enum UIndex { U_TGT = 1, U_SRC, LEN_TGT };
const double theMinSmoothCosin = 0.1;
- const double theSmoothThickToElemSizeRatio = 0.3;
+ const double theSmoothThickToElemSizeRatio = 0.6;
const double theMinSmoothTriaAngle = 30;
const double theMinSmoothQuadAngle = 45;
gp_XYZ Copy( _LayerEdge& other, _EdgesOnShape& eos, SMESH_MesherHelper& helper );
void SetCosin( double cosin );
void SetNormal( const gp_XYZ& n ) { _normal = n; }
+ void SetMaxLen( double l ) { _maxLen = l; }
int NbSteps() const { return _pos.size() - 1; } // nb inlation steps
bool IsNeiborOnEdge( const _LayerEdge* edge ) const;
void SetSmooLen( double len ) { // set _len at which smoothing is needed
void Append( const gp_Pnt& center, _LayerEdge* ledge )
{
+ if ( ledge->Is( _LayerEdge::MULTI_NORMAL ))
+ return;
if ( _curvaCenters.size() > 0 )
_segLength2.push_back( center.SquareDistance( _curvaCenters.back() ));
_curvaCenters.push_back( center );
void limitMaxLenByCurvature( _SolidData& data, SMESH_MesherHelper& helper );
void limitMaxLenByCurvature( _LayerEdge* e1, _LayerEdge* e2,
_EdgesOnShape& eos1, _EdgesOnShape& eos2,
- SMESH_MesherHelper& helper );
+ const bool isSmoothable );
bool updateNormals( _SolidData& data, SMESH_MesherHelper& helper, int stepNb, double stepSize );
bool updateNormalsOfConvexFaces( _SolidData& data,
SMESH_MesherHelper& helper,
return _eos._edges[ is2nd ? _eos._edges.size()-1 : 0 ]->_2neibors->_edges[ is2nd ];
}
bool isAnalytic() const { return !_anaCurve.IsNull(); }
+
+ void offPointsToPython() const; // debug
};
//--------------------------------------------------------------------------------
/*!
// look for two neighbor not in-FACE nodes of face
for ( int i = 0; i < 2; ++i )
{
- if ( nNext[i]->GetPosition()->GetDim() != 2 &&
- nNext[i]->GetID() < nodeOnEdge->GetID() )
+ if (( nNext[i]->GetPosition()->GetDim() != 2 ) &&
+ ( nodeOnEdge->GetPosition()->GetDim() == 0 || nNext[i]->GetID() < nodeOnEdge->GetID() ))
{
// look for an in-FACE node
for ( int iN = 0; iN < nbN; ++iN )
for ( TopoDS_Iterator vIt( edge ); vIt.More(); vIt.Next() )
{
TGeomID vID = getMeshDS()->ShapeToIndex( vIt.Value() );
- bool noShrinkV = false;
+ bool noShrinkV = false, noShrinkIfAdjMeshed = false;
if ( iSolid < _sdVec.size() )
{
i2S = _sdVec[i ]._shrinkShape2Shape.find( vID );
i2SAdj = _sdVec[iSolid]._shrinkShape2Shape.find( vID );
if ( i2SAdj == _sdVec[iSolid]._shrinkShape2Shape.end() )
- noShrinkV = ( i2S->second.ShapeType() == TopAbs_EDGE || isStructured );
+ noShrinkV = (( isStructured ) ||
+ ( noShrinkIfAdjMeshed = i2S->second.ShapeType() == TopAbs_EDGE ));
else
noShrinkV = ( ! i2S->second.IsSame( i2SAdj->second ));
}
else
{
// the adjacent SOLID has NO layers at all
- noShrinkV = ( isStructured ||
- _sdVec[i]._shrinkShape2Shape[ vID ].ShapeType() == TopAbs_EDGE );
+ if ( isStructured )
+ {
+ noShrinkV = true;
+ }
+ else
+ {
+ noShrinkV = noShrinkIfAdjMeshed =
+ ( _sdVec[i]._shrinkShape2Shape[ vID ].ShapeType() == TopAbs_EDGE );
+ }
+ }
+
+ if ( noShrinkV && noShrinkIfAdjMeshed )
+ {
+ // noShrinkV if FACEs in the adjacent SOLID are meshed
+ PShapeIteratorPtr fIt = helper.GetAncestors( _sdVec[i]._shrinkShape2Shape[ vID ],
+ *_mesh, TopAbs_FACE, &solid );
+ while ( fIt->more() )
+ {
+ const TopoDS_Shape* f = fIt->next();
+ if ( !f->IsSame( fWOL ))
+ {
+ noShrinkV = ! _mesh->GetSubMesh( *f )->IsEmpty();
+ break;
+ }
+ }
}
if ( noShrinkV )
_sdVec[i]._noShrinkShapes.insert( vID );
double curvature = Max( surfProp.MaxCurvature() * oriFactor,
surfProp.MinCurvature() * oriFactor );
if ( curvature > minCurvature )
- ledge->_maxLen = Min( ledge->_maxLen, 1. / curvature );
+ ledge->SetMaxLen( Min( ledge->_maxLen, 1. / curvature ));
}
}
}
for ( size_t j = 0; j < ledge->_simplices.size(); ++j )
if ( ledge->_simplices[j]._nNext->GetPosition()->GetDim() < 2 )
{
- convFace._simplexTestEdges.push_back( ledge );
+ // do not select _LayerEdge's neighboring sharp EDGEs
+ bool sharpNbr = false;
+ for ( size_t iN = 0; iN < ledge->_neibors.size() && !sharpNbr; ++iN )
+ sharpNbr = ( ledge->_neibors[iN]->_cosin > theMinSmoothCosin );
+ if ( !sharpNbr )
+ convFace._simplexTestEdges.push_back( ledge );
break;
}
}
// Find shapes needing smoothing; such a shape has _LayerEdge._normal on it's
// boundary inclined to the shape at a sharp angle
- //list< TGeomID > shapesToSmooth;
TopTools_MapOfShape edgesOfSmooFaces;
-
SMESH_MesherHelper helper( *_mesh );
bool ok = true;
continue;
double tgtThick = eos._hyp.GetTotalThickness();
- TopExp_Explorer eExp( edgesByGeom[iS]._shape, TopAbs_EDGE );
- for ( ; eExp.More() && !eos._toSmooth; eExp.Next() )
+ SMESH_subMeshIteratorPtr subIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false );
+ while ( subIt->more() && !eos._toSmooth )
{
- TGeomID iE = getMeshDS()->ShapeToIndex( eExp.Current() );
- vector<_LayerEdge*>& eE = edgesByGeom[ iE ]._edges;
- if ( eE.empty() ) continue;
+ TGeomID iSub = subIt->next()->GetId();
+ const vector<_LayerEdge*>& eSub = edgesByGeom[ iSub ]._edges;
+ if ( eSub.empty() ) continue;
double faceSize;
- for ( size_t i = 0; i < eE.size() && !eos._toSmooth; ++i )
- if ( eE[i]->_cosin > theMinSmoothCosin )
+ for ( size_t i = 0; i < eSub.size() && !eos._toSmooth; ++i )
+ if ( eSub[i]->_cosin > theMinSmoothCosin )
{
- SMDS_ElemIteratorPtr fIt = eE[i]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
+ SMDS_ElemIteratorPtr fIt = eSub[i]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() && !eos._toSmooth )
{
const SMDS_MeshElement* face = fIt->next();
if ( face->getshapeId() == eos._shapeID &&
- getDistFromEdge( face, eE[i]->_nodes[0], faceSize ))
+ getDistFromEdge( face, eSub[i]->_nodes[0], faceSize ))
{
- eos._toSmooth = needSmoothing( eE[i]->_cosin, tgtThick, faceSize );
+ eos._toSmooth = needSmoothing( eSub[i]->_cosin,
+ tgtThick * eSub[i]->_lenFactor,
+ faceSize);
}
}
}
}
if ( eos._toSmooth )
{
- for ( eExp.ReInit(); eExp.More(); eExp.Next() )
+ for ( TopExp_Explorer eExp( edgesByGeom[iS]._shape, TopAbs_EDGE ); eExp.More(); eExp.Next() )
edgesOfSmooFaces.Add( eExp.Current() );
data.PrepareEdgesToSmoothOnFace( &edgesByGeom[iS], /*substituteSrcNodes=*/false );
if ( endSeg->getshapeId() == (int) iS )
{
double segLen =
- SMESH_TNodeXYZ( endSeg->GetNode(0) ).Distance( endSeg->GetNode(1 ));
- eos._toSmooth = needSmoothing( cosinAbs, tgtThick, segLen );
+ SMESH_TNodeXYZ( endSeg->GetNode( 0 )).Distance( endSeg->GetNode( 1 ));
+ eos._toSmooth = needSmoothing( cosinAbs, tgtThick * eV[0]->_lenFactor, segLen );
}
}
if ( eos._toSmooth )
if ( !eos._hyp.ToSmooth() )
for ( size_t i = 0; i < eos._edges.size(); ++i )
- eos._edges[i]->SetCosin( 0 );
+ //eos._edges[i]->SetCosin( 0 ); // keep _cosin to use in limitMaxLenByCurvature()
+ eos._edges[i]->_lenFactor = 1;
}
{
_EdgesOnShape* eof = data.GetShapeEdges( *face );
if ( !eof ) continue; // other solid
- if ( !eos.HasC1( eoe ))
- {
- eos._eosC1.push_back( eoe );
- eoe->_toSmooth = false;
- data.PrepareEdgesToSmoothOnFace( eoe, /*substituteSrcNodes=*/false );
- }
- if ( eos._shapeID != eof->_shapeID && !eos.HasC1( eof ))
+ if ( eos._shapeID == eof->_shapeID ) continue;
+ if ( !eos.HasC1( eof ))
{
+ // check the FACEs
eos._eosC1.push_back( eof );
eof->_toSmooth = false;
data.PrepareEdgesToSmoothOnFace( eof, /*substituteSrcNodes=*/false );
smQueue.push_back( eof->_subMesh );
}
+ if ( !eos.HasC1( eoe ))
+ {
+ eos._eosC1.push_back( eoe );
+ eoe->_toSmooth = false;
+ data.PrepareEdgesToSmoothOnFace( eoe, /*substituteSrcNodes=*/false );
+ }
}
}
}
if ( eos.ShapeType() == TopAbs_FACE ) // get normals to elements on a FACE
{
SMESHDS_SubMesh* smDS = sm->GetSubMeshDS();
+ if ( !smDS ) return;
eos._faceNormals.resize( smDS->NbElements() );
SMDS_ElemIteratorPtr eIt = smDS->GetElements();
getMeshDS()->RemoveFreeNode( edge._nodes.back(), 0, /*fromGroups=*/false );
edge._nodes.resize( 1 );
edge._normal.SetCoord( 0,0,0 );
- edge._maxLen = 0;
+ edge.SetMaxLen( 0 );
}
// Set the rest data
{
if ( eos.ShapeType() != TopAbs_EDGE )
return;
+ if ( _curvature && Is( SMOOTHED_C1 ))
+ return;
gp_XYZ pos = SMESH_TNodeXYZ( _nodes[0] );
gp_XYZ vec1 = pos - SMESH_TNodeXYZ( n1 );
for ( size_t i = 0; i < eos._edges.size(); ++i )
{
if ( eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue;
- eos._edges[i]->_maxLen = thinkness;
+ eos._edges[i]->SetMaxLen( thinkness );
eos._edges[i]->FindIntersection( *searcher, intersecDist, data._epsilon, eos, &face );
if ( intersecDist > 0 && face )
{
data._geomSize = Min( data._geomSize, intersecDist );
if ( !neighborFaces.count( face->getshapeId() ))
- eos._edges[i]->_maxLen = Min( thinkness, intersecDist / ( face->GetID() < 0 ? 3. : 2. ));
+ eos[i]->SetMaxLen( Min( thinkness, intersecDist / ( face->GetID() < 0 ? 3. : 2. )));
}
}
}
const SMDS_MeshElement* intFace = 0;
const SMDS_MeshElement* closestFace = 0;
_LayerEdge* le = 0;
+ bool is1stBlocked = true; // dbg
for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS )
{
_EdgesOnShape& eos = data._edgesOnShape[ iS ];
continue;
// ignore intersection with intFace of an adjacent FACE
- if ( dist > 0 )
+ if ( dist > 0.1 * eos._edges[i]->_len )
{
bool toIgnore = false;
if ( eos._toSmooth )
if ( toBlockInfaltion &&
dist < ( eos._edges[i]->_len * theThickToIntersection ))
{
+ if ( is1stBlocked ) { is1stBlocked = false; // debug
+ dumpFunction(SMESH_Comment("blockIntersected") <<data._index<<"_InfStep"<<infStep);
+ }
eos._edges[i]->Set( _LayerEdge::INTERSECTED ); // not to intersect
eos._edges[i]->Block( data ); // not to inflate
} // loop on eos._edges
} // loop on data._edgesOnShape
+ if ( !is1stBlocked )
+ dumpFunctionEnd();
+
if ( closestFace && le )
{
#ifdef __myDEBUG
try
{
- BRepOffsetAPI_MakeOffsetShape offsetMaker( eos._shape, -offset, Precision::Confusion() );
+ BRepOffsetAPI_MakeOffsetShape offsetMaker;
+ offsetMaker.PerformByJoin( eos._shape, -offset, Precision::Confusion() );
if ( !offsetMaker.IsDone() ) return;
TopExp_Explorer fExp( offsetMaker.Shape(), TopAbs_FACE );
{
if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH ))
{
- if ( needSmoothing( _leOnV[0]._cosin, _eos[i]->_len, _curveLen * _leParams[i] ) ||
- isToSmooth( i ))
+ if ( needSmoothing( _leOnV[0]._cosin,
+ _eos[i]->_len * leOnV[0]->_lenFactor, _curveLen * _leParams[i] ) ||
+ isToSmooth( i )
+ )
_eos[i]->Set( _LayerEdge::TO_SMOOTH );
else
break;
{
if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH ))
{
- if ( needSmoothing( _leOnV[1]._cosin, _eos[i]->_len, _curveLen * ( 1.-_leParams[i] )) ||
+ if ( needSmoothing( _leOnV[1]._cosin,
+ _eos[i]->_len * leOnV[1]->_lenFactor, _curveLen * ( 1.-_leParams[i] )) ||
isToSmooth( i ))
_eos[i]->Set( _LayerEdge::TO_SMOOTH );
else
if ( e[1]->Is( updatedOrBlocked )) _iSeg[1] = _offPoints.size()-2;
gp_Pnt pExtreme[2], pProj[2];
+ bool isProjected[2];
for ( int is2nd = 0; is2nd < 2; ++is2nd )
{
pExtreme[ is2nd ] = SMESH_TNodeXYZ( e[is2nd]->_nodes.back() );
int i = _iSeg[ is2nd ];
int di = is2nd ? -1 : +1;
- bool projected = false;
+ bool & projected = isProjected[ is2nd ];
+ projected = false;
double uOnSeg, distMin = Precision::Infinite(), dist, distPrev = 0;
int nbWorse = 0;
do {
gp_Vec vDiv0( pExtreme[0], pProj[0] );
gp_Vec vDiv1( pExtreme[1], pProj[1] );
double d0 = vDiv0.Magnitude();
- double d1 = vDiv1.Magnitude();
+ double d1 = isProjected[1] ? vDiv1.Magnitude() : 0;
if ( e[0]->Is( _LayerEdge::BLOCKED )) {
if ( e[0]->_normal * vDiv0.XYZ() < 0 ) e[0]->_len += d0;
else e[0]->_len -= d0;
// compute normalized length of the offset segments located between the projections
// ---------------------------------------------------------------------------------
+ // temporary replace extreme _offPoints by pExtreme
+ gp_XYZ opXYZ[2] = { _offPoints[ _iSeg[0] ]._xyz,
+ _offPoints[ _iSeg[1]+1 ]._xyz };
+ _offPoints[ _iSeg[0] ]._xyz = pExtreme[0].XYZ();
+ _offPoints[ _iSeg[1]+ 1]._xyz = pExtreme[1].XYZ();
+
size_t iSeg = 0, nbSeg = _iSeg[1] - _iSeg[0] + 1;
vector< double > len( nbSeg + 1 );
len[ iSeg++ ] = 0;
- len[ iSeg++ ] = pProj[ 0 ].Distance( _offPoints[ _iSeg[0]+1 ]._xyz )/* * e[0]->_lenFactor*/;
+ len[ iSeg++ ] = pProj[ 0 ].Distance( _offPoints[ _iSeg[0]+1 ]._xyz );
for ( size_t i = _iSeg[0]+1; i <= _iSeg[1]; ++i, ++iSeg )
{
len[ iSeg ] = len[ iSeg-1 ] + _offPoints[i].Distance( _offPoints[i+1] );
}
- len[ nbSeg ] -= pProj[ 1 ].Distance( _offPoints[ _iSeg[1]+1 ]._xyz )/* * e[1]->_lenFactor*/;
+ // if ( isProjected[ 1 ])
+ // len[ nbSeg ] -= pProj[ 1 ].Distance( _offPoints[ _iSeg[1]+1 ]._xyz );
+ // else
+ // len[ nbSeg ] += pExtreme[ 1 ].Distance( _offPoints[ _iSeg[1]+1 ]._xyz );
- // d0 *= e[0]->_lenFactor;
- // d1 *= e[1]->_lenFactor;
double fullLen = len.back() - d0 - d1;
for ( iSeg = 0; iSeg < len.size(); ++iSeg )
len[iSeg] = ( len[iSeg] - d0 ) / fullLen;
- // temporary replace extreme _offPoints by pExtreme
- gp_XYZ op[2] = { _offPoints[ _iSeg[0] ]._xyz,
- _offPoints[ _iSeg[1]+1 ]._xyz };
- _offPoints[ _iSeg[0] ]._xyz = pExtreme[0].XYZ();
- _offPoints[ _iSeg[1]+ 1]._xyz = pExtreme[1].XYZ();
-
// -------------------------------------------------------------
// distribute tgt nodes of _LayerEdge's between the projections
// -------------------------------------------------------------
dumpMove( tgtNode );
}
- _offPoints[ _iSeg[0] ]._xyz = op[0];
- _offPoints[ _iSeg[1]+1 ]._xyz = op[1];
+ _offPoints[ _iSeg[0] ]._xyz = opXYZ[0];
+ _offPoints[ _iSeg[1]+1 ]._xyz = opXYZ[1];
return true;
}
return norm / size;
}
+//================================================================================
+/*!
+ * \brief Writes a script creating a mesh composed of _offPoints
+ */
+//================================================================================
+
+void _Smoother1D::offPointsToPython() const
+{
+ const char* fname = "/tmp/offPoints.py";
+ cout << "execfile('"<<fname<<"')"<<endl;
+ ofstream py(fname);
+ py << "import SMESH" << endl
+ << "from salome.smesh import smeshBuilder" << endl
+ << "smesh = smeshBuilder.New(salome.myStudy)" << endl
+ << "mesh = smesh.Mesh( 'offPoints' )"<<endl;
+ for ( size_t i = 0; i < _offPoints.size(); i++ )
+ {
+ py << "mesh.AddNode( "
+ << _offPoints[i]._xyz.X() << ", "
+ << _offPoints[i]._xyz.Y() << ", "
+ << _offPoints[i]._xyz.Z() << " )" << endl;
+ }
+}
+
//================================================================================
/*!
* \brief Sort _LayerEdge's by a parameter on a given EDGE
}
// SetSmooLen() to _LayerEdge's on FACE
- for ( size_t i = 0; i < eos->_edges.size(); ++i )
- {
- eos->_edges[i]->SetSmooLen( Precision::Infinite() );
- }
- SMESH_subMeshIteratorPtr smIt = eos->_subMesh->getDependsOnIterator(/*includeSelf=*/false);
- while ( smIt->more() ) // loop on sub-shapes of the FACE
- {
- _EdgesOnShape* eoe = GetShapeEdges( smIt->next()->GetId() );
- if ( !eoe ) continue;
-
- vector<_LayerEdge*>& eE = eoe->_edges;
- for ( size_t iE = 0; iE < eE.size(); ++iE ) // loop on _LayerEdge's on EDGE or VERTEX
- {
- if ( eE[iE]->_cosin <= theMinSmoothCosin )
- continue;
+ // for ( size_t i = 0; i < eos->_edges.size(); ++i )
+ // {
+ // eos->_edges[i]->SetSmooLen( Precision::Infinite() );
+ // }
+ // SMESH_subMeshIteratorPtr smIt = eos->_subMesh->getDependsOnIterator(/*includeSelf=*/false);
+ // while ( smIt->more() ) // loop on sub-shapes of the FACE
+ // {
+ // _EdgesOnShape* eoe = GetShapeEdges( smIt->next()->GetId() );
+ // if ( !eoe ) continue;
- SMDS_ElemIteratorPtr segIt = eE[iE]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Edge);
- while ( segIt->more() )
- {
- const SMDS_MeshElement* seg = segIt->next();
- if ( !eos->_subMesh->DependsOn( seg->getshapeId() ))
- continue;
- if ( seg->GetNode(0) != eE[iE]->_nodes[0] )
- continue; // not to check a seg twice
- for ( size_t iN = 0; iN < eE[iE]->_neibors.size(); ++iN )
- {
- _LayerEdge* eN = eE[iE]->_neibors[iN];
- if ( eN->_nodes[0]->getshapeId() != eos->_shapeID )
- continue;
- double dist = SMESH_MeshAlgos::GetDistance( seg, SMESH_TNodeXYZ( eN->_nodes[0] ));
- double smooLen = getSmoothingThickness( eE[iE]->_cosin, dist );
- eN->SetSmooLen( Min( smooLen, eN->GetSmooLen() ));
- eN->Set( _LayerEdge::NEAR_BOUNDARY );
- }
- }
- }
- }
+ // vector<_LayerEdge*>& eE = eoe->_edges;
+ // for ( size_t iE = 0; iE < eE.size(); ++iE ) // loop on _LayerEdge's on EDGE or VERTEX
+ // {
+ // if ( eE[iE]->_cosin <= theMinSmoothCosin )
+ // continue;
+
+ // SMDS_ElemIteratorPtr segIt = eE[iE]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Edge);
+ // while ( segIt->more() )
+ // {
+ // const SMDS_MeshElement* seg = segIt->next();
+ // if ( !eos->_subMesh->DependsOn( seg->getshapeId() ))
+ // continue;
+ // if ( seg->GetNode(0) != eE[iE]->_nodes[0] )
+ // continue; // not to check a seg twice
+ // for ( size_t iN = 0; iN < eE[iE]->_neibors.size(); ++iN )
+ // {
+ // _LayerEdge* eN = eE[iE]->_neibors[iN];
+ // if ( eN->_nodes[0]->getshapeId() != eos->_shapeID )
+ // continue;
+ // double dist = SMESH_MeshAlgos::GetDistance( seg, SMESH_TNodeXYZ( eN->_nodes[0] ));
+ // double smooLen = getSmoothingThickness( eE[iE]->_cosin, dist );
+ // eN->SetSmooLen( Min( smooLen, eN->GetSmooLen() ));
+ // eN->Set( _LayerEdge::NEAR_BOUNDARY );
+ // }
+ // }
+ // }
+ // }
} // if ( eos->ShapeType() == TopAbs_FACE )
for ( size_t i = 0; i < eos->_edges.size(); ++i )
avgLen /= edge->_simplices.size();
if (( edge->_curvature = _Curvature::New( avgNormProj, avgLen )))
{
+ edge->Set( _LayerEdge::SMOOTHED_C1 );
isCurved = true;
SMDS_FacePosition* fPos = dynamic_cast<SMDS_FacePosition*>( edge->_nodes[0]->GetPosition() );
if ( !fPos )
if ( eI->_nodes[0]->GetID() < eN->_nodes[0]->GetID() ) // treat this pair once
{
_EdgesOnShape* eosN = data.GetShapeEdges( eN );
- limitMaxLenByCurvature( eI, eN, eosI, *eosN, helper );
+ limitMaxLenByCurvature( eI, eN, eosI, *eosN, eosI._hyp.ToSmooth() );
}
}
}
for ( size_t i = 1; i < eosI._edges.size(); ++i )
{
_LayerEdge* eI = eosI._edges[i];
- limitMaxLenByCurvature( eI, e0, eosI, eosI, helper );
+ limitMaxLenByCurvature( eI, e0, eosI, eosI, eosI._hyp.ToSmooth() );
e0 = eI;
}
}
*/
//================================================================================
-void _ViscousBuilder::limitMaxLenByCurvature( _LayerEdge* e1,
- _LayerEdge* e2,
- _EdgesOnShape& eos1,
- _EdgesOnShape& eos2,
- SMESH_MesherHelper& helper )
+void _ViscousBuilder::limitMaxLenByCurvature( _LayerEdge* e1,
+ _LayerEdge* e2,
+ _EdgesOnShape& eos1,
+ _EdgesOnShape& eos2,
+ const bool isSmoothable )
{
+ if (( e1->_nodes[0]->GetPosition()->GetDim() !=
+ e2->_nodes[0]->GetPosition()->GetDim() ) &&
+ ( e1->_cosin < 0.75 ))
+ return; // angle > 90 deg at e1
+
gp_XYZ plnNorm = e1->_normal ^ e2->_normal;
double norSize = plnNorm.SquareModulus();
if ( norSize < std::numeric_limits<double>::min() )
double ovl = ( u1 * e1->_normal * dir12 -
u2 * e2->_normal * dir12 ) / dir12.SquareModulus();
if ( ovl > theSmoothThickToElemSizeRatio )
- {
- e1->_maxLen = Min( e1->_maxLen, 0.75 * u1 / e1->_lenFactor );
- e2->_maxLen = Min( e2->_maxLen, 0.75 * u2 / e2->_lenFactor );
+ {
+ const double coef = 0.75;
+ e1->SetMaxLen( Min( e1->_maxLen, coef * u1 / e1->_lenFactor ));
+ e2->SetMaxLen( Min( e2->_maxLen, coef * u2 / e2->_lenFactor ));
}
}
}
// else
// {
// double shortLen = 0.75 * ( Min( dist1, dist2 ) / edge->_lenFactor );
- // edge->_maxLen = Min( shortLen, edge->_maxLen );
+ // edge->SetMaxLen( Min( shortLen, edge->_maxLen ));
// }
}
e2neIt = edge2newEdge.insert( make_pair( edge1, zeroEdge )).first;
e2neIt->second._normal += distWgt * newNormal;
e2neIt->second._cosin = newCos;
- e2neIt->second._maxLen = 0.7 * minIntDist / edge1->_lenFactor;
+ e2neIt->second.SetMaxLen( 0.7 * minIntDist / edge1->_lenFactor );
if ( iter > 0 && sgn1 * sgn2 < 0 && edge1->_cosin < 0 )
e2neIt->second._normal += dir2;
if ( Precision::IsInfinite( zeroEdge._maxLen ))
{
e2neIt->second._cosin = edge2->_cosin;
- e2neIt->second._maxLen = 1.3 * minIntDist / edge1->_lenFactor;
+ e2neIt->second.SetMaxLen( 1.3 * minIntDist / edge1->_lenFactor );
}
if ( iter > 0 && sgn1 * sgn2 < 0 && edge2->_cosin < 0 )
e2neIt->second._normal += dir1;
if ( newEdge._maxLen < edge->_len && iter > 0 ) // limit _maxLen
{
edge->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true );
- edge->_maxLen = newEdge._maxLen;
+ edge->SetMaxLen( newEdge._maxLen );
edge->SetNewLength( newEdge._maxLen, *eos, helper );
}
continue; // the new _normal is bad
SMESH_Comment msg( "#BLOCK shape=");
msg << data.GetShapeEdges( this )->_shapeID
<< ", nodes " << _nodes[0]->GetID() << ", " << _nodes.back()->GetID();
- dumpCmd( msg + " -- BEGIN")
+ dumpCmd( msg + " -- BEGIN");
- _maxLen = _len;
+ SetMaxLen( _len );
std::queue<_LayerEdge*> queue;
queue.push( this );
double newMaxLen = edge->_maxLen + 0.5 * Sqrt( minDist );
//if ( edge->_nodes[0]->getshapeId() == neibor->_nodes[0]->getshapeId() ) viscous_layers_00/A3
{
- newMaxLen *= edge->_lenFactor / neibor->_lenFactor;
+ //newMaxLen *= edge->_lenFactor / neibor->_lenFactor;
// newMaxLen *= Min( edge->_lenFactor / neibor->_lenFactor,
// neibor->_lenFactor / edge->_lenFactor );
}
if ( neibor->_maxLen > newMaxLen )
{
- neibor->_maxLen = newMaxLen;
+ neibor->SetMaxLen( newMaxLen );
if ( neibor->_maxLen < neibor->_len )
{
_EdgesOnShape* eos = data.GetShapeEdges( neibor );
+ int lastStep = neibor->Is( BLOCKED ) ? 1 : 0;
while ( neibor->_len > neibor->_maxLen &&
- neibor->NbSteps() > 0 )
+ neibor->NbSteps() > lastStep )
neibor->InvalidateStep( neibor->NbSteps(), *eos, /*restoreLength=*/true );
neibor->SetNewLength( neibor->_maxLen, *eos, data.GetHelper() );
//neibor->Block( data );
}
}
}
- dumpCmd( msg + " -- END")
+ dumpCmd( msg + " -- END");
}
//================================================================================
{
if ( NbSteps() == 0 )
_len = 0.;
+ else if ( IsOnFace() && Is( MOVED ))
+ _len = ( nXYZ.XYZ() - SMESH_NodeXYZ( _nodes[0] )) * _normal;
else
_len -= ( nXYZ.XYZ() - curXYZ ).Modulus() / _lenFactor;
}
}
+ return;
}
//================================================================================
return dump;
}
+
//================================================================================
/*!
- case brief:
- default:
-*/
+ * \brief Create layers of prisms
+ */
//================================================================================
bool _ViscousBuilder::refine(_SolidData& data)
surface = helper.GetSurface( geomFace );
// propagate _toSmooth back to _eosC1, which was unset in findShapesToSmooth()
for ( size_t i = 0; i < eos._eosC1.size(); ++i )
- {
eos._eosC1[ i ]->_toSmooth = true;
- for ( size_t j = 0; j < eos._eosC1[i]->_edges.size(); ++j )
- eos._eosC1[i]->_edges[j]->Set( _LayerEdge::SMOOTHED_C1 );
- }
+
isTooConvexFace = false;
if ( _ConvexFace* cf = data.GetConvexFace( eos._shapeID ))
isTooConvexFace = cf->_isTooCurved;
const SMDS_MeshNode* tgtN0 = ledges[0]->_nodes.back();
const SMDS_MeshNode* tgtN1 = ledges[1]->_nodes.back();
int nbSharedPyram = 0;
- SMDS_ElemIteratorPtr vIt = tgtN0->GetInverseElementIterator(SMDSAbs_Volume);
+ SMDS_ElemIteratorPtr vIt = tgtN1->GetInverseElementIterator(SMDSAbs_Volume);
while ( vIt->more() )
{
const SMDS_MeshElement* v = vIt->next();
- nbSharedPyram += int( v->GetNodeIndex( tgtN1 ) >= 0 );
+ nbSharedPyram += int( v->GetNodeIndex( tgtN0 ) >= 0 );
}
if ( nbSharedPyram > 1 )
continue; // not free border of the pyramid