subMesh_i->GetId();
-
- MESSAGE(" subMeshId " << subMeshId)
-
- if (_subMesh_i->_mesh_i->_mapSubMesh.find(subMeshId) !=
- _subMesh_i->_mesh_i->_mapSubMesh.end())
- {
- ::SMESH_subMesh * subMesh = _subMesh_i->_mesh_i->_mapSubMesh[subMeshId];
- _subMeshDS = subMesh->GetSubMeshDS();
- }
-
- if (_entity == SALOME_MED::MED_NODE)
- {
- _numberOfGeometricType = 1;
- _geometricType = new SALOME_MED::medGeometryElement[1];
- _geometricType[0] = SALOME_MED::MED_NONE;
- }
- else
- {
- MESSAGE("Pas implemente dans cette version");
- THROW_SALOME_CORBA_EXCEPTION
- ("Seules les familles de noeuds sont implementees ",
- SALOME::BAD_PARAM);
- }
-
- END_OF("Constructor SMESH_MEDSupport_i");
+ BEGIN_OF("Constructor SMESH_MEDSupport_i");
+
+ _meshDS = _subMesh_i->_mesh_i->GetImpl().GetMeshDS();
+
+ int subMeshId = _subMesh_i->GetId();
+
+ MESSAGE(" subMeshId " << subMeshId)
+
+ if (_subMesh_i->_mesh_i->_mapSubMesh.find(subMeshId) !=
+ _subMesh_i->_mesh_i->_mapSubMesh.end())
+ {
+ ::SMESH_subMesh * subMesh = _subMesh_i->_mesh_i->_mapSubMesh[subMeshId];
+ _subMeshDS = subMesh->GetSubMeshDS();
+ }
+
+ if (_entity == SALOME_MED::MED_NODE)
+ {
+ _numberOfGeometricType = 1;
+ _geometricType = new SALOME_MED::medGeometryElement[1];
+ _geometricType[0] = SALOME_MED::MED_NONE;
+ }
+ else
+ {
+ MESSAGE("Pas implemente dans cette version");
+ THROW_SALOME_CORBA_EXCEPTION
+ ("Seules les familles de noeuds sont implementees ",
+ SALOME::BAD_PARAM);
+ }
+
+ END_OF("Constructor SMESH_MEDSupport_i");
}
//=============================================================================
_name(s._name), _description(s._description), _entity(s._entity),
_seqNumber(false), _seqLength(0)
{
- BEGIN_OF("Constructor SMESH_MEDSupport_i");
+ BEGIN_OF("Constructor SMESH_MEDSupport_i");
- _meshDS = _subMesh_i->_mesh_i->GetImpl().GetMeshDS();
+ _meshDS = _subMesh_i->_mesh_i->GetImpl().GetMeshDS();
- int subMeshId = _subMesh_i->GetId();
- if (_subMesh_i->_mesh_i->_mapSubMesh.find(subMeshId) !=
- _subMesh_i->_mesh_i->_mapSubMesh.end())
- {
- ::SMESH_subMesh * subMesh = _subMesh_i->_mesh_i->_mapSubMesh[subMeshId];
- _subMeshDS = subMesh->GetSubMeshDS();
- }
+ int subMeshId = _subMesh_i->GetId();
+ if (_subMesh_i->_mesh_i->_mapSubMesh.find(subMeshId) !=
+ _subMesh_i->_mesh_i->_mapSubMesh.end())
+ {
+ ::SMESH_subMesh * subMesh = _subMesh_i->_mesh_i->_mapSubMesh[subMeshId];
+ _subMeshDS = subMesh->GetSubMeshDS();
+ }
- END_OF("Constructor SMESH_MEDSupport_i");
+ END_OF("Constructor SMESH_MEDSupport_i");
}
//=============================================================================
CORBA::Long SMESH_MEDSupport_i::getCorbaIndex()throw(SALOME::SALOME_Exception)
{
- if (_subMeshDS == NULL)
- THROW_SALOME_CORBA_EXCEPTION("No associated Support",
- SALOME::INTERNAL_ERROR);
- MESSAGE("Not implemented for SMESH_i");
- THROW_SALOME_CORBA_EXCEPTION("Not Implemented ", SALOME::BAD_PARAM);
+ if (_subMeshDS == NULL)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Support",
+ SALOME::INTERNAL_ERROR);
+ MESSAGE("Not implemented for SMESH_i");
+ THROW_SALOME_CORBA_EXCEPTION("Not Implemented ", SALOME::BAD_PARAM);
}
char *SMESH_MEDSupport_i::getName() throw(SALOME::SALOME_Exception)
{
- if (_subMeshDS==NULL)
- THROW_SALOME_CORBA_EXCEPTION("No associated Support",
- SALOME::INTERNAL_ERROR);
- return CORBA::string_dup(_name.c_str());
+ if (_subMeshDS==NULL)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Support",
+ SALOME::INTERNAL_ERROR);
+ return CORBA::string_dup(_name.c_str());
}
char *SMESH_MEDSupport_i::getDescription() throw(SALOME::SALOME_Exception)
{
- if (_subMeshDS==NULL)
- THROW_SALOME_CORBA_EXCEPTION("No associated Support",
- SALOME::INTERNAL_ERROR);
- return CORBA::string_dup(_description.c_str());
+ if (_subMeshDS==NULL)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Support",
+ SALOME::INTERNAL_ERROR);
+ return CORBA::string_dup(_description.c_str());
}
//=============================================================================
//=============================================================================
SALOME_MED::MESH_ptr SMESH_MEDSupport_i::getMesh()throw(SALOME::
- SALOME_Exception)
+ SALOME_Exception)
{
- if (_subMeshDS==NULL)
- THROW_SALOME_CORBA_EXCEPTION("No associated Support",
- SALOME::INTERNAL_ERROR);
+ if (_subMeshDS==NULL)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Support",
+ SALOME::INTERNAL_ERROR);
- return _subMesh_i->_mesh_i->GetMEDMesh();
+ return _subMesh_i->_mesh_i->GetMEDMesh();
}
//=============================================================================
//=============================================================================
CORBA::Boolean SMESH_MEDSupport_i::isOnAllElements()throw(SALOME::
- SALOME_Exception)
+ SALOME_Exception)
{
- if (_subMeshDS==NULL)
- THROW_SALOME_CORBA_EXCEPTION("No associated Support",
- SALOME::INTERNAL_ERROR);
- if (_seqNumber == false)
- {
- if (_entity != SALOME_MED::MED_NONE)
- {
- _seqLength = _subMeshDS->NbNodes();
- _seqNumber = true;
- }
- else
- {
- MESSAGE("Only Node Families are implemented ");
- THROW_SALOME_CORBA_EXCEPTION("Not implemented Yet ",
- SALOME::BAD_PARAM);
- }
- }
- try
- {
- _isOnAllElements = (_seqLength == _meshDS->NbNodes());
- }
- catch(...)
- {
- MESSAGE("unable to acces related Mesh");
- THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
- SALOME::INTERNAL_ERROR);
- };
- return _isOnAllElements;
+ if (_subMeshDS==NULL)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Support",
+ SALOME::INTERNAL_ERROR);
+ if (_seqNumber == false)
+ {
+ if (_entity != SALOME_MED::MED_NONE)
+ {
+ _seqLength = _subMeshDS->NbNodes();
+ _seqNumber = true;
+ }
+ else
+ {
+ MESSAGE("Only Node Families are implemented ");
+ THROW_SALOME_CORBA_EXCEPTION("Not implemented Yet ",
+ SALOME::BAD_PARAM);
+ }
+ }
+ try
+ {
+ _isOnAllElements = (_seqLength == _meshDS->NbNodes());
+ }
+ catch(...)
+ {
+ MESSAGE("unable to acces related Mesh");
+ THROW_SALOME_CORBA_EXCEPTION("No associated Mesh",
+ SALOME::INTERNAL_ERROR);
+ };
+ return _isOnAllElements;
}
//=============================================================================
//=============================================================================
SALOME_MED::medEntityMesh SMESH_MEDSupport_i::getEntity()throw(SALOME::
- SALOME_Exception)
+ SALOME_Exception)
{
- if (_subMeshDS==NULL)
- THROW_SALOME_CORBA_EXCEPTION("No associated Support",
- SALOME::INTERNAL_ERROR);
- return _entity;
+ if (_subMeshDS==NULL)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Support",
+ SALOME::INTERNAL_ERROR);
+ return _entity;
}
//=============================================================================
//=============================================================================
SALOME_MED::medGeometryElement_array *
- SMESH_MEDSupport_i::getTypes()throw(SALOME::SALOME_Exception)
+ SMESH_MEDSupport_i::getTypes()throw(SALOME::SALOME_Exception)
{
- if (_subMeshDS==NULL)
- THROW_SALOME_CORBA_EXCEPTION("No associated Support",
- SALOME::INTERNAL_ERROR);
- SALOME_MED::medGeometryElement_array_var myseq =
- new SALOME_MED::medGeometryElement_array;
- try
- {
- int mySeqLength = _numberOfGeometricType;
- myseq->length(mySeqLength);
- for (int i = 0; i < mySeqLength; i++)
- {
- myseq[i] = _geometricType[i];
- }
- }
- catch(...)
- {
- MESSAGE("Exception lors de la recherche des differents types");
- THROW_SALOME_CORBA_EXCEPTION("Unable to acces Support Types",
- SALOME::INTERNAL_ERROR);
- }
- return myseq._retn();
+ if (_subMeshDS==NULL)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Support",
+ SALOME::INTERNAL_ERROR);
+ SALOME_MED::medGeometryElement_array_var myseq =
+ new SALOME_MED::medGeometryElement_array;
+ try
+ {
+ int mySeqLength = _numberOfGeometricType;
+ myseq->length(mySeqLength);
+ for (int i = 0; i < mySeqLength; i++)
+ {
+ myseq[i] = _geometricType[i];
+ }
+ }
+ catch(...)
+ {
+ MESSAGE("Exception lors de la recherche des differents types");
+ THROW_SALOME_CORBA_EXCEPTION("Unable to acces Support Types",
+ SALOME::INTERNAL_ERROR);
+ }
+ return myseq._retn();
}
//=============================================================================
*/
//=============================================================================
CORBA::Long SMESH_MEDSupport_i::getNumberOfElements(SALOME_MED::
- medGeometryElement geomElement) throw(SALOME::SALOME_Exception)
+ medGeometryElement geomElement) throw(SALOME::SALOME_Exception)
{
- if (_subMeshDS==NULL)
- THROW_SALOME_CORBA_EXCEPTION("No associated Support",
- SALOME::INTERNAL_ERROR);
- return _numberOfGeometricType;
+ if (_subMeshDS==NULL)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Support",
+ SALOME::INTERNAL_ERROR);
+ return _numberOfGeometricType;
}
//=============================================================================
SALOME_MED::long_array * SMESH_MEDSupport_i::getNumber(
- SALOME_MED::medGeometryElement geomElement) throw(SALOME::SALOME_Exception)
+ SALOME_MED::medGeometryElement geomElement) throw(SALOME::SALOME_Exception)
{
Unexpect aCatch(SALOME_SalomeException);
- if (_subMeshDS==NULL)
- THROW_SALOME_CORBA_EXCEPTION("No associated Support",
- SALOME::INTERNAL_ERROR);
+ if (_subMeshDS==NULL)
+ THROW_SALOME_CORBA_EXCEPTION("No associated Support",
+ SALOME::INTERNAL_ERROR);
- // A changer s'il ne s agit plus seulement de famille de noeuds
- if (geomElement != SALOME_MED::MED_NONE)
- THROW_SALOME_CORBA_EXCEPTION("Not implemented", SALOME::BAD_PARAM);
+ // A changer s'il ne s agit plus seulement de famille de noeuds
+ if (geomElement != SALOME_MED::MED_NONE)
+ THROW_SALOME_CORBA_EXCEPTION("Not implemented", SALOME::BAD_PARAM);
- SALOME_MED::long_array_var myseq = new SALOME_MED::long_array;
+ SALOME_MED::long_array_var myseq = new SALOME_MED::long_array;
- int i = 0;
- myseq->length(_subMeshDS->NbNodes());
+ int i = 0;
+ myseq->length(_subMeshDS->NbNodes());
- SMDS_NodeIteratorPtr it = _subMeshDS->GetNodes();
- while(it->more())
- {
- myseq[i] = it->next()->GetID();
- i++;
- };
+ SMDS_NodeIteratorPtr it = _subMeshDS->GetNodes();
+ while(it->more())
+ {
+ myseq[i] = it->next()->GetID();
+ i++;
+ };
- SCRUTE(myseq->length());
- MESSAGE("End of SMESH_MEDSupport_i::getNumber");
- return myseq._retn();
+ SCRUTE(myseq->length());
+ MESSAGE("End of SMESH_MEDSupport_i::getNumber");
+ return myseq._retn();
}
//=============================================================================
SALOME_MED::long_array * SMESH_MEDSupport_i::getNumberFromFile(
- SALOME_MED::medGeometryElement geomElement) throw(SALOME::SALOME_Exception)
+ SALOME_MED::medGeometryElement geomElement) throw(SALOME::SALOME_Exception)
{
return getNumber(geomElement);
}
//=============================================================================
SALOME_MED::long_array *
- SMESH_MEDSupport_i::getNumberIndex()throw(SALOME::SALOME_Exception)
+ SMESH_MEDSupport_i::getNumberIndex()throw(SALOME::SALOME_Exception)
{
- MESSAGE("Not implemented for SMESH_i");
- THROW_SALOME_CORBA_EXCEPTION("Not Implemented", SALOME::BAD_PARAM);
- return NULL;
+ MESSAGE("Not implemented for SMESH_i");
+ THROW_SALOME_CORBA_EXCEPTION("Not Implemented", SALOME::BAD_PARAM);
+ return NULL;
}
//=============================================================================
/*!
//=============================================================================
CORBA::Long SMESH_MEDSupport_i::getNumberOfGaussPoint(SALOME_MED::
- medGeometryElement geomElement) throw(SALOME::SALOME_Exception)
+ medGeometryElement geomElement) throw(SALOME::SALOME_Exception)
{
- MESSAGE("Not implemented for SMESH_i");
- return 0;
+ MESSAGE("Not implemented for SMESH_i");
+ return 0;
}
//=============================================================================
/*!
class SMESH_subMesh_i;
class SMESH_I_EXPORT SMESH_MEDSupport_i:
- public virtual POA_SALOME_MED::SUPPORT, public virtual SALOME::GenericObj_i
+ public virtual POA_SALOME_MED::SUPPORT, public virtual SALOME::GenericObj_i
{
public:
// Constructors and associated internal methods
- SMESH_MEDSupport_i(SMESH_subMesh_i * sm,
- std::string name, std::string description, SALOME_MED::medEntityMesh entity);
- SMESH_MEDSupport_i(const SMESH_MEDSupport_i & s);
+ SMESH_MEDSupport_i(SMESH_subMesh_i * sm,
+ std::string name, std::string description, SALOME_MED::medEntityMesh entity);
+ SMESH_MEDSupport_i(const SMESH_MEDSupport_i & s);
// IDL Methods
- char *getName() throw(SALOME::SALOME_Exception);
- char *getDescription() throw(SALOME::SALOME_Exception);
- SALOME_MED::MESH_ptr getMesh() throw(SALOME::SALOME_Exception);
- CORBA::Boolean isOnAllElements() throw(SALOME::SALOME_Exception);
- SALOME_MED::medEntityMesh getEntity() throw(SALOME::SALOME_Exception);
+ char *getName() throw(SALOME::SALOME_Exception);
+ char *getDescription() throw(SALOME::SALOME_Exception);
+ SALOME_MED::MESH_ptr getMesh() throw(SALOME::SALOME_Exception);
+ CORBA::Boolean isOnAllElements() throw(SALOME::SALOME_Exception);
+ SALOME_MED::medEntityMesh getEntity() throw(SALOME::SALOME_Exception);
CORBA::Long
- getNumberOfElements(SALOME_MED::medGeometryElement geomElement)
- throw(SALOME::SALOME_Exception);
+ getNumberOfElements(SALOME_MED::medGeometryElement geomElement)
+ throw(SALOME::SALOME_Exception);
CORBA::Long getNumberOfTypes() throw (SALOME::SALOME_Exception);
- SALOME_MED::long_array *
- getNumber(SALOME_MED::medGeometryElement geomElement)
- throw(SALOME::SALOME_Exception);
+ SALOME_MED::long_array *
+ getNumber(SALOME_MED::medGeometryElement geomElement)
+ throw(SALOME::SALOME_Exception);
/*!
* Same function as getNumber.
*/
- SALOME_MED::long_array *
- getNumberFromFile(SALOME_MED::medGeometryElement geomElement)
- throw(SALOME::SALOME_Exception);
+ SALOME_MED::long_array *
+ getNumberFromFile(SALOME_MED::medGeometryElement geomElement)
+ throw(SALOME::SALOME_Exception);
- SALOME_MED::long_array * getNumberIndex()
- throw(SALOME::SALOME_Exception);
+ SALOME_MED::long_array * getNumberIndex()
+ throw(SALOME::SALOME_Exception);
CORBA::Long
- getNumberOfGaussPoint(SALOME_MED::medGeometryElement geomElement)
- throw(SALOME::SALOME_Exception);
+ getNumberOfGaussPoint(SALOME_MED::medGeometryElement geomElement)
+ throw(SALOME::SALOME_Exception);
SALOME_MED::long_array* getNumbersOfGaussPoint()
- throw (SALOME::SALOME_Exception);
+ throw (SALOME::SALOME_Exception);
- SALOME_MED::medGeometryElement_array *getTypes()
- throw(SALOME::SALOME_Exception);
+ SALOME_MED::medGeometryElement_array *getTypes()
+ throw(SALOME::SALOME_Exception);
void getBoundaryElements() throw (SALOME::SALOME_Exception);
- CORBA::Long getCorbaIndex() throw(SALOME::SALOME_Exception);
+ CORBA::Long getCorbaIndex() throw(SALOME::SALOME_Exception);
SALOME_MED::SUPPORT::supportInfos * getSupportGlobal()
- throw (SALOME::SALOME_Exception);
+ throw (SALOME::SALOME_Exception);
- void createSeq() throw(SALOME::SALOME_Exception);
+ void createSeq() throw(SALOME::SALOME_Exception);
public: //public field
- const SMESHDS_SubMesh * _subMeshDS;
- ::SMESH_subMesh_i * _subMesh_i;
+ const SMESHDS_SubMesh * _subMeshDS;
+ ::SMESH_subMesh_i * _subMesh_i;
- SMESHDS_Mesh * _meshDS;
- std::string _name;
+ SMESHDS_Mesh * _meshDS;
+ std::string _name;
std::string _description;
- bool _isOnAllElements;
- bool _seqNumber;
- int _seqLength;
+ bool _isOnAllElements;
+ bool _seqNumber;
+ int _seqLength;
- SALOME_MED::medEntityMesh _entity;
- SALOME_MED::medGeometryElement * _geometricType;
- int _numberOfGeometricType;
+ SALOME_MED::medEntityMesh _entity;
+ SALOME_MED::medGeometryElement * _geometricType;
+ int _numberOfGeometricType;
protected:
- SMESH_MEDSupport_i();
- ~SMESH_MEDSupport_i();
+ SMESH_MEDSupport_i();
+ ~SMESH_MEDSupport_i();
};
#endif /* _MED_MEDSUPPORT_I_HXX_ */
<< ( HasRefPoint ? RefPoint.x : 0 ) << ", "
<< ( HasRefPoint ? RefPoint.y : 0 ) << ", "
<< ( HasRefPoint ? RefPoint.z : 0 ) << " ), "
+ << MakeGroups << ", "
<< ElemType << " )";
}
return aGroups;
}
}
+//================================================================================
+/*!
+ \brief Creates a hole in a mesh by doubling the nodes of some particular elements
+ \param theNodes - identifiers of nodes to be doubled
+ \param theModifiedElems - identifiers of elements to be updated by the new (doubled)
+ nodes. If list of element identifiers is empty then nodes are doubled but
+ they not assigned to elements
+ \return TRUE if operation has been completed successfully, FALSE otherwise
+ \sa DoubleNode(), DoubleNodeGroup(), DoubleNodeGroups()
+*/
+//================================================================================
+
+CORBA::Boolean SMESH_MeshEditor_i::DoubleNodes( const SMESH::long_array& theNodes,
+ const SMESH::long_array& theModifiedElems )
+{
+ initData();
+
+ ::SMESH_MeshEditor aMeshEditor( myMesh );
+ list< int > aListOfNodes;
+ int i, n;
+ for ( i = 0, n = theNodes.length(); i < n; i++ )
+ aListOfNodes.push_back( theNodes[ i ] );
+
+ list< int > aListOfElems;
+ for ( i = 0, n = theModifiedElems.length(); i < n; i++ )
+ aListOfElems.push_back( theModifiedElems[ i ] );
+
+ bool aResult = aMeshEditor.DoubleNodes( aListOfNodes, aListOfElems );
+
+ storeResult( aMeshEditor) ;
+
+ return aResult;
+}
+
+//================================================================================
+/*!
+ \brief Creates a hole in a mesh by doubling the nodes of some particular elements
+ This method provided for convenience works as DoubleNodes() described above.
+ \param theNodeId - identifier of node to be doubled.
+ \param theModifiedElems - identifiers of elements to be updated.
+ \return TRUE if operation has been completed successfully, FALSE otherwise
+ \sa DoubleNodes(), DoubleNodeGroup(), DoubleNodeGroups()
+*/
+//================================================================================
+
+CORBA::Boolean SMESH_MeshEditor_i::DoubleNode( CORBA::Long theNodeId,
+ const SMESH::long_array& theModifiedElems )
+{
+ SMESH::long_array_var aNodes = new SMESH::long_array;
+ aNodes->length( 1 );
+ aNodes[ 0 ] = theNodeId;
+ return DoubleNodes( aNodes, theModifiedElems );
+}
+
+//================================================================================
+/*!
+ \brief Creates a hole in a mesh by doubling the nodes of some particular elements
+ This method provided for convenience works as DoubleNodes() described above.
+ \param theNodes - group of nodes to be doubled.
+ \param theModifiedElems - group of elements to be updated.
+ \return TRUE if operation has been completed successfully, FALSE otherwise
+ \sa DoubleNode(), DoubleNodes(), DoubleNodeGroups()
+*/
+//================================================================================
+
+CORBA::Boolean SMESH_MeshEditor_i::DoubleNodeGroup(
+ SMESH::SMESH_GroupBase_ptr theNodes,
+ SMESH::SMESH_GroupBase_ptr theModifiedElems )
+{
+ if ( CORBA::is_nil( theNodes ) && theNodes->GetType() != SMESH::NODE )
+ return false;
+
+ SMESH::long_array_var aNodes = theNodes->GetListOfID();
+ SMESH::long_array_var aModifiedElems;
+ if ( !CORBA::is_nil( theModifiedElems ) )
+ aModifiedElems = theModifiedElems->GetListOfID();
+ else
+ {
+ aModifiedElems = new SMESH::long_array;
+ aModifiedElems->length( 0 );
+ }
+
+ return DoubleNodes( aNodes, aModifiedElems );
+}
+
+//================================================================================
+/*!
+ \brief Creates a hole in a mesh by doubling the nodes of some particular elements
+ This method provided for convenience works as DoubleNodes() described above.
+ \param theNodes - list of groups of nodes to be doubled
+ \param theModifiedElems - list of groups of elements to be updated.
+ \return TRUE if operation has been completed successfully, FALSE otherwise
+ \sa DoubleNode(), DoubleNodeGroup(), DoubleNodes()
+*/
+//================================================================================
+
+CORBA::Boolean SMESH_MeshEditor_i::DoubleNodeGroups(
+ const SMESH::ListOfGroups& theNodes,
+ const SMESH::ListOfGroups& theModifiedElems )
+{
+ initData();
+
+ ::SMESH_MeshEditor aMeshEditor( myMesh );
+
+ std::list< int > aNodes;
+ int i, n, j, m;
+ for ( i = 0, n = theNodes.length(); i < n; i++ )
+ {
+ SMESH::SMESH_GroupBase_var aGrp = theNodes[ i ];
+ if ( !CORBA::is_nil( aGrp ) && aGrp->GetType() == SMESH::NODE )
+ {
+ SMESH::long_array_var aCurr = aGrp->GetListOfID();
+ for ( j = 0, m = aCurr->length(); j < m; j++ )
+ aNodes.push_back( aCurr[ j ] );
+ }
+ }
+
+ std::list< int > anElems;
+ for ( i = 0, n = theModifiedElems.length(); i < n; i++ )
+ {
+ SMESH::SMESH_GroupBase_var aGrp = theModifiedElems[ i ];
+ if ( !CORBA::is_nil( aGrp ) && aGrp->GetType() != SMESH::NODE )
+ {
+ SMESH::long_array_var aCurr = aGrp->GetListOfID();
+ for ( j = 0, m = aCurr->length(); j < m; j++ )
+ anElems.push_back( aCurr[ j ] );
+ }
+ }
+
+ bool aResult = aMeshEditor.DoubleNodes( aNodes, anElems );
+
+ storeResult( aMeshEditor) ;
+
+ return aResult;
+}
+
//================================================================================
/*!
\brief Creates a hole in a mesh by doubling the nodes of some particular elements
*/
//================================================================================
-CORBA::Boolean SMESH_MeshEditor_i::DoubleNodes( const SMESH::long_array& theElems,
- const SMESH::long_array& theNodesNot,
- const SMESH::long_array& theAffectedElems )
+CORBA::Boolean SMESH_MeshEditor_i::DoubleNodeElem( const SMESH::long_array& theElems,
+ const SMESH::long_array& theNodesNot,
+ const SMESH::long_array& theAffectedElems )
{
initData();
*/
//================================================================================
-CORBA::Boolean SMESH_MeshEditor_i::DoubleNodesInRegion
+CORBA::Boolean SMESH_MeshEditor_i::DoubleNodeElemInRegion
( const SMESH::long_array& theElems,
const SMESH::long_array& theNodesNot,
GEOM::GEOM_Object_ptr theShape )
arrayToSet( anIDs, theMeshDS, theElemSet, theType);
}
-CORBA::Boolean SMESH_MeshEditor_i::DoubleNodeGroup(
- SMESH::SMESH_GroupBase_ptr theElems,
- SMESH::SMESH_GroupBase_ptr theNodesNot,
- SMESH::SMESH_GroupBase_ptr theAffectedElems )
+CORBA::Boolean SMESH_MeshEditor_i::DoubleNodeElemGroup(
+ SMESH::SMESH_GroupBase_ptr theElems,
+ SMESH::SMESH_GroupBase_ptr theNodesNot,
+ SMESH::SMESH_GroupBase_ptr theAffectedElems )
{
if ( CORBA::is_nil( theElems ) && theElems->GetType() == SMESH::NODE )
*/
//================================================================================
-CORBA::Boolean SMESH_MeshEditor_i::DoubleNodeGroupInRegion(
- SMESH::SMESH_GroupBase_ptr theElems,
- SMESH::SMESH_GroupBase_ptr theNodesNot,
- GEOM::GEOM_Object_ptr theShape )
+CORBA::Boolean SMESH_MeshEditor_i::DoubleNodeElemGroupInRegion(
+ SMESH::SMESH_GroupBase_ptr theElems,
+ SMESH::SMESH_GroupBase_ptr theNodesNot,
+ GEOM::GEOM_Object_ptr theShape )
{
if ( CORBA::is_nil( theElems ) && theElems->GetType() == SMESH::NODE )
}
}
-CORBA::Boolean SMESH_MeshEditor_i::DoubleNodeGroups(
- const SMESH::ListOfGroups& theElems,
- const SMESH::ListOfGroups& theNodesNot,
- const SMESH::ListOfGroups& theAffectedElems )
+CORBA::Boolean SMESH_MeshEditor_i::DoubleNodeElemGroups(
+ const SMESH::ListOfGroups& theElems,
+ const SMESH::ListOfGroups& theNodesNot,
+ const SMESH::ListOfGroups& theAffectedElems )
{
initData();
*/
//================================================================================
-CORBA::Boolean SMESH_MeshEditor_i::DoubleNodeGroupsInRegion(
- const SMESH::ListOfGroups& theElems,
- const SMESH::ListOfGroups& theNodesNot,
- GEOM::GEOM_Object_ptr theShape )
+CORBA::Boolean SMESH_MeshEditor_i::DoubleNodeElemGroupsInRegion(
+ const SMESH::ListOfGroups& theElems,
+ const SMESH::ListOfGroups& theNodesNot,
+ GEOM::GEOM_Object_ptr theShape )
{
initData();
*/
int GetMeshId() const { return myMesh->GetId(); }
+ CORBA::Boolean DoubleNodes( const SMESH::long_array& theNodes,
+ const SMESH::long_array& theModifiedElems );
+
+ CORBA::Boolean DoubleNode( CORBA::Long theNodeId,
+ const SMESH::long_array& theModifiedElems );
+
+ CORBA::Boolean DoubleNodeGroup( SMESH::SMESH_GroupBase_ptr theNodes,
+ SMESH::SMESH_GroupBase_ptr theModifiedElems );
+
+ CORBA::Boolean DoubleNodeGroups( const SMESH::ListOfGroups& theNodes,
+ const SMESH::ListOfGroups& theModifiedElems);
/*!
* \brief Creates a hole in a mesh by doubling the nodes of some particular elements
* \return TRUE if operation has been completed successfully, FALSE otherwise
* \sa DoubleNodeGroup(), DoubleNodeGroups()
*/
- CORBA::Boolean DoubleNodes( const SMESH::long_array& theElems,
- const SMESH::long_array& theNodesNot,
- const SMESH::long_array& theAffectedElems );
+ CORBA::Boolean DoubleNodeElem( const SMESH::long_array& theElems,
+ const SMESH::long_array& theNodesNot,
+ const SMESH::long_array& theAffectedElems );
/*!
* \brief Creates a hole in a mesh by doubling the nodes of some particular elements
* \return TRUE if operation has been completed successfully, FALSE otherwise
* \sa DoubleNodeGroupInRegion(), DoubleNodeGroupsInRegion()
*/
- CORBA::Boolean DoubleNodesInRegion( const SMESH::long_array& theElems,
- const SMESH::long_array& theNodesNot,
- GEOM::GEOM_Object_ptr theShape );
+ CORBA::Boolean DoubleNodeElemInRegion( const SMESH::long_array& theElems,
+ const SMESH::long_array& theNodesNot,
+ GEOM::GEOM_Object_ptr theShape );
/*!
* \brief Creates a hole in a mesh by doubling the nodes of some particular elements
* \return TRUE if operation has been completed successfully, FALSE otherwise
* \sa DoubleNodes(), DoubleNodeGroups()
*/
- CORBA::Boolean DoubleNodeGroup( SMESH::SMESH_GroupBase_ptr theElems,
- SMESH::SMESH_GroupBase_ptr theNodesNot,
- SMESH::SMESH_GroupBase_ptr theAffectedElems );
-
+ CORBA::Boolean DoubleNodeElemGroup( SMESH::SMESH_GroupBase_ptr theElems,
+ SMESH::SMESH_GroupBase_ptr theNodesNot,
+ SMESH::SMESH_GroupBase_ptr theAffectedElems );
+
/*!
* \brief Creates a hole in a mesh by doubling the nodes of some particular elements
* \param theElems - group of of elements (edges or faces) to be replicated
* \return TRUE if operation has been completed successfully, FALSE otherwise
* \sa DoubleNodesInRegion(), DoubleNodeGroupsInRegion()
*/
- CORBA::Boolean DoubleNodeGroupInRegion( SMESH::SMESH_GroupBase_ptr theElems,
- SMESH::SMESH_GroupBase_ptr theNodesNot,
- GEOM::GEOM_Object_ptr theShape );
+ CORBA::Boolean DoubleNodeElemGroupInRegion( SMESH::SMESH_GroupBase_ptr theElems,
+ SMESH::SMESH_GroupBase_ptr theNodesNot,
+ GEOM::GEOM_Object_ptr theShape );
/*!
* \brief Creates a hole in a mesh by doubling the nodes of some particular elements
* \return TRUE if operation has been completed successfully, FALSE otherwise
* \sa DoubleNodeGroup(), DoubleNodes()
*/
- CORBA::Boolean DoubleNodeGroups( const SMESH::ListOfGroups& theElems,
- const SMESH::ListOfGroups& theNodesNot,
- const SMESH::ListOfGroups& theAffectedElems );
+ CORBA::Boolean DoubleNodeElemGroups( const SMESH::ListOfGroups& theElems,
+ const SMESH::ListOfGroups& theNodesNot,
+ const SMESH::ListOfGroups& theAffectedElems );
/*!
* \return TRUE if operation has been completed successfully, FALSE otherwise
* \sa DoubleNodeGroupInRegion(), DoubleNodesInRegion()
*/
- CORBA::Boolean DoubleNodeGroupsInRegion( const SMESH::ListOfGroups& theElems,
- const SMESH::ListOfGroups& theNodesNot,
- GEOM::GEOM_Object_ptr theShape );
+ CORBA::Boolean DoubleNodeElemGroupsInRegion( const SMESH::ListOfGroups& theElems,
+ const SMESH::ListOfGroups& theNodesNot,
+ GEOM::GEOM_Object_ptr theShape );
/*!
* \brief Generated skin mesh (containing 2D cells) from 3D mesh
*/
//=============================================================================
-SMESH_Hypothesis::Hypothesis_Status SMESH_Mesh_i::removeHypothesis(GEOM::GEOM_Object_ptr aSubShapeObject,
- SMESH::SMESH_Hypothesis_ptr anHyp)
+SMESH_Hypothesis::Hypothesis_Status
+SMESH_Mesh_i::removeHypothesis(GEOM::GEOM_Object_ptr aSubShapeObject,
+ SMESH::SMESH_Hypothesis_ptr anHyp)
{
- if(MYDEBUG) MESSAGE("removeHypothesis()");
- // **** proposer liste de subShape (selection multiple)
+ if(MYDEBUG) MESSAGE("removeHypothesis()");
+ // **** proposer liste de subShape (selection multiple)
- if (CORBA::is_nil(aSubShapeObject) && HasShapeToMesh())
- THROW_SALOME_CORBA_EXCEPTION("bad subShape reference",
- SALOME::BAD_PARAM);
+ if (CORBA::is_nil(aSubShapeObject) && HasShapeToMesh())
+ THROW_SALOME_CORBA_EXCEPTION("bad subShape reference", SALOME::BAD_PARAM);
- SMESH::SMESH_Hypothesis_var myHyp = SMESH::SMESH_Hypothesis::_narrow(anHyp);
- if (CORBA::is_nil(myHyp))
- THROW_SALOME_CORBA_EXCEPTION("bad hypothesis reference",
- SALOME::BAD_PARAM);
+ SMESH::SMESH_Hypothesis_var myHyp = SMESH::SMESH_Hypothesis::_narrow(anHyp);
+ if (CORBA::is_nil(myHyp))
+ THROW_SALOME_CORBA_EXCEPTION("bad hypothesis reference", SALOME::BAD_PARAM);
- SMESH_Hypothesis::Hypothesis_Status status = SMESH_Hypothesis::HYP_OK;
- try
- {
- TopoDS_Shape myLocSubShape;
- //use PseudoShape in case if mesh has no shape
- if(HasShapeToMesh())
- myLocSubShape = _gen_i->GeomObjectToShape( aSubShapeObject);
- else
- myLocSubShape = _impl->GetShapeToMesh();
-
- int hypId = myHyp->GetId();
- status = _impl->RemoveHypothesis(myLocSubShape, hypId);
- if ( !SMESH_Hypothesis::IsStatusFatal(status) )
- _mapHypo.erase( hypId );
- }
- catch(SALOME_Exception & S_ex)
- {
- THROW_SALOME_CORBA_EXCEPTION(S_ex.what(), SALOME::BAD_PARAM);
- }
- return status;
+ SMESH_Hypothesis::Hypothesis_Status status = SMESH_Hypothesis::HYP_OK;
+ try
+ {
+ TopoDS_Shape myLocSubShape;
+ //use PseudoShape in case if mesh has no shape
+ if(HasShapeToMesh())
+ myLocSubShape = _gen_i->GeomObjectToShape( aSubShapeObject);
+ else
+ myLocSubShape = _impl->GetShapeToMesh();
+
+ int hypId = myHyp->GetId();
+ status = _impl->RemoveHypothesis(myLocSubShape, hypId);
+// if ( !SMESH_Hypothesis::IsStatusFatal(status) ) EAP: hyp can be used on many subshapes
+// _mapHypo.erase( hypId );
+ }
+ catch(SALOME_Exception & S_ex)
+ {
+ THROW_SALOME_CORBA_EXCEPTION(S_ex.what(), SALOME::BAD_PARAM);
+ }
+ return status;
}
//=============================================================================
Unexpect aCatch(SALOME_SalomeException);
if (MYDEBUG) MESSAGE("GetHypothesisList");
if (_impl->HasShapeToMesh() && CORBA::is_nil(aSubShapeObject))
- THROW_SALOME_CORBA_EXCEPTION("bad subShape reference",
- SALOME::BAD_PARAM);
+ THROW_SALOME_CORBA_EXCEPTION("bad subShape reference", SALOME::BAD_PARAM);
SMESH::ListOfHypothesis_var aList = new SMESH::ListOfHypothesis();
if ( anSO->FindSubObject( aTag, anObj ) && anObj->ReferencedObject( aRef ) )
aSubShapeObject = GEOM::GEOM_Object::_narrow( aRef->GetObject() );
+// if ( aSubShapeObject->_is_nil() ) // not published shape (IPAL13617)
+// aSubShapeObject = theSubMesh->GetSubShape();
+
aStudy->NewBuilder()->RemoveObjectWithChildren( anSO );
// Update Python script
GEOM::GEOM_Object_ptr theSubShapeObject )
{
MESSAGE("SMESH_Mesh_i::removeSubMesh()");
- if ( theSubMesh->_is_nil() || theSubShapeObject->_is_nil() )
+ if ( theSubMesh->_is_nil() /*|| theSubShapeObject->_is_nil()*/ )
return;
- try {
- SMESH::ListOfHypothesis_var aHypList = GetHypothesisList( theSubShapeObject );
- for ( int i = 0, n = aHypList->length(); i < n; i++ ) {
- removeHypothesis( theSubShapeObject, aHypList[i] );
+ if ( theSubShapeObject->_is_nil() ) // not published shape (IPAL13617)
+ {
+ CORBA::Long shapeId = theSubMesh->GetId();
+ if ( _mapSubMesh.find( shapeId ) != _mapSubMesh.end())
+ {
+ TopoDS_Shape S = _mapSubMesh[ shapeId ]->GetSubShape();
+ if ( !S.IsNull() )
+ {
+ list<const SMESHDS_Hypothesis*> hyps = _impl->GetHypothesisList( S );
+ list<const SMESHDS_Hypothesis*>::const_iterator hyp = hyps.begin();
+ for ( ; hyp != hyps.end(); ++hyp )
+ _impl->RemoveHypothesis(S, (*hyp)->GetID());
+ }
}
}
- catch( const SALOME::SALOME_Exception& ) {
- INFOS("SMESH_Mesh_i::removeSubMesh(): exception caught!");
+ else
+ {
+ try {
+ SMESH::ListOfHypothesis_var aHypList = GetHypothesisList( theSubShapeObject );
+ for ( int i = 0, n = aHypList->length(); i < n; i++ ) {
+ removeHypothesis( theSubShapeObject, aHypList[i] );
+ }
+ }
+ catch( const SALOME::SALOME_Exception& ) {
+ INFOS("SMESH_Mesh_i::removeSubMesh(): exception caught!");
+ }
+ removeGeomGroupData( theSubShapeObject );
}
- removeGeomGroupData( theSubShapeObject );
-
int subMeshId = theSubMesh->GetId();
_mapSubMesh.erase(subMeshId);
void SMESH_Mesh_i::ClearLog() throw(SALOME::SALOME_Exception)
{
if(MYDEBUG) MESSAGE("SMESH_Mesh_i::ClearLog");
- // ****
+ _impl->ClearLog();
}
//=============================================================================
TMeshEditorMap::const_iterator meIt = myMeshEditors.find(aObject);
if(meIt != myMeshEditors.end()) {
TCollection_AsciiString aMesh = (*meIt).second;
- it = _objectMap.find(aMesh);
+ it = _objectMap.find(aMesh);
}
}
if(it == _objectMap.end()) { // additional check for pattern mapping
if(aMethod.IsEqual("ApplyToMeshFaces") ||
- aMethod.IsEqual("ApplyToHexahedrons"))
- it = _objectMap.find(aCmd->GetArg(1));
+ aMethod.IsEqual("ApplyToHexahedrons"))
+ it = _objectMap.find(aCmd->GetArg(1));
}
if(it != _objectMap.end()) {
if(MYDEBUG)
- cout << "Found object : " << (*it).first << endl;
+ cout << "Found object : " << (*it).first << endl;
ObjectStates *aStates = (*it).second;
// Case for LocalLength hypothesis
if(aStates->GetObjectType().IsEqual("LocalLength") && aStates->GetCurrectState().size() >= 2) {
}
else if(aStates->GetObjectType().IsEqual("Mesh")) {
- TState aCurrentState = aStates->GetCurrectState();
+ TState aCurrentState = aStates->GetCurrectState();
int aCurrentStateSize = aCurrentState.size();
- if(aMethod.IsEqual("Translate") ||
+ if(aMethod.IsEqual("Translate") ||
aMethod.IsEqual("TranslateMakeGroups") ||
aMethod.IsEqual("TranslateMakeMesh") ||
aMethod.IsEqual("TranslateObject") ||
}
}
if(anArgIndex > 0) {
- if(aCurrentStateSize == 3) { // translation by dx, dy, dz
- for(int j = 0; j < aCurrentStateSize; j++) {
- if(!aCurrentState.at(j).IsEmpty()) {
- isVariableFound = true;
- aCmd->SetArg(anArgIndex+j, aCurrentState.at(j));
- }
- }
- }
- else if(aCurrentStateSize == 6) { // translation by x1, x2, y1, y2, z1, z2
- // TODO: limitation until operations on the variables will be introduced
- /*
- isVariableFound = true;
- for(int j = 0; j < 3; j++) {
- TCollection_AsciiString anArg = aCmd->GetArg(anArgIndex+j);
- TCollection_AsciiString aValue1 = aCurrentState.at(2*j), aValue2 = aCurrentState.at(2*j+1);
- bool aV1 = !aValue1.IsEmpty();
- bool aV2 = !aValue2.IsEmpty();
- double aValue, aCurrentValue = anArg.IsRealValue() ? anArg.RealValue() : 0;
- if(aV1 && !aV2) {
- if(!GetReal(aValue1, aValue))
- aValue = 0;
- aValue2 = TCollection_AsciiString( aValue + aCurrentValue );
- }
- else if(!aV1 && aV2) {
- if(!GetReal(aValue2, aValue))
- aValue = 0;
- aValue1 = TCollection_AsciiString( aValue - aCurrentValue );
- }
- else if(!aV1 && !aV2) {
- aValue1 = TCollection_AsciiString( 0 );
- aValue2 = TCollection_AsciiString( aCurrentValue );
- }
- aCmd->SetArg(anArgIndex+j, aValue1 + ", " + aValue2 );
- }
- */
- }
+ if(aCurrentStateSize == 3) { // translation by dx, dy, dz
+ for(int j = 0; j < aCurrentStateSize; j++) {
+ if(!aCurrentState.at(j).IsEmpty()) {
+ isVariableFound = true;
+ aCmd->SetArg(anArgIndex+j, aCurrentState.at(j));
+ }
+ }
+ }
+ else if(aCurrentStateSize == 6) { // translation by x1, x2, y1, y2, z1, z2
+ // TODO: limitation until operations on the variables will be introduced
+ /*
+ isVariableFound = true;
+ for(int j = 0; j < 3; j++) {
+ TCollection_AsciiString anArg = aCmd->GetArg(anArgIndex+j);
+ TCollection_AsciiString aValue1 = aCurrentState.at(2*j), aValue2 = aCurrentState.at(2*j+1);
+ bool aV1 = !aValue1.IsEmpty();
+ bool aV2 = !aValue2.IsEmpty();
+ double aValue, aCurrentValue = anArg.IsRealValue() ? anArg.RealValue() : 0;
+ if(aV1 && !aV2) {
+ if(!GetReal(aValue1, aValue))
+ aValue = 0;
+ aValue2 = TCollection_AsciiString( aValue + aCurrentValue );
+ }
+ else if(!aV1 && aV2) {
+ if(!GetReal(aValue2, aValue))
+ aValue = 0;
+ aValue1 = TCollection_AsciiString( aValue - aCurrentValue );
+ }
+ else if(!aV1 && !aV2) {
+ aValue1 = TCollection_AsciiString( 0 );
+ aValue2 = TCollection_AsciiString( aCurrentValue );
+ }
+ aCmd->SetArg(anArgIndex+j, aValue1 + ", " + aValue2 );
+ }
+ */
+ }
}
if(isVariableFound) {
TCollection_AsciiString aDim;
- if(aCurrentStateSize == 6)
- aDim = "6";
+ if(aCurrentStateSize == 6)
+ aDim = "6";
aCmd->SetArg(anArgIndex - 1, TCollection_AsciiString(SMESH_2smeshpy::SmeshpyName())+".PointStructStr"+aDim);
aCmd->SetArg(anArgIndex - 2, TCollection_AsciiString(SMESH_2smeshpy::SmeshpyName())+".DirStructStr");
}
aStates->IncrementState();
}
- else if(aMethod.IsEqual("Rotate") ||
- aMethod.IsEqual("RotateMakeGroups") ||
- aMethod.IsEqual("RotateMakeMesh") ||
+ else if(aMethod.IsEqual("Rotate") ||
+ aMethod.IsEqual("RotateMakeGroups") ||
+ aMethod.IsEqual("RotateMakeMesh") ||
aMethod.IsEqual("RotateObject") ||
aMethod.IsEqual("RotateObjectMakeGroups") ||
aMethod.IsEqual("RotateObjectMakeMesh") ||
- aMethod.IsEqual("RotationSweep") ||
- aMethod.IsEqual("RotationSweepObject") ||
- aMethod.IsEqual("RotationSweepObject1D") ||
- aMethod.IsEqual("RotationSweepObject2D") ||
- aMethod.IsEqual("RotationSweepMakeGroups") ||
- aMethod.IsEqual("RotationSweepObjectMakeGroups") ||
- aMethod.IsEqual("RotationSweepObject1DMakeGroups") ||
- aMethod.IsEqual("RotationSweepObject2DMakeGroups") ||
- aMethod.IsEqual("Mirror") ||
- aMethod.IsEqual("MirrorMakeMesh") ||
+ aMethod.IsEqual("RotationSweep") ||
+ aMethod.IsEqual("RotationSweepObject") ||
+ aMethod.IsEqual("RotationSweepObject1D") ||
+ aMethod.IsEqual("RotationSweepObject2D") ||
+ aMethod.IsEqual("RotationSweepMakeGroups") ||
+ aMethod.IsEqual("RotationSweepObjectMakeGroups") ||
+ aMethod.IsEqual("RotationSweepObject1DMakeGroups") ||
+ aMethod.IsEqual("RotationSweepObject2DMakeGroups") ||
+ aMethod.IsEqual("Mirror") ||
+ aMethod.IsEqual("MirrorMakeMesh") ||
aMethod.IsEqual("MirrorMakeGroups") ||
aMethod.IsEqual("MirrorObject") ||
aMethod.IsEqual("MirrorObjectMakeMesh") ||
aMethod.IsEqual("MirrorObjectMakeGroups")) {
- bool isSubstitute = false;
- int anArgIndex = 0;
- for(int i = 1, n = aCmd->GetNbArgs(); i <= n; i++) {
- if(aCmd->GetArg(i).IsEqual("SMESH.AxisStruct")) {
- anArgIndex = i+1;
- break;
- }
- }
- if(anArgIndex > 0) {
- for(int j = 0; j < aCurrentStateSize; j++) {
- if(!aCurrentState.at(j).IsEmpty()) {
- if(j < 6) // 0-5 - axis struct, 6 - angle (rotation & sweep), 7-8 - nbSteps and tolerance (sweep)
- isSubstitute = true;
- aCmd->SetArg(anArgIndex+j, aCurrentState.at(j));
- }
- }
- }
- if(isSubstitute)
- aCmd->SetArg(anArgIndex - 1, TCollection_AsciiString(SMESH_2smeshpy::SmeshpyName())+".AxisStructStr");
- aStates->IncrementState();
- }
- else if(aMethod.IsEqual("AddNode") ||
- aMethod.IsEqual("MoveClosestNodeToPoint")) {
- for(int j = 0; j < aCurrentStateSize; j++) {
- if(!aCurrentState.at(j).IsEmpty())
- aCmd->SetArg(j+1, aCurrentState.at(j));
- }
- aStates->IncrementState();
- }
- else if(aMethod.IsEqual("MoveNode")) {
- for(int j = 0; j < aCurrentStateSize; j++) {
- if(!aCurrentState.at(j).IsEmpty())
- aCmd->SetArg(j+2, aCurrentState.at(j));
- }
- aStates->IncrementState();
- }
- else if(aMethod.IsEqual("ExtrusionSweep") ||
- aMethod.IsEqual("ExtrusionSweepObject") ||
- aMethod.IsEqual("ExtrusionSweepObject1D") ||
- aMethod.IsEqual("ExtrusionSweepObject2D") ||
- aMethod.IsEqual("ExtrusionSweepMakeGroups") ||
- aMethod.IsEqual("ExtrusionSweepObjectMakeGroups") ||
- aMethod.IsEqual("ExtrusionSweepObject1DMakeGroups") ||
- aMethod.IsEqual("ExtrusionSweepObject2DMakeGroups")) {
- bool isSubstitute = false;
- int anArgIndex = 0;
- for(int i = 1, n = aCmd->GetNbArgs(); i <= n; i++) {
- if(aCmd->GetArg(i).IsEqual("SMESH.PointStruct")) {
- anArgIndex = i+1;
- break;
- }
- }
- if(anArgIndex > 0) {
- for(int j = 0; j < aCurrentStateSize; j++) {
- if(!aCurrentState.at(j).IsEmpty()) {
- if(j < 3) // 0-2 - dir struct, 3 - number of steps
- isSubstitute = true;
- aCmd->SetArg(anArgIndex+j, aCurrentState.at(j));
- }
- }
- }
- if(isSubstitute) {
+ bool isSubstitute = false;
+ int anArgIndex = 0;
+ for(int i = 1, n = aCmd->GetNbArgs(); i <= n; i++) {
+ if(aCmd->GetArg(i).IsEqual("SMESH.AxisStruct")) {
+ anArgIndex = i+1;
+ break;
+ }
+ }
+ if(anArgIndex > 0) {
+ for(int j = 0; j < aCurrentStateSize; j++) {
+ if(!aCurrentState.at(j).IsEmpty()) {
+ if(j < 6) // 0-5 - axis struct, 6 - angle (rotation & sweep), 7-8 - nbSteps and tolerance (sweep)
+ isSubstitute = true;
+ aCmd->SetArg(anArgIndex+j, aCurrentState.at(j));
+ }
+ }
+ }
+ if(isSubstitute)
+ aCmd->SetArg(anArgIndex - 1, TCollection_AsciiString(SMESH_2smeshpy::SmeshpyName())+".AxisStructStr");
+ aStates->IncrementState();
+ }
+ else if(aMethod.IsEqual("AddNode") ||
+ aMethod.IsEqual("MoveClosestNodeToPoint")) {
+ for(int j = 0; j < aCurrentStateSize; j++) {
+ if(!aCurrentState.at(j).IsEmpty())
+ aCmd->SetArg(j+1, aCurrentState.at(j));
+ }
+ aStates->IncrementState();
+ }
+ else if(aMethod.IsEqual("MoveNode")) {
+ for(int j = 0; j < aCurrentStateSize; j++) {
+ if(!aCurrentState.at(j).IsEmpty())
+ aCmd->SetArg(j+2, aCurrentState.at(j));
+ }
+ aStates->IncrementState();
+ }
+ else if(aMethod.IsEqual("ExtrusionSweep") ||
+ aMethod.IsEqual("ExtrusionSweepObject") ||
+ aMethod.IsEqual("ExtrusionSweepObject1D") ||
+ aMethod.IsEqual("ExtrusionSweepObject2D") ||
+ aMethod.IsEqual("ExtrusionSweepMakeGroups") ||
+ aMethod.IsEqual("ExtrusionSweepObjectMakeGroups") ||
+ aMethod.IsEqual("ExtrusionSweepObject1DMakeGroups") ||
+ aMethod.IsEqual("ExtrusionSweepObject2DMakeGroups")) {
+ bool isSubstitute = false;
+ int anArgIndex = 0;
+ for(int i = 1, n = aCmd->GetNbArgs(); i <= n; i++) {
+ if(aCmd->GetArg(i).IsEqual("SMESH.PointStruct")) {
+ anArgIndex = i+1;
+ break;
+ }
+ }
+ if(anArgIndex > 0) {
+ for(int j = 0; j < aCurrentStateSize; j++) {
+ if(!aCurrentState.at(j).IsEmpty()) {
+ if(j < 3) // 0-2 - dir struct, 3 - number of steps
+ isSubstitute = true;
+ aCmd->SetArg(anArgIndex+j, aCurrentState.at(j));
+ }
+ }
+ }
+ if(isSubstitute) {
aCmd->SetArg(anArgIndex - 1, TCollection_AsciiString(SMESH_2smeshpy::SmeshpyName())+".PointStructStr");
aCmd->SetArg(anArgIndex - 2, TCollection_AsciiString(SMESH_2smeshpy::SmeshpyName())+".DirStructStr");
- }
- aStates->IncrementState();
- }
- else if(aMethod.IsEqual("ExtrusionAlongPath") ||
- aMethod.IsEqual("ExtrusionAlongPathObject") ||
- aMethod.IsEqual("ExtrusionAlongPathObject1D") ||
- aMethod.IsEqual("ExtrusionAlongPathObject2D") ||
- aMethod.IsEqual("ExtrusionAlongPathMakeGroups") ||
- aMethod.IsEqual("ExtrusionAlongPathObjectMakeGroups") ||
- aMethod.IsEqual("ExtrusionAlongPathObject1DMakeGroups") ||
- aMethod.IsEqual("ExtrusionAlongPathObject2DMakeGroups") ||
- /* workaround for a bug in the command parsing algorithm */
- aCmd->GetString().Search("ExtrusionAlongPathMakeGroups") != -1 ||
- aCmd->GetString().Search("ExtrusionAlongPathObjectMakeGroups") != -1 ||
- aCmd->GetString().Search("ExtrusionAlongPathObject1DMakeGroups") != -1 ||
- aCmd->GetString().Search("ExtrusionAlongPathObject2DMakeGroups") != -1 ) {
- int aNbAngles = aCurrentStateSize-3; // State looks like "Angle1:...:AngleN:X:Y:Z"
- bool isSubstitute = false;
- int anArgIndex = 0;
- for(int i = 1, n = aCmd->GetNbArgs(); i <= n; i++) {
- if(aCmd->GetArg(i).IsEqual("SMESH.PointStruct")) {
- anArgIndex = i-1-aNbAngles;
- break;
- }
- }
- if(anArgIndex > 0) {
- int j = 0;
- for(; j < aNbAngles; j++) {
- if(!aCurrentState.at(j).IsEmpty()) {
- aCmd->SetArg(anArgIndex+j-1, aCurrentState.at(j));
- }
- }
- for(; j < aNbAngles+3; j++) {
- if(!aCurrentState.at(j).IsEmpty()) {
- isSubstitute = true;
- aCmd->SetArg(anArgIndex+j+2, aCurrentState.at(j));
- }
- }
- }
- if(isSubstitute)
- aCmd->SetArg(anArgIndex + aNbAngles + 1,
- TCollection_AsciiString(SMESH_2smeshpy::SmeshpyName())+".PointStructStr");
- aStates->IncrementState();
- }
- else if(aMethod.IsEqual("TriToQuad") ||
- aMethod.IsEqual("Concatenate") ||
- aMethod.IsEqual("ConcatenateWithGroups")) {
- if(aCurrentStateSize && !aCurrentState.at(0).IsEmpty())
- aCmd->SetArg(aCmd->GetNbArgs(), aCurrentState.at(0));
- aStates->IncrementState();
- }
- else if(aMethod.IsEqual("Smooth") ||
- aMethod.IsEqual("SmoothObject") ||
- aMethod.IsEqual("SmoothParametric") ||
- aMethod.IsEqual("SmoothParametricObject")) {
- int anArgIndex = aCmd->GetNbArgs() - 2;
- for(int j = 0; j < aCurrentStateSize; j++) {
- if(!aCurrentState.at(j).IsEmpty())
- aCmd->SetArg(anArgIndex+j, aCurrentState.at(j));
- }
- aStates->IncrementState();
- }
- else if(aMethod.IsEqual("ApplyToMeshFaces") ||
- aMethod.IsEqual("ApplyToHexahedrons")) {
- int anArgIndex = aCmd->GetNbArgs()-1;
- for(int j = 0; j < aCurrentStateSize; j++)
- if(!aCurrentState.at(j).IsEmpty())
- aCmd->SetArg(anArgIndex+j, aCurrentState.at(j));
- aStates->IncrementState();
- }
+ }
+ aStates->IncrementState();
+ }
+ else if(aMethod.IsEqual("ExtrusionAlongPath") ||
+ aMethod.IsEqual("ExtrusionAlongPathObject") ||
+ aMethod.IsEqual("ExtrusionAlongPathObject1D") ||
+ aMethod.IsEqual("ExtrusionAlongPathObject2D") ||
+ aMethod.IsEqual("ExtrusionAlongPathMakeGroups") ||
+ aMethod.IsEqual("ExtrusionAlongPathObjectMakeGroups") ||
+ aMethod.IsEqual("ExtrusionAlongPathObject1DMakeGroups") ||
+ aMethod.IsEqual("ExtrusionAlongPathObject2DMakeGroups") ||
+ /* workaround for a bug in the command parsing algorithm */
+ aCmd->GetString().Search("ExtrusionAlongPathMakeGroups") != -1 ||
+ aCmd->GetString().Search("ExtrusionAlongPathObjectMakeGroups") != -1 ||
+ aCmd->GetString().Search("ExtrusionAlongPathObject1DMakeGroups") != -1 ||
+ aCmd->GetString().Search("ExtrusionAlongPathObject2DMakeGroups") != -1 ) {
+ int aNbAngles = aCurrentStateSize-3; // State looks like "Angle1:...:AngleN:X:Y:Z"
+ bool isSubstitute = false;
+ int anArgIndex = 0;
+ for(int i = 1, n = aCmd->GetNbArgs(); i <= n; i++) {
+ if(aCmd->GetArg(i).IsEqual("SMESH.PointStruct")) {
+ anArgIndex = i-1-aNbAngles;
+ break;
+ }
+ }
+ if(anArgIndex > 0) {
+ int j = 0;
+ for(; j < aNbAngles; j++) {
+ if(!aCurrentState.at(j).IsEmpty()) {
+ aCmd->SetArg(anArgIndex+j-1, aCurrentState.at(j));
+ }
+ }
+ for(; j < aNbAngles+3; j++) {
+ if(!aCurrentState.at(j).IsEmpty()) {
+ isSubstitute = true;
+ aCmd->SetArg(anArgIndex+j+2, aCurrentState.at(j));
+ }
+ }
+ }
+ if(isSubstitute)
+ aCmd->SetArg(anArgIndex + aNbAngles + 1,
+ TCollection_AsciiString(SMESH_2smeshpy::SmeshpyName())+".PointStructStr");
+ aStates->IncrementState();
+ }
+ else if(aMethod.IsEqual("TriToQuad") ||
+ aMethod.IsEqual("Concatenate") ||
+ aMethod.IsEqual("ConcatenateWithGroups")) {
+ if(aCurrentStateSize && !aCurrentState.at(0).IsEmpty())
+ aCmd->SetArg(aCmd->GetNbArgs(), aCurrentState.at(0));
+ aStates->IncrementState();
+ }
+ else if(aMethod.IsEqual("Smooth") ||
+ aMethod.IsEqual("SmoothObject") ||
+ aMethod.IsEqual("SmoothParametric") ||
+ aMethod.IsEqual("SmoothParametricObject")) {
+ int anArgIndex = aCmd->GetNbArgs() - 2;
+ for(int j = 0; j < aCurrentStateSize; j++) {
+ if(!aCurrentState.at(j).IsEmpty())
+ aCmd->SetArg(anArgIndex+j, aCurrentState.at(j));
+ }
+ aStates->IncrementState();
+ }
+ else if(aMethod.IsEqual("ApplyToMeshFaces") ||
+ aMethod.IsEqual("ApplyToHexahedrons")) {
+ int anArgIndex = aCmd->GetNbArgs()-1;
+ for(int j = 0; j < aCurrentStateSize; j++)
+ if(!aCurrentState.at(j).IsEmpty())
+ aCmd->SetArg(anArgIndex+j, aCurrentState.at(j));
+ aStates->IncrementState();
+ }
}
}
else {
if(MYDEBUG)
- cout << "Object not found" << endl;
+ cout << "Object not found" << endl;
}
if(MYDEBUG) {
cout<<"Command after: "<< aCmd->GetString()<<endl;
if ( aCommand->GetMethod() == "GetMeshEditor" ) { // MeshEditor creation
myMeshEditors.insert( make_pair( aCommand->GetResultValue(),
- aCommand->GetObject() ) );
+ aCommand->GetObject() ) );
}
}
return false;
// Update Python script
- TPythonDump() << "isDone = pattern.LoadFromFace( " << theMesh << ", "
+ TPythonDump() << "isDone = pattern.LoadFromFace( " << theMesh << ".GetMesh(), "
<< theFace << ", " << theProject << " )";
addErrorCode( "LoadFromFace" );
return false;
// Update Python script
- TPythonDump() << "isDone = pattern.LoadFrom3DBlock( " << theMesh << ", " << theBlock << " )";
+ TPythonDump() << "isDone = pattern.LoadFrom3DBlock( " << theMesh << ".GetMesh(), " << theBlock << " )";
addErrorCode( "LoadFrom3DBlock" );
return myPattern.Load( aMesh, TopoDS::Shell( exp.Current() ));
}
// Update Python script
- TPythonDump() << "pattern.ApplyToMeshFaces( " << theMesh << ", "
+ TPythonDump() << "pattern.ApplyToMeshFaces( " << theMesh << ".GetMesh(), "
<< theFacesIDs << ", "
<< theNodeIndexOnKeyPoint1 << ", " << theReverse << " )";
}
// Update Python script
- TPythonDump() << "pattern.ApplyToHexahedrons( " << theMesh << ", "
+ TPythonDump() << "pattern.ApplyToHexahedrons( " << theMesh << ".GetMesh(), "
<< theVolumesIDs << ", "
<< theNode000Index << ", " << theNode001Index << " )";
return false;
// Update Python script
- TPythonDump() << "isDone = pattern.MakeMesh( " << theMesh << ", "
+ TPythonDump() << "isDone = pattern.MakeMesh( " << theMesh << ".GetMesh(), "
<< CreatePolygons << ", " << CreatePolyedrs << " )";
addErrorCode( "MakeMesh" );
static TCollection_AsciiString
ConvertScript(const TCollection_AsciiString& theScript,
Resource_DataMapOfAsciiStringAsciiString& theEntry2AccessorMethod,
- Resource_DataMapOfAsciiStringAsciiString& theObjectNames);
+ Resource_DataMapOfAsciiStringAsciiString& theObjectNames);
/*!
* \brief Return the name of the python file wrapping IDL API
//=============================================================================
SMESH_subMesh_i::SMESH_subMesh_i( PortableServer::POA_ptr thePOA,
- SMESH_Gen_i* gen_i,
- SMESH_Mesh_i* mesh_i,
- int localId )
+ SMESH_Gen_i* gen_i,
+ SMESH_Mesh_i* mesh_i,
+ int localId )
: SALOME::GenericObj_i( thePOA )
{
MESSAGE("SMESH_subMesh_i::SMESH_subMesh_i");
TopoDS_Shape S = _mesh_i->_mapSubMesh[ _localId ]->GetSubShape();
if ( !S.IsNull() ) {
aShapeObj = _gen_i->ShapeToGeomObject( S );
- //mzn: N7PAL16232, N7PAL16233
- //In some cases it's possible that GEOM_Client contains the shape same to S, but
- //with another orientation.
- if (aShapeObj->_is_nil())
- aShapeObj = _gen_i->ShapeToGeomObject( S.Reversed() );
+ //mzn: N7PAL16232, N7PAL16233
+ //In some cases it's possible that GEOM_Client contains the shape same to S, but
+ //with another orientation.
+ if (aShapeObj->_is_nil())
+ aShapeObj = _gen_i->ShapeToGeomObject( S.Reversed() );
}
}
}
SMESH_subMesh_i();
SMESH_subMesh_i( PortableServer::POA_ptr thePOA,
SMESH_Gen_i* gen_i,
- SMESH_Mesh_i* mesh_i,
- int localId );
+ SMESH_Mesh_i* mesh_i,
+ int localId );
~SMESH_subMesh_i();
CORBA::Long GetNumberOfElements()
i2 = a.indexes[ii]
ii = ii+1
i3 = a.indexes[ii]
- #ii = ii+1
+ ii = ii+1
print "AddTriangle %i - %i %i %i" % (ind, i1, i2, i3)
noNETGENPlugin = 1
pass
+# import GHS3DPlugin module if possible
+noGHS3DPlugin = 0
+try:
+ import GHS3DPlugin
+except ImportError:
+ noGHS3DPlugin = 1
+ pass
+
+# import GHS3DPRLPlugin module if possible
+noGHS3DPRLPlugin = 0
+try:
+ import GHS3DPRLPlugin
+except ImportError:
+ noGHS3DPRLPlugin = 1
+ pass
+
+# import HexoticPlugin module if possible
+noHexoticPlugin = 0
+try:
+ import HexoticPlugin
+except ImportError:
+ noHexoticPlugin = 1
+ pass
+
+# import BLSURFPlugin module if possible
+noBLSURFPlugin = 0
+try:
+ import BLSURFPlugin
+except ImportError:
+ noBLSURFPlugin = 1
+ pass
+
## @addtogroup l1_auxiliary
## @{
Custom = 5
# Optimization level of GHS3D
+# V3.1
None_Optimization, Light_Optimization, Medium_Optimization, Strong_Optimization = 0,1,2,3
+# V4.1 (partialy redefines V3.1). Issue 0020574
+None_Optimization, Light_Optimization, Standard_Optimization, StandardPlus_Optimization, Strong_Optimization = 0,1,2,3,4
# Topology treatment way of BLSURF
FromCAD, PreProcess, PreProcessPlus = 0,1,2
print hypName, "was not assigned to",geomName,":", reason
pass
+## Check meshing plugin availability
+def CheckPlugin(plugin):
+ if plugin == NETGEN and noNETGENPlugin:
+ print "Warning: NETGENPlugin module unavailable"
+ return False
+ elif plugin == GHS3D and noGHS3DPlugin:
+ print "Warning: GHS3DPlugin module unavailable"
+ return False
+ elif plugin == GHS3DPRL and noGHS3DPRLPlugin:
+ print "Warning: GHS3DPRLPlugin module unavailable"
+ return False
+ elif plugin == Hexotic and noHexoticPlugin:
+ print "Warning: HexoticPlugin module unavailable"
+ return False
+ elif plugin == BLSURF and noBLSURFPlugin:
+ print "Warning: BLSURFPlugin module unavailable"
+ return False
+ return True
+
# end of l1_auxiliary
## @}
print "Error: given parameter is not numerucal functor type."
## Creates hypothesis
- # @param
- # @param
+ # @param theHType mesh hypothesis type (string)
+ # @param theLibName mesh plug-in library name
# @return created hypothesis instance
def CreateHypothesis(self, theHType, theLibName="libStdMeshersEngine.so"):
return SMESH._objref_SMESH_Gen.CreateHypothesis(self, theHType, theLibName )
+ ## Gets the mesh stattistic
+ # @return dictionary type element - count of elements
+ # @ingroup l1_meshinfo
+ def GetMeshInfo(self, obj):
+ if isinstance( obj, Mesh ):
+ obj = obj.GetMesh()
+ d = {}
+ if hasattr(obj, "_narrow") and obj._narrow(SMESH.SMESH_IDSource):
+ values = obj.GetMeshInfo()
+ for i in range(SMESH.Entity_Last._v):
+ if i < len(values): d[SMESH.EntityType._item(i)]=values[i]
+ pass
+ return d
+
import omniORB
#Registering the new proxy for SMESH_Gen
omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshDC)
# Exports the mesh in a file in MED format and chooses the \a version of MED format
# @param f the file name
# @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
+ # @param opt boolean parameter for creating/not creating
+ # the groups Group_On_All_Nodes, Group_On_All_Faces, ...
# @ingroup l2_impexp
def ExportToMED(self, f, version, opt=0):
self.mesh.ExportToMED(f, opt, version)
elif tgeo == "SHELL":
typ = VOLUME
elif tgeo == "COMPOUND":
- if len( self.geompyD.GetObjectIDs( grp )) == 0:
- print "Mesh.Group: empty geometric group", GetName( grp )
- return 0
- tgeo = self.geompyD.GetType(grp)
- if tgeo == geompyDC.ShapeType["VERTEX"]:
- typ = NODE
- elif tgeo == geompyDC.ShapeType["EDGE"]:
- typ = EDGE
- elif tgeo == geompyDC.ShapeType["FACE"]:
- typ = FACE
- elif tgeo == geompyDC.ShapeType["SOLID"]:
- typ = VOLUME
-
+ try: # it raises on a compound of compounds
+ if len( self.geompyD.GetObjectIDs( grp )) == 0:
+ print "Mesh.Group: empty geometric group", GetName( grp )
+ return 0
+ pass
+ except:
+ pass
+ if grp.GetType() == 37: # GEOMImpl_Types.hxx: #define GEOM_GROUP 37
+ # group
+ tgeo = self.geompyD.GetType(grp)
+ if tgeo == geompyDC.ShapeType["VERTEX"]:
+ typ = NODE
+ elif tgeo == geompyDC.ShapeType["EDGE"]:
+ typ = EDGE
+ elif tgeo == geompyDC.ShapeType["FACE"]:
+ typ = FACE
+ elif tgeo == geompyDC.ShapeType["SOLID"]:
+ typ = VOLUME
+ pass
+ pass
+ else:
+ # just a compound
+ for elemType, shapeType in [[VOLUME,"SOLID"],[FACE,"FACE"],
+ [EDGE,"EDGE"],[NODE,"VERTEX"]]:
+ if self.geompyD.SubShapeAll(grp,geompyDC.ShapeType[shapeType]):
+ typ = elemType
+ break
+ pass
+ pass
+ pass
+ pass
if typ == None:
print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid"
return 0
# @ingroup l1_meshinfo
def GetMeshInfo(self, obj = None):
if not obj: obj = self.mesh
- d = {}
- if hasattr(obj, "_narrow") and obj._narrow(SMESH.SMESH_IDSource):
- values = obj.GetMeshInfo()
- for i in range(SMESH.Entity_Last._v):
- if i < len(values): d[SMESH.EntityType._item(i)]=values[i]
- pass
- return d
+ return self.smeshpyD.GetMeshInfo(obj)
## Returns the number of nodes in the mesh
# @return an integer value
# @param x the X coordinate of a point
# @param y the Y coordinate of a point
# @param z the Z coordinate of a point
+ # @param NodeID if specified (>0), the node with this ID is moved,
+ # otherwise, the node closest to point (@a x,@a y,@a z) is moved
# @return the ID of a node
# @ingroup l2_modif_throughp
def MoveClosestNodeToPoint(self, x, y, z, NodeID):
HasRefPoint, RefPoint, MakeGroups, ElemType)
else:
if isinstance(Base,Mesh):
- return self.editor.ExtrusionAlongPathObjX(Base.GetMesh(), Path, NodeStart,
+ return self.editor.ExtrusionAlongPathObjX(Base, Path, NodeStart,
HasAngles, Angles, LinearVariation,
HasRefPoint, RefPoint, MakeGroups, ElemType)
else:
# @return a list of groups of equal elements
# @ingroup l2_modif_trsf
def FindEqualElements (self, MeshOrSubMeshOrGroup):
+ if ( isinstance( MeshOrSubMeshOrGroup, Mesh )):
+ MeshOrSubMeshOrGroup = MeshOrSubMeshOrGroup.GetMesh()
return self.editor.FindEqualElements(MeshOrSubMeshOrGroup)
## Merges elements in each given group.
# @ingroup l1_auxiliary
def GetLastCreatedElems(self):
return self.editor.GetLastCreatedElems()
+
+ ## Creates a hole in a mesh by doubling the nodes of some particular elements
+ # @param theNodes identifiers of nodes to be doubled
+ # @param theModifiedElems identifiers of elements to be updated by the new (doubled)
+ # nodes. If list of element identifiers is empty then nodes are doubled but
+ # they not assigned to elements
+ # @return TRUE if operation has been completed successfully, FALSE otherwise
+ # @ingroup l2_modif_edit
+ def DoubleNodes(self, theNodes, theModifiedElems):
+ return self.editor.DoubleNodes(theNodes, theModifiedElems)
+
+ ## Creates a hole in a mesh by doubling the nodes of some particular elements
+ # This method provided for convenience works as DoubleNodes() described above.
+ # @param theNodes identifiers of node to be doubled
+ # @param theModifiedElems identifiers of elements to be updated
+ # @return TRUE if operation has been completed successfully, FALSE otherwise
+ # @ingroup l2_modif_edit
+ def DoubleNode(self, theNodeId, theModifiedElems):
+ return self.editor.DoubleNode(theNodeId, theModifiedElems)
+
+ ## Creates a hole in a mesh by doubling the nodes of some particular elements
+ # This method provided for convenience works as DoubleNodes() described above.
+ # @param theNodes group of nodes to be doubled
+ # @param theModifiedElems group of elements to be updated.
+ # @return TRUE if operation has been completed successfully, FALSE otherwise
+ # @ingroup l2_modif_edit
+ def DoubleNodeGroup(self, theNodes, theModifiedElems):
+ return self.editor.DoubleNodeGroup(theNodes, theModifiedElems)
+
+ ## Creates a hole in a mesh by doubling the nodes of some particular elements
+ # This method provided for convenience works as DoubleNodes() described above.
+ # @param theNodes list of groups of nodes to be doubled
+ # @param theModifiedElems list of groups of elements to be updated.
+ # @return TRUE if operation has been completed successfully, FALSE otherwise
+ # @ingroup l2_modif_edit
+ def DoubleNodeGroups(self, theNodes, theModifiedElems):
+ return self.editor.DoubleNodeGroups(theNodes, theModifiedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# @param theElems - the list of elements (edges or faces) to be replicated
# replicated nodes should be associated to.
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
- def DoubleNodes(self, theElems, theNodesNot, theAffectedElems):
- return self.editor.DoubleNodes(theElems, theNodesNot, theAffectedElems)
+ def DoubleNodeElem(self, theElems, theNodesNot, theAffectedElems):
+ return self.editor.DoubleNodeElem(theElems, theNodesNot, theAffectedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# @param theElems - the list of elements (edges or faces) to be replicated
# The replicated nodes should be associated to affected elements.
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
- def DoubleNodesInRegion(self, theElems, theNodesNot, theShape):
- return self.editor.DoubleNodesInRegion(theElems, theNodesNot, theShape)
+ def DoubleNodeElemInRegion(self, theElems, theNodesNot, theShape):
+ return self.editor.DoubleNodeElemInRegion(theElems, theNodesNot, theShape)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theAffectedElems - group of elements to which the replicated nodes
# should be associated to.
# @ingroup l2_modif_edit
- def DoubleNodeGroup(self, theElems, theNodesNot, theAffectedElems):
- return self.editor.DoubleNodeGroup(theElems, theNodesNot, theAffectedElems)
+ def DoubleNodeElemGroup(self, theElems, theNodesNot, theAffectedElems):
+ return self.editor.DoubleNodeElemGroup(theElems, theNodesNot, theAffectedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# located on or inside shape).
# The replicated nodes should be associated to affected elements.
# @ingroup l2_modif_edit
- def DoubleNodeGroupInRegion(self, theElems, theNodesNot, theShape):
- return self.editor.DoubleNodeGroup(theElems, theNodesNot, theShape)
+ def DoubleNodeElemGroupInRegion(self, theElems, theNodesNot, theShape):
+ return self.editor.DoubleNodeElemGroup(theElems, theNodesNot, theShape)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# should be associated to.
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
- def DoubleNodeGroups(self, theElems, theNodesNot, theAffectedElems):
- return self.editor.DoubleNodeGroups(theElems, theNodesNot, theAffectedElems)
+ def DoubleNodeElemGroups(self, theElems, theNodesNot, theAffectedElems):
+ return self.editor.DoubleNodeElemGroups(theElems, theNodesNot, theAffectedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# The replicated nodes should be associated to affected elements.
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
- def DoubleNodeGroupsInRegion(self, theElems, theNodesNot, theShape):
- return self.editor.DoubleNodeGroupsInRegion(theElems, theNodesNot, theShape)
+ def DoubleNodeElemGroupsInRegion(self, theElems, theNodesNot, theShape):
+ return self.editor.DoubleNodeElemGroupsInRegion(theElems, theNodesNot, theShape)
## The mother class to define algorithm, it is not recommended to use it directly.
#
self.Create(mesh, geom, "MEFISTO_2D")
pass
elif algoType == BLSURF:
- import BLSURFPlugin
+ CheckPlugin(BLSURF)
self.Create(mesh, geom, "BLSURF", "libBLSURFEngine.so")
#self.SetPhysicalMesh() - PAL19680
elif algoType == NETGEN:
- if noNETGENPlugin:
- print "Warning: NETGENPlugin module unavailable"
- pass
+ CheckPlugin(NETGEN)
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
pass
elif algoType == NETGEN_2D:
- if noNETGENPlugin:
- print "Warning: NETGENPlugin module unavailable"
- pass
+ CheckPlugin(NETGEN)
self.Create(mesh, geom, "NETGEN_2D_ONLY", "libNETGENEngine.so")
pass
# @ingroup l3_hypos_blsurf
def SetPhySize(self, theVal):
# Parameter of BLSURF algo
+ self.SetPhysicalMesh(1) #Custom - else why to set the size?
self.Parameters().SetPhySize(theVal)
## Sets lower boundary of mesh element size (PhySize).
Mesh_Algorithm.__init__(self)
if algoType == NETGEN:
+ CheckPlugin(NETGEN)
self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so")
pass
elif algoType == FULL_NETGEN:
- if noNETGENPlugin:
- print "Warning: NETGENPlugin module has not been imported."
+ CheckPlugin(NETGEN)
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
pass
elif algoType == GHS3D:
- import GHS3DPlugin
+ CheckPlugin(GHS3D)
self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so")
pass
elif algoType == GHS3DPRL:
- import GHS3DPRLPlugin
+ CheckPlugin(GHS3DPRL)
self.Create(mesh, geom, "GHS3DPRL_3D" , "libGHS3DPRLEngine.so")
pass
self.Parameters().SetToMeshHoles(toMesh)
## Set Optimization level:
- # None_Optimization, Light_Optimization, Medium_Optimization, Strong_Optimization.
- # Default is Medium_Optimization
+ # None_Optimization, Light_Optimization, Standard_Optimization, StandardPlus_Optimization,
+ # Strong_Optimization.
+ # Default is Standard_Optimization
# @ingroup l3_hypos_ghs3dh
def SetOptimizationLevel(self, level):
# Parameter of GHS3D
pass
elif algoType == Hexotic:
- import HexoticPlugin
+ CheckPlugin(Hexotic)
self.Create(mesh, geom, "Hexotic_3D", "libHexoticEngine.so")
pass
def __init__(self, mesh, is3D, geom=0):
Mesh_Algorithm.__init__(self)
- if noNETGENPlugin:
- print "Warning: NETGENPlugin module has not been imported."
+ CheckPlugin(NETGEN)
self.is3D = is3D
if is3D:
class MaxElementVolume(StdMeshers._objref_StdMeshers_MaxElementVolume):
## Set Max Element Volume parameter value
- # @param area numerical value or name of variable from notebook
+ # @param volume numerical value or name of variable from notebook
def SetMaxElementVolume(self, volume):
volume ,parameters = ParseParameters(StdMeshers._objref_StdMeshers_MaxElementVolume.GetLastParameters(self),1,1,volume)
StdMeshers._objref_StdMeshers_MaxElementVolume.SetParameters(self,parameters)
#Registering the new proxy for NumberOfSegments
omniORB.registerObjref(StdMeshers._objref_StdMeshers_NumberOfSegments._NP_RepositoryId, NumberOfSegments)
+if not noNETGENPlugin:
+ #Wrapper class for NETGENPlugin_Hypothesis hypothesis
+ class NETGENPlugin_Hypothesis(NETGENPlugin._objref_NETGENPlugin_Hypothesis):
+
+ ## Set Max Size parameter value
+ # @param maxsize numerical value or name of variable from notebook
+ def SetMaxSize(self, maxsize):
+ lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
+ maxsize, parameters = ParseParameters(lastParameters,4,1,maxsize)
+ NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
+ NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetMaxSize(self,maxsize)
+
+ ## Set Growth Rate parameter value
+ # @param value numerical value or name of variable from notebook
+ def SetGrowthRate(self, value):
+ lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
+ value, parameters = ParseParameters(lastParameters,4,2,value)
+ NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
+ NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetGrowthRate(self,value)
+
+ ## Set Number of Segments per Edge parameter value
+ # @param value numerical value or name of variable from notebook
+ def SetNbSegPerEdge(self, value):
+ lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
+ value, parameters = ParseParameters(lastParameters,4,3,value)
+ NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
+ NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetNbSegPerEdge(self,value)
+
+ ## Set Number of Segments per Radius parameter value
+ # @param value numerical value or name of variable from notebook
+ def SetNbSegPerRadius(self, value):
+ lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
+ value, parameters = ParseParameters(lastParameters,4,4,value)
+ NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
+ NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetNbSegPerRadius(self,value)
+
+ #Registering the new proxy for NETGENPlugin_Hypothesis
+ omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_Hypothesis._NP_RepositoryId, NETGENPlugin_Hypothesis)
+
+
+ #Wrapper class for NETGENPlugin_Hypothesis_2D hypothesis
+ class NETGENPlugin_Hypothesis_2D(NETGENPlugin_Hypothesis,NETGENPlugin._objref_NETGENPlugin_Hypothesis_2D):
+ pass
-#Wrapper class for NETGENPlugin_Hypothesis hypothesis
-class NETGENPlugin_Hypothesis(NETGENPlugin._objref_NETGENPlugin_Hypothesis):
-
- ## Set Max Size parameter value
- # @param maxsize numerical value or name of variable from notebook
- def SetMaxSize(self, maxsize):
- lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
- maxsize, parameters = ParseParameters(lastParameters,4,1,maxsize)
- NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
- NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetMaxSize(self,maxsize)
-
- ## Set Growth Rate parameter value
- # @param value numerical value or name of variable from notebook
- def SetGrowthRate(self, value):
- lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
- value, parameters = ParseParameters(lastParameters,4,2,value)
- NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
- NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetGrowthRate(self,value)
-
- ## Set Number of Segments per Edge parameter value
- # @param value numerical value or name of variable from notebook
- def SetNbSegPerEdge(self, value):
- lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
- value, parameters = ParseParameters(lastParameters,4,3,value)
- NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
- NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetNbSegPerEdge(self,value)
-
- ## Set Number of Segments per Radius parameter value
- # @param value numerical value or name of variable from notebook
- def SetNbSegPerRadius(self, value):
- lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
- value, parameters = ParseParameters(lastParameters,4,4,value)
- NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
- NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetNbSegPerRadius(self,value)
-
-#Registering the new proxy for NETGENPlugin_Hypothesis
-omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_Hypothesis._NP_RepositoryId, NETGENPlugin_Hypothesis)
-
-
-#Wrapper class for NETGENPlugin_Hypothesis_2D hypothesis
-class NETGENPlugin_Hypothesis_2D(NETGENPlugin_Hypothesis,NETGENPlugin._objref_NETGENPlugin_Hypothesis_2D):
- pass
-
-#Registering the new proxy for NETGENPlugin_Hypothesis_2D
-omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_Hypothesis_2D._NP_RepositoryId, NETGENPlugin_Hypothesis_2D)
-
-#Wrapper class for NETGENPlugin_SimpleHypothesis_2D hypothesis
-class NETGEN_SimpleParameters_2D(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D):
-
- ## Set Number of Segments parameter value
- # @param nbSeg numerical value or name of variable from notebook
- def SetNumberOfSegments(self, nbSeg):
- lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
- nbSeg, parameters = ParseParameters(lastParameters,2,1,nbSeg)
- NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
- NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetNumberOfSegments(self, nbSeg)
-
- ## Set Local Length parameter value
- # @param length numerical value or name of variable from notebook
- def SetLocalLength(self, length):
- lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
- length, parameters = ParseParameters(lastParameters,2,1,length)
- NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
- NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetLocalLength(self, length)
-
- ## Set Max Element Area parameter value
- # @param area numerical value or name of variable from notebook
- def SetMaxElementArea(self, area):
- lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
- area, parameters = ParseParameters(lastParameters,2,2,area)
- NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
- NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetMaxElementArea(self, area)
-
- def LengthFromEdges(self):
- lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
- value = 0;
- value, parameters = ParseParameters(lastParameters,2,2,value)
- NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
- NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.LengthFromEdges(self)
-
-#Registering the new proxy for NETGEN_SimpleParameters_2D
-omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D._NP_RepositoryId, NETGEN_SimpleParameters_2D)
-
-
-#Wrapper class for NETGENPlugin_SimpleHypothesis_3D hypothesis
-class NETGEN_SimpleParameters_3D(NETGEN_SimpleParameters_2D,NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D):
- ## Set Max Element Volume parameter value
- # @param volume numerical value or name of variable from notebook
- def SetMaxElementVolume(self, volume):
- lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.GetLastParameters(self)
- volume, parameters = ParseParameters(lastParameters,3,3,volume)
- NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetParameters(self,parameters)
- NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetMaxElementVolume(self, volume)
-
- def LengthFromFaces(self):
- lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.GetLastParameters(self)
- value = 0;
- value, parameters = ParseParameters(lastParameters,3,3,value)
- NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetParameters(self,parameters)
- NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.LengthFromFaces(self)
-
-#Registering the new proxy for NETGEN_SimpleParameters_3D
-omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D._NP_RepositoryId, NETGEN_SimpleParameters_3D)
+ #Registering the new proxy for NETGENPlugin_Hypothesis_2D
+ omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_Hypothesis_2D._NP_RepositoryId, NETGENPlugin_Hypothesis_2D)
+
+ #Wrapper class for NETGENPlugin_SimpleHypothesis_2D hypothesis
+ class NETGEN_SimpleParameters_2D(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D):
+
+ ## Set Number of Segments parameter value
+ # @param nbSeg numerical value or name of variable from notebook
+ def SetNumberOfSegments(self, nbSeg):
+ lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
+ nbSeg, parameters = ParseParameters(lastParameters,2,1,nbSeg)
+ NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
+ NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetNumberOfSegments(self, nbSeg)
+
+ ## Set Local Length parameter value
+ # @param length numerical value or name of variable from notebook
+ def SetLocalLength(self, length):
+ lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
+ length, parameters = ParseParameters(lastParameters,2,1,length)
+ NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
+ NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetLocalLength(self, length)
+
+ ## Set Max Element Area parameter value
+ # @param area numerical value or name of variable from notebook
+ def SetMaxElementArea(self, area):
+ lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
+ area, parameters = ParseParameters(lastParameters,2,2,area)
+ NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
+ NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetMaxElementArea(self, area)
+
+ def LengthFromEdges(self):
+ lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
+ value = 0;
+ value, parameters = ParseParameters(lastParameters,2,2,value)
+ NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
+ NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.LengthFromEdges(self)
+
+ #Registering the new proxy for NETGEN_SimpleParameters_2D
+ omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D._NP_RepositoryId, NETGEN_SimpleParameters_2D)
+
+
+ #Wrapper class for NETGENPlugin_SimpleHypothesis_3D hypothesis
+ class NETGEN_SimpleParameters_3D(NETGEN_SimpleParameters_2D,NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D):
+ ## Set Max Element Volume parameter value
+ # @param volume numerical value or name of variable from notebook
+ def SetMaxElementVolume(self, volume):
+ lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.GetLastParameters(self)
+ volume, parameters = ParseParameters(lastParameters,3,3,volume)
+ NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetParameters(self,parameters)
+ NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetMaxElementVolume(self, volume)
+
+ def LengthFromFaces(self):
+ lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.GetLastParameters(self)
+ value = 0;
+ value, parameters = ParseParameters(lastParameters,3,3,value)
+ NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetParameters(self,parameters)
+ NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.LengthFromFaces(self)
+
+ #Registering the new proxy for NETGEN_SimpleParameters_3D
+ omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D._NP_RepositoryId, NETGEN_SimpleParameters_3D)
+
+ pass # if not noNETGENPlugin:
class Pattern(SMESH._objref_SMESH_Pattern):
:SMESH_3D_Algo(hypId, studyId, gen)
{
_name = "CompositeHexa_3D";
- _shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit /shape type
+ _shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit /shape type
}
//================================================================================
//purpose : auxilary for Evaluate
//=======================================================================
int GetNb2d(_QuadFaceGrid* QFG, SMESH_Mesh& theMesh,
- MapShapeNbElems& aResMap)
+ MapShapeNbElems& aResMap)
{
int nb2d = 0;
_QuadFaceGrid::TChildIterator aCI = QFG->GetChildren();
//================================================================================
bool StdMeshers_CompositeHexa_3D::Evaluate(SMESH_Mesh& theMesh,
- const TopoDS_Shape& theShape,
- MapShapeNbElems& aResMap)
+ const TopoDS_Shape& theShape,
+ MapShapeNbElems& aResMap)
{
SMESH_MesherHelper aTool(theMesh);
bool _quadraticMesh = aTool.IsQuadraticSubMesh(theShape);
int nb0 = 0;
SMESH_subMesh *sm = theMesh.GetSubMesh(exp.Current());
if( sm ) {
- MapShapeNbElemsItr anIt = aResMap.find(sm);
- if( anIt == aResMap.end() ) continue;
- std::vector<int> aVec = (*anIt).second;
- nb0 = aVec[SMDSEntity_Node];
+ MapShapeNbElemsItr anIt = aResMap.find(sm);
+ if( anIt == aResMap.end() ) continue;
+ std::vector<int> aVec = (*anIt).second;
+ nb0 = aVec[SMDSEntity_Node];
}
int j = 1;
for(; j<=BndEdges.Length(); j++) {
- if( BndEdges.Value(j) == exp.Current() ) {
- // internal edge => remove it
- BndEdges.Remove(j);
- nb0d_in += nb0;
- break;
- }
+ if( BndEdges.Value(j) == exp.Current() ) {
+ // internal edge => remove it
+ BndEdges.Remove(j);
+ nb0d_in += nb0;
+ break;
+ }
}
if( j > BndEdges.Length() ) {
- BndEdges.Append(exp.Current());
+ BndEdges.Append(exp.Current());
}
//if( BndEdges.Contains(exp.Current()) ) {
//BndEdges.Remove( exp.Current() );
//================================================================================
StdMeshers_FaceSide::StdMeshers_FaceSide(const SMDS_MeshNode* theNode,
- const gp_Pnt2d thePnt2d,
- const StdMeshers_FaceSide* theSide)
+ const gp_Pnt2d thePnt2d,
+ const StdMeshers_FaceSide* theSide)
{
myC2d.resize(1);
myLength = 0;
return TSideVector(0);
}
}
- // find out side orientation, which is important if there are several wires (PAL19080)
- bool isForward = true;
- if ( nbWires > 1 ) {
- TopExp_Explorer e( theFace, TopAbs_EDGE );
- while ( ! e.Current().IsSame( wireEdges.back() ))
- e.Next();
- isForward = ( e.Current().Orientation() == wireEdges.back().Orientation() );
- }
-
+ const bool isForward = true;
StdMeshers_FaceSide* wire = new StdMeshers_FaceSide( theFace, wireEdges, &theMesh,
isForward, theIgnoreMediumNodes);
wires[ iW ] = StdMeshers_FaceSidePtr( wire );
* \brief Wrap for vertex using data from other FaceSide
*/
StdMeshers_FaceSide(const SMDS_MeshNode* theNode,
- const gp_Pnt2d thePnt2d,
+ const gp_Pnt2d thePnt2d,
const StdMeshers_FaceSide* theSide);
/*!
* \brief Return wires of a face as StdMeshers_FaceSide's
using namespace std;
static SMESH_ComputeErrorPtr ComputePentahedralMesh(SMESH_Mesh &,
- const TopoDS_Shape &);
+ const TopoDS_Shape &);
static bool EvaluatePentahedralMesh(SMESH_Mesh &, const TopoDS_Shape &,
- MapShapeNbElems &);
+ MapShapeNbElems &);
//=============================================================================
/*!
{
MESSAGE("StdMeshers_Hexa_3D::StdMeshers_Hexa_3D");
_name = "Hexa_3D";
- _shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit /shape type
+ _shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit /shape type
}
//=============================================================================
try {
aQuads[i] = quadAlgo->CheckAnd2Dcompute(aMesh, aFace, _quadraticMesh);
if(!aQuads[i]) {
- return error( quadAlgo->GetComputeError());
+ return error( quadAlgo->GetComputeError());
}
}
catch(SALOME_Exception & S_ex) {
int _indX1 = GetFaceIndex(aMesh, aShape, meshFaces,
aCube.V100, aCube.V101, aCube.V110, aCube.V111);
- // IPAL21120: SIGSEGV on Meshing attached Compound with Automatic Hexadralization
+ // IPAL21120: SIGSEGV on Meshing attached Compound with Automatic Hexadralization
if ( _indY1 < 1 || _indZ0 < 1 || _indZ1 < 1 || _indX0 < 1 || _indX1 < 1 )
return error(COMPERR_BAD_SHAPE);
// 1.7 - get convertion coefs from face 2D normalized to 3D normalized
- Conv2DStruct cx0; // for face X=0
- Conv2DStruct cx1; // for face X=1
+ Conv2DStruct cx0; // for face X=0
+ Conv2DStruct cx1; // for face X=1
Conv2DStruct cy0;
Conv2DStruct cy1;
Conv2DStruct cz0;
const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX0]->GetSubShape());
faceQuadStruct *quad = aCube.quad_X0;
- int i = 0; // j = x/face , k = y/face
+ int i = 0; // j = x/face , k = y/face
int nbdown = quad->side[0]->NbPoints();
int nbright = quad->side[1]->NbPoints();
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
-
+
while(itf->more()) {
const SMDS_MeshNode * node = itf->next();
if(aTool.IsMedium(node))
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++) {
int ij1 = j1 * nbdown + i1;
- int j = cx0.ia * i1 + cx0.ib * j1 + cx0.ic; // j = x/face
- int k = cx0.ja * i1 + cx0.jb * j1 + cx0.jc; // k = y/face
+ int j = cx0.ia * i1 + cx0.ib * j1 + cx0.ic; // j = x/face
+ int k = cx0.ja * i1 + cx0.jb * j1 + cx0.jc; // k = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = aCube.quad_X1;
- int i = nbx - 1; // j = x/face , k = y/face
+ int i = nbx - 1; // j = x/face , k = y/face
int nbdown = quad->side[0]->NbPoints();
int nbright = quad->side[1]->NbPoints();
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++) {
int ij1 = j1 * nbdown + i1;
- int j = cx1.ia * i1 + cx1.ib * j1 + cx1.ic; // j = x/face
- int k = cx1.ja * i1 + cx1.jb * j1 + cx1.jc; // k = y/face
+ int j = cx1.ia * i1 + cx1.ib * j1 + cx1.ic; // j = x/face
+ int k = cx1.ja * i1 + cx1.jb * j1 + cx1.jc; // k = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = aCube.quad_Y0;
- int j = 0; // i = x/face , k = y/face
+ int j = 0; // i = x/face , k = y/face
int nbdown = quad->side[0]->NbPoints();
int nbright = quad->side[1]->NbPoints();
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++) {
int ij1 = j1 * nbdown + i1;
- int i = cy0.ia * i1 + cy0.ib * j1 + cy0.ic; // i = x/face
- int k = cy0.ja * i1 + cy0.jb * j1 + cy0.jc; // k = y/face
+ int i = cy0.ia * i1 + cy0.ib * j1 + cy0.ic; // i = x/face
+ int k = cy0.ja * i1 + cy0.jb * j1 + cy0.jc; // k = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = aCube.quad_Y1;
- int j = nby - 1; // i = x/face , k = y/face
+ int j = nby - 1; // i = x/face , k = y/face
int nbdown = quad->side[0]->NbPoints();
int nbright = quad->side[1]->NbPoints();
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++) {
int ij1 = j1 * nbdown + i1;
- int i = cy1.ia * i1 + cy1.ib * j1 + cy1.ic; // i = x/face
- int k = cy1.ja * i1 + cy1.jb * j1 + cy1.jc; // k = y/face
+ int i = cy1.ia * i1 + cy1.ib * j1 + cy1.ic; // i = x/face
+ int k = cy1.ja * i1 + cy1.jb * j1 + cy1.jc; // k = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = aCube.quad_Z0;
- int k = 0; // i = x/face , j = y/face
+ int k = 0; // i = x/face , j = y/face
int nbdown = quad->side[0]->NbPoints();
int nbright = quad->side[1]->NbPoints();
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++) {
int ij1 = j1 * nbdown + i1;
- int i = cz0.ia * i1 + cz0.ib * j1 + cz0.ic; // i = x/face
- int j = cz0.ja * i1 + cz0.jb * j1 + cz0.jc; // j = y/face
+ int i = cz0.ia * i1 + cz0.ib * j1 + cz0.ic; // i = x/face
+ int j = cz0.ja * i1 + cz0.jb * j1 + cz0.jc; // j = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
faceQuadStruct *quad = aCube.quad_Z1;
- int k = nbz - 1; // i = x/face , j = y/face
+ int k = nbz - 1; // i = x/face , j = y/face
int nbdown = quad->side[0]->NbPoints();
int nbright = quad->side[1]->NbPoints();
for (int i1 = 0; i1 < nbdown; i1++)
for (int j1 = 0; j1 < nbright; j1++) {
int ij1 = j1 * nbdown + i1;
- int i = cz1.ia * i1 + cz1.ib * j1 + cz1.ic; // i = x/face
- int j = cz1.ja * i1 + cz1.jb * j1 + cz1.jc; // j = y/face
+ int i = cz1.ia * i1 + cz1.ib * j1 + cz1.ic; // i = x/face
+ int j = cz1.ja * i1 + cz1.jb * j1 + cz1.jc; // j = y/face
int ijk = k * nbx * nby + j * nbx + i;
//MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
np[ijk].node = quad->uv_grid[ij1].node;
GetPoint(p1yz, nbx - 1, j, k, nbx, nby, nbz, np, meshDS);
int ijk = k * nbx * nby + j * nbx + i;
- double x = double (i) / double (nbx - 1); // *** seulement
- double y = double (j) / double (nby - 1); // *** maillage
- double z = double (k) / double (nbz - 1); // *** regulier
+ double x = double (i) / double (nbx - 1); // *** seulement
+ double y = double (j) / double (nby - 1); // *** maillage
+ double z = double (k) / double (nbz - 1); // *** regulier
Pt3 X;
for (int i = 0; i < 3; i++) {
//=============================================================================
bool StdMeshers_Hexa_3D::Evaluate(SMESH_Mesh & aMesh,
- const TopoDS_Shape & aShape,
- MapShapeNbElems& aResMap)
+ const TopoDS_Shape & aShape,
+ MapShapeNbElems& aResMap)
{
vector < SMESH_subMesh * >meshFaces;
TopTools_SequenceOfShape aFaces;
std::vector<int> aVec = (*anIt).second;
int nbtri = Max(aVec[SMDSEntity_Triangle],aVec[SMDSEntity_Quad_Triangle]);
if( nbtri == 0 )
- isAllQuad = true;
+ isAllQuad = true;
}
if ( ! isAllQuad ) {
return EvaluatePentahedralMesh(aMesh, aShape, aResMap);
std::vector<int> aVec = (*anIt).second;
nb1d += Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]);
if(IsFirst) {
- IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
- IsFirst = false;
+ IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
+ IsFirst = false;
}
}
}
bool IsOpposite = true;
for(TopExp_Explorer exp(aFaces.Value(i), TopAbs_EDGE); exp.More(); exp.Next()) {
if( Edges1.Contains(exp.Current()) ) {
- IsOpposite = false;
- break;
+ IsOpposite = false;
+ break;
}
}
if(IsOpposite) {
void StdMeshers_Hexa_3D::GetPoint(Pt3 p, int i, int j, int k, int nbx, int nby, int nbz,
Point3DStruct * np, const SMESHDS_Mesh * meshDS)
{
- int ijk = k * nbx * nby + j * nbx + i;
- const SMDS_MeshNode * node = np[ijk].node;
- p[0] = node->X();
- p[1] = node->Y();
- p[2] = node->Z();
- //MESSAGE(" "<<i<<" "<<j<<" "<<k<<" "<<p[0]<<" "<<p[1]<<" "<<p[2]);
+ int ijk = k * nbx * nby + j * nbx + i;
+ const SMDS_MeshNode * node = np[ijk].node;
+ p[0] = node->X();
+ p[1] = node->Y();
+ p[2] = node->Z();
+ //MESSAGE(" "<<i<<" "<<j<<" "<<k<<" "<<p[0]<<" "<<p[1]<<" "<<p[2]);
}
//=============================================================================
//=============================================================================
int StdMeshers_Hexa_3D::GetFaceIndex(SMESH_Mesh & aMesh,
- const TopoDS_Shape & aShape,
- const vector < SMESH_subMesh * >&meshFaces,
- const TopoDS_Vertex & V0,
- const TopoDS_Vertex & V1,
- const TopoDS_Vertex & V2, const TopoDS_Vertex & V3)
+ const TopoDS_Shape & aShape,
+ const vector < SMESH_subMesh * >&meshFaces,
+ const TopoDS_Vertex & V0,
+ const TopoDS_Vertex & V1,
+ const TopoDS_Vertex & V2, const TopoDS_Vertex & V3)
{
- //MESSAGE("StdMeshers_Hexa_3D::GetFaceIndex");
- int faceIndex = -1;
- for (int i = 1; i < 6; i++)
- {
- const TopoDS_Shape & aFace = meshFaces[i]->GetSubShape();
- //const TopoDS_Face& F = TopoDS::Face(aFace);
- TopTools_IndexedMapOfShape M;
- TopExp::MapShapes(aFace, TopAbs_VERTEX, M);
- bool verticesInShape = false;
- if (M.Contains(V0))
- if (M.Contains(V1))
- if (M.Contains(V2))
- if (M.Contains(V3))
- verticesInShape = true;
- if (verticesInShape)
- {
- faceIndex = i;
- break;
- }
- }
- //IPAL21120 ASSERT(faceIndex > 0);
- //SCRUTE(faceIndex);
- return faceIndex;
+ //MESSAGE("StdMeshers_Hexa_3D::GetFaceIndex");
+ int faceIndex = -1;
+ for (int i = 1; i < 6; i++)
+ {
+ const TopoDS_Shape & aFace = meshFaces[i]->GetSubShape();
+ //const TopoDS_Face& F = TopoDS::Face(aFace);
+ TopTools_IndexedMapOfShape M;
+ TopExp::MapShapes(aFace, TopAbs_VERTEX, M);
+ bool verticesInShape = false;
+ if (M.Contains(V0))
+ if (M.Contains(V1))
+ if (M.Contains(V2))
+ if (M.Contains(V3))
+ verticesInShape = true;
+ if (verticesInShape)
+ {
+ faceIndex = i;
+ break;
+ }
+ }
+ //IPAL21120 ASSERT(faceIndex > 0);
+ //SCRUTE(faceIndex);
+ return faceIndex;
}
//=============================================================================
//=============================================================================
TopoDS_Edge
- StdMeshers_Hexa_3D::EdgeNotInFace(SMESH_Mesh & aMesh,
- const TopoDS_Shape & aShape,
- const TopoDS_Face & aFace,
- const TopoDS_Vertex & aVertex,
- const TopTools_IndexedDataMapOfShapeListOfShape & MS)
+ StdMeshers_Hexa_3D::EdgeNotInFace(SMESH_Mesh & aMesh,
+ const TopoDS_Shape & aShape,
+ const TopoDS_Face & aFace,
+ const TopoDS_Vertex & aVertex,
+ const TopTools_IndexedDataMapOfShapeListOfShape & MS)
{
- //MESSAGE("StdMeshers_Hexa_3D::EdgeNotInFace");
- TopTools_IndexedDataMapOfShapeListOfShape MF;
- TopExp::MapShapesAndAncestors(aFace, TopAbs_VERTEX, TopAbs_EDGE, MF);
- const TopTools_ListOfShape & ancestorsInSolid = MS.FindFromKey(aVertex);
- const TopTools_ListOfShape & ancestorsInFace = MF.FindFromKey(aVertex);
-// SCRUTE(ancestorsInSolid.Extent());
-// SCRUTE(ancestorsInFace.Extent());
- ASSERT(ancestorsInSolid.Extent() == 6); // 6 (edges doublees)
- ASSERT(ancestorsInFace.Extent() == 2);
-
- TopoDS_Edge E;
- E.Nullify();
- TopTools_ListIteratorOfListOfShape its(ancestorsInSolid);
- for (; its.More(); its.Next())
- {
- TopoDS_Shape ancestor = its.Value();
- TopTools_ListIteratorOfListOfShape itf(ancestorsInFace);
- bool isInFace = false;
- for (; itf.More(); itf.Next())
- {
- TopoDS_Shape ancestorInFace = itf.Value();
- if (ancestorInFace.IsSame(ancestor))
- {
- isInFace = true;
- break;
- }
- }
- if (!isInFace)
- {
- E = TopoDS::Edge(ancestor);
- break;
- }
- }
- return E;
+ //MESSAGE("StdMeshers_Hexa_3D::EdgeNotInFace");
+ TopTools_IndexedDataMapOfShapeListOfShape MF;
+ TopExp::MapShapesAndAncestors(aFace, TopAbs_VERTEX, TopAbs_EDGE, MF);
+ const TopTools_ListOfShape & ancestorsInSolid = MS.FindFromKey(aVertex);
+ const TopTools_ListOfShape & ancestorsInFace = MF.FindFromKey(aVertex);
+// SCRUTE(ancestorsInSolid.Extent());
+// SCRUTE(ancestorsInFace.Extent());
+ ASSERT(ancestorsInSolid.Extent() == 6); // 6 (edges doublees)
+ ASSERT(ancestorsInFace.Extent() == 2);
+
+ TopoDS_Edge E;
+ E.Nullify();
+ TopTools_ListIteratorOfListOfShape its(ancestorsInSolid);
+ for (; its.More(); its.Next())
+ {
+ TopoDS_Shape ancestor = its.Value();
+ TopTools_ListIteratorOfListOfShape itf(ancestorsInFace);
+ bool isInFace = false;
+ for (; itf.More(); itf.Next())
+ {
+ TopoDS_Shape ancestorInFace = itf.Value();
+ if (ancestorInFace.IsSame(ancestor))
+ {
+ isInFace = true;
+ break;
+ }
+ }
+ if (!isInFace)
+ {
+ E = TopoDS::Edge(ancestor);
+ break;
+ }
+ }
+ return E;
}
//=============================================================================
//=============================================================================
void StdMeshers_Hexa_3D::GetConv2DCoefs(const faceQuadStruct & quad,
- const TopoDS_Shape & aShape,
- const TopoDS_Vertex & V0,
- const TopoDS_Vertex & V1,
- const TopoDS_Vertex & V2, const TopoDS_Vertex & V3, Conv2DStruct & conv)
+ const TopoDS_Shape & aShape,
+ const TopoDS_Vertex & V0,
+ const TopoDS_Vertex & V1,
+ const TopoDS_Vertex & V2, const TopoDS_Vertex & V3, Conv2DStruct & conv)
{
-// MESSAGE("StdMeshers_Hexa_3D::GetConv2DCoefs");
-// const TopoDS_Face & F = TopoDS::Face(aShape);
-// TopoDS_Edge E = quad.edge[0];
-// double f, l;
-// Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, F, f, l);
-// TopoDS_Vertex VFirst, VLast;
-// TopExp::Vertices(E, VFirst, VLast); // corresponds to f and l
-// bool isForward = (((l - f) * (quad.last[0] - quad.first[0])) > 0);
+// MESSAGE("StdMeshers_Hexa_3D::GetConv2DCoefs");
+// const TopoDS_Face & F = TopoDS::Face(aShape);
+// TopoDS_Edge E = quad.edge[0];
+// double f, l;
+// Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, F, f, l);
+// TopoDS_Vertex VFirst, VLast;
+// TopExp::Vertices(E, VFirst, VLast); // corresponds to f and l
+// bool isForward = (((l - f) * (quad.last[0] - quad.first[0])) > 0);
TopoDS_Vertex VA, VB;
-// if (isForward)
-// {
-// VA = VFirst;
-// VB = VLast;
-// }
-// else
-// {
-// VA = VLast;
-// VB = VFirst;
-// }
+// if (isForward)
+// {
+// VA = VFirst;
+// VB = VLast;
+// }
+// else
+// {
+// VA = VLast;
+// VB = VFirst;
+// }
VA = quad.side[0]->FirstVertex();
VB = quad.side[0]->LastVertex();
- int a1, b1, c1, a2, b2, c2;
- if (VA.IsSame(V0))
- if (VB.IsSame(V1))
- {
- a1 = 1;
- b1 = 0;
- c1 = 0; // x
- a2 = 0;
- b2 = 1;
- c2 = 0; // y
- }
- else
- {
- ASSERT(VB.IsSame(V3));
- a1 = 0;
- b1 = 1;
- c1 = 0; // y
- a2 = 1;
- b2 = 0;
- c2 = 0; // x
- }
- if (VA.IsSame(V1))
- if (VB.IsSame(V2))
- {
- a1 = 0;
- b1 = -1;
- c1 = 1; // 1-y
- a2 = 1;
- b2 = 0;
- c2 = 0; // x
- }
- else
- {
- ASSERT(VB.IsSame(V0));
- a1 = -1;
- b1 = 0;
- c1 = 1; // 1-x
- a2 = 0;
- b2 = 1;
- c2 = 0; // y
- }
- if (VA.IsSame(V2))
- if (VB.IsSame(V3))
- {
- a1 = -1;
- b1 = 0;
- c1 = 1; // 1-x
- a2 = 0;
- b2 = -1;
- c2 = 1; // 1-y
- }
- else
- {
- ASSERT(VB.IsSame(V1));
- a1 = 0;
- b1 = -1;
- c1 = 1; // 1-y
- a2 = -1;
- b2 = 0;
- c2 = 1; // 1-x
- }
- if (VA.IsSame(V3))
- if (VB.IsSame(V0))
- {
- a1 = 0;
- b1 = 1;
- c1 = 0; // y
- a2 = -1;
- b2 = 0;
- c2 = 1; // 1-x
- }
- else
- {
- ASSERT(VB.IsSame(V2));
- a1 = 1;
- b1 = 0;
- c1 = 0; // x
- a2 = 0;
- b2 = -1;
- c2 = 1; // 1-y
- }
-// MESSAGE("X = " << c1 << "+ " << a1 << "*x + " << b1 << "*y");
-// MESSAGE("Y = " << c2 << "+ " << a2 << "*x + " << b2 << "*y");
- conv.a1 = a1;
- conv.b1 = b1;
- conv.c1 = c1;
- conv.a2 = a2;
- conv.b2 = b2;
- conv.c2 = c2;
-
- int nbdown = quad.side[0]->NbPoints();
- int nbright = quad.side[1]->NbPoints();
- conv.ia = int (a1);
- conv.ib = int (b1);
- conv.ic =
- int (c1 * a1 * a1) * (nbdown - 1) + int (c1 * b1 * b1) * (nbright - 1);
- conv.ja = int (a2);
- conv.jb = int (b2);
- conv.jc =
- int (c2 * a2 * a2) * (nbdown - 1) + int (c2 * b2 * b2) * (nbright - 1);
-// MESSAGE("I " << conv.ia << " " << conv.ib << " " << conv.ic);
-// MESSAGE("J " << conv.ja << " " << conv.jb << " " << conv.jc);
+ int a1, b1, c1, a2, b2, c2;
+ if (VA.IsSame(V0))
+ if (VB.IsSame(V1))
+ {
+ a1 = 1;
+ b1 = 0;
+ c1 = 0; // x
+ a2 = 0;
+ b2 = 1;
+ c2 = 0; // y
+ }
+ else
+ {
+ ASSERT(VB.IsSame(V3));
+ a1 = 0;
+ b1 = 1;
+ c1 = 0; // y
+ a2 = 1;
+ b2 = 0;
+ c2 = 0; // x
+ }
+ if (VA.IsSame(V1))
+ if (VB.IsSame(V2))
+ {
+ a1 = 0;
+ b1 = -1;
+ c1 = 1; // 1-y
+ a2 = 1;
+ b2 = 0;
+ c2 = 0; // x
+ }
+ else
+ {
+ ASSERT(VB.IsSame(V0));
+ a1 = -1;
+ b1 = 0;
+ c1 = 1; // 1-x
+ a2 = 0;
+ b2 = 1;
+ c2 = 0; // y
+ }
+ if (VA.IsSame(V2))
+ if (VB.IsSame(V3))
+ {
+ a1 = -1;
+ b1 = 0;
+ c1 = 1; // 1-x
+ a2 = 0;
+ b2 = -1;
+ c2 = 1; // 1-y
+ }
+ else
+ {
+ ASSERT(VB.IsSame(V1));
+ a1 = 0;
+ b1 = -1;
+ c1 = 1; // 1-y
+ a2 = -1;
+ b2 = 0;
+ c2 = 1; // 1-x
+ }
+ if (VA.IsSame(V3))
+ if (VB.IsSame(V0))
+ {
+ a1 = 0;
+ b1 = 1;
+ c1 = 0; // y
+ a2 = -1;
+ b2 = 0;
+ c2 = 1; // 1-x
+ }
+ else
+ {
+ ASSERT(VB.IsSame(V2));
+ a1 = 1;
+ b1 = 0;
+ c1 = 0; // x
+ a2 = 0;
+ b2 = -1;
+ c2 = 1; // 1-y
+ }
+// MESSAGE("X = " << c1 << "+ " << a1 << "*x + " << b1 << "*y");
+// MESSAGE("Y = " << c2 << "+ " << a2 << "*x + " << b2 << "*y");
+ conv.a1 = a1;
+ conv.b1 = b1;
+ conv.c1 = c1;
+ conv.a2 = a2;
+ conv.b2 = b2;
+ conv.c2 = c2;
+
+ int nbdown = quad.side[0]->NbPoints();
+ int nbright = quad.side[1]->NbPoints();
+ conv.ia = int (a1);
+ conv.ib = int (b1);
+ conv.ic =
+ int (c1 * a1 * a1) * (nbdown - 1) + int (c1 * b1 * b1) * (nbright - 1);
+ conv.ja = int (a2);
+ conv.jb = int (b2);
+ conv.jc =
+ int (c2 * a2 * a2) * (nbdown - 1) + int (c2 * b2 * b2) * (nbright - 1);
+// MESSAGE("I " << conv.ia << " " << conv.ib << " " << conv.ic);
+// MESSAGE("J " << conv.ja << " " << conv.jb << " " << conv.jc);
}
//================================================================================
//=======================================================================
bool EvaluatePentahedralMesh(SMESH_Mesh & aMesh,
- const TopoDS_Shape & aShape,
- MapShapeNbElems& aResMap)
+ const TopoDS_Shape & aShape,
+ MapShapeNbElems& aResMap)
{
StdMeshers_Penta_3D anAlgo;
bool bOK = anAlgo.Evaluate(aMesh, aShape, aResMap);
#include <Standard_ErrorHandler.hxx>
#endif
+#include <Basics_Utils.hxx>
+
using namespace std;
const double PRECISION = 1e-7;
#ifdef NO_CAS_CATCH
OCC_CATCH_SIGNALS;
#endif
- val = pow( 10.0, val );
+ val = pow( 10.0, val );
} catch(Standard_Failure) {
- Handle(Standard_Failure) aFail = Standard_Failure::Caught();
- throw SALOME_Exception( LOCALIZED( "invalid value"));
- return;
+ Handle(Standard_Failure) aFail = Standard_Failure::Caught();
+ throw SALOME_Exception( LOCALIZED( "invalid value"));
+ return;
}
}
else if( _convMode==1 && val<0.0 )
if( !name.IsNull() )
{
if( name->GetName()!="t" )
- res = false;
+ res = false;
}
else
res = isCorrectArg( sub );
*/
//================================================================================
bool process( const TCollection_AsciiString& str, int convMode,
- bool& syntax, bool& args,
- bool& non_neg, bool& non_zero,
- bool& singulars, double& sing_point )
+ bool& syntax, bool& args,
+ bool& non_neg, bool& non_zero,
+ bool& singulars, double& sing_point )
{
+ Kernel_Utils::Localizer loc;
+
bool parsed_ok = true;
Handle( ExprIntrp_GenExp ) myExpr;
try {
double t = double(i)/double(max), val;
if( !f.value( t, val ) )
{
- sing_point = t;
- singulars = true;
- break;
+ sing_point = t;
+ singulars = true;
+ break;
}
if( val<0 )
{
- non_neg = false;
- break;
+ non_neg = false;
+ break;
}
if( val>PRECISION )
- non_zero = true;
+ non_zero = true;
}
}
+
return res && non_neg && non_zero && ( !singulars );
}
//=============================================================================
StdMeshers_Quadrangle_2D::StdMeshers_Quadrangle_2D (int hypId, int studyId,
- SMESH_Gen* gen)
+ SMESH_Gen* gen)
: SMESH_2D_Algo(hypId, studyId, gen)
{
MESSAGE("StdMeshers_Quadrangle_2D::StdMeshers_Quadrangle_2D");
theHyp = hyps.front();
if(strcmp("QuadrangleParams", theHyp->GetName()) == 0) {
const StdMeshers_QuadrangleParams* theHyp1 =
- (const StdMeshers_QuadrangleParams*)theHyp;
+ (const StdMeshers_QuadrangleParams*)theHyp;
myTriaVertexID = theHyp1->GetTriaVertex();
myQuadranglePreference= false;
myTrianglePreference= false;
theHyp = hyps.front();
if(strcmp("QuadrangleParams", theHyp->GetName()) == 0) {
const StdMeshers_QuadrangleParams* theHyp1 =
- (const StdMeshers_QuadrangleParams*)theHyp;
+ (const StdMeshers_QuadrangleParams*)theHyp;
myTriaVertexID = theHyp1->GetTriaVertex();
theHyp = hyps.back();
if(strcmp("QuadranglePreference", theHyp->GetName()) == 0) {
- myQuadranglePreference= true;
- myTrianglePreference= false;
+ myQuadranglePreference= true;
+ myTrianglePreference= false;
}
else if(strcmp("TrianglePreference", theHyp->GetName()) == 0){
- myQuadranglePreference= false;
- myTrianglePreference= true;
+ myQuadranglePreference= false;
+ myTrianglePreference= true;
}
}
else {
if(strcmp("QuadranglePreference", theHyp->GetName()) == 0) {
- myQuadranglePreference= true;
- myTrianglePreference= false;
+ myQuadranglePreference= true;
+ myTrianglePreference= false;
}
else if(strcmp("TrianglePreference", theHyp->GetName()) == 0){
- myQuadranglePreference= false;
- myTrianglePreference= true;
+ myQuadranglePreference= false;
+ myTrianglePreference= true;
}
const StdMeshers_QuadrangleParams* theHyp2 =
- (const StdMeshers_QuadrangleParams*)hyps.back();
+ (const StdMeshers_QuadrangleParams*)hyps.back();
myTriaVertexID = theHyp2->GetTriaVertex();
}
}
d = quad->uv_grid[(j + 1) * nbhoriz + i].node;
SMDS_MeshFace* face = myTool->AddFace(a, b, c, d);
if(face) {
- meshDS->SetMeshElementOnShape(face, geomFaceID);
+ meshDS->SetMeshElementOnShape(face, geomFaceID);
}
}
}
bool StdMeshers_Quadrangle_2D::Evaluate(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
- MapShapeNbElems& aResMap)
+ MapShapeNbElems& aResMap)
{
aMesh.GetSubMesh(aShape);
SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
TopoDS_Vertex V = TopoDS::Vertex(meshDS->IndexToShape(myTriaVertexID));
if(!V.IsNull()) {
- TopoDS_Edge E1,E2,E3;
- for(; edgeIt != edges.end(); ++edgeIt) {
- TopoDS_Edge E = TopoDS::Edge(*edgeIt);
- TopoDS_Vertex VF, VL;
- TopExp::Vertices(E, VF, VL, true);
- if( VF.IsSame(V) )
- E1 = E;
- else if( VL.IsSame(V) )
- E3 = E;
- else
- E2 = E;
- }
- quad->side.reserve(4);
- quad->side.push_back( new StdMeshers_FaceSide(F, E1, &aMesh, true, ignoreMediumNodes));
- quad->side.push_back( new StdMeshers_FaceSide(F, E2, &aMesh, true, ignoreMediumNodes));
- quad->side.push_back( new StdMeshers_FaceSide(F, E3, &aMesh, false, ignoreMediumNodes));
- std::vector<UVPtStruct> UVPSleft = quad->side[0]->GetUVPtStruct(true,0);
- std::vector<UVPtStruct> UVPStop = quad->side[1]->GetUVPtStruct(false,1);
- std::vector<UVPtStruct> UVPSright = quad->side[2]->GetUVPtStruct(true,1);
- const SMDS_MeshNode* aNode = UVPSleft[0].node;
- gp_Pnt2d aPnt2d( UVPSleft[0].u, UVPSleft[0].v );
- StdMeshers_FaceSide* VertFS =
- new StdMeshers_FaceSide(aNode, aPnt2d, quad->side[1]);
- quad->side.push_back(VertFS);
- return quad;
+ TopoDS_Edge E1,E2,E3;
+ for(; edgeIt != edges.end(); ++edgeIt) {
+ TopoDS_Edge E = TopoDS::Edge(*edgeIt);
+ TopoDS_Vertex VF, VL;
+ TopExp::Vertices(E, VF, VL, true);
+ if( VF.IsSame(V) )
+ E1 = E;
+ else if( VL.IsSame(V) )
+ E3 = E;
+ else
+ E2 = E;
+ }
+ quad->side.reserve(4);
+ quad->side.push_back( new StdMeshers_FaceSide(F, E1, &aMesh, true, ignoreMediumNodes));
+ quad->side.push_back( new StdMeshers_FaceSide(F, E2, &aMesh, true, ignoreMediumNodes));
+ quad->side.push_back( new StdMeshers_FaceSide(F, E3, &aMesh, false, ignoreMediumNodes));
+ std::vector<UVPtStruct> UVPSleft = quad->side[0]->GetUVPtStruct(true,0);
+ std::vector<UVPtStruct> UVPStop = quad->side[1]->GetUVPtStruct(false,1);
+ std::vector<UVPtStruct> UVPSright = quad->side[2]->GetUVPtStruct(true,1);
+ const SMDS_MeshNode* aNode = UVPSleft[0].node;
+ gp_Pnt2d aPnt2d( UVPSleft[0].u, UVPSleft[0].v );
+ StdMeshers_FaceSide* VertFS =
+ new StdMeshers_FaceSide(aNode, aPnt2d, quad->side[1]);
+ quad->side.push_back(VertFS);
+ return quad;
}
}
return 0;
//=============================================================================
bool StdMeshers_Quadrangle_2D::CheckNbEdgesForEvaluate(SMESH_Mesh& aMesh,
- const TopoDS_Shape & aShape,
- MapShapeNbElems& aResMap,
- std::vector<int>& aNbNodes,
- bool& IsQuadratic)
+ const TopoDS_Shape & aShape,
+ MapShapeNbElems& aResMap,
+ std::vector<int>& aNbNodes,
+ bool& IsQuadratic)
{
const TopoDS_Face & F = TopoDS::Face(aShape);
SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
TopoDS_Vertex V = TopoDS::Vertex(meshDS->IndexToShape(myTriaVertexID));
if(!V.IsNull()) {
- TopoDS_Edge E1,E2,E3;
- for(; edgeIt != edges.end(); ++edgeIt) {
- TopoDS_Edge E = TopoDS::Edge(*edgeIt);
- TopoDS_Vertex VF, VL;
- TopExp::Vertices(E, VF, VL, true);
- if( VF.IsSame(V) )
- E1 = E;
- else if( VL.IsSame(V) )
- E3 = E;
- else
- E2 = E;
- }
- SMESH_subMesh * sm = aMesh.GetSubMesh(E1);
- MapShapeNbElemsItr anIt = aResMap.find(sm);
- if(anIt==aResMap.end()) return false;
- std::vector<int> aVec = (*anIt).second;
- if(IsQuadratic)
- aNbNodes[0] = (aVec[SMDSEntity_Node]-1)/2 + 2;
- else
- aNbNodes[0] = aVec[SMDSEntity_Node] + 2;
- sm = aMesh.GetSubMesh(E2);
- anIt = aResMap.find(sm);
- if(anIt==aResMap.end()) return false;
- aVec = (*anIt).second;
- if(IsQuadratic)
- aNbNodes[1] = (aVec[SMDSEntity_Node]-1)/2 + 2;
- else
- aNbNodes[1] = aVec[SMDSEntity_Node] + 2;
- sm = aMesh.GetSubMesh(E3);
- anIt = aResMap.find(sm);
- if(anIt==aResMap.end()) return false;
- aVec = (*anIt).second;
- if(IsQuadratic)
- aNbNodes[2] = (aVec[SMDSEntity_Node]-1)/2 + 2;
- else
- aNbNodes[2] = aVec[SMDSEntity_Node] + 2;
- aNbNodes[3] = aNbNodes[1];
- aNbNodes.resize(5);
- nbSides = 4;
+ TopoDS_Edge E1,E2,E3;
+ for(; edgeIt != edges.end(); ++edgeIt) {
+ TopoDS_Edge E = TopoDS::Edge(*edgeIt);
+ TopoDS_Vertex VF, VL;
+ TopExp::Vertices(E, VF, VL, true);
+ if( VF.IsSame(V) )
+ E1 = E;
+ else if( VL.IsSame(V) )
+ E3 = E;
+ else
+ E2 = E;
+ }
+ SMESH_subMesh * sm = aMesh.GetSubMesh(E1);
+ MapShapeNbElemsItr anIt = aResMap.find(sm);
+ if(anIt==aResMap.end()) return false;
+ std::vector<int> aVec = (*anIt).second;
+ if(IsQuadratic)
+ aNbNodes[0] = (aVec[SMDSEntity_Node]-1)/2 + 2;
+ else
+ aNbNodes[0] = aVec[SMDSEntity_Node] + 2;
+ sm = aMesh.GetSubMesh(E2);
+ anIt = aResMap.find(sm);
+ if(anIt==aResMap.end()) return false;
+ aVec = (*anIt).second;
+ if(IsQuadratic)
+ aNbNodes[1] = (aVec[SMDSEntity_Node]-1)/2 + 2;
+ else
+ aNbNodes[1] = aVec[SMDSEntity_Node] + 2;
+ sm = aMesh.GetSubMesh(E3);
+ anIt = aResMap.find(sm);
+ if(anIt==aResMap.end()) return false;
+ aVec = (*anIt).second;
+ if(IsQuadratic)
+ aNbNodes[2] = (aVec[SMDSEntity_Node]-1)/2 + 2;
+ else
+ aNbNodes[2] = aVec[SMDSEntity_Node] + 2;
+ aNbNodes[3] = aNbNodes[1];
+ aNbNodes.resize(5);
+ nbSides = 4;
}
}
}
SMESH_subMesh * sm = aMesh.GetSubMesh( *edgeIt );
MapShapeNbElemsItr anIt = aResMap.find(sm);
if(anIt==aResMap.end()) {
- return false;
+ return false;
}
std::vector<int> aVec = (*anIt).second;
if(IsQuadratic)
- aNbNodes[nbSides] = (aVec[SMDSEntity_Node]-1)/2 + 2;
+ aNbNodes[nbSides] = (aVec[SMDSEntity_Node]-1)/2 + 2;
else
- aNbNodes[nbSides] = aVec[SMDSEntity_Node] + 2;
+ aNbNodes[nbSides] = aVec[SMDSEntity_Node] + 2;
nbSides++;
}
}
list<TopoDS_Edge>::iterator ite = sideEdges.begin();
aNbNodes[nbSides] = 1;
for(; ite!=sideEdges.end(); ite++) {
- SMESH_subMesh * sm = aMesh.GetSubMesh( *ite );
- MapShapeNbElemsItr anIt = aResMap.find(sm);
- if(anIt==aResMap.end()) {
- return false;
- }
- std::vector<int> aVec = (*anIt).second;
- if(IsQuadratic)
- aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
- else
- aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
+ SMESH_subMesh * sm = aMesh.GetSubMesh( *ite );
+ MapShapeNbElemsItr anIt = aResMap.find(sm);
+ if(anIt==aResMap.end()) {
+ return false;
+ }
+ std::vector<int> aVec = (*anIt).second;
+ if(IsQuadratic)
+ aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
+ else
+ aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
}
++nbSides;
}
sideEdges.splice( sideEdges.begin(), edges, --edges.end());
}
}
- list<TopoDS_Edge>::iterator ite = sideEdges.begin();
- aNbNodes[nbSides] = 1;
- for(; ite!=sideEdges.end(); ite++) {
- SMESH_subMesh * sm = aMesh.GetSubMesh( *ite );
- MapShapeNbElemsItr anIt = aResMap.find(sm);
- if(anIt==aResMap.end()) {
- return false;
- }
- std::vector<int> aVec = (*anIt).second;
- if(IsQuadratic)
- aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
- else
- aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
- }
+ list<TopoDS_Edge>::iterator ite = sideEdges.begin();
+ aNbNodes[nbSides] = 1;
+ for(; ite!=sideEdges.end(); ite++) {
+ SMESH_subMesh * sm = aMesh.GetSubMesh( *ite );
+ MapShapeNbElemsItr anIt = aResMap.find(sm);
+ if(anIt==aResMap.end()) {
+ return false;
+ }
+ std::vector<int> aVec = (*anIt).second;
+ if(IsQuadratic)
+ aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
+ else
+ aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
+ }
++nbSides;
}
}
for (int j = 0; j < nbvertic; j++) {
int ij = j * nbhoriz + i;
// --- droite i cste : x = x0 + y(x1-x0)
- double x0 = uv_e0[i].normParam; // bas - sud
- double x1 = uv_e2[i].normParam; // haut - nord
+ double x0 = uv_e0[i].normParam; // bas - sud
+ double x1 = uv_e2[i].normParam; // haut - nord
// --- droite j cste : y = y0 + x(y1-y0)
- double y0 = uv_e3[j].normParam; // gauche-ouest
- double y1 = uv_e1[j].normParam; // droite - est
+ double y0 = uv_e3[j].normParam; // gauche-ouest
+ double y1 = uv_e1[j].normParam; // droite - est
// --- intersection : x=x0+(y0+x(y1-y0))(x1-x0)
double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
double y = y0 + x * (y1 - y0);
int nbf=0;
for(j=1; j<nnn-1; j++) {
for(i=1; i<nb; i++) {
- nbf++;
+ nbf++;
if(WisF) {
SMDS_MeshFace* F =
myTool->AddFace(NodesBRD.Value(i,j), NodesBRD.Value(i+1,j),
// create faces
for(j=1; j<=drl+addv; j++) {
for(i=1; i<nb; i++) {
- nbf++;
+ nbf++;
if(WisF) {
SMDS_MeshFace* F =
myTool->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
NodesLast.SetValue(nnn,1,NodesC.Value(nb,i));
}
for(i=1; i<nt; i++) {
- nbf++;
+ nbf++;
if(WisF) {
SMDS_MeshFace* F =
myTool->AddFace(NodesLast.Value(i,1), NodesLast.Value(i+1,1),
bool StdMeshers_Quadrangle_2D::EvaluateQuadPref(SMESH_Mesh & aMesh,
const TopoDS_Shape& aShape,
std::vector<int>& aNbNodes,
- MapShapeNbElems& aResMap,
- bool IsQuadratic)
+ MapShapeNbElems& aResMap,
+ bool IsQuadratic)
{
// Auxilary key in order to keep old variant
// of meshing after implementation new variant
#include <BRepAdaptor_Curve.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
-//#include <BRepTools.hxx>
#include <BRep_Tool.hxx>
-#include <TopExp_Explorer.hxx>
-#include <TopoDS.hxx>
-//#include <TopoDS_Shell.hxx>
-//#include <TopoDS_Solid.hxx>
-//#include <TopTools_MapOfShape.hxx>
-//#include <gp.hxx>
-//#include <gp_Pnt.hxx>
-
-
-#include <Geom_TrimmedCurve.hxx>
+#include <GeomAPI_ProjectPointOnSurf.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Line.hxx>
+#include <Geom_TrimmedCurve.hxx>
#include <TColgp_SequenceOfPnt.hxx>
#include <TColgp_SequenceOfPnt2d.hxx>
-#include <GeomAPI_ProjectPointOnSurf.hxx>
+#include <TopExp_Explorer.hxx>
+#include <TopoDS.hxx>
using namespace std;
return true;
}
+namespace
+{
+ // ------------------------------------------------------------------------------
+ /*!
+ * \brief Listener used to mark edges meshed by StdMeshers_RadialQuadrangle_1D2D
+ */
+ class TLinEdgeMarker : public SMESH_subMeshEventListener
+ {
+ TLinEdgeMarker(): SMESH_subMeshEventListener(/*isDeletable=*/false) {}
+ public:
+ static SMESH_subMeshEventListener* getListener()
+ {
+ static TLinEdgeMarker theEdgeMarker;
+ return &theEdgeMarker;
+ }
+ };
+
+ // ------------------------------------------------------------------------------
+ /*!
+ * \brief Mark an edge as computed by StdMeshers_RadialQuadrangle_1D2D
+ */
+ void markLinEdgeAsComputedByMe(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh)
+ {
+ if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge ))
+ {
+ if ( !edgeSM->GetEventListenerData( TLinEdgeMarker::getListener() ))
+ faceSubMesh->SetEventListener( TLinEdgeMarker::getListener(),
+ SMESH_subMeshEventListenerData::MakeData(faceSubMesh),
+ edgeSM);
+ }
+ }
+ // ------------------------------------------------------------------------------
+ /*!
+ * \brief Return true if a radial edge was meshed with StdMeshers_RadialQuadrangle_1D2D with
+ * the same radial distribution
+ */
+ bool isEdgeCompitaballyMeshed(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh)
+ {
+ if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge ))
+ {
+ if ( SMESH_subMeshEventListenerData* otherFaceData =
+ edgeSM->GetEventListenerData( TLinEdgeMarker::getListener() ))
+ {
+ // compare hypothesis aplied to two disk faces sharing radial edges
+ SMESH_Mesh& mesh = *faceSubMesh->GetFather();
+ SMESH_Algo* radialQuadAlgo = mesh.GetGen()->GetAlgo(mesh, faceSubMesh->GetSubShape() );
+ SMESH_subMesh* otherFaceSubMesh = otherFaceData->mySubMeshes.front();
+ const list <const SMESHDS_Hypothesis *> & hyps1 =
+ radialQuadAlgo->GetUsedHypothesis( mesh, faceSubMesh->GetSubShape());
+ const list <const SMESHDS_Hypothesis *> & hyps2 =
+ radialQuadAlgo->GetUsedHypothesis( mesh, otherFaceSubMesh->GetSubShape());
+ if( hyps1.empty() && hyps2.empty() )
+ return true; // defaul hyps
+ if ( hyps1.size() != hyps2.size() ||
+ strcmp( hyps1.front()->GetName(), hyps2.front()->GetName() ))
+ return false;
+ ostringstream hypDump1, hypDump2;
+ list <const SMESHDS_Hypothesis*>::const_iterator hyp1 = hyps1.begin();
+ for ( ; hyp1 != hyps1.end(); ++hyp1 )
+ const_cast<SMESHDS_Hypothesis*>(*hyp1)->SaveTo( hypDump1 );
+ list <const SMESHDS_Hypothesis*>::const_iterator hyp2 = hyps2.begin();
+ for ( ; hyp2 != hyps2.end(); ++hyp2 )
+ const_cast<SMESHDS_Hypothesis*>(*hyp2)->SaveTo( hypDump2 );
+ return hypDump1.str() == hypDump2.str();
+ }
+ }
+ return false;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Return base curve of the edge and extremum parameters
+ */
+ //================================================================================
+
+ Handle(Geom_Curve) getCurve(const TopoDS_Edge& edge, double* f=0, double* l=0)
+ {
+ Handle(Geom_Curve) C;
+ if ( !edge.IsNull() )
+ {
+ double first = 0., last = 0.;
+ C = BRep_Tool::Curve(edge, first, last);
+ if ( !C.IsNull() )
+ {
+ Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(C);
+ while( !tc.IsNull() ) {
+ C = tc->BasisCurve();
+ tc = Handle(Geom_TrimmedCurve)::DownCast(C);
+ }
+ if ( f ) *f = first;
+ if ( l ) *l = last;
+ }
+ }
+ return C;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Return edges of the face
+ * \retval int - nb of edges
+ */
+ //================================================================================
+
+ int analyseFace(const TopoDS_Shape& face,
+ TopoDS_Edge& CircEdge,
+ TopoDS_Edge& LinEdge1,
+ TopoDS_Edge& LinEdge2)
+ {
+ CircEdge.Nullify(); LinEdge1.Nullify(); LinEdge2.Nullify();
+ int nbe = 0;
+
+ for ( TopExp_Explorer exp( face, TopAbs_EDGE ); exp.More(); exp.Next(), ++nbe )
+ {
+ const TopoDS_Edge& E = TopoDS::Edge( exp.Current() );
+ double f,l;
+ Handle(Geom_Curve) C = getCurve(E,&f,&l);
+ if ( !C.IsNull() )
+ {
+ if ( C->IsKind( STANDARD_TYPE(Geom_Circle)))
+ {
+ if ( CircEdge.IsNull() )
+ CircEdge = E;
+ else
+ return 0;
+ }
+ else if ( LinEdge1.IsNull() )
+ LinEdge1 = E;
+ else
+ LinEdge2 = E;
+ }
+ }
+ return nbe;
+ }
+}
+
+//=======================================================================
+/*!
+ * \brief Allow algo to do something after persistent restoration
+ * \param subMesh - restored submesh
+ *
+ * call markLinEdgeAsComputedByMe()
+ */
+//=======================================================================
+
+void StdMeshers_RadialQuadrangle_1D2D::SubmeshRestored(SMESH_subMesh* faceSubMesh)
+{
+ if ( !faceSubMesh->IsEmpty() )
+ {
+ TopoDS_Edge CircEdge, LinEdge1, LinEdge2;
+ analyseFace( faceSubMesh->GetSubShape(), CircEdge, LinEdge1, LinEdge2 );
+ if ( !LinEdge1.IsNull() ) markLinEdgeAsComputedByMe( LinEdge1, faceSubMesh );
+ if ( !LinEdge2.IsNull() ) markLinEdgeAsComputedByMe( LinEdge2, faceSubMesh );
+ }
+}
//=======================================================================
//function : Compute
//purpose :
//=======================================================================
-bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
+bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape)
{
TopExp_Explorer exp;
myHelper = new SMESH_MesherHelper( aMesh );
myHelper->IsQuadraticSubMesh( aShape );
+ // to delete helper at exit from Compute()
+ auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper );
myLayerPositions.clear();
- TopoDS_Edge E1,E2,E3;
- Handle(Geom_Curve) C1,C2,C3;
- double f1,l1,f2,l2,f3,l3;
- int nbe = 0;
- for ( exp.Init( aShape, TopAbs_EDGE ); exp.More(); exp.Next() ) {
- nbe++;
- TopoDS_Edge E = TopoDS::Edge( exp.Current() );
- if(nbe==1) {
- E1 = E;
- C1 = BRep_Tool::Curve(E,f1,l1);
- }
- else if(nbe==2) {
- E2 = E;
- C2 = BRep_Tool::Curve(E,f2,l2);
- }
- else if(nbe==3) {
- E3 = E;
- C3 = BRep_Tool::Curve(E,f3,l3);
- }
- }
-
- if(nbe>3)
+ TopoDS_Edge CircEdge, LinEdge1, LinEdge2;
+ int nbe = analyseFace( aShape, CircEdge, LinEdge1, LinEdge2 );
+ if( nbe>3 || nbe < 1 || CircEdge.IsNull() )
return error(COMPERR_BAD_SHAPE);
-
+
gp_Pnt P0,P1;
// points for rotation
TColgp_SequenceOfPnt Points;
TColStd_SequenceOfReal Angles;
// Nodes1 and Nodes2 - nodes along radiuses
// CNodes - nodes on circle edge
- std::vector< const SMDS_MeshNode* > Nodes1, Nodes2, CNodes;
+ vector< const SMDS_MeshNode* > Nodes1, Nodes2, CNodes;
SMDS_MeshNode * NC;
// parameters edge nodes on face
- TColgp_SequenceOfPnt2d Pnts2d1, Pnts2d2;
+ TColgp_SequenceOfPnt2d Pnts2d1;
gp_Pnt2d PC;
int faceID = meshDS->ShapeToIndex(aShape);
TopoDS_Face F = TopoDS::Face(aShape);
Handle(Geom_Surface) S = BRep_Tool::Surface(F);
- // orientation
- bool IsForward = F.Orientation()==TopAbs_FORWARD;
-
- //cout<<"RadialQuadrangle_1D2D::Compute nbe = "<<nbe<<endl;
- TopoDS_Edge CircEdge, LinEdge1, LinEdge2;
- if(nbe==1) {
- // C1 must be a circle
- Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1);
- if( aCirc.IsNull() )
- return error(COMPERR_BAD_SHAPE);
- CircEdge = E1;
+ if(nbe==1)
+ {
+ Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));
- bool ok = _gen->Compute( aMesh, CircEdge, false, MeshDim_1D );
+ bool ok = _gen->Compute( aMesh, CircEdge );
if( !ok ) return false;
- std::map< double, const SMDS_MeshNode* > theNodes;
+ map< double, const SMDS_MeshNode* > theNodes;
ok = GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes);
if( !ok ) return false;
CNodes.clear();
- std::map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
+ map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
const SMDS_MeshNode* NF = (*itn).second;
CNodes.push_back( (*itn).second );
double fang = (*itn).first;
double V = PC.Y() + aVec2d.Y()*myLayerPositions[i];
meshDS->SetNodeOnFace( node, faceID, U, V );
Pnts2d1.Append(gp_Pnt2d(U,V));
- Pnts2d2.Append(gp_Pnt2d(U,V));
}
Nodes1[Nodes1.size()-1] = NF;
Nodes2[Nodes1.size()-1] = NF;
}
- else if(nbe==2) {
+ else if(nbe==2 && LinEdge1.Orientation() != TopAbs_INTERNAL )
+ {
// one curve must be a half of circle and other curve must be
// a segment of line
- Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(C1);
- while( !tc.IsNull() ) {
- C1 = tc->BasisCurve();
- tc = Handle(Geom_TrimmedCurve)::DownCast(C1);
- }
- tc = Handle(Geom_TrimmedCurve)::DownCast(C2);
- while( !tc.IsNull() ) {
- C2 = tc->BasisCurve();
- tc = Handle(Geom_TrimmedCurve)::DownCast(C2);
- }
-
- Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1);
- Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast(C2);
- CircEdge = E1;
- LinEdge1 = E2;
- double fp = f1;
- double lp = l1;
- if( aCirc.IsNull() ) {
- aCirc = Handle(Geom_Circle)::DownCast(C2);
- CircEdge = E2;
- LinEdge1 = E1;
- fp = f2;
- lp = l2;
- aLine = Handle(Geom_Line)::DownCast(C3);
- }
- if( aCirc.IsNull() ) {
- // not circle
- return error(COMPERR_BAD_SHAPE);
- }
+ double fp, lp;
+ Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge, &fp, &lp ));
if( fabs(fabs(lp-fp)-PI) > Precision::Confusion() ) {
// not half of circle
return error(COMPERR_BAD_SHAPE);
}
+ Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
if( aLine.IsNull() ) {
// other curve not line
return error(COMPERR_BAD_SHAPE);
}
- SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1);
- if( sm1 ) {
- SMESHDS_SubMesh* sdssm1 = sm1->GetSubMeshDS();
- if( sdssm1 ) {
- if( sm1->GetSubMeshDS()->NbNodes()>0 ) {
- SMESH_subMesh* sm = aMesh.GetSubMesh(F);
- SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
- smError.reset(new SMESH_ComputeError(COMPERR_ALGO_FAILED,
- "Invalid set of hypothesises",this));
- return false;
- }
- }
+ bool linEdgeComputed = false;
+ if( SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1) ) {
+ if( !sm1->IsEmpty() )
+ if( isEdgeCompitaballyMeshed( LinEdge1, aMesh.GetSubMesh(F) ))
+ linEdgeComputed = true;
+ else
+ return error("Invalid set of hypotheses");
}
- bool ok = _gen->Compute( aMesh, CircEdge, false, MeshDim_1D );
+ bool ok = _gen->Compute( aMesh, CircEdge );
if( !ok ) return false;
- std::map< double, const SMDS_MeshNode* > theNodes;
+ map< double, const SMDS_MeshNode* > theNodes;
GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes);
CNodes.clear();
- std::map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
- const SMDS_MeshNode* NF = (*itn).second;
- CNodes.push_back( (*itn).second );
+ map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
double fang = (*itn).first;
itn++;
- const SMDS_MeshNode* NL;
- int nbn = 1;
for(; itn != theNodes.end(); itn++ ) {
- nbn++;
- if( nbn == theNodes.size() )
- NL = (*itn).second;
CNodes.push_back( (*itn).second );
double ang = (*itn).first - fang;
if( ang>PI ) ang = ang - 2*PI;
if( ang<-PI ) ang = ang + 2*PI;
Angles.Append( ang );
}
+ const SMDS_MeshNode* NF = theNodes.begin()->second;
+ const SMDS_MeshNode* NL = theNodes.rbegin()->second;
+ CNodes.push_back( NF );
P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() );
gp_Pnt P2( NL->X(), NL->Y(), NL->Z() );
P0 = aCirc->Location();
myLayerPositions.clear();
computeLayerPositions(P0,P1);
- gp_Vec aVec(P0,P1);
- int edgeID = meshDS->ShapeToIndex(LinEdge1);
- // check orientation
- Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge1,fp,lp);
- gp_Pnt Ptmp;
- Crv->D0(fp,Ptmp);
- bool ori = true;
- if( P1.Distance(Ptmp) > Precision::Confusion() )
- ori = false;
- // get UV points for edge
- gp_Pnt2d PF,PL;
- BRep_Tool::UVPoints( LinEdge1, TopoDS::Face(aShape), PF, PL );
- PC = gp_Pnt2d( (PF.X()+PL.X())/2, (PF.Y()+PL.Y())/2 );
- gp_Vec2d V2d;
- if(ori) V2d = gp_Vec2d(PC,PF);
- else V2d = gp_Vec2d(PC,PL);
- // add nodes on edge
- double cp = (fp+lp)/2;
- double dp2 = (lp-fp)/2;
- NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z());
- meshDS->SetNodeOnEdge(NC, edgeID, cp);
- Nodes1.resize( myLayerPositions.size()+1 );
- Nodes2.resize( myLayerPositions.size()+1 );
- int i = 0;
- for(; i<myLayerPositions.size(); i++) {
- gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
- P0.Y() + aVec.Y()*myLayerPositions[i],
- P0.Z() + aVec.Z()*myLayerPositions[i] );
- Points.Append(P);
- SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
- Nodes1[i] = node;
- double param;
- if(ori)
- param = fp + dp2*(1-myLayerPositions[i]);
- else
- param = cp + dp2*myLayerPositions[i];
- meshDS->SetNodeOnEdge(node, edgeID, param);
- P = gp_Pnt( P0.X() - aVec.X()*myLayerPositions[i],
- P0.Y() - aVec.Y()*myLayerPositions[i],
- P0.Z() - aVec.Z()*myLayerPositions[i] );
- node = meshDS->AddNode(P.X(), P.Y(), P.Z());
- Nodes2[i] = node;
- if(!ori)
- param = fp + dp2*(1-myLayerPositions[i]);
- else
- param = cp + dp2*myLayerPositions[i];
- meshDS->SetNodeOnEdge(node, edgeID, param);
- // parameters on face
- gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i],
- PC.Y() + V2d.Y()*myLayerPositions[i] );
- Pnts2d1.Append(P2d);
- P2d = gp_Pnt2d( PC.X() - V2d.X()*myLayerPositions[i],
- PC.Y() - V2d.Y()*myLayerPositions[i] );
- Pnts2d2.Append(P2d);
+ if ( linEdgeComputed )
+ {
+ if (!GetSortedNodesOnEdge(aMesh.GetMeshDS(),LinEdge1,true,theNodes))
+ return error("Invalid mesh on a straight edge");
+
+ vector< const SMDS_MeshNode* > *pNodes1 = &Nodes1, *pNodes2 = &Nodes2;
+ bool nodesFromP0ToP1 = ( theNodes.rbegin()->second == NF );
+ if ( !nodesFromP0ToP1 ) std::swap( pNodes1, pNodes2 );
+
+ map< double, const SMDS_MeshNode* >::reverse_iterator ritn = theNodes.rbegin();
+ itn = theNodes.begin();
+ for ( int i = Nodes1.size()-1; i > -1; ++itn, ++ritn, --i )
+ {
+ (*pNodes1)[i] = ritn->second;
+ (*pNodes2)[i] = itn->second;
+ Points.Append( gpXYZ( Nodes1[i]));
+ Pnts2d1.Append( myHelper->GetNodeUV( F, Nodes1[i]));
+ }
+ NC = const_cast<SMDS_MeshNode*>( itn->second );
+ Points.Remove( Nodes1.size() );
}
- Nodes1[ myLayerPositions.size() ] = NF;
- Nodes2[ myLayerPositions.size() ] = NL;
- // create 1D elements on edge
- std::vector< const SMDS_MeshNode* > tmpNodes;
- tmpNodes.resize(2*Nodes1.size()+1);
- for(i=0; i<Nodes2.size(); i++)
- tmpNodes[Nodes2.size()-i-1] = Nodes2[i];
- tmpNodes[Nodes2.size()] = NC;
- for(i=0; i<Nodes1.size(); i++)
- tmpNodes[Nodes2.size()+1+i] = Nodes1[i];
- for(i=1; i<tmpNodes.size(); i++) {
- SMDS_MeshEdge* ME = myHelper->AddEdge( tmpNodes[i-1], tmpNodes[i] );
- if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
+ else
+ {
+ gp_Vec aVec(P0,P1);
+ int edgeID = meshDS->ShapeToIndex(LinEdge1);
+ // check orientation
+ Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge1,fp,lp);
+ gp_Pnt Ptmp;
+ Crv->D0(fp,Ptmp);
+ bool ori = true;
+ if( P1.Distance(Ptmp) > Precision::Confusion() )
+ ori = false;
+ // get UV points for edge
+ gp_Pnt2d PF,PL;
+ BRep_Tool::UVPoints( LinEdge1, TopoDS::Face(aShape), PF, PL );
+ PC = gp_Pnt2d( (PF.X()+PL.X())/2, (PF.Y()+PL.Y())/2 );
+ gp_Vec2d V2d;
+ if(ori) V2d = gp_Vec2d(PC,PF);
+ else V2d = gp_Vec2d(PC,PL);
+ // add nodes on edge
+ double cp = (fp+lp)/2;
+ double dp2 = (lp-fp)/2;
+ NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z());
+ meshDS->SetNodeOnEdge(NC, edgeID, cp);
+ Nodes1.resize( myLayerPositions.size()+1 );
+ Nodes2.resize( myLayerPositions.size()+1 );
+ int i = 0;
+ for(; i<myLayerPositions.size(); i++) {
+ gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
+ P0.Y() + aVec.Y()*myLayerPositions[i],
+ P0.Z() + aVec.Z()*myLayerPositions[i] );
+ Points.Append(P);
+ SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
+ Nodes1[i] = node;
+ double param;
+ if(ori)
+ param = fp + dp2*(1-myLayerPositions[i]);
+ else
+ param = cp + dp2*myLayerPositions[i];
+ meshDS->SetNodeOnEdge(node, edgeID, param);
+ P = gp_Pnt( P0.X() - aVec.X()*myLayerPositions[i],
+ P0.Y() - aVec.Y()*myLayerPositions[i],
+ P0.Z() - aVec.Z()*myLayerPositions[i] );
+ node = meshDS->AddNode(P.X(), P.Y(), P.Z());
+ Nodes2[i] = node;
+ if(!ori)
+ param = fp + dp2*(1-myLayerPositions[i]);
+ else
+ param = cp + dp2*myLayerPositions[i];
+ meshDS->SetNodeOnEdge(node, edgeID, param);
+ // parameters on face
+ gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i],
+ PC.Y() + V2d.Y()*myLayerPositions[i] );
+ Pnts2d1.Append(P2d);
+ }
+ Nodes1[ myLayerPositions.size() ] = NF;
+ Nodes2[ myLayerPositions.size() ] = NL;
+ // create 1D elements on edge
+ vector< const SMDS_MeshNode* > tmpNodes;
+ tmpNodes.resize(2*Nodes1.size()+1);
+ for(i=0; i<Nodes2.size(); i++)
+ tmpNodes[Nodes2.size()-i-1] = Nodes2[i];
+ tmpNodes[Nodes2.size()] = NC;
+ for(i=0; i<Nodes1.size(); i++)
+ tmpNodes[Nodes2.size()+1+i] = Nodes1[i];
+ for(i=1; i<tmpNodes.size(); i++) {
+ SMDS_MeshEdge* ME = myHelper->AddEdge( tmpNodes[i-1], tmpNodes[i] );
+ if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
+ }
+ markLinEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F ));
}
}
- else { // nbe==3
+ else // nbe==3 or ( nbe==2 && linEdge is INTERNAL )
+ {
+ if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL )
+ LinEdge2 = LinEdge1;
+
// one curve must be a part of circle and other curves must be
// segments of line
- Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(C1);
- while( !tc.IsNull() ) {
- C1 = tc->BasisCurve();
- tc = Handle(Geom_TrimmedCurve)::DownCast(C1);
- }
- tc = Handle(Geom_TrimmedCurve)::DownCast(C2);
- while( !tc.IsNull() ) {
- C2 = tc->BasisCurve();
- tc = Handle(Geom_TrimmedCurve)::DownCast(C2);
- }
- tc = Handle(Geom_TrimmedCurve)::DownCast(C3);
- while( !tc.IsNull() ) {
- C3 = tc->BasisCurve();
- tc = Handle(Geom_TrimmedCurve)::DownCast(C3);
- }
-
- Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1);
- Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast(C2);
- Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast(C3);
- CircEdge = E1;
- LinEdge1 = E2;
- LinEdge2 = E3;
- double fp = f1;
- double lp = l1;
- if( aCirc.IsNull() ) {
- aCirc = Handle(Geom_Circle)::DownCast(C2);
- CircEdge = E2;
- LinEdge1 = E3;
- LinEdge2 = E1;
- fp = f2;
- lp = l2;
- aLine1 = Handle(Geom_Line)::DownCast(C3);
- aLine2 = Handle(Geom_Line)::DownCast(C1);
- if( aCirc.IsNull() ) {
- aCirc = Handle(Geom_Circle)::DownCast(C3);
- CircEdge = E3;
- LinEdge1 = E1;
- LinEdge2 = E2;
- fp = f3;
- lp = l3;
- aLine1 = Handle(Geom_Line)::DownCast(C1);
- aLine2 = Handle(Geom_Line)::DownCast(C2);
- }
- }
- if( aCirc.IsNull() ) {
- // not circle
- return error(COMPERR_BAD_SHAPE);
- }
+ double fp, lp;
+ Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));
+ Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
+ Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast( getCurve( LinEdge2 ));
if( aLine1.IsNull() || aLine2.IsNull() ) {
// other curve not line
return error(COMPERR_BAD_SHAPE);
}
- SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1);
- SMESH_subMesh* sm2 = aMesh.GetSubMesh(LinEdge2);
- if( sm1 && sm2 ) {
- SMESHDS_SubMesh* sdssm1 = sm1->GetSubMeshDS();
- SMESHDS_SubMesh* sdssm2 = sm2->GetSubMeshDS();
- if( sdssm1 && sdssm2 ) {
- if( sm1->GetSubMeshDS()->NbNodes()>0 || sm2->GetSubMeshDS()->NbNodes()>0 ) {
- SMESH_subMesh* sm = aMesh.GetSubMesh(F);
- SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
- smError.reset(new SMESH_ComputeError(COMPERR_ALGO_FAILED,
- "Invalid set of hypothesises",this));
- return false;
- }
- }
- }
- bool ok = _gen->Compute( aMesh, CircEdge, false, MeshDim_1D );
+ bool linEdge1Computed = false;
+ if ( SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1))
+ if( !sm1->IsEmpty() )
+ if( isEdgeCompitaballyMeshed( LinEdge1, aMesh.GetSubMesh(F) ))
+ linEdge1Computed = true;
+ else
+ return error("Invalid set of hypotheses");
+
+ bool linEdge2Computed = false;
+ if ( SMESH_subMesh* sm2 = aMesh.GetSubMesh(LinEdge2))
+ if( !sm2->IsEmpty() )
+ if( isEdgeCompitaballyMeshed( LinEdge2, aMesh.GetSubMesh(F) ))
+ linEdge2Computed = true;
+ else
+ return error("Invalid set of hypotheses");
+
+ bool ok = _gen->Compute( aMesh, CircEdge );
if( !ok ) return false;
- std::map< double, const SMDS_MeshNode* > theNodes;
+ map< double, const SMDS_MeshNode* > theNodes;
GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes);
+ const SMDS_MeshNode* NF = theNodes.begin()->second;
+ const SMDS_MeshNode* NL = theNodes.rbegin()->second;
CNodes.clear();
- std::map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
- const SMDS_MeshNode* NF = (*itn).second;
- CNodes.push_back( (*itn).second );
+ CNodes.push_back( NF );
+ map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
double fang = (*itn).first;
itn++;
- const SMDS_MeshNode* NL;
- int nbn = 1;
for(; itn != theNodes.end(); itn++ ) {
- nbn++;
- if( nbn == theNodes.size() )
- NL = (*itn).second;
CNodes.push_back( (*itn).second );
double ang = (*itn).first - fang;
if( ang>PI ) ang = ang - 2*PI;
myLayerPositions.clear();
computeLayerPositions(P0,P1);
+ Nodes1.resize( myLayerPositions.size()+1 );
+ Nodes2.resize( myLayerPositions.size()+1 );
+
exp.Init( LinEdge1, TopAbs_VERTEX );
TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() );
exp.Next();
gp_Pnt PE1 = BRep_Tool::Pnt(V1);
gp_Pnt PE2 = BRep_Tool::Pnt(V2);
if( ( P1.Distance(PE1) > Precision::Confusion() ) &&
- ( P1.Distance(PE2) > Precision::Confusion() ) ) {
- TopoDS_Edge E = LinEdge1;
- LinEdge1 = LinEdge2;
- LinEdge2 = E;
+ ( P1.Distance(PE2) > Precision::Confusion() ) )
+ {
+ std::swap( LinEdge1, LinEdge2 );
+ std::swap( linEdge1Computed, linEdge2Computed );
}
- TopoDS_Vertex VC;
+ TopoDS_Vertex VC = V2;
if( ( P1.Distance(PE1) > Precision::Confusion() ) &&
- ( P2.Distance(PE1) > Precision::Confusion() ) ) {
+ ( P2.Distance(PE1) > Precision::Confusion() ) )
VC = V1;
- }
- else VC = V2;
int vertID = meshDS->ShapeToIndex(VC);
+
// LinEdge1
- int edgeID = meshDS->ShapeToIndex(LinEdge1);
- gp_Vec aVec(P0,P1);
- // check orientation
- Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge1,fp,lp);
- gp_Pnt Ptmp;
- Crv->D0(fp,Ptmp);
- bool ori = false;
- if( P1.Distance(Ptmp) > Precision::Confusion() )
- ori = true;
- // get UV points for edge
- gp_Pnt2d PF,PL;
- BRep_Tool::UVPoints( LinEdge1, TopoDS::Face(aShape), PF, PL );
- gp_Vec2d V2d;
- if(ori) {
- V2d = gp_Vec2d(PF,PL);
- PC = PF;
- }
- else {
- V2d = gp_Vec2d(PL,PF);
- PC = PL;
- }
- NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z());
- meshDS->SetNodeOnVertex(NC, vertID);
- double dp = lp-fp;
- Nodes1.resize( myLayerPositions.size()+1 );
- int i = 0;
- for(; i<myLayerPositions.size(); i++) {
- gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
- P0.Y() + aVec.Y()*myLayerPositions[i],
- P0.Z() + aVec.Z()*myLayerPositions[i] );
- Points.Append(P);
- SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
- Nodes1[i] = node;
- double param;
- if(!ori)
- param = fp + dp*(1-myLayerPositions[i]);
- else
- param = fp + dp*myLayerPositions[i];
- meshDS->SetNodeOnEdge(node, edgeID, param);
- // parameters on face
- gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i],
- PC.Y() + V2d.Y()*myLayerPositions[i] );
- Pnts2d1.Append(P2d);
+ if ( linEdge1Computed )
+ {
+ if (!GetSortedNodesOnEdge(aMesh.GetMeshDS(),LinEdge1,true,theNodes))
+ return error("Invalid mesh on a straight edge");
+
+ bool nodesFromP0ToP1 = ( theNodes.rbegin()->second == NF );
+ NC = const_cast<SMDS_MeshNode*>
+ ( nodesFromP0ToP1 ? theNodes.begin()->second : theNodes.rbegin()->second );
+ int i = 0, ir = Nodes1.size()-1;
+ int * pi = nodesFromP0ToP1 ? &i : &ir;
+ itn = theNodes.begin();
+ if ( nodesFromP0ToP1 ) ++itn;
+ for ( ; i < Nodes1.size(); ++i, --ir, ++itn )
+ {
+ Nodes1[*pi] = itn->second;
+ }
+ for ( i = 0; i < Nodes1.size()-1; ++i )
+ {
+ Points.Append( gpXYZ( Nodes1[i]));
+ Pnts2d1.Append( myHelper->GetNodeUV( F, Nodes1[i]));
+ }
}
- Nodes1[ myLayerPositions.size() ] = NF;
- // create 1D elements on edge
- SMDS_MeshEdge* ME = myHelper->AddEdge( NC, Nodes1[0] );
- if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
- for(i=1; i<Nodes1.size(); i++) {
- SMDS_MeshEdge* ME = myHelper->AddEdge( Nodes1[i-1], Nodes1[i] );
+ else
+ {
+ int edgeID = meshDS->ShapeToIndex(LinEdge1);
+ gp_Vec aVec(P0,P1);
+ // check orientation
+ Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge1,fp,lp);
+ gp_Pnt Ptmp = Crv->Value(fp);
+ bool ori = false;
+ if( P1.Distance(Ptmp) > Precision::Confusion() )
+ ori = true;
+ // get UV points for edge
+ gp_Pnt2d PF,PL;
+ BRep_Tool::UVPoints( LinEdge1, TopoDS::Face(aShape), PF, PL );
+ gp_Vec2d V2d;
+ if(ori) {
+ V2d = gp_Vec2d(PF,PL);
+ PC = PF;
+ }
+ else {
+ V2d = gp_Vec2d(PL,PF);
+ PC = PL;
+ }
+ NC = const_cast<SMDS_MeshNode*>( VertexNode( VC, meshDS ));
+ if ( !NC )
+ {
+ NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z());
+ meshDS->SetNodeOnVertex(NC, vertID);
+ }
+ double dp = lp-fp;
+ int i = 0;
+ for(; i<myLayerPositions.size(); i++) {
+ gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
+ P0.Y() + aVec.Y()*myLayerPositions[i],
+ P0.Z() + aVec.Z()*myLayerPositions[i] );
+ Points.Append(P);
+ SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
+ Nodes1[i] = node;
+ double param;
+ if(!ori)
+ param = fp + dp*(1-myLayerPositions[i]);
+ else
+ param = fp + dp*myLayerPositions[i];
+ meshDS->SetNodeOnEdge(node, edgeID, param);
+ // parameters on face
+ gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i],
+ PC.Y() + V2d.Y()*myLayerPositions[i] );
+ Pnts2d1.Append(P2d);
+ }
+ Nodes1[ myLayerPositions.size() ] = NF;
+ // create 1D elements on edge
+ SMDS_MeshEdge* ME = myHelper->AddEdge( NC, Nodes1[0] );
if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
+ for(i=1; i<Nodes1.size(); i++) {
+ ME = myHelper->AddEdge( Nodes1[i-1], Nodes1[i] );
+ if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
+ }
+ if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL )
+ Nodes2 = Nodes1;
}
+ markLinEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F ));
+
// LinEdge2
- edgeID = meshDS->ShapeToIndex(LinEdge2);
- aVec = gp_Vec(P0,P2);
- // check orientation
- Crv = BRep_Tool::Curve(LinEdge2,fp,lp);
- Crv->D0(fp,Ptmp);
- ori = false;
- if( P2.Distance(Ptmp) > Precision::Confusion() )
- ori = true;
- // get UV points for edge
- BRep_Tool::UVPoints( LinEdge2, TopoDS::Face(aShape), PF, PL );
- if(ori) {
- V2d = gp_Vec2d(PF,PL);
- PC = PF;
- }
- else {
- V2d = gp_Vec2d(PL,PF);
- PC = PL;
- }
- dp = lp-fp;
- Nodes2.resize( myLayerPositions.size()+1 );
- for(i=0; i<myLayerPositions.size(); i++) {
- gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
- P0.Y() + aVec.Y()*myLayerPositions[i],
- P0.Z() + aVec.Z()*myLayerPositions[i] );
- SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
- Nodes2[i] = node;
- double param;
- if(!ori)
- param = fp + dp*(1-myLayerPositions[i]);
- else
- param = fp + dp*myLayerPositions[i];
- meshDS->SetNodeOnEdge(node, edgeID, param);
- // parameters on face
- gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i],
- PC.Y() + V2d.Y()*myLayerPositions[i] );
- Pnts2d2.Append(P2d);
+ if ( linEdge2Computed )
+ {
+ if (!GetSortedNodesOnEdge(aMesh.GetMeshDS(),LinEdge2,true,theNodes))
+ return error("Invalid mesh on a straight edge");
+
+ bool nodesFromP0ToP2 = ( theNodes.rbegin()->second == NL );
+ int i = 0, ir = Nodes1.size()-1;
+ int * pi = nodesFromP0ToP2 ? &i : &ir;
+ itn = theNodes.begin();
+ if ( nodesFromP0ToP2 ) ++itn;
+ for ( ; i < Nodes2.size(); ++i, --ir, ++itn )
+ Nodes2[*pi] = itn->second;
}
- Nodes2[ myLayerPositions.size() ] = NL;
- // create 1D elements on edge
- ME = myHelper->AddEdge( NC, Nodes2[0] );
- if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
- for(i=1; i<Nodes2.size(); i++) {
- SMDS_MeshEdge* ME = myHelper->AddEdge( Nodes2[i-1], Nodes2[i] );
+ else
+ {
+ int edgeID = meshDS->ShapeToIndex(LinEdge2);
+ gp_Vec aVec = gp_Vec(P0,P2);
+ // check orientation
+ Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge2,fp,lp);
+ gp_Pnt Ptmp = Crv->Value(fp);
+ bool ori = false;
+ if( P2.Distance(Ptmp) > Precision::Confusion() )
+ ori = true;
+ // get UV points for edge
+ gp_Pnt2d PF,PL;
+ BRep_Tool::UVPoints( LinEdge2, TopoDS::Face(aShape), PF, PL );
+ gp_Vec2d V2d;
+ if(ori) {
+ V2d = gp_Vec2d(PF,PL);
+ PC = PF;
+ }
+ else {
+ V2d = gp_Vec2d(PL,PF);
+ PC = PL;
+ }
+ double dp = lp-fp;
+ for(int i=0; i<myLayerPositions.size(); i++) {
+ gp_Pnt P( P0.X() + aVec.X()*myLayerPositions[i],
+ P0.Y() + aVec.Y()*myLayerPositions[i],
+ P0.Z() + aVec.Z()*myLayerPositions[i] );
+ SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
+ Nodes2[i] = node;
+ double param;
+ if(!ori)
+ param = fp + dp*(1-myLayerPositions[i]);
+ else
+ param = fp + dp*myLayerPositions[i];
+ meshDS->SetNodeOnEdge(node, edgeID, param);
+ // parameters on face
+ gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i],
+ PC.Y() + V2d.Y()*myLayerPositions[i] );
+ }
+ Nodes2[ myLayerPositions.size() ] = NL;
+ // create 1D elements on edge
+ SMDS_MeshEdge* ME = myHelper->AddEdge( NC, Nodes2[0] );
if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
+ for(int i=1; i<Nodes2.size(); i++) {
+ ME = myHelper->AddEdge( Nodes2[i-1], Nodes2[i] );
+ if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
+ }
}
+ markLinEdgeAsComputedByMe( LinEdge2, aMesh.GetSubMesh( F ));
}
+ // orientation
+ bool IsForward = ( CircEdge.Orientation()==TopAbs_FORWARD );
+
// create nodes and mesh elements on face
// find axis of rotation
gp_Pnt P2 = gp_Pnt( CNodes[1]->X(), CNodes[1]->Y(), CNodes[1]->Z() );
//cout<<"Angles.Length() = "<<Angles.Length()<<" Points.Length() = "<<Points.Length()<<endl;
//cout<<"Nodes1.size() = "<<Nodes1.size()<<" Pnts2d1.Length() = "<<Pnts2d1.Length()<<endl;
for(; i<Angles.Length(); i++) {
- std::vector< const SMDS_MeshNode* > tmpNodes;
+ vector< const SMDS_MeshNode* > tmpNodes;
tmpNodes.reserve(Nodes1.size());
gp_Trsf aTrsf;
gp_Ax1 theAxis(P0,gp_Dir(Axis));
MF = myHelper->AddFace( NC, Nodes2[0], Nodes1[0] );
if(MF) meshDS->SetMeshElementOnShape(MF, faceID);
-
- // to delete helper at exit from Compute()
- std::auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper );
-
return true;
}
if(ok) {
SMESH_subMesh * sm = aMesh.GetSubMesh(CircEdge);
MapShapeNbElemsItr anIt = aResMap.find(sm);
- std::vector<int> aVec = (*anIt).second;
+ vector<int> aVec = (*anIt).second;
isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge];
if(isQuadratic) {
// main nodes
if(ok) {
SMESH_subMesh * sm = aMesh.GetSubMesh(CircEdge);
MapShapeNbElemsItr anIt = aResMap.find(sm);
- std::vector<int> aVec = (*anIt).second;
+ vector<int> aVec = (*anIt).second;
isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge];
if(isQuadratic) {
// main nodes
nb2d_tria = aVec[SMDSEntity_Node] + 1;
nb2d_quad = nb2d_tria * myLayerPositions.size();
// add evaluation for edges
- std::vector<int> aResVec(SMDSEntity_Last);
+ vector<int> aResVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
if(isQuadratic) {
aResVec[SMDSEntity_Node] = 4*myLayerPositions.size() + 3;
aResVec[SMDSEntity_Edge] = 2*myLayerPositions.size() + 2;
}
sm = aMesh.GetSubMesh(LinEdge1);
- aResMap.insert(std::make_pair(sm,aResVec));
+ aResMap.insert(make_pair(sm,aResVec));
}
}
else { // nbe==3
if(ok) {
SMESH_subMesh * sm = aMesh.GetSubMesh(CircEdge);
MapShapeNbElemsItr anIt = aResMap.find(sm);
- std::vector<int> aVec = (*anIt).second;
+ vector<int> aVec = (*anIt).second;
isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge];
if(isQuadratic) {
// main nodes
nb2d_tria = aVec[SMDSEntity_Node] + 1;
nb2d_quad = nb2d_tria * myLayerPositions.size();
// add evaluation for edges
- std::vector<int> aResVec(SMDSEntity_Last);
+ vector<int> aResVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
if(isQuadratic) {
aResVec[SMDSEntity_Node] = 2*myLayerPositions.size() + 1;
aResVec[SMDSEntity_Edge] = myLayerPositions.size() + 1;
}
sm = aMesh.GetSubMesh(LinEdge1);
- aResMap.insert(std::make_pair(sm,aResVec));
+ aResMap.insert(make_pair(sm,aResVec));
sm = aMesh.GetSubMesh(LinEdge2);
- aResMap.insert(std::make_pair(sm,aResVec));
+ aResMap.insert(make_pair(sm,aResVec));
}
}
- std::vector<int> aResVec(SMDSEntity_Last);
+ vector<int> aResVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
aResVec[SMDSEntity_Triangle] = nb2d_tria;
aResVec[SMDSEntity_Quadrangle] = nb2d_quad;
}
- aResMap.insert(std::make_pair(sm,aResVec));
+ aResMap.insert(make_pair(sm,aResVec));
return true;
}
// invalid case
- aResMap.insert(std::make_pair(sm,aResVec));
+ aResMap.insert(make_pair(sm,aResVec));
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,
"Submesh can not be evaluated",this));
virtual bool Evaluate(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape,
MapShapeNbElems& aResMap);
-
+ /*!
+ * \brief Allow algo to do something after persistent restoration
+ * \param subMesh - restored submesh
+ *
+ * This method is called only if a submesh has HYP_OK algo_state.
+ */
+ virtual void SubmeshRestored(SMESH_subMesh* subMesh);
+
protected:
bool computeLayerPositions(const gp_Pnt& pIn,
#include <TopoDS_Edge.hxx>
#include <string>
+#include <limits>
using namespace std;
double an = _value[ END_LENGTH_IND ];
double q = ( an - a1 ) / ( 2 *theLength/( a1 + an ) - 1 );
- int n = int( 1 + ( an - a1 ) / q );
+ int n = int(fabs(q) > numeric_limits<double>::min() ? ( 1+( an-a1 )/q ) : ( 1+theLength/a1 ));
double U1 = theReverse ? l : f;
double Un = theReverse ? f : l;
if ( _hypType == NONE )
return false;
- SMESHDS_Mesh * meshDS = theMesh.GetMeshDS();
+ //SMESHDS_Mesh * meshDS = theMesh.GetMeshDS();
const TopoDS_Edge & EE = TopoDS::Edge(theShape);
TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD));
../SMESHGUI/libSMESH.la \
../OBJECT/libSMESHObject.la \
$(GUI_LDFLAGS) -lSalomeApp \
- $(CAS_LDPATH) -lTKernel -lTKBO -lTKAdvTools \
- $(QWT_LIBS)
+ $(CAS_LDPATH) -lTKernel -lTKBO -lTKAdvTools
# resources files
nodist_salomeres_DATA= \
# include <algorithm>
#endif
+#include <Basics_Utils.hxx>
+
StdMeshersGUI_DistrPreview::StdMeshersGUI_DistrPreview( QWidget* p, StdMeshers::StdMeshers_NumberOfSegments_ptr h )
: QwtPlot( p ),
myPoints( 50 ),
myIsDone( true ),
myNbSeg( 1 )
{
+ Kernel_Utils::Localizer loc;
myHypo = StdMeshers::StdMeshers_NumberOfSegments::_duplicate( h );
myVars.ChangeValue( 1 ) = new Expr_NamedUnknown( "t" );
myDensity = new QwtPlotCurve( QString() );
void StdMeshersGUI_DistrPreview::update()
{
+ Kernel_Utils::Localizer loc;
SMESH::double_array graph, distr;
if( isTableFunc() )
{
bool StdMeshersGUI_DistrPreview::init( const QString& str )
{
+ Kernel_Utils::Localizer loc;
bool parsed_ok = true;
try {
#ifdef NO_CAS_CATCH
widget< StdMeshersGUI_LayerDistributionParamWdg >( 0 );
ok = ( w && w->IsOk() );
}
+ else if ( hypType() == "QuadrangleParams" )
+ {
+ StdMeshersGUI_SubShapeSelectorWdg* w =
+ widget< StdMeshersGUI_SubShapeSelectorWdg >( 0 );
+ ok = ( w->GetListSize() > 0 );
+ }
return ok;
}
StdMeshersGUI_SubShapeSelectorWdg* w =
widget< StdMeshersGUI_SubShapeSelectorWdg >( 0 );
if (w) {
- if( int id = w->GetListOfIDs()[0] ) {
- h->SetTriaVertex( id );
+ if( w->GetListSize() > 0 ) {
+ h->SetTriaVertex( w->GetListOfIDs()[0] ); // getlist must be called once
+ const char * entry = w->GetMainShapeEntry();
+ h->SetObjectEntry( entry );
}
- const char * entry = w->GetMainShapeEntry();
- h->SetObjectEntry( entry );
}
}
}
types.insert( "ProjectionSource3D", "PROJECTION_SOURCE_3D" );
types.insert( "NumberOfLayers", "NUMBER_OF_LAYERS" );
types.insert( "LayerDistribution", "LAYER_DISTRIBUTION" );
- types.insert( "NumberOfLayers2D", "NUMBER_OF_LAYERS" );
+ types.insert( "NumberOfLayers2D", "NUMBER_OF_LAYERS_2D" );
types.insert( "LayerDistribution2D", "LAYER_DISTRIBUTION" );
types.insert( "SegmentLengthAroundVertex", "SEGMENT_LENGTH_AROUND_VERTEX" );
types.insert( "MaxLength", "MAX_LENGTH" );
StdMeshersGUI_SubShapeSelectorWdg
::StdMeshersGUI_SubShapeSelectorWdg( QWidget * parent ):
QWidget( parent ),
- myPreviewActor( 0 )
+ myPreviewActor( 0 ),
+ myMaxSize( 0 )
{
QPixmap image0( SMESH::GetResourceMgr( mySMESHGUI )->loadPixmap( "SMESH", tr( "ICON_SELECT" ) ) );
setLayout( edgesLayout );
setMinimumWidth( 300 );
- myMaxSize = 1000;
mySubShType = TopAbs_EDGE;
init();
return;
myListWidget->blockSignals( true );
- for (int i = 0; i < mySelectedIDs.size(); i++) {
+ for (int i = 0; i < mySelectedIDs.size() && (myMaxSize < 1 || myListOfIDs.size() < myMaxSize); i++) {
if ( myListOfIDs.indexOf( mySelectedIDs.at(i) ) == -1 ) {
QString anID = QString(" %1").arg( mySelectedIDs.at(i) );
}
}
onListSelectionChanged();
-
myListWidget->blockSignals( false );
-
- if( myListOfIDs.size() >= myMaxSize )
- myAddButton->setEnabled( false );
+ myAddButton->setEnabled( myListOfIDs.size() < myMaxSize );
}
//=================================================================================
void showPreview ( bool );
+ int GetListSize() { return myListOfIDs.size(); }
+
void SetMaxSize(int aMaxSize) { myMaxSize = aMaxSize; }
void SetSubShType(TopAbs_ShapeEnum aSubShType) { mySubShType = aSubShType; }
<source>ICON_DLG_NUMBER_OF_LAYERS</source>
<translation>mesh_hypo_layer_distribution.png</translation>
</message>
+ <message>
+ <source>ICON_DLG_NUMBER_OF_LAYERS_2D</source>
+ <translation>mesh_hypo_layer_distribution.png</translation>
+ </message>
<message>
<source>ICON_DLG_PROJECTION_SOURCE_1D</source>
<translation>mesh_hypo_source_edge.png</translation>
<source>SMESH_NUMBER_OF_LAYERS_HYPOTHESIS</source>
<translation>Radial Prism Parameter</translation>
</message>
+ <message>
+ <source>SMESH_NUMBER_OF_LAYERS_2D_HYPOTHESIS</source>
+ <translation>Radial Quadrangle Parameter</translation>
+ </message>
<message>
<source>SMESH_NUMBER_OF_LAYERS_TITLE</source>
<translation>Hypothesis Construction</translation>
</message>
+ <message>
+ <source>SMESH_NUMBER_OF_LAYERS_2D_TITLE</source>
+ <translation>Hypothesis Construction</translation>
+ </message>
<message>
<source>SMESH_PROJECTION_SOURCE_1D_HYPOTHESIS</source>
<translation>Projection Source 1D</translation>