bool _isBlocked;// is more inflation possible or not
- gp_XY _normal2D; // to pcurve
+ gp_XY _normal2D; // to curve
double _len2dTo3dRatio; // to pass 2D <--> 3D
gp_Ax2d _ray; // a ray starting at _uvOut
vector<gp_XY> _uvRefined; // divisions by layers
bool SetNewLength( const double length );
+
+#ifdef _DEBUG_
+ int _ID;
+#endif
};
//--------------------------------------------------------------------------------
/*!
}
bool IsAdjacent( const _Segment& seg, const _LayerEdge* LE=0 ) const
{
- if ( LE && seg._indexInLine < _lEdges.size() &&
- ( seg._uv[0] == & LE->_uvIn ||
- seg._uv[1] == & LE->_uvIn ))
- return true;
+ if ( LE /*&& seg._indexInLine < _lEdges.size()*/ )
+ return ( seg._uv[0] == & LE->_uvIn ||
+ seg._uv[1] == & LE->_uvIn );
return ( & seg == &_leftLine->_segments.back() ||
& seg == &_rightLine->_segments[0] );
}
+ bool IsConcave() const;
};
//--------------------------------------------------------------------------------
/*!
bool Compute(const _Segment& seg1, const _Segment& seg2, bool seg2IsRay = false )
{
+ // !!! If seg2IsRay, returns true at any _param2 !!!
const double eps = 1e-10;
_vec1 = seg1.p2() - seg1.p1();
_vec2 = seg2.p2() - seg2.p1();
_param1 = _vec2.Crossed(_vec21) / _D;
if (_param1 < -eps || _param1 > 1 + eps )
return false;
- _param2 = _vec1.Crossed(_vec21) / _D;
- if (_param2 < -eps || ( !seg2IsRay && _param2 > 1 + eps ))
- return false;
- return true;
+ _param2 = _vec1.Crossed(_vec21) / _D;
+ return seg2IsRay || ( _param2 > -eps && _param2 < 1 + eps );
}
bool Compute( const _Segment& seg1, const gp_Ax2d& ray )
{
const TopoDS_Edge& E,
const TopoDS_Vertex& V);
void setLenRatio( _LayerEdge& LE, const gp_Pnt& pOut );
- void setLayerEdgeData( _LayerEdge& lEdge,
- const double u,
- Handle(Geom2d_Curve)& pcurve,
- const bool reverse);
+ void setLayerEdgeData( _LayerEdge& lEdge,
+ const double u,
+ Handle(Geom2d_Curve)& pcurve,
+ Handle(Geom_Curve)& curve,
+ const gp_Pnt pOut,
+ const bool reverse,
+ GeomAPI_ProjectPointOnSurf* faceProj);
void adjustCommonEdge( _PolyLine& LL, _PolyLine& LR );
void calcLayersHeight(const double totalThick,
vector<double>& heights);
SMESH_MesherHelper _helper;
TSideVector _faceSideVec; // wires (StdMeshers_FaceSide) of _face
vector<_PolyLine> _polyLineVec; // fronts to advance
+ bool _is2DIsotropic; // is same U and V resoulution of _face
double _fPowN; // to compute thickness of layers
double _thickness; // required or possible layers thickness
// are inflated along such EDGEs but then such _LayerEdge's are turned into
// a node on VERTEX, i.e. all nodes on a _LayerEdge are melded into one node.
+ int _nbLE; // for DEBUG
};
//================================================================================
if ( _hyp )
_fPowN = pow( _hyp->GetStretchFactor(), _hyp->GetNumberLayers() );
+
+ _nbLE = 0;
}
//================================================================================
//================================================================================
/*!
- * \brief Create the inner front of the viscous layers and prepare data for infation
+ * \brief Create the inner front of the viscous layers and prepare data for inflation
*/
//================================================================================
// count total nb of EDGEs to allocate _polyLineVec
int nbEdges = 0;
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
- nbEdges += _faceSideVec[ iWire ]->NbEdges();
+ {
+ StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
+ nbEdges += wire->NbEdges();
+ if ( wire->GetUVPtStruct().empty() && wire->NbPoints() > 0 )
+ return error("Invalid node parameters on some EDGE");
+ }
_polyLineVec.resize( nbEdges );
+ // check if 2D normal should be computed by 3D one by means of projection
+ GeomAPI_ProjectPointOnSurf* faceProj = 0;
+ TopLoc_Location loc;
+ {
+ _LayerEdge tmpLE;
+ const UVPtStruct& uv = _faceSideVec[0]->GetUVPtStruct()[0];
+ gp_Pnt p = SMESH_TNodeXYZ( uv.node );
+ tmpLE._uvOut.SetCoord( uv.u, uv.v );
+ tmpLE._normal2D.SetCoord( 1., 0. );
+ setLenRatio( tmpLE, p );
+ const double r1 = tmpLE._len2dTo3dRatio;
+ tmpLE._normal2D.SetCoord( 0., 1. );
+ setLenRatio( tmpLE, p );
+ const double r2 = tmpLE._len2dTo3dRatio;
+ // projection is needed if two _len2dTo3dRatio's differ too much
+ const double maxR = Max( r2, r1 );
+ if ( Abs( r2-r1 )/maxR > 0.2*maxR )
+ faceProj = & _helper.GetProjector( _face, loc );
+ }
+ _is2DIsotropic = !faceProj;
+
// Assign data to _PolyLine's
// ---------------------------
{
StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
const vector<UVPtStruct>& points = wire->GetUVPtStruct();
- if ( points.empty() && wire->NbPoints() > 0 )
- return error("Invalid node parameters on some EDGE");
int iPnt = 0;
for ( int iE = 0; iE < wire->NbEdges(); ++iE )
{
// TODO: add more _LayerEdge's to strongly curved EDGEs
// in order not to miss collisions
+ double u; gp_Pnt p;
+ Handle(Geom_Curve) curve = BRep_Tool::Curve( L._wire->Edge( iE ), loc, u, u );
Handle(Geom2d_Curve) pcurve = L._wire->Curve2d( L._edgeInd );
const bool reverse = (( L._wire->Edge( iE ).Orientation() == TopAbs_REVERSED ) ^
(_face.Orientation() == TopAbs_REVERSED ));
for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
{
_LayerEdge& lEdge = L._lEdges[ i - L._firstPntInd ];
- const double u = ( i == L._firstPntInd ? wire->FirstU(iE) : points[ i ].param );
- setLayerEdgeData( lEdge, u, pcurve, reverse );
- setLenRatio( lEdge, SMESH_TNodeXYZ( points[ i ].node ) );
+ u = ( i == L._firstPntInd ? wire->FirstU(iE) : points[ i ].param );
+ p = SMESH_TNodeXYZ( points[ i ].node );
+ setLayerEdgeData( lEdge, u, pcurve, curve, p, reverse, faceProj );
+ setLenRatio( lEdge, p );
}
- if ( L._lastPntInd - L._firstPntInd + 1 < 3 ) // add 3d _LayerEdge in the middle
+ if ( L._lastPntInd - L._firstPntInd + 1 < 3 ) // add 3-d _LayerEdge in the middle
{
L._lEdges[2] = L._lEdges[1];
- const double u = 0.5 * ( wire->FirstU(iE) + wire->LastU(iE) );
- setLayerEdgeData( L._lEdges[1], u, pcurve, reverse );
- gp_Pnt p = 0.5 * ( SMESH_TNodeXYZ( points[ L._firstPntInd ].node ) +
- SMESH_TNodeXYZ( points[ L._lastPntInd ].node ));
+ u = 0.5 * ( wire->FirstU(iE) + wire->LastU(iE) );
+ if ( !curve.IsNull() )
+ p = curve->Value( u );
+ else
+ p = 0.5 * ( SMESH_TNodeXYZ( points[ L._firstPntInd ].node ) +
+ SMESH_TNodeXYZ( points[ L._lastPntInd ].node ));
+ setLayerEdgeData( L._lEdges[1], u, pcurve, curve, p, reverse, faceProj );
setLenRatio( L._lEdges[1], p );
}
}
{
double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio;
double psblThick = distToL2 / ( 1 + L1._advancable + L2._advancable );
- if ( maxPossibleThick < psblThick )
- maxPossibleThick = psblThick;
+ maxPossibleThick = Max( psblThick, maxPossibleThick );
}
}
}
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
{
lineBoxes[ iPoLine ] = *_polyLineVec[ iPoLine ]._segTree->getBox();
- if ( _polyLineVec[ iPoLine ]._advancable )
- lineBoxes[ iPoLine ].Enlarge( maxLen2dTo3dRatio * _thickness * 2 );
+ lineBoxes[ iPoLine ].Enlarge( maxLen2dTo3dRatio * _thickness *
+ ( _polyLineVec[ iPoLine ]._advancable ? 2. : 1.2 ));
}
// _reachableLines
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
lastIntersection._param1 = intersection._param1;
lastIntersection._param2 = intersection._param2;
}
- if ( iLE >= L._lEdges.size () - 1 )
+ if ( iLE >= L._lEdges.size() - 1 )
{
// all _LayerEdge's intersect the segCommon, limit inflation
- // of remaining 2 _LayerEdge's
+ // of remaining 3 _LayerEdge's
vector< _LayerEdge > newEdgeVec( Min( 3, L._lEdges.size() ));
newEdgeVec.front() = L._lEdges.front();
newEdgeVec.back() = L._lEdges.back();
if ( newEdgeVec.size() == 3 )
- newEdgeVec[1] = L._lEdges[ L._lEdges.size() / 2 ];
+ {
+ newEdgeVec[1] = L._lEdges[ isR ? (L._lEdges.size() - 2) : 1 ];
+ newEdgeVec[1]._len2dTo3dRatio *= lastIntersection._param2;
+ }
L._lEdges.swap( newEdgeVec );
if ( !isR ) std::swap( lastIntersection._param1 , lastIntersection._param2 );
L._lEdges.front()._len2dTo3dRatio *= lastIntersection._param1; // ??
*/
//================================================================================
-void _ViscousBuilder2D::setLayerEdgeData( _LayerEdge& lEdge,
- const double u,
- Handle(Geom2d_Curve)& pcurve,
- const bool reverse)
+void _ViscousBuilder2D::setLayerEdgeData( _LayerEdge& lEdge,
+ const double u,
+ Handle(Geom2d_Curve)& pcurve,
+ Handle(Geom_Curve)& curve,
+ const gp_Pnt pOut,
+ const bool reverse,
+ GeomAPI_ProjectPointOnSurf* faceProj)
{
- gp_Pnt2d uv; gp_Vec2d tangent;
- pcurve->D1( u, uv, tangent );
- tangent.Normalize();
- if ( reverse )
- tangent.Reverse();
+ gp_Pnt2d uv;
+ if ( faceProj && !curve.IsNull() )
+ {
+ uv = pcurve->Value( u );
+ gp_Vec tangent; gp_Pnt p; gp_Vec du, dv;
+ curve->D1( u, p, tangent );
+ if ( reverse )
+ tangent.Reverse();
+ _surface->D1( uv.X(), uv.Y(), p, du, dv );
+ gp_Vec faceNorm = du ^ dv;
+ gp_Vec normal = faceNorm ^ tangent;
+ normal.Normalize();
+ p = pOut.XYZ() + normal.XYZ() * /*1e-2 * */_hyp->GetTotalThickness() / _hyp->GetNumberLayers();
+ faceProj->Perform( p );
+ if ( !faceProj->IsDone() || faceProj->NbPoints() < 1 )
+ return setLayerEdgeData( lEdge, u, pcurve, curve, p, reverse, NULL );
+ Quantity_Parameter U,V;
+ faceProj->LowerDistanceParameters(U,V);
+ lEdge._normal2D.SetCoord( U - uv.X(), V - uv.Y() );
+ lEdge._normal2D.Normalize();
+ }
+ else
+ {
+ gp_Vec2d tangent;
+ pcurve->D1( u, uv, tangent );
+ tangent.Normalize();
+ if ( reverse )
+ tangent.Reverse();
+ lEdge._normal2D.SetCoord( -tangent.Y(), tangent.X() );
+ }
lEdge._uvOut = lEdge._uvIn = uv.XY();
- lEdge._normal2D.SetCoord( -tangent.Y(), tangent.X() );
- lEdge._ray.SetLocation( lEdge._uvOut );
+ lEdge._ray.SetLocation ( lEdge._uvOut );
lEdge._ray.SetDirection( lEdge._normal2D );
lEdge._isBlocked = false;
lEdge._length2D = 0;
+#ifdef _DEBUG_
+ lEdge._ID = _nbLE++;
+#endif
}
//================================================================================
{
double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio;
double size = distToL2 / ( 1 + L1._advancable + L2._advancable );
- if ( size < minSize )
+ if ( 1e-10 < size && size < minSize )
minSize = size;
if ( size > maxSize )
maxSize = size;
{
// look for intersections of _Segment's by intersecting _LayerEdge's with
// _Segment's
- //double maxStep = 0, minStep = 1e+100;
vector< const _Segment* > foundSegs;
_SegmentIntersection intersection;
double newLen2D = dist2DToL2 / 2;
if ( newLen2D < 1.1 * LE1._length2D ) // collision!
{
- if ( newLen2D < LE1._length2D )
+ if ( newLen2D > 0 || !L1._advancable )
{
blockedEdgesList.push_back( &LE1 );
- if ( L1._advancable )
+ if ( L1._advancable && newLen2D > 0 )
{
edgeLenLimitList.push_back( make_pair( &LE1, newLen2D ));
blockedEdgesList.push_back( &L2._lEdges[ foundSegs[i]->_indexInLine ]);
}
else // here dist2DToL2 < 0 and LE1._length2D == 0
{
- _LayerEdge LE2[2] = { L2._lEdges[ foundSegs[i]->_indexInLine ],
- L2._lEdges[ foundSegs[i]->_indexInLine + 1 ] };
- _Segment outSeg2( LE2[0]._uvOut, LE2[1]._uvOut );
+ _LayerEdge* LE2[2] = { & L2._lEdges[ foundSegs[i]->_indexInLine ],
+ & L2._lEdges[ foundSegs[i]->_indexInLine + 1 ] };
+ _Segment outSeg2( LE2[0]->_uvOut, LE2[1]->_uvOut );
intersection.Compute( outSeg2, LE1._ray );
newLen2D = intersection._param2 / 2;
-
- edgeLenLimitList.push_back( make_pair( &LE2[0], newLen2D ));
- edgeLenLimitList.push_back( make_pair( &LE2[1], newLen2D ));
+ if ( newLen2D > 0 )
+ {
+ edgeLenLimitList.push_back( make_pair( LE2[0], newLen2D ));
+ edgeLenLimitList.push_back( make_pair( LE2[1], newLen2D ));
+ }
}
}
}
}
}
+ // limit length of _LayerEdge's that are extrema of _PolyLine's
+ // to avoid intersection of these _LayerEdge's
+ for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
+ {
+ _PolyLine& L = _polyLineVec[ iL1 ];
+ if ( L._lEdges.size() < 4 ) // all intermediate _LayerEdge's intersect with extremum ones
+ {
+ _LayerEdge& LEL = L._leftLine->_lEdges.back();
+ _LayerEdge& LER = L._lEdges.back();
+ _Segment segL( LEL._uvOut, LEL._uvIn );
+ _Segment segR( LER._uvOut, LER._uvIn );
+ double newLen2DL, newLen2DR;
+ if ( intersection.Compute( segL, LER._ray ))
+ {
+ newLen2DR = intersection._param2 / 2;
+ newLen2DL = LEL._length2D * intersection._param1 / 2;
+ }
+ else if ( intersection.Compute( segR, LEL._ray ))
+ {
+ newLen2DL = intersection._param2 / 2;
+ newLen2DR = LER._length2D * intersection._param1 / 2;
+ }
+ else
+ {
+ continue;
+ }
+ if ( newLen2DL > 0 && newLen2DR > 0 )
+ {
+ if ( newLen2DL < 1.1 * LEL._length2D )
+ edgeLenLimitList.push_back( make_pair( &LEL, newLen2DL ));
+ if ( newLen2DR < 1.1 * LER._length2D )
+ edgeLenLimitList.push_back( make_pair( &LER, newLen2DR ));
+ }
+ }
+ }
+
// set limited length to _LayerEdge's
list< pair< _LayerEdge*, double > >::iterator edge2Len = edgeLenLimitList.begin();
for ( ; edge2Len != edgeLenLimitList.end(); ++edge2Len )
{
_LayerEdge* LE = edge2Len->first;
- LE->SetNewLength( edge2Len->second / LE->_len2dTo3dRatio );
+ if ( LE->_length2D > edge2Len->second )
+ {
+ LE->_isBlocked = false;
+ LE->SetNewLength( edge2Len->second / LE->_len2dTo3dRatio );
+ }
LE->_isBlocked = true;
}
{
size_t iF = 0, iL = L._lEdges.size()-1;
size_t *i = isR ? &iL : &iF;
- //size_t iRef = *i;
_LayerEdge* prevLE = & L._lEdges[ *i ];
double weight = 0;
for ( ++iF, --iL; iF < L._lEdges.size()-1; ++iF, --iL )
{
_LayerEdge& LE = L._lEdges[*i];
- if ( prevLE->_length2D > 0 ) {
+ if ( prevLE->_length2D > 0 )
+ {
gp_XY tangent ( LE._normal2D.Y(), -LE._normal2D.X() );
weight += Abs( tangent * ( prevLE->_uvIn - LE._uvIn )) / segLen.back();
- gp_XY prevTang = ( LE._uvOut - prevLE->_uvOut );
- gp_XY prevNorm = gp_XY( -prevTang.Y(), prevTang.X() );
- double prevProj = prevNorm * ( prevLE->_uvIn - prevLE->_uvOut );
+ // gp_XY prevTang( LE._uvOut - prevLE->_uvOut );
+ // gp_XY prevNorm( -prevTang.Y(), prevTang.X() );
+ gp_XY prevNorm = LE._normal2D;
+ double prevProj = prevNorm * ( prevLE->_uvIn - prevLE->_uvOut );
if ( prevProj > 0 ) {
- prevProj /= prevTang.Modulus();
+ prevProj /= prevNorm.Modulus();
if ( LE._length2D < prevProj )
weight += 0.75 * ( 1 - weight ); // length decrease is more preferable
LE._length2D = weight * LE._length2D + ( 1 - weight ) * prevProj;
prevLE = & LE;
}
}
+ // DEBUG: to see _uvRefined. cout can be redirected to hide NETGEN output
+ // cerr << "import smesh" << endl << "mesh = smesh.Mesh()"<< endl;
- // calculate intermediate UV on _LayerEdge's ( _LayerEdge::_uvRefined )
+ // calculate intermediate UV on _LayerEdge's ( _LayerEdge::_uvRefined )
for ( ; iLE < nbLE; ++iLE )
{
_LayerEdge& LE = L._lEdges[iLE];
}
for ( size_t i = 0; i < layersHeight.size(); ++i )
LE._uvRefined.push_back( LE._uvOut + LE._normal2D * layersHeight[i] );
+
+ // DEBUG: to see _uvRefined
+ // for ( size_t i = 0; i < LE._uvRefined.size(); ++i )
+ // {
+ // gp_XY uv = LE._uvRefined[i];
+ // gp_Pnt p = _surface->Value( uv.X(), uv.Y() );
+ // cerr << "mesh.AddNode( " << p.X() << ", " << p.Y() << ", " << p.Z() << " )" << endl;
+ // }
}
// nodes to create 1 layer of faces
vector< const SMDS_MeshNode* > outerNodes( L._lastPntInd - L._firstPntInd + 1 );
vector< const SMDS_MeshNode* > innerNodes( L._lastPntInd - L._firstPntInd + 1 );
- // initialize outerNodes by node on the L._wire
+ // initialize outerNodes by nodes of the L._wire
const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
outerNodes[ i-L._firstPntInd ] = points[i].node;
// Create layers of faces
- bool hasLeftNode = ( !L._leftLine->_rightNodes.empty() && leftEdgeShared );
- bool hasRightNode = ( !L._rightLine->_leftNodes.empty() && rightEdgeShared );
+ bool hasLeftNode = ( !L._leftLine->_rightNodes.empty() && leftEdgeShared );
+ bool hasRightNode = ( !L._rightLine->_leftNodes.empty() && rightEdgeShared );
bool hasOwnLeftNode = ( !L._leftNodes.empty() );
bool hasOwnRightNode = ( !L._rightNodes.empty() );
- bool isClosedEdge = ( outerNodes.front() == outerNodes.back() );
+ bool isClosedEdge = ( outerNodes.front() == outerNodes.back() );
size_t iS,
iN0 = ( hasLeftNode || hasOwnLeftNode || isClosedEdge ),
nbN = innerNodes.size() - ( hasRightNode || hasOwnRightNode );
for ( int iF = 0; iF < _hyp->GetNumberLayers(); ++iF ) // loop on layers of faces
{
// get accumulated length of intermediate segments
- for ( iS = 1; iS < segLen.size(); ++iS )
- {
- double sLen = (L._lEdges[iS-1]._uvRefined[iF] - L._lEdges[iS]._uvRefined[iF] ).Modulus();
- segLen[iS] = segLen[iS-1] + sLen;
- }
+ if ( _is2DIsotropic )
+ for ( iS = 1; iS < segLen.size(); ++iS )
+ {
+ double sLen = (L._lEdges[iS-1]._uvRefined[iF] - L._lEdges[iS]._uvRefined[iF] ).Modulus();
+ segLen[iS] = segLen[iS-1] + sLen;
+ }
+ else
+ for ( iS = 1; iS < segLen.size(); ++iS )
+ {
+ const gp_XY& uv1 = L._lEdges[iS-1]._uvRefined[iF];
+ const gp_XY& uv2 = L._lEdges[iS ]._uvRefined[iF];
+ gp_Pnt p1 = _surface->Value( uv1.X(), uv1.Y() );
+ gp_Pnt p2 = _surface->Value( uv2.X(), uv2.Y() );
+ double sLen = p1.Distance( p2 );
+ segLen[iS] = segLen[iS-1] + sLen;
+ }
// normalize the accumulated length
for ( iS = 1; iS < segLen.size(); ++iS )
segLen[iS] /= segLen.back();
return false;
}
+//================================================================================
+/*!
+ * \brief Return \c true if the EDGE of this _PolyLine is concave
+ */
+//================================================================================
+
+bool _PolyLine::IsConcave() const
+{
+ if ( _lEdges.size() < 2 )
+ return false;
+
+ gp_Vec2d v1( _lEdges[0]._uvOut, _lEdges[1]._uvOut );
+ gp_Vec2d v2( _lEdges[0]._uvOut, _lEdges[2]._uvOut );
+ const double size2 = v2.Magnitude();
+
+ return ( v1 ^ v2 ) / size2 < -1e-3 * size2;
+}
+
//================================================================================
/*!
* \brief Constructor of SegmentTree