--- /dev/null
+from Accas import *
+
+class composant(ASSD):pass
+class geometricDomain(ASSD):pass
+class modeleNumDuCompo(UserASSD):pass
+class especeChimique(UserASSD):pass
+class userParticle(UserASSD) :pass
+class userAtom(userParticle) :pass
+class userMolecule(userParticle) :pass
+class userDiscrete(userParticle) :pass
+class userDPD(userParticle) :pass
+
+dictSystemTypeModeleNumerique = { 'Quantum system' : (),
+ 'Classical particle system' : ('MD', 'DPD', 'LBM', 'SDPD','SPH','CFD_Discrete_Particles'),
+ 'Continuum system' :('Fluid_Fields','Fluid_Particles', 'SPH','Lagrangian one-particle pdf'),
+ }
+
+# PN a faire --> ajouter un MC modeleNumerique ( apres avoir renomme le modeleNumerique actuel en classe de modele numerique) et le dictionnaire d apres
+dictTypModNumModNum = {
+ ('Continuum system','Particles') : ('SPH','Lagrangian one-fluid-particle pdf'),
+ ('Continuum system','Fields') : ('FV','FEM', 'Spectral method'),
+ ('Classical particle system','Particles') : ('MD', 'DPD', 'SDPD','SPH','CFD_Discrete_Particles'),
+ ('Classical particle system','Fields') : ('LBM',),
+ ('Quantum system','Particles') : ('Particle method',),
+ ('Quantum system','Fields') : ('Wave',),
+}
+
+dictCodeModeleNumerique = {
+
+ 'Code_Saturne' : ('Lagrangian one-fluid-particle pdf', 'FV', 'CFD_Discrete_Particles',),
+ 'Fluent' : ('FV',),
+ 'Culgi Package': (),
+ 'DEM_SD' : ('Lagrangian one-fluid-particle pdf', 'FV', 'CFD_Discrete_Particles',),
+ 'DFTB+' : ('density functional tight binding method',),
+ 'DL_MESO_DPD' : ('Lagrangian one-fluid-particle pdf', 'FV', 'CFD_Discrete_Particles',),
+ 'DL_MESO_LBE' : ('Lagrangian one-fluid-particle pdf', 'FV', 'CFD_Discrete_Particles',),
+ 'DL_POLY_4' : ('Lagrangian one-fluid-particle pdf', 'FV', 'CFD_Discrete_Particles',),
+ 'GROMACS' : ('Lagrangian one-fluid-particle pdf', 'FV', 'CFD_Discrete_Particles',),
+ 'GROMACS_LS' : ('Lagrangian one-fluid-particle pdf', 'FV', 'CFD_Discrete_Particles',),
+ 'LAMMPS' : ('Lagrangian one-fluid-particle pdf', 'FV', 'CFD_Discrete_Particles',),
+ 'NWChem' : ('Lagrangian one-fluid-particle pdf', 'FV', 'CFD_Discrete_Particles',),
+ 'OpenFOAM' : ('Lagrangian one-fluid-particle pdf', 'FV', 'CFD_Discrete_Particles',),
+ 'Quantum EXPRESSO' : ('Particle method', 'Wave',),
+ 'RHEO_AGGRATE' : ('Particle method', 'Wave',),
+ 'RHEO_DROP' : ('Particle method', 'Wave',),
+ 'STAR_CCM+' : ('FV', 'Particles',),
+ 'Code Nill' : ('Spectral method', ),
+}
+
+dictCodeFormat = {
+ 'Code_Saturne' : ('med', 'cgns', 'msh', 'des', 'unv ', 'Use converter'),
+ 'Culgi Package': ('cof',),
+ 'DEM_SD' : ('geo', 'ascii'),
+ 'DFTB+' : ('geo', 'ascii'),
+ 'Fluent' : ('FluentFormat', 'Use converter'),
+ 'OpenFOAM' : ('OpenFoamFormat', 'Med', 'Use converter'),
+}
+
+dictTermeLE = {
+ ('Fields','Particles') : ('Fluid_Velocity_Field',
+ 'Fluid_Temperature_Field',
+ 'Fluid_Species_Mass_Fraction_Fluid',),
+ ('Particles','Fields') : ('Fluid_Particle_Momentum_Exchange_Field',
+ 'Fluid_Particle_Thermal_Exchange_Field',
+ 'Lagrangian one-particle pdfFluid_Particle_Mass_Source_Field',
+ 'Particle_Volumetric_Concentration_Modified_Fluid_Viscosity',
+ 'Particle_Extra_Stress_Tensor'),
+}
+
+dictCodeConvertisseur = {
+ ('Saturne', 'OpenFOAM') : ('gmsh', 'Saturne2CDM and CDM2OpenFoam'),
+ ('Saturne', 'Fluent') : ( 'Saturne2CDM and CDM2Fluent'),
+ ('Fluent', 'OpenFOAM') : ('Fluent2CDM and CDM2OpenFoam'),
+ }
+
+def prepareBlocSystemType(systemType) :
+ condition = "SystemType == '" + systemType + "'"
+ Identifier = SIMP(statut='o', typ=(modeleNumDuCompo,'createObject'),)
+ ModelType = SIMP(statut='o', typ='TXM', into = ('Particles', 'Fields'))
+ dicoArgs={}
+ for typeMod in ('Particles', 'Fields'):
+ conditionType = "ModelType == '" + typeMod + "'"
+ NumericalMethod = SIMP(statut='o',typ='TXM', into=dictTypModNumModNum[systemType, typeMod],
+ position='global_jdc', intoXML=allValueInDict(dictTypModNumModNum))
+ dicoBloc = {}
+ for modeleNumerique in list(dictTypModNumModNum[systemType,typeMod]):
+ conditionNum = "NumericalMethod == '" + modeleNumerique + "'"
+ setCode = set()
+ for code in dictCodeModeleNumerique.keys():
+ if modeleNumerique in dictCodeModeleNumerique[code]: setCode.add(code)
+ Solver = SIMP(statut='o', typ='TXM', into=list(setCode), intoXML=list(dictCodeModeleNumerique.keys()) )
+ monNomBloc='b_ModelName_' + modeleNumerique.replace(' ','_')
+ if setCode !=set(): dicoBloc[monNomBloc]=BLOC(condition=conditionNum, nomXML='b_ModelName',Solver=Solver)
+ dicoArgs['b_modelType'+typeMod] = BLOC(condition=conditionType, NumericalMethod=NumericalMethod,**dicoBloc)
+ NumericalModel = FACT(statut='o', max= '**', Identifier=Identifier, ModelType=ModelType, **dicoArgs)
+ return BLOC(condition=condition, nomXML='b_systemType', NumericalModel=NumericalModel)
+
+def calculCommun( key1, key2, dico):
+ monSet=set()
+ if not key1 in dico: return ()
+ if not key2 in dico: return ()
+ for val in dico[key1]:
+ if val in dico[key2]:
+ monSet.add(val)
+ if monSet == set() : monSet.add ('No common format')
+ return list(monSet)
+
+def allValueInDict( dico):
+ monSet=set()
+ for clef in dico :
+ for val in dico[clef] : monSet.add(val)
+ return monSet
+
+def creeBlocPourLesFichiers (laCondition, NomDuFichier, ListeFormats):
+ SIMPFormatFichier = SIMP(statut='o', typ = 'TXM', into = tuple(ListeFormats) + ('others',), )
+ dicoDesBlocs = {}
+ for formatFich in ListeFormats :
+ nomBloc = 'b_format_fichier' + str(formatFich)
+ typeDesFichiers = ('Fichier', formatFich + " Files (*." + formatFich + ");;All Files (*)",)
+ blocCondition ="FileFormat == '" + formatFich + "'"
+ dicoDesBlocs[nomBloc] = BLOC( condition = blocCondition, FileName = SIMP(statut='o', typ = typeDesFichiers ),)
+ dicoDesBlocs['b_format_fichier_others'] = BLOC(condition="FileFormat == 'others'", FileName = SIMP(statut='o', typ = ('Fichier','All Files (*)'),),)
+ return BLOC(condition=laCondition, FileFormat = SIMPFormatFichier, **dicoDesBlocs)
+
+def champ(nomDelaContante, labels ,nbReels ) :
+# ajouter les extensions pour le fichier et les blocs associes
+# certains champs ne seront jamais uniformes
+ #Input_Mode = SIMP( statut='o', typ='TXM', into=('uniform value','values directly assigned','values read in file','analytical function', 'call to a service')),
+#PNPN : Passer le nom du champ pour le label du vecteur
+ dicoBloc = {}
+ dicoBloc[nomDelaContante] = SIMP( statut='o', typ='R')
+ return FACT( statut='o',
+ Input_Mode = SIMP( statut='o', typ='TXM', into=('uniform value','values directly assigned','values read in file','analytical function',)),
+ b_uniforme = BLOC( condition = "Input_Mode == 'uniform value'", **dicoBloc),
+ b_vsaisies = BLOC( condition = "Input_Mode == 'values directly assigned'",
+ Field = SIMP( typ='R', statut='o', max ='**'),
+ #Vecteur = SIMP( fenetreIhm='Tableau', homo = labels,
+ # statut='o', min=2, max='**',
+ # typ=Tuple(nbReels),
+ # validators=VerifTypeTuple(("'R',"*nbReels),),) # end particle
+ ), #b_vsaisie
+ b_vdsfich = BLOC( condition = "Input_Mode == 'values read in file'",
+ Format = SIMP( statut='o', typ='TXM', into=['txt','Med',], position='global' ),
+ td_txt = BLOC(condition = 'Format == "txt"',
+ File = SIMP( statut='o', typ=('Fichier','Text Files(*.txt);All Files (*)'),),
+ ),
+ td_med_1 = BLOC( condition = 'Format == "Med"',
+ File = SIMP( statut='o', typ=('Fichier','Med Files(*.med);All Files (*)'),),
+ ),
+ td_med_2 = BLOC( condition = 'Format == "Med"',
+ FieldName = SIMP( statut='o', typ='TXM',),
+ ),
+ ),
+ b_vfct = BLOC( condition = "Input_Mode == 'analytical function'",
+ Function = SIMP( statut='o', typ='TXM',),
+ ),
+ #b_vserc = BLOC( condition = "Input_Mode == 'call to a service'",
+ # Service = SIMP( statut='o', typ='TXM',),
+ #),
+ )
+
+
+
+
+def FactTurbulence(statut):
+ return FACT (statut=statut,
+ TurbulenceModellingType = SIMP(typ='TXM', statut='o', into =['No Model (DNS)',
+ 'Spatial filtering (LES)', 'One-point moment', 'One-point PDF']) ,
+ bloc_one_point = BLOC(condition= "TurbulenceModellingType == 'One-point moment'",
+ RANSModel = SIMP(statut="o", typ="TXM", into=['Turbulent-Viscosity Model(TVM)', 'Reynolds Stress Model (RSM)']),
+ bloc_TVM = BLOC(condition= "RANSModel == 'Turbulent-Viscosity Model(TVM)'",
+ TVMChoice = SIMP(typ='TXM', statut='o', into=['k-epsilon', 'k-omega']),
+ ), # fin bloc_TVM
+ bloc_RSM = BLOC(condition = "RANSModel == 'Reynolds Stress Model (RSM)'",
+ RSMChoice = SIMP(typ='TXM', statut='o', into=['Rotta', 'LRR-IP','LRR-QI','SSG']),
+ ), # fin bloc_RSM
+ ), # fin bloc_one_point
+ bloc_one_spatial = BLOC(condition = "TurbulenceModellingType == 'Spatial filtering (LES)'",
+ ChoiceOfApproach = SIMP(typ='TXM', statut='o', into=['Field-based LES', 'Filtered Density Function (FDF)']),
+ SubgridScaleModel = SIMP(typ='TXM', statut='o', into=['No SGS', 'Smagorinsky','Dynamical model', 'SGS Transport Equations']),
+ ), # fin bloc_one_spatial
+ bloc_one_point_pdf = BLOC(condition = "TurbulenceModellingType == 'One-point PDF'",
+ ChoiceOfApproach = SIMP(typ='TXM', statut='o', into=['One-point Eulerian PDF', 'One-particle Lagrangian PDF']),
+ bloc_lagrangian_pdf=BLOC(condition = "ChoiceOfApproach == 'One-particle Lagrangian PDF'",
+ StochasticModel = SIMP(typ='TXM', statut='o', into=['Langevin','Other'], defaut='Langevin'),
+ )# fin lagrangian
+ ), # fin bloc_one_point_pdf
+ bloc_no_model = BLOC(condition = "TurbulenceModellingType == 'No Model (DNS)'",
+ ChoiceOfApproach = SIMP(statut='o', typ='TXM', into=['Field-based DNS', 'N-Particle Method']),
+ bloc_Field = BLOC(condition = "ChoiceOfApproach == 'Field-based DNS'",
+ NumericalMethod=SIMP(statut='o', typ='TXM', into=['FV', 'Spectral Method']),
+ ),# fin bloc_Field
+ bloc_N_particle = BLOC(condition = "ChoiceOfApproach == 'N-Particle Method'",
+ NumericalMethod=SIMP(statut='o', typ='TXM', into=['SPH', 'Vortex Method']),
+ ),# fin bloc_N_particle
+ ), # fin bloc_no_model
+)# fin du bloc return de la fonction factTurbulence
+
+def Particle(cardinalite) :
+ return FACT (statut='o', max=cardinalite,
+ ParticleNature = SIMP( statut='o', typ='TXM', into=['Atoms', 'Molecules', 'Dissipative', 'Fluid Particle', 'Discrete Particle']),
+ b_Atom = BLOC( condition='ParticleNature == "Atoms"',
+ AtomsName = SIMP( statut='o', typ=(userAtom,'createObject'),),
+ Atom = FACT (statut ='o', max= '**',
+ ChemicalSpecie = SIMP( statut='o', typ='TXM'),
+ Number = SIMP (statut ='o', typ = 'I'),
+ ElectricCharge = SIMP( statut='o', typ='R'),
+ MagneticMoment = SIMP( statut='o', typ='R'),
+ Size = SIMP( statut='f', typ='R'), # relevant ?
+ ),
+ ),
+ b_Molecule = BLOC( condition='ParticleNature == "Molecules"',
+ MoleculeName = SIMP( statut='o', typ=(userMolecule,'createObject'),),
+ ChemicalSpecie = FACT ( max='**', statut='o',
+ ChemicalSpecieName = SIMP( statut='o', typ=userAtom),
+ Proportion = SIMP( statut='o', typ='R', val_max =1),
+ ),
+ ElectricCharge = SIMP( statut='o', typ='R'),
+ MagneticMoment = SIMP( statut='o', typ='R'),
+ Shape = SIMP( statut='f', typ='TXM', into=['Linear', 'Trigonal Planar', 'Angular', 'Tetrahedral', 'Octahedral', 'Trigonal pyramid', 'Other']),
+ ),
+ b_Dissipative = BLOC( condition='ParticleNature == "Dissipative"',
+ DPDName = SIMP( statut='o', typ=(userDPD,'createObject'),),
+ BondedParticles = SIMP(statut="o", typ=bool, defaut=False),
+ ),
+ b_Discrete = BLOC( condition='ParticleNature == "Discrete Particle"',
+ DiscreteParticleName = SIMP(statut='o', typ=(userDiscrete,'createObject'),),
+ TypeOfDiscreteParticle = SIMP( statut='o', typ='TXM', into=['Solid', 'Droplets', 'Bubbles','Bio Organism'],),
+ b_TypeDP_Solid = BLOC( condition ='TypeOfDiscreteParticle == "Solid"',
+ TypeOfSolid = SIMP( statut='o', typ='TXM', into=['Primary Particle', 'Assemblage / Aggregate'], position = 'global'),
+ b_SolidPrimary = BLOC( condition='TypeOfSolid == "Primary Particle"',
+ ),
+ b_SolidAggregate = BLOC( condition='TypeOfSolid == "Assemblage / Aggregate"',
+ ),
+ ),
+ b_TypeBio_Solid = BLOC( condition='TypeOfDiscreteParticle == "Bio Organism"',
+ TypeOfOrganism = SIMP( statut='o', typ='TXM', into=['Unicellular', 'Multicellular']),
+ b_Unicellular = BLOC( condition ='TypeOfOrganism=="Unicellular"',
+ Unicellular = SIMP( statut='o', typ='TXM', into=["Bactaria"], defaut='Bactaria')
+ ),
+ b_Multicellular = BLOC( condition ='TypeOfOrganism=="Multicellular"',
+ Multicellular = SIMP( statut='o', typ='TXM', into=["Animal","Fongus","Plant"])
+ ),
+ ), # b_TypeBio_Solid
+ Properties = FACT ( statut ='o',
+ Geometry = SIMP( statut='o', typ='TXM', into=['Sphere', 'Ellopsoids', 'Other Shape']),
+ b_geom_Sphere = BLOC( condition = 'Geometry == "Sphere"',
+ ParticleRadius = SIMP( statut='o', typ ='R', val_min = 0),
+ ),
+ Weight = FACT (statut = 'o',
+ Mass = SIMP( statut='o', typ ='R', val_min = 0),
+ Density = SIMP( statut='o', typ ='R', val_min = 0),
+ ),
+ Mechanical = SIMP( statut='o', typ='TXM', into=['Rigid', 'Flexible', 'Deformable']),
+ b_SolidAggregate = BLOC( condition='TypeOfSolid == "Assemblage / Aggregate"',
+ Morphological = FACT (statut = 'o',
+ Consigne = SIMP(statut="o", homo="information", typ="TXM", defaut='Choose optional properties'),
+ FractalDimension = SIMP( statut='f', typ='R'),
+ NumberOfPrimaryParticle = SIMP (statut ='f',typ='I'),
+ EquivalentSize = SIMP( statut='f', typ='R'),
+ Porosoty = SIMP( statut='f', typ='R'),
+ ), # Morphological
+ ), # b_SolidAggregate
+ ElectroMagnetic = FACT (statut = 'f',
+ ElectricCharge = SIMP( statut='o', typ='R'),
+ MagneticMoment = SIMP( statut='o', typ='R'),
+ ),
+ b_SolidAggregateBonded = BLOC( condition='TypeOfSolid == "Assemblage / Aggregate"',
+ BondedParticles = FACT(
+ ListOfBondedParticles = SIMP(statut='o', max='**', typ = userParticle),
+ ),
+ ),
+ ), # Properties
+ ), # b_Discrete
+############################
+
+ List_Of_Bonded_Particles = FACT( statut='f',
+ # -------------------------------------------#
+ Bonded_Particles = FACT( statut='o', max = "**",
+ Name_Of_Bonded_Particles = SIMP( statut='o', typ='TXM'),
+ Species_in_Particle = SIMP( statut='o', min=2, typ='TXM' , max = "**"),
+ ), # Bonded_Particles
+ ), # List_Of_Bonded_Particles
+
+ List_Of_Interactions = FACT( statut='o', max = "**",
+ # --------------------------------------------------#
+
+ Bonded_Interactions = FACT( statut='o', max = "**",
+
+ #Type_Of_Bonded_Interaction = SIMP( statut='o', typ='TXM', into=['No', 'Covalent Bond Length', 'FENE', 'Covalent Bond Angle', 'Dihedral Angles', 'Improper Dihedral', 'Frozen Motion' ], defaut='No', position='global'),
+ Type_Of_Bonded_Interaction = SIMP( statut='o', typ='TXM', into=['No', 'Covalent Bond Length', 'FENE', 'Covalent Bond Angle', 'Dihedral Angles', 'Improper Dihedral', 'Frozen Motion' ], defaut='No'),
+
+ #La saisie de l'ensemble des liaisons d'un meme type peut se faire ds le meme bloc (soit ds un fichier, soit manuelle)
+ #Une seule valeur de distante? est a saisir pour l'ensemble
+ # bloc_covalent_1 = BLOC( condition = 'Type_Of_Bonded_Interaction in ("Covalent Bond Length","FENE")',
+ # ), # fin bloc_covalent_1
+ bloc_covalent_length = BLOC( condition = 'Type_Of_Bonded_Interaction == "Covalent Bond Length"',
+ Interaction_Length_Parameters = FACT( statut='o', max="**",
+ Apply_To_Bonded_Particles = SIMP( statut='o', max='**', typ='TXM'),
+ Spring_Stifness = SIMP( statut='o', typ='R', val_min=0),
+ Mean_Bond_Length = SIMP( statut='o', typ='R', val_min=0),
+ ), # fin Interation_Length_Parameters
+ ), # fin Bond_Length_Parameters
+ bloc_covalent_angle = BLOC( condition = 'Type_Of_Bonded_Interaction == "Covalent Bond Angle"',
+ Interaction_Angles_Parameters = FACT( statut='o', max="**",
+ Apply_To_Bonded_Particles = SIMP( statut='o', max='**', typ='TXM'),
+ Spring_Stifness = SIMP( statut='o', typ='R', val_min=0),
+ Mean_Bond_Angle = SIMP( statut='o', typ='R', val_min=0),
+ ), # fin Interation_Angles_Parameters
+ ), # fin bloc_covalent_length_and_angle
+
+ #bloc_covalent_length_and_angle = BLOC( condition = 'Type_Of_Bonded_Interaction == "Covalent Bond Length" or Type_Of_Bonded_Interaction == "Covalent Bond Angle"',
+ # Bond_Parameters = FACT( statut='o', max="**",
+ # Apply_To_Bonded_Particles = SIMP( statut='o', max='**', typ='TXM'),
+ # Spring_Stifness = SIMP( statut='o', typ='R', val_min=0),
+ # bloc_covalent_length = BLOC( condition = 'Type_Of_Bonded_Interaction == "Covalent Bond Length"',
+ # Mean_Bond_Length = SIMP( statut='o', typ='R', val_min=0),
+ # ), # fin Bond_Length_Parameters
+ # bloc_covalent_angle = BLOC( condition = 'Type_Of_Bonded_Interaction == "Covalent Bond Angle"',
+ # Mean_Bond_Angle = SIMP( statut='o', typ='R', val_min=0),
+ # ), # fin Bond_Length_Parameters
+ # ), # fin Bond_Length_Parameters
+ #), # fin bloc_covalent_length_and_angle
+
+ bloc_FENE = BLOC( condition = 'Type_Of_Bonded_Interaction == "FENE"',
+ Applies_To_All_Particles = SIMP( statut='o', typ=bool, defaut=True),
+ bloc_not_on_all = BLOC( condition = 'Applies_To_All_Particles == False',
+ FENE_Parameters = FACT( statut='o', max="**",
+ Species_Pair = SIMP( statut='o', max=2, typ='TXM'),
+ Spring_Constant_H = SIMP( statut='o', typ='R', val_min=0),
+ LMax = SIMP( statut='o', typ='R', val_min=0),
+ ), # fin FENE_Parameters
+ ), # fin bloc_not_on_all
+ bloc_on_all = BLOC( condition = 'Applies_To_All_Particles == True',
+ Spring_Constant_H = SIMP( statut='o', typ='R', val_min=0),
+ LMax = SIMP( statut='o', typ='R', val_min=0),
+ ), # fin bloc_on_all
+ ), # fin bloc_FENE
+
+ bloc_le_reste = BLOC( condition = 'Type_Of_Bonded_Interaction in ("Dihedral Angles", "Improper Dihedral", "Frozen Motion")',
+ Particle_Name = SIMP( statut="f", typ='TXM'),
+ #Consigne = SIMP( statut="o", homo="information", typ="TXM", defaut='Not Implemented Yet'),
+
+ ),
+ ), # fin Bonded_Interaction
+
+ # ------------------------------- #
+
+ Unbonded_Interactions = FACT( statut='o', max= "**",
+
+ Type_Of_Unbonded_Interaction = SIMP( statut='o', typ='TXM', into=['No', 'electro_magnetic', 'Repulsion_and_VdW', 'Soft_Potentiel', ], defaut='No', position='global',fenetreIhm='menuDeroulant'),
+
+ bloc_elec = BLOC( condition = 'Type_Of_Unbonded_Interaction == "electro_magnetic"',
+ Permittivity = SIMP( statut='o', typ='R', position='global_jdc'),
+ Magnetic = SIMP( statut='o', typ=bool, defaut=False,),
+ bloc_magnetic = BLOC( condition = 'Magnetic == True',
+ Permability = SIMP( statut='o', typ='R'),
+ ), # bloc_magnetic
+ ),# fin bloc_elec
+
+ bloc_VdW = BLOC( condition = 'Type_Of_Unbonded_Interaction == "Repulsion_and_VdW"',
+ Species_Pair_Parameters = FACT( statut='o', max="**",
+ Type_Repulsion_and_VdW = SIMP( statut='o', typ='TXM', into = [ 'Lennard_Jones', 'Hard_sphere_model']),
+ Species_Pair = SIMP( statut='o', max=2, typ='TXM'),
+ VdW_Radius = SIMP( statut='o', typ='R', val_min=0),
+ b_Lennard = BLOC( condition = "Type_Repulsion_and_VdW == 'Lennard_Jones'",
+ Depth_Of_The_Potential_Well = SIMP( statut='o', typ='R', val_min=0),
+ ), # fin b_Lennard
+ ), # fin Species_Pair_Parameters
+ ), # bloc_VdW
+
+ b_Param_Soft_Potentiel = BLOC( condition = "Type_Of_Unbonded_Interaction == 'Soft_Potentiel'",
+ Groot_Warren_Repulsion = SIMP( statut='o', typ='R', defaut=25.0, val_min=0),
+ Groot_Warren_Cutoff = SIMP( statut='o', typ='R', defaut=1.0, val_min=0),
+ Drag_Coefficient = SIMP( statut='o', typ='R'), # les 2 valent 0 pour MD
+ Drag_Force_Cutoff = SIMP( statut='o', typ='R', val_min=0),
+ ), # b_Param_Soft_Potentiel
+
+ ), # fin UnBonded_Interactions
+
+ # ------------------------------- #
+
+ External_Field_Interaction = FACT( statut='o', max= "**",
+ Type_Of_Interaction_With_An_External_Field = SIMP( statut='o', typ='TXM', into=['No','gravitational field','electric field','magnetic field', 'Hydrodynamic_Field'], fenetreIhm='menuDeroulant', defaut ='No'),
+ b_gravite = BLOC( condition = 'Type_Of_Interaction_With_An_External_Field=="gravitational field"',
+ G = SIMP( statut='o', typ='R', defaut=9.81),
+ ),
+ b_elect = BLOC( condition = 'Type_Of_Interaction_With_An_External_Field=="electric field"',
+ Electric_Field = champ('E', ('E',), 1),
+ ),
+ b_magnetic = BLOC( condition = 'Type_Of_Interaction_With_An_External_Field=="magnetic field"',
+ Magnetic_Field = champ('B', ('B',), 1),
+ ),
+ b_hydrodynamic = BLOC( condition = 'Type_Of_Interaction_With_An_External_Field=="hydrodynamic field"',
+ Hydrodynamic_Field = champ('U', ('U',), 1),
+ ),
+ b_External_Field_Interaction = BLOC( condition = 'Type_Of_Interaction_With_An_External_Field != "No"',
+ Field_Applies_On_All_Species = SIMP( statut='o', typ=bool, defaut=True),
+ b_porte_espece = BLOC( condition = 'Field_Applies_On_All_Species == False ',
+ Species_List = SIMP( statut='o', typ='TXM', max= '**'), # faire un typ = "espece"
+ ),
+ ), # fin b_External_Field_Interaction
+ ), # fin Interaction_External_Field
+
+ ), # fin List_Of_Interactions
+
+############################
+ )
+
+def bloc_CPS():
+ return BLOC(condition = 'SystemType == "Classical particle system"',
+ PhysicalDescription__tmp = FACT (statut ='o',
+ Particle = Particle('**'),
+ )
+)
+
+def bloc_FluideMacro():
+ return BLOC(condition = 'SystemType == "Continuum system"',
+ PhysicalDescription = FACT (statut ='o',
+ FluidComplexe = SIMP(typ=bool, statut='o', defaut = False),
+
+ FlowNature = SIMP(typ='TXM', statut='o', into =['Laminar', 'Turbulent'], position='global'),
+ bloc_FlowNature_Turbulent = BLOC(condition = ' FlowNature == "Turbulent"',
+ TurbulenceForFlowDynamics = FactTurbulence('o'),
+ ), #------ fin bloc_FlowNature_Turbulent
+
+
+# ---------------------- Effets thermiques
+
+ Thermal = FACT (statut ='o',
+ ThermalEffects = SIMP(typ='TXM', statut='o', into =['Non thermal',
+ 'No effect on flow dynamics', 'Effect on flow dynamics'], defaut='Non thermal'),
+
+ bloc_NonThermalEffects = BLOC(condition = ' ThermalEffects == "Non thermal" or ThermalEffects == "No effect on flow dynamics"',
+ DensityEquationOfState = SIMP(typ='TXM', statut='o', into =['Constant density'], defaut = 'Constant density'),
+ ), # fin bloc_NonThermalEffects
+
+ bloc_ThermalEffects_Active = BLOC(condition = ' ThermalEffects == "Effect on flow dynamics"',
+ DensityEquationOfState = SIMP(typ='TXM', statut='o', into =['Variable density', 'Compressible']),
+# PNJPM est ce suffisant ?
+ ), # fin bloc_ThermalEffects_Active
+ bloc_ThermalEffects = BLOC(condition = ' ThermalEffects == "Effect on flow dynamics" or ThermalEffects == "No effect on flow dynamics"',
+ bloc_scalar_thermal_flux = BLOC (condition = "FlowNature == 'Turbulent'",
+ ThermalFluxModel = FactTurbulence('f'),
+ ),# fin bloc_scalar_thermal_flux
+ WithChemicalReactions = SIMP(typ=bool, statut ='o', defaut = False),
+ ), # fin bloc_ThermalEffects
+ ),# fin Fact Thermal
+
+# ---------------------- Scalaire additional
+ bloc_scalar_FluidTurbulentandNonComplexe = BLOC(condition = "FluidComplexe == False and FlowNature == 'Turbulent'",
+ AdditionalScalars__tmp1 = FACT(statut = 'o',
+ Scalar = FACT(statut = 'f', max ='**',
+ Name = SIMP(typ='TXM', statut='o',),
+ ScalarFluxModel = FactTurbulence('f'),
+ ),# Scalar
+ ),# AdditionalScalars
+ ), # fin FluidTurbulentandNonComplexe
+ bloc_scalar_FluidLaminaireandNonComplexe = BLOC (condition = "FluidComplexe == False and FlowNature == 'Laminar'",
+ AdditionalScalars__tmp2 = FACT (statut = 'o',
+ Scalar = FACT ( statut = 'f', max ='**',
+ Name = SIMP(typ='TXM', statut='o',),
+ ),# Scalar
+ ),# AdditionalScalars
+ ), # fin FluidLaminaireandNonComplexe
+ bloc_FlowNature_Turbulent_For_Scalars = BLOC(condition = ' FlowNature == "Turbulent"',
+ ScalarTurbulenceModelling = FactTurbulence('f'),
+ ),
+ # il faut une validation de coherence entre l existence de tous les turbulencesModelling
+ ) # fin PhysicalDescription
+ )# fin bloc_FluideMacro
+
+JdC = JDC_CATA (
+ code = 'Vimmp',
+ # faire un validateur qui verifie que si on active reactions chimiques il faut que les masses molaires soient rentrees
+)
+
+Component = OPER(nom='Component', sd_prod=composant,
+ SystemType = SIMP(typ='TXM', into=['Quantum system', 'Classical particle system', 'Continuum system'], statut='o'),
+ b_FluideMacro = bloc_FluideMacro(),
+ b_bloc_CPS = bloc_CPS(),
+ b_ModeleNumerique_quantum = prepareBlocSystemType('Quantum system'),
+ b_ModeleNumerique_classical = prepareBlocSystemType('Classical particle system'),
+ b_ModeleNumerique_continuum = prepareBlocSystemType('Continuum system'),
+)
+
+Species = PROC(nom='Species',
+ Specie = FACT( statut='o', max ="**",
+ Name = SIMP( statut='o', typ=(especeChimique,'createObject') ),
+ masse_molaire = SIMP( statut='f', typ='R',),
+ )
+)
+
+#Physical_Description = PROC(nom='Physical_Description',
+# Component = SIMP(typ=composant, statut ='o',),
+## bloc_FluideMacro = BLOC(condition = 'systemType == "Continuum system"',)
+## faire un validateur qui verifie que si on active reactions chimiques il faut que les masses molaires soient rentrees
+#
+## ------------------------------------ Bloc FluidMacro ----------------------------------
+# bloc_FluideMacro = BLOC(condition = 'getEficasAttribut(Component,"SystemType") == "Continuum system"',
+# #bloc_FluideMacro = BLOC(condition = '"Fields" in getEficasListOfAttributs(Component,["NumericalModel","ModelType"])' ,
+# # n est ce pas plutot un des modelNumrerique vaut Field ? ou faut-il les 2
+# FluidComplexe = SIMP(typ=bool, statut='o', defaut = False),
+#
+# FlowNature = SIMP(typ='TXM', statut='o', into =['Laminar', 'Turbulent'], position='global'),
+## ----------- FlowNature Turbulent
+# bloc_FlowNature_Turbulent = BLOC(condition = ' FlowNature == "Turbulent"',
+# TurbulenceForFlowDynamics = FactTurbulence('o'),
+### PNPN a faire
+## # controle de coherence entre les modeles de turbulences et les modeles numeriques choisis ),
+## # Consigne = SIMP(statut ="o", homo="information", typ="TXM",defaut ='Incoherence')
+## # il faut verifier la coherence entre le model de turbulence et le model type ),
+##
+# ), #------ fin bloc_FlowNature_Turbulent
+#
+#
+## ---------------------- Effets thermiques
+#
+# Thermal = FACT (statut ='o',
+# ThermalEffects = SIMP(typ='TXM', statut='o', into =['Non thermal',
+# 'No effect on flow dynamics', 'Effect on flow dynamics'], defaut='Non thermal'),
+#
+# bloc_NonThermalEffects = BLOC(condition = ' ThermalEffects == "Non thermal" or ThermalEffects == "No effect on flow dynamics"',
+# DensityEquationOfState = SIMP(typ='TXM', statut='o', into =['Constant density'], defaut = 'Constant density'),
+# ), # fin bloc_NonThermalEffects
+#
+# bloc_ThermalEffects_Active = BLOC(condition = ' ThermalEffects == "Effect on flow dynamics"',
+# DensityEquationOfState = SIMP(typ='TXM', statut='o', into =['Variable density', 'Compressible']),
+## PNJPM est ce suffisant ?
+# ), # fin bloc_ThermalEffects_Active
+# bloc_ThermalEffects = BLOC(condition = ' ThermalEffects == "Effect on flow dynamics" or ThermalEffects == "No effect on flow dynamics"',
+# bloc_scalar_thermal_flux = BLOC (condition = "FlowNature == 'Turbulent'",
+# ThermalFluxModel = FactTurbulence('f'),
+# ),# fin bloc_scalar_thermal_flux
+# WithChemicalReactions = SIMP(typ=bool, statut ='o', defaut = False),
+# ), # fin bloc_ThermalEffects
+# ),# fin Fact Thermal
+#
+## ---------------------- Scalaire additional
+# bloc_scalar_FluidTurbulentandNonComplexe = BLOC(condition = "FluidComplexe == False and FlowNature == 'Turbulent'",
+# AdditionalScalars = FACT(statut = 'o',
+# Scalar = FACT(statut = 'f', max ='**',
+# Name = SIMP(typ='TXM', statut='o',),
+# ScalarFluxModel = FactTurbulence('f'),
+# ),# Scalar
+# ),# AdditionalScalars
+# ), # fin FluidTurbulentandNonComplexe
+# bloc_scalar_FluidLaminaireandNonComplexe = BLOC (condition = "FluidComplexe == False and FlowNature == 'Laminar'",
+# AdditionalScalars = FACT (statut = 'o',
+# Scalar = FACT ( statut = 'f', max ='**',
+# Name = SIMP(typ='TXM', statut='o',),
+# ),# Scalar
+# ),# AdditionalScalars
+# ), # fin FluidLaminaireandNonComplexe
+# bloc_FlowNature_Turbulent_For_Scalars = BLOC(condition = ' FlowNature == "Turbulent"',
+# ScalarTurbulenceModelling = FactTurbulence('f'),
+# ),
+# # il faut une validation de coherence entre l existence de tous les turbulencesModelling
+# ),# fin bloc_FluideMacro
+#)
+
+Interactions = PROC(nom='Interactions',
+ InteractionComposant = FACT( max = '**',
+ origine = SIMP(typ=modeleNumDuCompo, statut='o'),
+ destination = SIMP(typ=modeleNumDuCompo, statut='o'),
+# PN a derouler avec une fonction
+ monBloc_FFDP = BLOC (
+ condition = 'getEficasAttribut(origine,"ModelType") == "Fields" and getEficasAttribut(destination,"ModelType") == "Particles"' ,
+ termeLE = SIMP(typ='TXM', statut='o', into = dictTermeLE['Fields','Particles'],fenetreIhm='menuDeroulant'),
+ ),
+ monBloc_DPFF = BLOC (
+ condition = 'getEficasAttribut(origine,"ModelType") == "Particles" and getEficasAttribut(destination,"ModelType") == "Fields"' ,
+ termeLE = SIMP(typ='TXM', statut='o', into = dictTermeLE['Particles','Fields'],fenetreIhm='menuDeroulant'),
+ ),
+ monBloc_Saturne_Fluent = BLOC (
+ condition = 'getEficasAttribut(origine,"Solver") == "Code_Saturne" and getEficasAttribut(destination,"Solver") == "Fluent"' ,
+ Format = SIMP(typ='TXM', statut='o', into = calculCommun( "Code_Saturne", "Fluent",dictCodeFormat) ),
+ ),
+ monBloc_Saturne_OpenFoam = BLOC (
+ condition = 'getEficasAttribut(origine,"Solver") == "Code_Saturne" and getEficasAttribut(destination,"Solver") == "OpenFOAM"' ,
+ Format = SIMP(typ='TXM', statut='o', into = calculCommun( "Code_Saturne", "OpenFOAM",dictCodeFormat) ),
+ monBloc_conversion = BLOC (condition = 'Format == "Use converter"',
+ converter = SIMP(typ='TXM', statut='o', into = dictCodeConvertisseur['Saturne', 'OpenFOAM']),
+ ),
+ ),
+ ),
+)
+
+dict_condition={'NumericalMethod' : ('Interactions', 'Component'),
+# 'TypeOfSolid' : ('Component',)
+}
+
+Simulated_Time_Lapse = PROC( nom ="Simulated_Time_Lapse",
+ Initial_Time = SIMP( statut='o', typ='R'),
+ Duration = SIMP( statut='o', typ='R'),
+)
+#
+Geometric_Domain= OPER( nom='Geometric_Domain', sd_prod=geometricDomain,
+ Shape = SIMP( statut='o', typ='TXM', into=['Simplified Shape', 'CAD or Mesh']),
+ b_Shape = BLOC( condition = 'Shape == "Simplified Shape"',
+ Box = SIMP( statut='o', typ='TXM', into=['Cube', 'Sphere','Cylinder'] ),
+ b_Cube = BLOC( condition = 'Box == "Cube"',
+ #Taille_Box_Englobante = SIMP( statut='o', typ='R', max=3, min =3)
+ # derait etre un Tuple(3) mais a faire apres la projection
+ Size_Of_Bounding_Box = SIMP( statut='o', typ=Tuple(3), validators=VerifTypeTuple(('R','R','R'),),)
+ ), # fin b_Cube
+ b_Boule = BLOC( condition = 'Box == "Sphere"',
+ Center = SIMP( statut='o', typ='R', max=3, min =3),
+ # devrait etre un Tuple(3) mais a faire apres la projection
+ ),# fin b_Boule
+ b_Cylinder = BLOC( condition = 'Box == "Cylinder"',
+ Heigth = SIMP( statut="o", typ='R', val_min=0.0, ang='Nanotube length [m]'),
+ ),# fin b_Tube
+ b_Boule_ou_Cylinder = BLOC( condition = 'Box == "Sphere" or Box == "Cylinder"',
+ Radius = SIMP( statut='o', typ='R', val_min=0.0, ang='radius length [m]') ,
+ ),# fin b_Boule_ouCylinder
+ ), # fin b_Shape
+#
+ b_CAO = creeBlocPourLesFichiers( "Shape == 'CAD or Mesh'",'Domain_File', ['txt','med','I-deas', 'Gmsh', 'top',]),
+
+ Surface=SIMP( statut='o', typ='TXM',max='**',),
+) # fin Geometric_Domain
+
+
+
+