omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshDC)
-## Mother class to define algorithm, recommended to do not use directly.
+# Public class: Mesh
+# ==================
+
+## Class to define a mesh
#
+# The class contains mesh shape, SMESH_Mesh, SMESH_MeshEditor
# More details.
-class Mesh_Algorithm:
- # @class Mesh_Algorithm
- # @brief Class Mesh_Algorithm
-
- #def __init__(self,smesh):
- # self.smesh=smesh
- def __init__(self):
- self.mesh = None
- self.geom = None
- self.subm = None
- self.algo = None
+class Mesh:
- ## Find hypothesis in study by its type name and parameters.
- # Find only those hypothesis, which was created in smeshpyD engine.
- def FindHypothesis (self, hypname, args, CompareMethod, smeshpyD):
- study = smeshpyD.GetCurrentStudy()
- #to do: find component by smeshpyD object, not by its data type
- scomp = study.FindComponent(smeshpyD.ComponentDataType())
- if scomp is not None:
- res,hypRoot = scomp.FindSubObject(SMESH.Tag_HypothesisRoot)
- # is hypotheses root label exists?
- if res and hypRoot is not None:
- iter = study.NewChildIterator(hypRoot)
- # check all published hypotheses
- while iter.More():
- hypo_so_i = iter.Value()
- attr = hypo_so_i.FindAttribute("AttributeIOR")[1]
- if attr is not None:
- anIOR = attr.Value()
- hypo_o_i = salome.orb.string_to_object(anIOR)
- if hypo_o_i is not None:
- # is hypothesis?
- hypo_i = hypo_o_i._narrow(SMESH.SMESH_Hypothesis)
- if hypo_i is not None:
- # belongs to this engine?
- if smeshpyD.GetObjectId(hypo_i) > 0:
- # is it the needed hypothesis?
- if hypo_i.GetName() == hypname:
- # check args
- if CompareMethod(hypo_i, args):
- # found!!!
- return hypo_i
- pass
- pass
- pass
- pass
- pass
- iter.Next()
- pass
- pass
- pass
- return None
+ geom = 0
+ mesh = 0
+ editor = 0
- ## Find algorithm in study by its type name.
- # Find only those algorithm, which was created in smeshpyD engine.
- def FindAlgorithm (self, algoname, smeshpyD):
- study = smeshpyD.GetCurrentStudy()
- #to do: find component by smeshpyD object, not by its data type
- scomp = study.FindComponent(smeshpyD.ComponentDataType())
- if scomp is not None:
- res,hypRoot = scomp.FindSubObject(SMESH.Tag_AlgorithmsRoot)
- # is algorithms root label exists?
- if res and hypRoot is not None:
- iter = study.NewChildIterator(hypRoot)
- # check all published algorithms
- while iter.More():
- algo_so_i = iter.Value()
- attr = algo_so_i.FindAttribute("AttributeIOR")[1]
- if attr is not None:
- anIOR = attr.Value()
- algo_o_i = salome.orb.string_to_object(anIOR)
- if algo_o_i is not None:
- # is algorithm?
- algo_i = algo_o_i._narrow(SMESH.SMESH_Algo)
- if algo_i is not None:
- # belongs to this engine?
- if smeshpyD.GetObjectId(algo_i) > 0:
- # is it the needed algorithm?
- if algo_i.GetName() == algoname:
- # found!!!
- return algo_i
- pass
- pass
- pass
- pass
- iter.Next()
- pass
- pass
- pass
- return None
+ ## Constructor
+ #
+ # Creates mesh on the shape \a geom(or the empty mesh if geom equal to 0),
+ # sets GUI name of this mesh to \a name.
+ # @param obj Shape to be meshed or SMESH_Mesh object
+ # @param name Study name of the mesh
+ def __init__(self, smeshpyD, geompyD, obj=0, name=0):
+ self.smeshpyD=smeshpyD
+ self.geompyD=geompyD
+ if obj is None:
+ obj = 0
+ if obj != 0:
+ if isinstance(obj, geompyDC.GEOM._objref_GEOM_Object):
+ self.geom = obj
+ self.mesh = self.smeshpyD.CreateMesh(self.geom)
+ elif isinstance(obj, SMESH._objref_SMESH_Mesh):
+ self.SetMesh(obj)
+ else:
+ self.mesh = self.smeshpyD.CreateEmptyMesh()
+ if name != 0:
+ SetName(self.mesh, name)
+ elif obj != 0:
+ SetName(self.mesh, GetName(obj))
- ## If the algorithm is global, return 0; \n
- # else return the submesh associated to this algorithm.
- def GetSubMesh(self):
- return self.subm
+ self.editor = self.mesh.GetMeshEditor()
- ## Return the wrapped mesher.
- def GetAlgorithm(self):
- return self.algo
+ ## Method that inits the Mesh object from SMESH_Mesh interface
+ # @param theMesh is SMESH_Mesh object
+ def SetMesh(self, theMesh):
+ self.mesh = theMesh
+ self.geom = self.mesh.GetShapeToMesh()
- ## Get list of hypothesis that can be used with this algorithm
- def GetCompatibleHypothesis(self):
- mylist = []
- if self.algo:
- mylist = self.algo.GetCompatibleHypothesis()
- return mylist
+ ## Method that returns the mesh
+ # @return SMESH_Mesh object
+ def GetMesh(self):
+ return self.mesh
- ## Get name of algo
+ ## Get mesh name
def GetName(self):
- GetName(self.algo)
+ name = GetName(self.GetMesh())
+ return name
- ## Set name to algo
+ ## Set name to mesh
def SetName(self, name):
- SetName(self.algo, name)
+ SetName(self.GetMesh(), name)
- ## Get id of algo
- def GetId(self):
- return self.algo.GetId()
+ ## Get the subMesh object associated to a subShape. The subMesh object
+ # gives access to nodes and elements IDs.
+ # \n SubMesh will be used instead of SubShape in a next idl version to
+ # adress a specific subMesh...
+ def GetSubMesh(self, theSubObject, name):
+ submesh = self.mesh.GetSubMesh(theSubObject, name)
+ return submesh
- ## Private method.
- def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
- if geom is None:
- raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape"
- algo = self.FindAlgorithm(hypo, mesh.smeshpyD)
- if algo is None:
- algo = mesh.smeshpyD.CreateHypothesis(hypo, so)
- pass
- self.Assign(algo, mesh, geom)
- return self.algo
+ ## Method that returns the shape associated to the mesh
+ # @return GEOM_Object
+ def GetShape(self):
+ return self.geom
- ## Private method
- def Assign(self, algo, mesh, geom):
- if geom is None:
- raise RuntimeError, "Attemp to create " + algo + " algoritm on None shape"
- self.mesh = mesh
- piece = mesh.geom
- if not geom:
- self.geom = piece
- else:
- self.geom = geom
- name = GetName(geom)
- if name==NO_NAME:
- name = mesh.geompyD.SubShapeName(geom, piece)
- mesh.geompyD.addToStudyInFather(piece, geom, name)
- self.subm = mesh.mesh.GetSubMesh(geom, algo.GetName())
+ ## Method that associates given shape to the mesh(entails the mesh recreation)
+ # @param geom shape to be meshed(GEOM_Object)
+ def SetShape(self, geom):
+ self.mesh = self.smeshpyD.CreateMesh(geom)
- self.algo = algo
- status = mesh.mesh.AddHypothesis(self.geom, self.algo)
- TreatHypoStatus( status, algo.GetName(), GetName(self.geom), True )
+ ## Return true if hypotheses are defined well
+ # @param theMesh is an instance of Mesh class
+ # @param theSubObject subshape of a mesh shape
+ def IsReadyToCompute(self, theSubObject):
+ return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject)
- def CompareHyp (self, hyp, args):
- print "CompareHyp is not implemented for ", self.__class__.__name__, ":", hyp.GetName()
- return False
+ ## Return errors of hypotheses definintion
+ # error list is empty if everything is OK
+ # @param theMesh is an instance of Mesh class
+ # @param theSubObject subshape of a mesh shape
+ # @return a list of errors
+ def GetAlgoState(self, theSubObject):
+ return self.smeshpyD.GetAlgoState(self.mesh, theSubObject)
- def CompareEqualHyp (self, hyp, args):
- return True
+ ## Return geometrical object the given element is built on.
+ # The returned geometrical object, if not nil, is either found in the
+ # study or is published by this method with the given name
+ # @param theMesh is an instance of Mesh class
+ # @param theElementID an id of the mesh element
+ # @param theGeomName user defined name of geometrical object
+ # @return GEOM::GEOM_Object instance
+ def GetGeometryByMeshElement(self, theElementID, theGeomName):
+ return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
- ## Private method
- def Hypothesis (self, hyp, args=[], so="libStdMeshersEngine.so",
- UseExisting=0, CompareMethod=""):
- hypo = None
- if UseExisting:
- if CompareMethod == "": CompareMethod = self.CompareHyp
- hypo = self.FindHypothesis(hyp, args, CompareMethod, self.mesh.smeshpyD)
+ ## Returns mesh dimension depending on shape one
+ def MeshDimension(self):
+ shells = self.geompyD.SubShapeAllIDs( self.geom, geompyDC.ShapeType["SHELL"] )
+ if len( shells ) > 0 :
+ return 3
+ elif self.geompyD.NumberOfFaces( self.geom ) > 0 :
+ return 2
+ elif self.geompyD.NumberOfEdges( self.geom ) > 0 :
+ return 1
+ else:
+ return 0;
+ pass
+
+ ## Creates a segment discretization 1D algorithm.
+ # If the optional \a algo parameter is not sets, this algorithm is REGULAR.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param algo values are smesh.REGULAR or smesh.PYTHON for discretization via python function
+ # @param geom If defined, subshape to be meshed
+ def Segment(self, algo=REGULAR, geom=0):
+ ## if Segment(geom) is called by mistake
+ if isinstance( algo, geompyDC.GEOM._objref_GEOM_Object):
+ algo, geom = geom, algo
+ if not algo: algo = REGULAR
pass
- if hypo is None:
- hypo = self.mesh.smeshpyD.CreateHypothesis(hyp, so)
- a = ""
- s = "="
- i = 0
- n = len(args)
- while i<n:
- a = a + s + str(args[i])
- s = ","
- i = i + 1
- pass
- SetName(hypo, hyp + a)
- pass
- status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
- TreatHypoStatus( status, GetName(hypo), GetName(self.geom), 0 )
- return hypo
-
-
-# Public class: Mesh_Segment
-# --------------------------
-
-## Class to define a segment 1D algorithm for discretization
-#
-# More details.
-class Mesh_Segment(Mesh_Algorithm):
-
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- Mesh_Algorithm.__init__(self)
- self.Create(mesh, geom, "Regular_1D")
-
- ## Define "LocalLength" hypothesis to cut an edge in several segments with the same length
- # @param l for the length of segments that cut an edge
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- # @param p precision, used for number of segments calculation.
- # It must be pozitive, meaningfull values are in range [0,1].
- # In general, number of segments is calculated with formula:
- # nb = ceil((edge_length / l) - p)
- # Function ceil rounds its argument to the higher integer.
- # So, p=0 means rounding of (edge_length / l) to the higher integer,
- # p=0.5 means rounding of (edge_length / l) to the nearest integer,
- # p=1 means rounding of (edge_length / l) to the lower integer.
- # Default value is 1e-07.
- def LocalLength(self, l, UseExisting=0, p=1e-07):
- hyp = self.Hypothesis("LocalLength", [l,p], UseExisting=UseExisting,
- CompareMethod=self.CompareLocalLength)
- hyp.SetLength(l)
- hyp.SetPrecision(p)
- return hyp
+ if algo == REGULAR:
+ return Mesh_Segment(self, geom)
+ elif algo == PYTHON:
+ return Mesh_Segment_Python(self, geom)
+ elif algo == COMPOSITE:
+ return Mesh_CompositeSegment(self, geom)
+ else:
+ return Mesh_Segment(self, geom)
- ## Check if the given "LocalLength" hypothesis has the same parameters as given arguments
- def CompareLocalLength(self, hyp, args):
- if IsEqual(hyp.GetLength(), args[0]):
- return IsEqual(hyp.GetPrecision(), args[1])
- return False
+ ## Enable creation of nodes and segments usable by 2D algoritms.
+ # Added nodes and segments must be bound to edges and vertices by
+ # SetNodeOnVertex(), SetNodeOnEdge() and SetMeshElementOnShape()
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom subshape to be manually meshed
+ # @return StdMeshers_UseExisting_1D algorithm that generates nothing
+ def UseExistingSegments(self, geom=0):
+ algo = Mesh_UseExisting(1,self,geom)
+ return algo.GetAlgorithm()
- ## Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments
- # @param n for the number of segments that cut an edge
- # @param s for the scale factor (optional)
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- def NumberOfSegments(self, n, s=[], UseExisting=0):
- if s == []:
- hyp = self.Hypothesis("NumberOfSegments", [n], UseExisting=UseExisting,
- CompareMethod=self.CompareNumberOfSegments)
- else:
- hyp = self.Hypothesis("NumberOfSegments", [n,s], UseExisting=UseExisting,
- CompareMethod=self.CompareNumberOfSegments)
- hyp.SetDistrType( 1 )
- hyp.SetScaleFactor(s)
- hyp.SetNumberOfSegments(n)
- return hyp
+ ## Enable creation of nodes and faces usable by 3D algoritms.
+ # Added nodes and faces must be bound to geom faces by SetNodeOnFace()
+ # and SetMeshElementOnShape()
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom subshape to be manually meshed
+ # @return StdMeshers_UseExisting_2D algorithm that generates nothing
+ def UseExistingFaces(self, geom=0):
+ algo = Mesh_UseExisting(2,self,geom)
+ return algo.GetAlgorithm()
- ## Check if the given "NumberOfSegments" hypothesis has the same parameters as given arguments
- def CompareNumberOfSegments(self, hyp, args):
- if hyp.GetNumberOfSegments() == args[0]:
- if len(args) == 1:
- return True
- else:
- if hyp.GetDistrType() == 1:
- if IsEqual(hyp.GetScaleFactor(), args[1]):
- return True
- return False
+ ## Creates a triangle 2D algorithm for faces.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param algo values are: smesh.MEFISTO || smesh.NETGEN_1D2D || smesh.NETGEN_2D
+ # @param geom If defined, subshape to be meshed
+ def Triangle(self, algo=MEFISTO, geom=0):
+ ## if Triangle(geom) is called by mistake
+ if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)):
+ geom = algo
+ algo = MEFISTO
- ## Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing
- # @param start for the length of the first segment
- # @param end for the length of the last segment
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- def Arithmetic1D(self, start, end, UseExisting=0):
- hyp = self.Hypothesis("Arithmetic1D", [start, end], UseExisting=UseExisting,
- CompareMethod=self.CompareArithmetic1D)
- hyp.SetLength(start, 1)
- hyp.SetLength(end , 0)
- return hyp
+ return Mesh_Triangle(self, algo, geom)
- ## Check if the given "Arithmetic1D" hypothesis has the same parameters as given arguments
- def CompareArithmetic1D(self, hyp, args):
- if IsEqual(hyp.GetLength(1), args[0]):
- if IsEqual(hyp.GetLength(0), args[1]):
- return True
- return False
+ ## Creates a quadrangle 2D algorithm for faces.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom If defined, subshape to be meshed
+ def Quadrangle(self, geom=0):
+ return Mesh_Quadrangle(self, geom)
- ## Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing
- # @param start for the length of the first segment
- # @param end for the length of the last segment
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- def StartEndLength(self, start, end, UseExisting=0):
- hyp = self.Hypothesis("StartEndLength", [start, end], UseExisting=UseExisting,
- CompareMethod=self.CompareStartEndLength)
- hyp.SetLength(start, 1)
- hyp.SetLength(end , 0)
- return hyp
+ ## Creates a tetrahedron 3D algorithm for solids.
+ # The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.FULL_NETGEN
+ # @param geom If defined, subshape to be meshed
+ def Tetrahedron(self, algo=NETGEN, geom=0):
+ ## if Tetrahedron(geom) is called by mistake
+ if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)):
+ algo, geom = geom, algo
+ if not algo: algo = NETGEN
+ pass
+ return Mesh_Tetrahedron(self, algo, geom)
- ## Check if the given "StartEndLength" hypothesis has the same parameters as given arguments
- def CompareStartEndLength(self, hyp, args):
- if IsEqual(hyp.GetLength(1), args[0]):
- if IsEqual(hyp.GetLength(0), args[1]):
- return True
- return False
+ ## Creates a hexahedron 3D algorithm for solids.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom If defined, subshape to be meshed
+ ## def Hexahedron(self, geom=0):
+ ## return Mesh_Hexahedron(self, geom)
+ def Hexahedron(self, algo=Hexa, geom=0):
+ ## if Hexahedron(geom, algo) or Hexahedron(geom) is called by mistake
+ if ( isinstance(algo, geompyDC.GEOM._objref_GEOM_Object) ):
+ if geom in [Hexa, Hexotic]: algo, geom = geom, algo
+ elif geom == 0: algo, geom = Hexa, algo
+ return Mesh_Hexahedron(self, algo, geom)
- ## Define "Deflection1D" hypothesis
- # @param d for the deflection
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- def Deflection1D(self, d, UseExisting=0):
- hyp = self.Hypothesis("Deflection1D", [d], UseExisting=UseExisting,
- CompareMethod=self.CompareDeflection1D)
- hyp.SetDeflection(d)
- return hyp
+ ## Deprecated, only for compatibility!
+ def Netgen(self, is3D, geom=0):
+ return Mesh_Netgen(self, is3D, geom)
- ## Check if the given "Deflection1D" hypothesis has the same parameters as given arguments
- def CompareDeflection1D(self, hyp, args):
- return IsEqual(hyp.GetDeflection(), args[0])
+ ## Creates a projection 1D algorithm for edges.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom If defined, subshape to be meshed
+ def Projection1D(self, geom=0):
+ return Mesh_Projection1D(self, geom)
- ## Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in
- # the opposite side in the case of quadrangular faces
- def Propagation(self):
- return self.Hypothesis("Propagation", UseExisting=1, CompareMethod=self.CompareEqualHyp)
+ ## Creates a projection 2D algorithm for faces.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom If defined, subshape to be meshed
+ def Projection2D(self, geom=0):
+ return Mesh_Projection2D(self, geom)
- ## Define "AutomaticLength" hypothesis
- # @param fineness for the fineness [0-1]
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- def AutomaticLength(self, fineness=0, UseExisting=0):
- hyp = self.Hypothesis("AutomaticLength",[fineness],UseExisting=UseExisting,
- CompareMethod=self.CompareAutomaticLength)
- hyp.SetFineness( fineness )
- return hyp
+ ## Creates a projection 3D algorithm for solids.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom If defined, subshape to be meshed
+ def Projection3D(self, geom=0):
+ return Mesh_Projection3D(self, geom)
- ## Check if the given "AutomaticLength" hypothesis has the same parameters as given arguments
- def CompareAutomaticLength(self, hyp, args):
- return IsEqual(hyp.GetFineness(), args[0])
+ ## Creates a 3D extrusion (Prism 3D) or RadialPrism 3D algorithm for solids.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom If defined, subshape to be meshed
+ def Prism(self, geom=0):
+ shape = geom
+ if shape==0:
+ shape = self.geom
+ nbSolids = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SOLID"] ))
+ nbShells = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHELL"] ))
+ if nbSolids == 0 or nbSolids == nbShells:
+ return Mesh_Prism3D(self, geom)
+ return Mesh_RadialPrism3D(self, geom)
- ## Define "SegmentLengthAroundVertex" hypothesis
- # @param length for the segment length
- # @param vertex for the length localization: vertex index [0,1] | vertex object.
- # Any other integer value means what hypo will be set on the
- # whole 1D shape, where Mesh_Segment algorithm is assigned.
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- def LengthNearVertex(self, length, vertex=0, UseExisting=0):
- import types
- store_geom = self.geom
- if type(vertex) is types.IntType:
- if vertex == 0 or vertex == 1:
- vertex = self.mesh.geompyD.SubShapeAllSorted(self.geom, geompyDC.ShapeType["VERTEX"])[vertex]
- self.geom = vertex
+ ## Compute the mesh and return the status of the computation
+ def Compute(self, geom=0):
+ if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
+ if self.geom == 0:
+ print "Compute impossible: mesh is not constructed on geom shape."
+ return 0
+ else:
+ geom = self.geom
+ ok = False
+ try:
+ ok = self.smeshpyD.Compute(self.mesh, geom)
+ except SALOME.SALOME_Exception, ex:
+ print "Mesh computation failed, exception caught:"
+ print " ", ex.details.text
+ except:
+ import traceback
+ print "Mesh computation failed, exception caught:"
+ traceback.print_exc()
+ if not ok:
+ errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
+ allReasons = ""
+ for err in errors:
+ if err.isGlobalAlgo:
+ glob = "global"
+ else:
+ glob = "local"
+ pass
+ dim = err.algoDim
+ name = err.algoName
+ if len(name) == 0:
+ reason = '%s %sD algorithm is missing' % (glob, dim)
+ elif err.state == HYP_MISSING:
+ reason = ('%s %sD algorithm "%s" misses %sD hypothesis'
+ % (glob, dim, name, dim))
+ elif err.state == HYP_NOTCONFORM:
+ reason = 'Global "Not Conform mesh allowed" hypothesis is missing'
+ elif err.state == HYP_BAD_PARAMETER:
+ reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value'
+ % ( glob, dim, name ))
+ elif err.state == HYP_BAD_GEOMETRY:
+ reason = ('%s %sD algorithm "%s" is assigned to geometry mismatching'
+ 'its expectation' % ( glob, dim, name ))
+ else:
+ reason = "For unknown reason."+\
+ " Revise Mesh.Compute() implementation in smeshDC.py!"
+ pass
+ if allReasons != "":
+ allReasons += "\n"
+ pass
+ allReasons += reason
+ pass
+ if allReasons != "":
+ print '"' + GetName(self.mesh) + '"',"has not been computed:"
+ print allReasons
+ else:
+ print '"' + GetName(self.mesh) + '"',"has not been computed."
pass
pass
- else:
- self.geom = vertex
+ if salome.sg.hasDesktop():
+ smeshgui = salome.ImportComponentGUI("SMESH")
+ smeshgui.Init(salome.myStudyId)
+ smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) )
+ salome.sg.updateObjBrowser(1)
pass
- ### 0D algorithm
- if self.geom is None:
- raise RuntimeError, "Attemp to create SegmentAroundVertex_0D algoritm on None shape"
- name = GetName(self.geom)
- if name == NO_NAME:
- piece = self.mesh.geom
- name = self.mesh.geompyD.SubShapeName(self.geom, piece)
- self.mesh.geompyD.addToStudyInFather(piece, self.geom, name)
- algo = self.FindAlgorithm("SegmentAroundVertex_0D", self.mesh.smeshpyD)
- if algo is None:
- algo = self.mesh.smeshpyD.CreateHypothesis("SegmentAroundVertex_0D", "libStdMeshersEngine.so")
+ return ok
+
+ ## Compute tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
+ # The parameter \a fineness [0,-1] defines mesh fineness
+ def AutomaticTetrahedralization(self, fineness=0):
+ dim = self.MeshDimension()
+ # assign hypotheses
+ self.RemoveGlobalHypotheses()
+ self.Segment().AutomaticLength(fineness)
+ if dim > 1 :
+ self.Triangle().LengthFromEdges()
pass
- status = self.mesh.mesh.AddHypothesis(self.geom, algo)
- TreatHypoStatus(status, "SegmentAroundVertex_0D", name, True)
- ###
- hyp = self.Hypothesis("SegmentLengthAroundVertex", [length], UseExisting=UseExisting,
- CompareMethod=self.CompareLengthNearVertex)
- self.geom = store_geom
- hyp.SetLength( length )
- return hyp
+ if dim > 2 :
+ self.Tetrahedron(NETGEN)
+ pass
+ return self.Compute()
- ## Check if the given "LengthNearVertex" hypothesis has the same parameters as given arguments
- def CompareLengthNearVertex(self, hyp, args):
- return IsEqual(hyp.GetLength(), args[0])
+ ## Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
+ # The parameter \a fineness [0,-1] defines mesh fineness
+ def AutomaticHexahedralization(self, fineness=0):
+ dim = self.MeshDimension()
+ # assign hypotheses
+ self.RemoveGlobalHypotheses()
+ self.Segment().AutomaticLength(fineness)
+ if dim > 1 :
+ self.Quadrangle()
+ pass
+ if dim > 2 :
+ self.Hexahedron()
+ pass
+ return self.Compute()
- ## Define "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
- # If the 2D mesher sees that all boundary edges are quadratic ones,
- # it generates quadratic faces, else it generates linear faces using
- # medium nodes as if they were vertex ones.
- # The 3D mesher generates quadratic volumes only if all boundary faces
- # are quadratic ones, else it fails.
- def QuadraticMesh(self):
- hyp = self.Hypothesis("QuadraticMesh", UseExisting=1, CompareMethod=self.CompareEqualHyp)
- return hyp
+ ## Assign hypothesis
+ # @param hyp is a hypothesis to assign
+ # @param geom is subhape of mesh geometry
+ def AddHypothesis(self, hyp, geom=0):
+ if isinstance( hyp, Mesh_Algorithm ):
+ hyp = hyp.GetAlgorithm()
+ pass
+ if not geom:
+ geom = self.geom
+ pass
+ status = self.mesh.AddHypothesis(geom, hyp)
+ isAlgo = hyp._narrow( SMESH_Algo )
+ TreatHypoStatus( status, GetName( hyp ), GetName( geom ), isAlgo )
+ return status
-# Public class: Mesh_CompositeSegment
-# --------------------------
+ ## Unassign hypothesis
+ # @param hyp is a hypothesis to unassign
+ # @param geom is subhape of mesh geometry
+ def RemoveHypothesis(self, hyp, geom=0):
+ if isinstance( hyp, Mesh_Algorithm ):
+ hyp = hyp.GetAlgorithm()
+ pass
+ if not geom:
+ geom = self.geom
+ pass
+ status = self.mesh.RemoveHypothesis(geom, hyp)
+ return status
-## Class to define a segment 1D algorithm for discretization
-#
-# More details.
-class Mesh_CompositeSegment(Mesh_Segment):
+ ## Get the list of hypothesis added on a geom
+ # @param geom is subhape of mesh geometry
+ def GetHypothesisList(self, geom):
+ return self.mesh.GetHypothesisList( geom )
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- self.Create(mesh, geom, "CompositeSegment_1D")
+ ## Removes all global hypotheses
+ def RemoveGlobalHypotheses(self):
+ current_hyps = self.mesh.GetHypothesisList( self.geom )
+ for hyp in current_hyps:
+ self.mesh.RemoveHypothesis( self.geom, hyp )
+ pass
+ pass
+ ## Create a mesh group based on geometric object \a grp
+ # and give a \a name, \n if this parameter is not defined
+ # the name is the same as the geometric group name \n
+ # Note: Works like GroupOnGeom().
+ # @param grp is a geometric group, a vertex, an edge, a face or a solid
+ # @param name is the name of the mesh group
+ # @return SMESH_GroupOnGeom
+ def Group(self, grp, name=""):
+ return self.GroupOnGeom(grp, name)
-# Public class: Mesh_Segment_Python
-# ---------------------------------
+ ## Deprecated, only for compatibility! Please, use ExportMED() method instead.
+ # Export the mesh in a file with the MED format and choice the \a version of MED format
+ # @param f is the file name
+ # @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
+ def ExportToMED(self, f, version, opt=0):
+ self.mesh.ExportToMED(f, opt, version)
-## Class to define a segment 1D algorithm for discretization with python function
-#
-# More details.
-class Mesh_Segment_Python(Mesh_Segment):
+ ## Export the mesh in a file with the MED format
+ # @param f is the file name
+ # @param auto_groups boolean parameter for creating/not creating
+ # the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
+ # the typical use is auto_groups=false.
+ # @param version MED format version(MED_V2_1 or MED_V2_2)
+ def ExportMED(self, f, auto_groups=0, version=MED_V2_2):
+ self.mesh.ExportToMED(f, auto_groups, version)
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- import Python1dPlugin
- self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so")
+ ## Export the mesh in a file with the DAT format
+ # @param f is the file name
+ def ExportDAT(self, f):
+ self.mesh.ExportDAT(f)
- ## Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality
- # @param n for the number of segments that cut an edge
- # @param func for the python function that calculate the length of all segments
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- def PythonSplit1D(self, n, func, UseExisting=0):
- hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so",
- UseExisting=UseExisting, CompareMethod=self.ComparePythonSplit1D)
- hyp.SetNumberOfSegments(n)
- hyp.SetPythonLog10RatioFunction(func)
- return hyp
+ ## Export the mesh in a file with the UNV format
+ # @param f is the file name
+ def ExportUNV(self, f):
+ self.mesh.ExportUNV(f)
- ## Check if the given "PythonSplit1D" hypothesis has the same parameters as given arguments
- def ComparePythonSplit1D(self, hyp, args):
- #if hyp.GetNumberOfSegments() == args[0]:
- # if hyp.GetPythonLog10RatioFunction() == args[1]:
- # return True
- return False
+ ## Export the mesh in a file with the STL format
+ # @param f is the file name
+ # @param ascii defined the kind of file contents
+ def ExportSTL(self, f, ascii=1):
+ self.mesh.ExportSTL(f, ascii)
-# Public class: Mesh_Triangle
-# ---------------------------
-## Class to define a triangle 2D algorithm
-#
-# More details.
-class Mesh_Triangle(Mesh_Algorithm):
+ # Operations with groups:
+ # ----------------------
- # default values
- algoType = 0
- params = 0
+ ## Creates an empty mesh group
+ # @param elementType is the type of elements in the group
+ # @param name is the name of the mesh group
+ # @return SMESH_Group
+ def CreateEmptyGroup(self, elementType, name):
+ return self.mesh.CreateGroup(elementType, name)
- _angleMeshS = 8
- _gradation = 1.1
+ ## Creates a mesh group based on geometric object \a grp
+ # and give a \a name, \n if this parameter is not defined
+ # the name is the same as the geometric group name
+ # @param grp is a geometric group, a vertex, an edge, a face or a solid
+ # @param name is the name of the mesh group
+ # @return SMESH_GroupOnGeom
+ def GroupOnGeom(self, grp, name="", typ=None):
+ if name == "":
+ name = grp.GetName()
- ## Private constructor.
- def __init__(self, mesh, algoType, geom=0):
- Mesh_Algorithm.__init__(self)
+ if typ == None:
+ tgeo = str(grp.GetShapeType())
+ if tgeo == "VERTEX":
+ typ = NODE
+ elif tgeo == "EDGE":
+ typ = EDGE
+ elif tgeo == "FACE":
+ typ = FACE
+ elif tgeo == "SOLID":
+ typ = VOLUME
+ elif tgeo == "SHELL":
+ typ = VOLUME
+ elif tgeo == "COMPOUND":
+ if len( self.geompyD.GetObjectIDs( grp )) == 0:
+ print "Mesh.Group: empty geometric group", GetName( grp )
+ return 0
+ tgeo = self.geompyD.GetType(grp)
+ if tgeo == geompyDC.ShapeType["VERTEX"]:
+ typ = NODE
+ elif tgeo == geompyDC.ShapeType["EDGE"]:
+ typ = EDGE
+ elif tgeo == geompyDC.ShapeType["FACE"]:
+ typ = FACE
+ elif tgeo == geompyDC.ShapeType["SOLID"]:
+ typ = VOLUME
- self.algoType = algoType
- if algoType == MEFISTO:
- self.Create(mesh, geom, "MEFISTO_2D")
- pass
- elif algoType == BLSURF:
- import BLSURFPlugin
- self.Create(mesh, geom, "BLSURF", "libBLSURFEngine.so")
- self.SetPhysicalMesh()
- elif algoType == NETGEN:
- if noNETGENPlugin:
- print "Warning: NETGENPlugin module unavailable"
- pass
- self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
- pass
- elif algoType == NETGEN_2D:
- if noNETGENPlugin:
- print "Warning: NETGENPlugin module unavailable"
- pass
- self.Create(mesh, geom, "NETGEN_2D_ONLY", "libNETGENEngine.so")
- pass
+ if typ == None:
+ print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid"
+ return 0
+ else:
+ return self.mesh.CreateGroupFromGEOM(typ, name, grp)
- ## Define "MaxElementArea" hypothesis to give the maximum area of each triangle
- # @param area for the maximum area of each triangle
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- #
- # Only for algoType == MEFISTO || NETGEN_2D
- def MaxElementArea(self, area, UseExisting=0):
- if self.algoType == MEFISTO or self.algoType == NETGEN_2D:
- hyp = self.Hypothesis("MaxElementArea", [area], UseExisting=UseExisting,
- CompareMethod=self.CompareMaxElementArea)
- hyp.SetMaxElementArea(area)
- return hyp
- elif self.algoType == NETGEN:
- print "Netgen 1D-2D algo doesn't support this hypothesis"
- return None
+ ## Create a mesh group by the given ids of elements
+ # @param groupName is the name of the mesh group
+ # @param elementType is the type of elements in the group
+ # @param elemIDs is the list of ids
+ # @return SMESH_Group
+ def MakeGroupByIds(self, groupName, elementType, elemIDs):
+ group = self.mesh.CreateGroup(elementType, groupName)
+ group.Add(elemIDs)
+ return group
- ## Check if the given "MaxElementArea" hypothesis has the same parameters as given arguments
- def CompareMaxElementArea(self, hyp, args):
- return IsEqual(hyp.GetMaxElementArea(), args[0])
+ ## Create a mesh group by the given conditions
+ # @param groupName is the name of the mesh group
+ # @param elementType is the type of elements in the group
+ # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
+ # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
+ # @param Treshold is threshold value (range of id ids as string, shape, numeric)
+ # @param UnaryOp is FT_LogicalNOT or FT_Undefined
+ # @return SMESH_Group
+ def MakeGroup(self,
+ groupName,
+ elementType,
+ CritType=FT_Undefined,
+ Compare=FT_EqualTo,
+ Treshold="",
+ UnaryOp=FT_Undefined):
+ aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
+ group = self.MakeGroupByCriterion(groupName, aCriterion)
+ return group
- ## Define "LengthFromEdges" hypothesis to build triangles
- # based on the length of the edges taken from the wire
- #
- # Only for algoType == MEFISTO || NETGEN_2D
- def LengthFromEdges(self):
- if self.algoType == MEFISTO or self.algoType == NETGEN_2D:
- hyp = self.Hypothesis("LengthFromEdges", UseExisting=1, CompareMethod=self.CompareEqualHyp)
- return hyp
- elif self.algoType == NETGEN:
- print "Netgen 1D-2D algo doesn't support this hypothesis"
- return None
+ ## Create a mesh group by the given criterion
+ # @param groupName is the name of the mesh group
+ # @param Criterion is the instance of Criterion class
+ # @return SMESH_Group
+ def MakeGroupByCriterion(self, groupName, Criterion):
+ aFilterMgr = self.smeshpyD.CreateFilterManager()
+ aFilter = aFilterMgr.CreateFilter()
+ aCriteria = []
+ aCriteria.append(Criterion)
+ aFilter.SetCriteria(aCriteria)
+ group = self.MakeGroupByFilter(groupName, aFilter)
+ return group
- ## Set PhysicalMesh
- # @param thePhysicalMesh is:
- # DefaultSize or Custom
- def SetPhysicalMesh(self, thePhysicalMesh=1):
- if self.params == 0:
- self.Parameters()
- self.params.SetPhysicalMesh(thePhysicalMesh)
+ ## Create a mesh group by the given criteria(list of criterions)
+ # @param groupName is the name of the mesh group
+ # @param Criteria is the list of criterions
+ # @return SMESH_Group
+ def MakeGroupByCriteria(self, groupName, theCriteria):
+ aFilterMgr = self.smeshpyD.CreateFilterManager()
+ aFilter = aFilterMgr.CreateFilter()
+ aFilter.SetCriteria(theCriteria)
+ group = self.MakeGroupByFilter(groupName, aFilter)
+ return group
- ## Set PhySize flag
- def SetPhySize(self, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetPhySize(theVal)
+ ## Create a mesh group by the given filter
+ # @param groupName is the name of the mesh group
+ # @param Criterion is the instance of Filter class
+ # @return SMESH_Group
+ def MakeGroupByFilter(self, groupName, theFilter):
+ anIds = theFilter.GetElementsId(self.mesh)
+ anElemType = theFilter.GetElementType()
+ group = self.MakeGroupByIds(groupName, anElemType, anIds)
+ return group
- ## Set GeometricMesh
- # @param theGeometricMesh is:
- # DefaultGeom or Custom
- def SetGeometricMesh(self, theGeometricMesh=0):
- if self.params == 0:
- self.Parameters()
- if self.params.GetPhysicalMesh() == 0: theGeometricMesh = 1
- self.params.SetGeometricMesh(theGeometricMesh)
+ ## Pass mesh elements through the given filter and return ids
+ # @param theFilter is SMESH_Filter
+ # @return list of ids
+ def GetIdsFromFilter(self, theFilter):
+ return theFilter.GetElementsId(self.mesh)
- ## Set AngleMeshS flag
- def SetAngleMeshS(self, theVal=_angleMeshS):
- if self.params == 0:
- self.Parameters()
- if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS
- self.params.SetAngleMeshS(theVal)
+ ## Verify whether 2D mesh element has free edges(edges connected to one face only)\n
+ # Returns list of special structures(borders).
+ # @return list of SMESH.FreeEdges.Border structure: edge id and two its nodes ids.
+ def GetFreeBorders(self):
+ aFilterMgr = self.smeshpyD.CreateFilterManager()
+ aPredicate = aFilterMgr.CreateFreeEdges()
+ aPredicate.SetMesh(self.mesh)
+ aBorders = aPredicate.GetBorders()
+ return aBorders
- ## Set Gradation flag
- def SetGradation(self, theVal=_gradation):
- if self.params == 0:
- self.Parameters()
- if self.params.GetGeometricMesh() == 0: theVal = self._gradation
- self.params.SetGradation(theVal)
+ ## Remove a group
+ def RemoveGroup(self, group):
+ self.mesh.RemoveGroup(group)
- ## Set QuadAllowed flag
- #
- # Only for algoType == NETGEN || NETGEN_2D
- def SetQuadAllowed(self, toAllow=True):
- if self.algoType == NETGEN_2D:
- if toAllow: # add QuadranglePreference
- self.Hypothesis("QuadranglePreference", UseExisting=1, CompareMethod=self.CompareEqualHyp)
- else: # remove QuadranglePreference
- for hyp in self.mesh.GetHypothesisList( self.geom ):
- if hyp.GetName() == "QuadranglePreference":
- self.mesh.RemoveHypothesis( self.geom, hyp )
- pass
- pass
- pass
- return
- if self.params == 0:
- self.Parameters()
- if self.params:
- self.params.SetQuadAllowed(toAllow)
- return
+ ## Remove group with its contents
+ def RemoveGroupWithContents(self, group):
+ self.mesh.RemoveGroupWithContents(group)
- ## Define "Netgen 2D Parameters" hypothesis
- #
- # Only for algoType == NETGEN
- def Parameters(self):
- if self.algoType == NETGEN:
- self.params = self.Hypothesis("NETGEN_Parameters_2D", [],
- "libNETGENEngine.so", UseExisting=0)
- return self.params
- elif self.algoType == MEFISTO:
- print "Mefisto algo doesn't support NETGEN_Parameters_2D hypothesis"
- return None
- elif self.algoType == NETGEN_2D:
- print "NETGEN_2D_ONLY algo doesn't support 'NETGEN_Parameters_2D' hypothesis"
- print "NETGEN_2D_ONLY uses 'MaxElementArea' and 'LengthFromEdges' ones"
- return None
- elif self.algoType == BLSURF:
- self.params = self.Hypothesis("BLSURF_Parameters", [],
- "libBLSURFEngine.so", UseExisting=0)
- return self.params
- return None
+ ## Get the list of groups existing in the mesh
+ def GetGroups(self):
+ return self.mesh.GetGroups()
- ## Set MaxSize
- #
- # Only for algoType == NETGEN
- def SetMaxSize(self, theSize):
- if self.params == 0:
- self.Parameters()
- if self.params is not None:
- self.params.SetMaxSize(theSize)
+ ## Get number of groups existing in the mesh
+ def NbGroups(self):
+ return self.mesh.NbGroups()
- ## Set SecondOrder flag
- #
- # Only for algoType == NETGEN
- def SetSecondOrder(self, theVal):
- if self.params == 0:
- self.Parameters()
- if self.params is not None:
- self.params.SetSecondOrder(theVal)
-
- ## Set Optimize flag
- #
- # Only for algoType == NETGEN
- def SetOptimize(self, theVal):
- if self.params == 0:
- self.Parameters()
- if self.params is not None:
- self.params.SetOptimize(theVal)
+ ## Get the list of names of groups existing in the mesh
+ def GetGroupNames(self):
+ groups = self.GetGroups()
+ names = []
+ for group in groups:
+ names.append(group.GetName())
+ return names
- ## Set Fineness
- # @param theFineness is:
- # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
- #
- # Only for algoType == NETGEN
- def SetFineness(self, theFineness):
- if self.params == 0:
- self.Parameters()
- if self.params is not None:
- self.params.SetFineness(theFineness)
+ ## Union of two groups
+ # New group is created. All mesh elements that are
+ # present in initial groups are added to the new one
+ def UnionGroups(self, group1, group2, name):
+ return self.mesh.UnionGroups(group1, group2, name)
- ## Set GrowthRate
- #
- # Only for algoType == NETGEN
- def SetGrowthRate(self, theRate):
- if self.params == 0:
- self.Parameters()
- if self.params is not None:
- self.params.SetGrowthRate(theRate)
+ ## Intersection of two groups
+ # New group is created. All mesh elements that are
+ # present in both initial groups are added to the new one.
+ def IntersectGroups(self, group1, group2, name):
+ return self.mesh.IntersectGroups(group1, group2, name)
- ## Set NbSegPerEdge
- #
- # Only for algoType == NETGEN
- def SetNbSegPerEdge(self, theVal):
- if self.params == 0:
- self.Parameters()
- if self.params is not None:
- self.params.SetNbSegPerEdge(theVal)
+ ## Cut of two groups
+ # New group is created. All mesh elements that are present in
+ # main group but do not present in tool group are added to the new one
+ def CutGroups(self, mainGroup, toolGroup, name):
+ return self.mesh.CutGroups(mainGroup, toolGroup, name)
- ## Set NbSegPerRadius
- #
- # Only for algoType == NETGEN
- def SetNbSegPerRadius(self, theVal):
- if self.params == 0:
- self.Parameters()
- if self.params is not None:
- self.params.SetNbSegPerRadius(theVal)
- ## Set Decimesh flag
- def SetDecimesh(self, toAllow=False):
- if self.params == 0:
- self.Parameters()
- self.params.SetDecimesh(toAllow)
+ # Get some info about mesh:
+ # ------------------------
- pass
+ ## Get the log of nodes and elements added or removed since previous
+ # clear of the log.
+ # @param clearAfterGet log is emptied after Get (safe if concurrents access)
+ # @return list of log_block structures:
+ # commandType
+ # number
+ # coords
+ # indexes
+ def GetLog(self, clearAfterGet):
+ return self.mesh.GetLog(clearAfterGet)
+ ## Clear the log of nodes and elements added or removed since previous
+ # clear. Must be used immediately after GetLog if clearAfterGet is false.
+ def ClearLog(self):
+ self.mesh.ClearLog()
-# Public class: Mesh_Quadrangle
-# -----------------------------
+ def SetAutoColor(self, color):
+ self.mesh.SetAutoColor(color)
-## Class to define a quadrangle 2D algorithm
-#
-# More details.
-class Mesh_Quadrangle(Mesh_Algorithm):
+ def GetAutoColor(self):
+ return self.mesh.GetAutoColor()
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- Mesh_Algorithm.__init__(self)
- self.Create(mesh, geom, "Quadrangle_2D")
+ ## Get the internal Id
+ def GetId(self):
+ return self.mesh.GetId()
- ## Define "QuadranglePreference" hypothesis, forcing construction
- # of quadrangles if the number of nodes on opposite edges is not the same
- # in the case where the global number of nodes on edges is even
- def QuadranglePreference(self):
- hyp = self.Hypothesis("QuadranglePreference", UseExisting=1,
- CompareMethod=self.CompareEqualHyp)
- return hyp
+ ## Get the study Id
+ def GetStudyId(self):
+ return self.mesh.GetStudyId()
-# Public class: Mesh_Tetrahedron
-# ------------------------------
+ ## Check group names for duplications.
+ # Consider maximum group name length stored in MED file.
+ def HasDuplicatedGroupNamesMED(self):
+ return self.mesh.HasDuplicatedGroupNamesMED()
-## Class to define a tetrahedron 3D algorithm
-#
-# More details.
-class Mesh_Tetrahedron(Mesh_Algorithm):
+ ## Obtain instance of SMESH_MeshEditor
+ def GetMeshEditor(self):
+ return self.mesh.GetMeshEditor()
- params = 0
- algoType = 0
+ ## Get MED Mesh
+ def GetMEDMesh(self):
+ return self.mesh.GetMEDMesh()
- ## Private constructor.
- def __init__(self, mesh, algoType, geom=0):
- Mesh_Algorithm.__init__(self)
- if algoType == NETGEN:
- self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so")
- pass
+ # Get informations about mesh contents:
+ # ------------------------------------
- elif algoType == GHS3D:
- import GHS3DPlugin
- self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so")
- pass
+ ## Returns number of nodes in mesh
+ def NbNodes(self):
+ return self.mesh.NbNodes()
- elif algoType == FULL_NETGEN:
- if noNETGENPlugin:
- print "Warning: NETGENPlugin module has not been imported."
- self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
- pass
+ ## Returns number of elements in mesh
+ def NbElements(self):
+ return self.mesh.NbElements()
- self.algoType = algoType
+ ## Returns number of edges in mesh
+ def NbEdges(self):
+ return self.mesh.NbEdges()
- ## Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral
- # @param vol for the maximum volume of each tetrahedral
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- def MaxElementVolume(self, vol, UseExisting=0):
- hyp = self.Hypothesis("MaxElementVolume", [vol], UseExisting=UseExisting,
- CompareMethod=self.CompareMaxElementVolume)
- hyp.SetMaxElementVolume(vol)
- return hyp
+ ## Returns number of edges with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbEdgesOfOrder(self, elementOrder):
+ return self.mesh.NbEdgesOfOrder(elementOrder)
- ## Check if the given "MaxElementVolume" hypothesis has the same parameters as given arguments
- def CompareMaxElementVolume(self, hyp, args):
- return IsEqual(hyp.GetMaxElementVolume(), args[0])
+ ## Returns number of faces in mesh
+ def NbFaces(self):
+ return self.mesh.NbFaces()
- ## Define "Netgen 3D Parameters" hypothesis
- def Parameters(self):
- if (self.algoType == FULL_NETGEN):
- self.params = self.Hypothesis("NETGEN_Parameters", [],
- "libNETGENEngine.so", UseExisting=0)
- return self.params
- else:
- print "Algo doesn't support this hypothesis"
- return None
+ ## Returns number of faces with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbFacesOfOrder(self, elementOrder):
+ return self.mesh.NbFacesOfOrder(elementOrder)
- ## Set MaxSize
- def SetMaxSize(self, theSize):
- if self.params == 0:
- self.Parameters()
- self.params.SetMaxSize(theSize)
+ ## Returns number of triangles in mesh
+ def NbTriangles(self):
+ return self.mesh.NbTriangles()
- ## Set SecondOrder flag
- def SetSecondOrder(self, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetSecondOrder(theVal)
+ ## Returns number of triangles with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbTrianglesOfOrder(self, elementOrder):
+ return self.mesh.NbTrianglesOfOrder(elementOrder)
- ## Set Optimize flag
- def SetOptimize(self, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetOptimize(theVal)
+ ## Returns number of quadrangles in mesh
+ def NbQuadrangles(self):
+ return self.mesh.NbQuadrangles()
- ## Set Fineness
- # @param theFineness is:
- # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
- def SetFineness(self, theFineness):
- if self.params == 0:
- self.Parameters()
- self.params.SetFineness(theFineness)
+ ## Returns number of quadrangles with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbQuadranglesOfOrder(self, elementOrder):
+ return self.mesh.NbQuadranglesOfOrder(elementOrder)
- ## Set GrowthRate
- def SetGrowthRate(self, theRate):
- if self.params == 0:
- self.Parameters()
- self.params.SetGrowthRate(theRate)
+ ## Returns number of polygons in mesh
+ def NbPolygons(self):
+ return self.mesh.NbPolygons()
- ## Set NbSegPerEdge
- def SetNbSegPerEdge(self, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetNbSegPerEdge(theVal)
+ ## Returns number of volumes in mesh
+ def NbVolumes(self):
+ return self.mesh.NbVolumes()
- ## Set NbSegPerRadius
- def SetNbSegPerRadius(self, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetNbSegPerRadius(theVal)
+ ## Returns number of volumes with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbVolumesOfOrder(self, elementOrder):
+ return self.mesh.NbVolumesOfOrder(elementOrder)
-# Public class: Mesh_Hexahedron
-# ------------------------------
+ ## Returns number of tetrahedrons in mesh
+ def NbTetras(self):
+ return self.mesh.NbTetras()
-## Class to define a hexahedron 3D algorithm
-#
-# More details.
-class Mesh_Hexahedron(Mesh_Algorithm):
+ ## Returns number of tetrahedrons with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbTetrasOfOrder(self, elementOrder):
+ return self.mesh.NbTetrasOfOrder(elementOrder)
- params = 0
- algoType = 0
+ ## Returns number of hexahedrons in mesh
+ def NbHexas(self):
+ return self.mesh.NbHexas()
- ## Private constructor.
- def __init__(self, mesh, algoType=Hexa, geom=0):
- Mesh_Algorithm.__init__(self)
+ ## Returns number of hexahedrons with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbHexasOfOrder(self, elementOrder):
+ return self.mesh.NbHexasOfOrder(elementOrder)
- self.algoType = algoType
+ ## Returns number of pyramids in mesh
+ def NbPyramids(self):
+ return self.mesh.NbPyramids()
- if algoType == Hexa:
- self.Create(mesh, geom, "Hexa_3D")
- pass
+ ## Returns number of pyramids with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbPyramidsOfOrder(self, elementOrder):
+ return self.mesh.NbPyramidsOfOrder(elementOrder)
- elif algoType == Hexotic:
- import HexoticPlugin
- self.Create(mesh, geom, "Hexotic_3D", "libHexoticEngine.so")
- pass
+ ## Returns number of prisms in mesh
+ def NbPrisms(self):
+ return self.mesh.NbPrisms()
- ## Define "MinMaxQuad" hypothesis to give the three hexotic parameters
- def MinMaxQuad(self, min=3, max=8, quad=True):
- self.params = self.Hypothesis("Hexotic_Parameters", [], "libHexoticEngine.so",
- UseExisting=0)
- self.params.SetHexesMinLevel(min)
- self.params.SetHexesMaxLevel(max)
- self.params.SetHexoticQuadrangles(quad)
- return self.params
+ ## Returns number of prisms with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbPrismsOfOrder(self, elementOrder):
+ return self.mesh.NbPrismsOfOrder(elementOrder)
-# Deprecated, only for compatibility!
-# Public class: Mesh_Netgen
-# ------------------------------
+ ## Returns number of polyhedrons in mesh
+ def NbPolyhedrons(self):
+ return self.mesh.NbPolyhedrons()
-## Class to define a NETGEN-based 2D or 3D algorithm
-# that need no discrete boundary (i.e. independent)
-#
-# This class is deprecated, only for compatibility!
-#
-# More details.
-class Mesh_Netgen(Mesh_Algorithm):
+ ## Returns number of submeshes in mesh
+ def NbSubMesh(self):
+ return self.mesh.NbSubMesh()
- is3D = 0
+ ## Returns list of mesh elements ids
+ def GetElementsId(self):
+ return self.mesh.GetElementsId()
- ## Private constructor.
- def __init__(self, mesh, is3D, geom=0):
- Mesh_Algorithm.__init__(self)
+ ## Returns list of ids of mesh elements with given type
+ # @param elementType is required type of elements
+ def GetElementsByType(self, elementType):
+ return self.mesh.GetElementsByType(elementType)
- if noNETGENPlugin:
- print "Warning: NETGENPlugin module has not been imported."
+ ## Returns list of mesh nodes ids
+ def GetNodesId(self):
+ return self.mesh.GetNodesId()
- self.is3D = is3D
- if is3D:
- self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
- pass
+ # Get informations about mesh elements:
+ # ------------------------------------
- else:
- self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
- pass
+ ## Returns type of mesh element
+ def GetElementType(self, id, iselem):
+ return self.mesh.GetElementType(id, iselem)
- ## Define hypothesis containing parameters of the algorithm
- def Parameters(self):
- if self.is3D:
- hyp = self.Hypothesis("NETGEN_Parameters", [],
- "libNETGENEngine.so", UseExisting=0)
+ ## Returns list of submesh elements ids
+ # @param Shape is geom object(subshape) IOR
+ # Shape must be subshape of a ShapeToMesh()
+ def GetSubMeshElementsId(self, Shape):
+ if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
+ ShapeID = Shape.GetSubShapeIndices()[0]
else:
- hyp = self.Hypothesis("NETGEN_Parameters_2D", [],
- "libNETGENEngine.so", UseExisting=0)
- return hyp
+ ShapeID = Shape
+ return self.mesh.GetSubMeshElementsId(ShapeID)
-# Public class: Mesh_Projection1D
-# ------------------------------
+ ## Returns list of submesh nodes ids
+ # @param Shape is geom object(subshape) IOR
+ # Shape must be subshape of a ShapeToMesh()
+ def GetSubMeshNodesId(self, Shape, all):
+ if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
+ ShapeID = Shape.GetSubShapeIndices()[0]
+ else:
+ ShapeID = Shape
+ return self.mesh.GetSubMeshNodesId(ShapeID, all)
-## Class to define a projection 1D algorithm
-#
-# More details.
-class Mesh_Projection1D(Mesh_Algorithm):
+ ## Returns list of ids of submesh elements with given type
+ # @param Shape is geom object(subshape) IOR
+ # Shape must be subshape of a ShapeToMesh()
+ def GetSubMeshElementType(self, Shape):
+ if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
+ ShapeID = Shape.GetSubShapeIndices()[0]
+ else:
+ ShapeID = Shape
+ return self.mesh.GetSubMeshElementType(ShapeID)
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- Mesh_Algorithm.__init__(self)
- self.Create(mesh, geom, "Projection_1D")
+ ## Get mesh description
+ def Dump(self):
+ return self.mesh.Dump()
- ## Define "Source Edge" hypothesis, specifying a meshed edge to
- # take a mesh pattern from, and optionally association of vertices
- # between the source edge and a target one (where a hipothesis is assigned to)
- # @param edge to take nodes distribution from
- # @param mesh to take nodes distribution from (optional)
- # @param srcV is vertex of \a edge to associate with \a tgtV (optional)
- # @param tgtV is vertex of \a the edge where the algorithm is assigned,
- # to associate with \a srcV (optional)
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None, UseExisting=0):
- hyp = self.Hypothesis("ProjectionSource1D", [edge,mesh,srcV,tgtV],
- UseExisting=0)
- #UseExisting=UseExisting, CompareMethod=self.CompareSourceEdge)
- hyp.SetSourceEdge( edge )
- if not mesh is None and isinstance(mesh, Mesh):
- mesh = mesh.GetMesh()
- hyp.SetSourceMesh( mesh )
- hyp.SetVertexAssociation( srcV, tgtV )
- return hyp
- ## Check if the given "SourceEdge" hypothesis has the same parameters as given arguments
- #def CompareSourceEdge(self, hyp, args):
- # # seems to be not really useful to reuse existing "SourceEdge" hypothesis
- # return False
+ # Get information about nodes and elements of mesh by its ids:
+ # -----------------------------------------------------------
+ ## Get XYZ coordinates of node as list of double
+ # \n If there is not node for given ID - returns empty list
+ def GetNodeXYZ(self, id):
+ return self.mesh.GetNodeXYZ(id)
-# Public class: Mesh_Projection2D
-# ------------------------------
+ ## For given node returns list of IDs of inverse elements
+ # \n If there is not node for given ID - returns empty list
+ def GetNodeInverseElements(self, id):
+ return self.mesh.GetNodeInverseElements(id)
-## Class to define a projection 2D algorithm
-#
-# More details.
-class Mesh_Projection2D(Mesh_Algorithm):
+ ## @brief Return position of a node on shape
+ # @return SMESH::NodePosition
+ def GetNodePosition(self,NodeID):
+ return self.mesh.GetNodePosition(NodeID)
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- Mesh_Algorithm.__init__(self)
- self.Create(mesh, geom, "Projection_2D")
+ ## If given element is node returns IDs of shape from position
+ # \n If there is not node for given ID - returns -1
+ def GetShapeID(self, id):
+ return self.mesh.GetShapeID(id)
- ## Define "Source Face" hypothesis, specifying a meshed face to
- # take a mesh pattern from, and optionally association of vertices
- # between the source face and a target one (where a hipothesis is assigned to)
- # @param face to take mesh pattern from
- # @param mesh to take mesh pattern from (optional)
- # @param srcV1 is vertex of \a face to associate with \a tgtV1 (optional)
- # @param tgtV1 is vertex of \a the face where the algorithm is assigned,
- # to associate with \a srcV1 (optional)
- # @param srcV2 is vertex of \a face to associate with \a tgtV1 (optional)
- # @param tgtV2 is vertex of \a the face where the algorithm is assigned,
- # to associate with \a srcV2 (optional)
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- #
- # Note: association vertices must belong to one edge of a face
- def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None,
- srcV2=None, tgtV2=None, UseExisting=0):
- hyp = self.Hypothesis("ProjectionSource2D", [face,mesh,srcV1,tgtV1,srcV2,tgtV2],
- UseExisting=0)
- #UseExisting=UseExisting, CompareMethod=self.CompareSourceFace)
- hyp.SetSourceFace( face )
- if not mesh is None and isinstance(mesh, Mesh):
- mesh = mesh.GetMesh()
- hyp.SetSourceMesh( mesh )
- hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
- return hyp
+ ## For given element returns ID of result shape after
+ # FindShape() from SMESH_MeshEditor
+ # \n If there is not element for given ID - returns -1
+ def GetShapeIDForElem(self,id):
+ return self.mesh.GetShapeIDForElem(id)
- ## Check if the given "SourceFace" hypothesis has the same parameters as given arguments
- #def CompareSourceFace(self, hyp, args):
- # # seems to be not really useful to reuse existing "SourceFace" hypothesis
- # return False
+ ## Returns number of nodes for given element
+ # \n If there is not element for given ID - returns -1
+ def GetElemNbNodes(self, id):
+ return self.mesh.GetElemNbNodes(id)
-# Public class: Mesh_Projection3D
-# ------------------------------
+ ## Returns ID of node by given index for given element
+ # \n If there is not element for given ID - returns -1
+ # \n If there is not node for given index - returns -2
+ def GetElemNode(self, id, index):
+ return self.mesh.GetElemNode(id, index)
-## Class to define a projection 3D algorithm
-#
-# More details.
-class Mesh_Projection3D(Mesh_Algorithm):
-
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- Mesh_Algorithm.__init__(self)
- self.Create(mesh, geom, "Projection_3D")
+ ## Returns IDs of nodes of given element
+ def GetElemNodes(self, id):
+ return self.mesh.GetElemNodes(id)
- ## Define "Source Shape 3D" hypothesis, specifying a meshed solid to
- # take a mesh pattern from, and optionally association of vertices
- # between the source solid and a target one (where a hipothesis is assigned to)
- # @param solid to take mesh pattern from
- # @param mesh to take mesh pattern from (optional)
- # @param srcV1 is vertex of \a solid to associate with \a tgtV1 (optional)
- # @param tgtV1 is vertex of \a the solid where the algorithm is assigned,
- # to associate with \a srcV1 (optional)
- # @param srcV2 is vertex of \a solid to associate with \a tgtV1 (optional)
- # @param tgtV2 is vertex of \a the solid where the algorithm is assigned,
- # to associate with \a srcV2 (optional)
- # @param UseExisting - if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- #
- # Note: association vertices must belong to one edge of a solid
- def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0,
- srcV2=0, tgtV2=0, UseExisting=0):
- hyp = self.Hypothesis("ProjectionSource3D",
- [solid,mesh,srcV1,tgtV1,srcV2,tgtV2],
- UseExisting=0)
- #UseExisting=UseExisting, CompareMethod=self.CompareSourceShape3D)
- hyp.SetSource3DShape( solid )
- if not mesh is None and isinstance(mesh, Mesh):
- mesh = mesh.GetMesh()
- hyp.SetSourceMesh( mesh )
- hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
- return hyp
+ ## Returns true if given node is medium node
+ # in given quadratic element
+ def IsMediumNode(self, elementID, nodeID):
+ return self.mesh.IsMediumNode(elementID, nodeID)
- ## Check if the given "SourceShape3D" hypothesis has the same parameters as given arguments
- #def CompareSourceShape3D(self, hyp, args):
- # # seems to be not really useful to reuse existing "SourceShape3D" hypothesis
- # return False
+ ## Returns true if given node is medium node
+ # in one of quadratic elements
+ def IsMediumNodeOfAnyElem(self, nodeID, elementType):
+ return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
+ ## Returns number of edges for given element
+ def ElemNbEdges(self, id):
+ return self.mesh.ElemNbEdges(id)
-# Public class: Mesh_Prism
-# ------------------------
+ ## Returns number of faces for given element
+ def ElemNbFaces(self, id):
+ return self.mesh.ElemNbFaces(id)
-## Class to define a 3D extrusion algorithm
-#
-# More details.
-class Mesh_Prism3D(Mesh_Algorithm):
+ ## Returns true if given element is polygon
+ def IsPoly(self, id):
+ return self.mesh.IsPoly(id)
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- Mesh_Algorithm.__init__(self)
- self.Create(mesh, geom, "Prism_3D")
+ ## Returns true if given element is quadratic
+ def IsQuadratic(self, id):
+ return self.mesh.IsQuadratic(id)
-# Public class: Mesh_RadialPrism
-# -------------------------------
+ ## Returns XYZ coordinates of bary center for given element
+ # as list of double
+ # \n If there is not element for given ID - returns empty list
+ def BaryCenter(self, id):
+ return self.mesh.BaryCenter(id)
-## Class to define a Radial Prism 3D algorithm
-#
-# More details.
-class Mesh_RadialPrism3D(Mesh_Algorithm):
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- Mesh_Algorithm.__init__(self)
- self.Create(mesh, geom, "RadialPrism_3D")
+ # Mesh edition (SMESH_MeshEditor functionality):
+ # ---------------------------------------------
- self.distribHyp = self.Hypothesis("LayerDistribution", UseExisting=0)
- self.nbLayers = None
+ ## Removes elements from mesh by ids
+ # @param IDsOfElements is list of ids of elements to remove
+ def RemoveElements(self, IDsOfElements):
+ return self.editor.RemoveElements(IDsOfElements)
- ## Return 3D hypothesis holding the 1D one
- def Get3DHypothesis(self):
- return self.distribHyp
+ ## Removes nodes from mesh by ids
+ # @param IDsOfNodes is list of ids of nodes to remove
+ def RemoveNodes(self, IDsOfNodes):
+ return self.editor.RemoveNodes(IDsOfNodes)
- ## Private method creating 1D hypothes and storing it in the LayerDistribution
- # hypothes. Returns the created hypothes
- def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
- #print "OwnHypothesis",hypType
- if not self.nbLayers is None:
- self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
- self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
- study = self.mesh.smeshpyD.GetCurrentStudy() # prevent publishing of own 1D hypothesis
- hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
- self.mesh.smeshpyD.SetCurrentStudy( study ) # anable publishing
- self.distribHyp.SetLayerDistribution( hyp )
- return hyp
+ ## Add node to mesh by coordinates
+ def AddNode(self, x, y, z):
+ return self.editor.AddNode( x, y, z)
- ## Define "NumberOfLayers" hypothesis, specifying a number of layers of
- # prisms to build between the inner and outer shells
- # @param UseExisting if ==true - search existing hypothesis created with
- # same parameters, else (default) - create new
- def NumberOfLayers(self, n, UseExisting=0):
- self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
- self.nbLayers = self.Hypothesis("NumberOfLayers", [n], UseExisting=UseExisting,
- CompareMethod=self.CompareNumberOfLayers)
- self.nbLayers.SetNumberOfLayers( n )
- return self.nbLayers
- ## Check if the given "NumberOfLayers" hypothesis has the same parameters as given arguments
- def CompareNumberOfLayers(self, hyp, args):
- return IsEqual(hyp.GetNumberOfLayers(), args[0])
+ ## Create edge both similar and quadratic (this is determed
+ # by number of given nodes).
+ # @param IdsOfNodes List of node IDs for creation of element.
+ # Needed order of nodes in this list corresponds to description
+ # of MED. \n This description is located by the following link:
+ # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+ def AddEdge(self, IDsOfNodes):
+ return self.editor.AddEdge(IDsOfNodes)
- ## Define "LocalLength" hypothesis, specifying segment length
- # to build between the inner and outer shells
- # @param l for the length of segments
- # @param p for the precision of rounding
- def LocalLength(self, l, p=1e-07):
- hyp = self.OwnHypothesis("LocalLength", [l,p])
- hyp.SetLength(l)
- hyp.SetPrecision(p)
- return hyp
+ ## Create face both similar and quadratic (this is determed
+ # by number of given nodes).
+ # @param IdsOfNodes List of node IDs for creation of element.
+ # Needed order of nodes in this list corresponds to description
+ # of MED. \n This description is located by the following link:
+ # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+ def AddFace(self, IDsOfNodes):
+ return self.editor.AddFace(IDsOfNodes)
- ## Define "NumberOfSegments" hypothesis, specifying a number of layers of
- # prisms to build between the inner and outer shells
- # @param n for the number of segments
- # @param s for the scale factor (optional)
- def NumberOfSegments(self, n, s=[]):
- if s == []:
- hyp = self.OwnHypothesis("NumberOfSegments", [n])
- else:
- hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
- hyp.SetDistrType( 1 )
- hyp.SetScaleFactor(s)
- hyp.SetNumberOfSegments(n)
- return hyp
+ ## Add polygonal face to mesh by list of nodes ids
+ def AddPolygonalFace(self, IdsOfNodes):
+ return self.editor.AddPolygonalFace(IdsOfNodes)
- ## Define "Arithmetic1D" hypothesis, specifying distribution of segments
- # to build between the inner and outer shells as arithmetic length increasing
- # @param start for the length of the first segment
- # @param end for the length of the last segment
- def Arithmetic1D(self, start, end ):
- hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
- hyp.SetLength(start, 1)
- hyp.SetLength(end , 0)
- return hyp
+ ## Create volume both similar and quadratic (this is determed
+ # by number of given nodes).
+ # @param IdsOfNodes List of node IDs for creation of element.
+ # Needed order of nodes in this list corresponds to description
+ # of MED. \n This description is located by the following link:
+ # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+ def AddVolume(self, IDsOfNodes):
+ return self.editor.AddVolume(IDsOfNodes)
- ## Define "StartEndLength" hypothesis, specifying distribution of segments
- # to build between the inner and outer shells as geometric length increasing
- # @param start for the length of the first segment
- # @param end for the length of the last segment
- def StartEndLength(self, start, end):
- hyp = self.OwnHypothesis("StartEndLength", [start, end])
- hyp.SetLength(start, 1)
- hyp.SetLength(end , 0)
- return hyp
+ ## Create volume of many faces, giving nodes for each face.
+ # @param IdsOfNodes List of node IDs for volume creation face by face.
+ # @param Quantities List of integer values, Quantities[i]
+ # gives quantity of nodes in face number i.
+ def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
+ return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
- ## Define "AutomaticLength" hypothesis, specifying number of segments
- # to build between the inner and outer shells
- # @param fineness for the fineness [0-1]
- def AutomaticLength(self, fineness=0):
- hyp = self.OwnHypothesis("AutomaticLength")
- hyp.SetFineness( fineness )
- return hyp
+ ## Create volume of many faces, giving IDs of existing faces.
+ # @param IdsOfFaces List of face IDs for volume creation.
+ #
+ # Note: The created volume will refer only to nodes
+ # of the given faces, not to the faces itself.
+ def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
+ return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
-# Private class: Mesh_UseExisting
-# -------------------------------
-class Mesh_UseExisting(Mesh_Algorithm):
- def __init__(self, dim, mesh, geom=0):
- if dim == 1:
- self.Create(mesh, geom, "UseExisting_1D")
+ ## @brief Bind a node to a vertex
+ # @param NodeID - node ID
+ # @param Vertex - vertex or vertex ID
+ # @return True if succeed else raise an exception
+ def SetNodeOnVertex(self, NodeID, Vertex):
+ if ( isinstance( Vertex, geompyDC.GEOM._objref_GEOM_Object)):
+ VertexID = Vertex.GetSubShapeIndices()[0]
else:
- self.Create(mesh, geom, "UseExisting_2D")
-
-# Public class: Mesh
-# ==================
-
-## Class to define a mesh
-#
-# The class contains mesh shape, SMESH_Mesh, SMESH_MeshEditor
-# More details.
-class Mesh:
+ VertexID = Vertex
+ try:
+ self.editor.SetNodeOnVertex(NodeID, VertexID)
+ except SALOME.SALOME_Exception, inst:
+ raise ValueError, inst.details.text
+ return True
- geom = 0
- mesh = 0
- editor = 0
- ## Constructor
- #
- # Creates mesh on the shape \a geom(or the empty mesh if geom equal to 0),
- # sets GUI name of this mesh to \a name.
- # @param obj Shape to be meshed or SMESH_Mesh object
- # @param name Study name of the mesh
- def __init__(self, smeshpyD, geompyD, obj=0, name=0):
- self.smeshpyD=smeshpyD
- self.geompyD=geompyD
- if obj is None:
- obj = 0
- if obj != 0:
- if isinstance(obj, geompyDC.GEOM._objref_GEOM_Object):
- self.geom = obj
- self.mesh = self.smeshpyD.CreateMesh(self.geom)
- elif isinstance(obj, SMESH._objref_SMESH_Mesh):
- self.SetMesh(obj)
+ ## @brief Store node position on an edge
+ # @param NodeID - node ID
+ # @param Edge - edge or edge ID
+ # @param paramOnEdge - parameter on edge where the node is located
+ # @return True if succeed else raise an exception
+ def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge):
+ if ( isinstance( Edge, geompyDC.GEOM._objref_GEOM_Object)):
+ EdgeID = Edge.GetSubShapeIndices()[0]
else:
- self.mesh = self.smeshpyD.CreateEmptyMesh()
- if name != 0:
- SetName(self.mesh, name)
- elif obj != 0:
- SetName(self.mesh, GetName(obj))
-
- self.editor = self.mesh.GetMeshEditor()
+ EdgeID = Edge
+ try:
+ self.editor.SetNodeOnEdge(NodeID, EdgeID, paramOnEdge)
+ except SALOME.SALOME_Exception, inst:
+ raise ValueError, inst.details.text
+ return True
- ## Method that inits the Mesh object from SMESH_Mesh interface
- # @param theMesh is SMESH_Mesh object
- def SetMesh(self, theMesh):
- self.mesh = theMesh
- self.geom = self.mesh.GetShapeToMesh()
+ ## @brief Store node position on a face
+ # @param NodeID - node ID
+ # @param Face - face or face ID
+ # @param u - U parameter on face where the node is located
+ # @param v - V parameter on face where the node is located
+ # @return True if succeed else raise an exception
+ def SetNodeOnFace(self, NodeID, Face, u, v):
+ if ( isinstance( Face, geompyDC.GEOM._objref_GEOM_Object)):
+ FaceID = Face.GetSubShapeIndices()[0]
+ else:
+ FaceID = Face
+ try:
+ self.editor.SetNodeOnFace(NodeID, FaceID, u, v)
+ except SALOME.SALOME_Exception, inst:
+ raise ValueError, inst.details.text
+ return True
- ## Method that returns the mesh
- # @return SMESH_Mesh object
- def GetMesh(self):
- return self.mesh
+ ## @brief Bind a node to a solid
+ # @param NodeID - node ID
+ # @param Solid - solid or solid ID
+ # @return True if succeed else raise an exception
+ def SetNodeInVolume(self, NodeID, Solid):
+ if ( isinstance( Solid, geompyDC.GEOM._objref_GEOM_Object)):
+ SolidID = Solid.GetSubShapeIndices()[0]
+ else:
+ SolidID = Solid
+ try:
+ self.editor.SetNodeInVolume(NodeID, SolidID)
+ except SALOME.SALOME_Exception, inst:
+ raise ValueError, inst.details.text
+ return True
- ## Get mesh name
- def GetName(self):
- name = GetName(self.GetMesh())
- return name
+ ## @brief Bind an element to a shape
+ # @param ElementID - element ID
+ # @param Shape - shape or shape ID
+ # @return True if succeed else raise an exception
+ def SetMeshElementOnShape(self, ElementID, Shape):
+ if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
+ ShapeID = Shape.GetSubShapeIndices()[0]
+ else:
+ ShapeID = Shape
+ try:
+ self.editor.SetMeshElementOnShape(ElementID, ShapeID)
+ except SALOME.SALOME_Exception, inst:
+ raise ValueError, inst.details.text
+ return True
- ## Set name to mesh
- def SetName(self, name):
- SetName(self.GetMesh(), name)
- ## Get the subMesh object associated to a subShape. The subMesh object
- # gives access to nodes and elements IDs.
- # \n SubMesh will be used instead of SubShape in a next idl version to
- # adress a specific subMesh...
- def GetSubMesh(self, theSubObject, name):
- submesh = self.mesh.GetSubMesh(theSubObject, name)
- return submesh
+ ## Move node with given id
+ # @param NodeID id of the node
+ # @param x new X coordinate
+ # @param y new Y coordinate
+ # @param z new Z coordinate
+ def MoveNode(self, NodeID, x, y, z):
+ return self.editor.MoveNode(NodeID, x, y, z)
- ## Method that returns the shape associated to the mesh
- # @return GEOM_Object
- def GetShape(self):
- return self.geom
+ ## Find a node closest to a point
+ # @param x X coordinate of a point
+ # @param y Y coordinate of a point
+ # @param z Z coordinate of a point
+ # @return id of a node
+ def FindNodeClosestTo(self, x, y, z):
+ preview = self.mesh.GetMeshEditPreviewer()
+ return preview.MoveClosestNodeToPoint(x, y, z, -1)
- ## Method that associates given shape to the mesh(entails the mesh recreation)
- # @param geom shape to be meshed(GEOM_Object)
- def SetShape(self, geom):
- self.mesh = self.smeshpyD.CreateMesh(geom)
+ ## Find a node closest to a point and move it to a point location
+ # @param x X coordinate of a point
+ # @param y Y coordinate of a point
+ # @param z Z coordinate of a point
+ # @return id of a moved node
+ def MeshToPassThroughAPoint(self, x, y, z):
+ return self.editor.MoveClosestNodeToPoint(x, y, z, -1)
- ## Return true if hypotheses are defined well
- # @param theMesh is an instance of Mesh class
- # @param theSubObject subshape of a mesh shape
- def IsReadyToCompute(self, theSubObject):
- return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject)
+ ## Replace two neighbour triangles sharing Node1-Node2 link
+ # with ones built on the same 4 nodes but having other common link.
+ # @param NodeID1 first node id
+ # @param NodeID2 second node id
+ # @return false if proper faces not found
+ def InverseDiag(self, NodeID1, NodeID2):
+ return self.editor.InverseDiag(NodeID1, NodeID2)
- ## Return errors of hypotheses definintion
- # error list is empty if everything is OK
- # @param theMesh is an instance of Mesh class
- # @param theSubObject subshape of a mesh shape
- # @return a list of errors
- def GetAlgoState(self, theSubObject):
- return self.smeshpyD.GetAlgoState(self.mesh, theSubObject)
+ ## Replace two neighbour triangles sharing Node1-Node2 link
+ # with a quadrangle built on the same 4 nodes.
+ # @param NodeID1 first node id
+ # @param NodeID2 second node id
+ # @return false if proper faces not found
+ def DeleteDiag(self, NodeID1, NodeID2):
+ return self.editor.DeleteDiag(NodeID1, NodeID2)
- ## Return geometrical object the given element is built on.
- # The returned geometrical object, if not nil, is either found in the
- # study or is published by this method with the given name
- # @param theMesh is an instance of Mesh class
- # @param theElementID an id of the mesh element
- # @param theGeomName user defined name of geometrical object
- # @return GEOM::GEOM_Object instance
- def GetGeometryByMeshElement(self, theElementID, theGeomName):
- return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
+ ## Reorient elements by ids
+ # @param IDsOfElements if undefined reorient all mesh elements
+ def Reorient(self, IDsOfElements=None):
+ if IDsOfElements == None:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.Reorient(IDsOfElements)
- ## Returns mesh dimension depending on shape one
- def MeshDimension(self):
- shells = self.geompyD.SubShapeAllIDs( self.geom, geompyDC.ShapeType["SHELL"] )
- if len( shells ) > 0 :
- return 3
- elif self.geompyD.NumberOfFaces( self.geom ) > 0 :
- return 2
- elif self.geompyD.NumberOfEdges( self.geom ) > 0 :
- return 1
- else:
- return 0;
- pass
+ ## Reorient all elements of the object
+ # @param theObject is mesh, submesh or group
+ def ReorientObject(self, theObject):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ return self.editor.ReorientObject(theObject)
- ## Creates a segment discretization 1D algorithm.
- # If the optional \a algo parameter is not sets, this algorithm is REGULAR.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param algo values are smesh.REGULAR or smesh.PYTHON for discretization via python function
- # @param geom If defined, subshape to be meshed
- def Segment(self, algo=REGULAR, geom=0):
- ## if Segment(geom) is called by mistake
- if isinstance( algo, geompyDC.GEOM._objref_GEOM_Object):
- algo, geom = geom, algo
- if not algo: algo = REGULAR
- pass
- if algo == REGULAR:
- return Mesh_Segment(self, geom)
- elif algo == PYTHON:
- return Mesh_Segment_Python(self, geom)
- elif algo == COMPOSITE:
- return Mesh_CompositeSegment(self, geom)
- else:
- return Mesh_Segment(self, geom)
+ ## Fuse neighbour triangles into quadrangles.
+ # @param IDsOfElements The triangles to be fused,
+ # @param theCriterion is FT_...; used to choose a neighbour to fuse with.
+ # @param MaxAngle is a max angle between element normals at which fusion
+ # is still performed; theMaxAngle is mesured in radians.
+ # @return TRUE in case of success, FALSE otherwise.
+ def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.TriToQuad(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
- ## Enable creation of nodes and segments usable by 2D algoritms.
- # Added nodes and segments must be bound to edges and vertices by
- # SetNodeOnVertex(), SetNodeOnEdge() and SetMeshElementOnShape()
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom subshape to be manually meshed
- # @return StdMeshers_UseExisting_1D algorithm that generates nothing
- def UseExistingSegments(self, geom=0):
- algo = Mesh_UseExisting(1,self,geom)
- return algo.GetAlgorithm()
+ ## Fuse neighbour triangles of the object into quadrangles
+ # @param theObject is mesh, submesh or group
+ # @param theCriterion is FT_...; used to choose a neighbour to fuse with.
+ # @param MaxAngle is a max angle between element normals at which fusion
+ # is still performed; theMaxAngle is mesured in radians.
+ # @return TRUE in case of success, FALSE otherwise.
+ def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ return self.editor.TriToQuadObject(theObject, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
- ## Enable creation of nodes and faces usable by 3D algoritms.
- # Added nodes and faces must be bound to geom faces by SetNodeOnFace()
- # and SetMeshElementOnShape()
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom subshape to be manually meshed
- # @return StdMeshers_UseExisting_2D algorithm that generates nothing
- def UseExistingFaces(self, geom=0):
- algo = Mesh_UseExisting(2,self,geom)
- return algo.GetAlgorithm()
+ ## Split quadrangles into triangles.
+ # @param IDsOfElements the faces to be splitted.
+ # @param theCriterion is FT_...; used to choose a diagonal for splitting.
+ # @return TRUE in case of success, FALSE otherwise.
+ def QuadToTri (self, IDsOfElements, theCriterion):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.QuadToTri(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion))
- ## Creates a triangle 2D algorithm for faces.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param algo values are: smesh.MEFISTO || smesh.NETGEN_1D2D || smesh.NETGEN_2D
- # @param geom If defined, subshape to be meshed
- def Triangle(self, algo=MEFISTO, geom=0):
- ## if Triangle(geom) is called by mistake
- if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)):
- geom = algo
- algo = MEFISTO
-
- return Mesh_Triangle(self, algo, geom)
+ ## Split quadrangles into triangles.
+ # @param theObject object to taking list of elements from, is mesh, submesh or group
+ # @param theCriterion is FT_...; used to choose a diagonal for splitting.
+ def QuadToTriObject (self, theObject, theCriterion):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ return self.editor.QuadToTriObject(theObject, self.smeshpyD.GetFunctor(theCriterion))
- ## Creates a quadrangle 2D algorithm for faces.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
- def Quadrangle(self, geom=0):
- return Mesh_Quadrangle(self, geom)
+ ## Split quadrangles into triangles.
+ # @param theElems The faces to be splitted
+ # @param the13Diag is used to choose a diagonal for splitting.
+ # @return TRUE in case of success, FALSE otherwise.
+ def SplitQuad (self, IDsOfElements, Diag13):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.SplitQuad(IDsOfElements, Diag13)
- ## Creates a tetrahedron 3D algorithm for solids.
- # The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.FULL_NETGEN
- # @param geom If defined, subshape to be meshed
- def Tetrahedron(self, algo=NETGEN, geom=0):
- ## if Tetrahedron(geom) is called by mistake
- if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)):
- algo, geom = geom, algo
- if not algo: algo = NETGEN
- pass
- return Mesh_Tetrahedron(self, algo, geom)
+ ## Split quadrangles into triangles.
+ # @param theObject is object to taking list of elements from, is mesh, submesh or group
+ def SplitQuadObject (self, theObject, Diag13):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ return self.editor.SplitQuadObject(theObject, Diag13)
- ## Creates a hexahedron 3D algorithm for solids.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
- ## def Hexahedron(self, geom=0):
- ## return Mesh_Hexahedron(self, geom)
- def Hexahedron(self, algo=Hexa, geom=0):
- ## if Hexahedron(geom, algo) or Hexahedron(geom) is called by mistake
- if ( isinstance(algo, geompyDC.GEOM._objref_GEOM_Object) ):
- if geom in [Hexa, Hexotic]: algo, geom = geom, algo
- elif geom == 0: algo, geom = Hexa, algo
- return Mesh_Hexahedron(self, algo, geom)
+ ## Find better splitting of the given quadrangle.
+ # @param IDOfQuad ID of the quadrangle to be splitted.
+ # @param theCriterion is FT_...; a criterion to choose a diagonal for splitting.
+ # @return 1 if 1-3 diagonal is better, 2 if 2-4
+ # diagonal is better, 0 if error occurs.
+ def BestSplit (self, IDOfQuad, theCriterion):
+ return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion))
- ## Deprecated, only for compatibility!
- def Netgen(self, is3D, geom=0):
- return Mesh_Netgen(self, is3D, geom)
+ ## Split quafrangle faces near triangular facets of volumes
+ #
+ def SplitQuadsNearTriangularFacets(self):
+ faces_array = self.GetElementsByType(SMESH.FACE)
+ for face_id in faces_array:
+ if self.GetElemNbNodes(face_id) == 4: # quadrangle
+ quad_nodes = self.mesh.GetElemNodes(face_id)
+ node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1])
+ isVolumeFound = False
+ for node1_elem in node1_elems:
+ if not isVolumeFound:
+ if self.GetElementType(node1_elem, True) == SMESH.VOLUME:
+ nb_nodes = self.GetElemNbNodes(node1_elem)
+ if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism
+ volume_elem = node1_elem
+ volume_nodes = self.mesh.GetElemNodes(volume_elem)
+ if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2
+ if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4
+ isVolumeFound = True
+ if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3
+ self.SplitQuad([face_id], False) # diagonal 2-4
+ elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4
+ isVolumeFound = True
+ self.SplitQuad([face_id], True) # diagonal 1-3
+ elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2
+ if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2
+ isVolumeFound = True
+ self.SplitQuad([face_id], True) # diagonal 1-3
- ## Creates a projection 1D algorithm for edges.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
- def Projection1D(self, geom=0):
- return Mesh_Projection1D(self, geom)
+ ## @brief Split hexahedrons into tetrahedrons.
+ #
+ # Use pattern mapping functionality for splitting.
+ # @param theObject object to take list of hexahedrons from; is mesh, submesh or group.
+ # @param theNode000,theNode001 is in range [0,7]; give an orientation of the
+ # pattern relatively each hexahedron: the (0,0,0) key-point of pattern
+ # will be mapped into <theNode000>-th node of each volume, the (0,0,1)
+ # key-point will be mapped into <theNode001>-th node of each volume.
+ # The (0,0,0) key-point of used pattern corresponds to not split corner.
+ # @return TRUE in case of success, FALSE otherwise.
+ def SplitHexaToTetras (self, theObject, theNode000, theNode001):
+ # Pattern: 5.---------.6
+ # /|#* /|
+ # / | #* / |
+ # / | # * / |
+ # / | # /* |
+ # (0,0,1) 4.---------.7 * |
+ # |#* |1 | # *|
+ # | # *.----|---#.2
+ # | #/ * | /
+ # | /# * | /
+ # | / # * | /
+ # |/ #*|/
+ # (0,0,0) 0.---------.3
+ pattern_tetra = "!!! Nb of points: \n 8 \n\
+ !!! Points: \n\
+ 0 0 0 !- 0 \n\
+ 0 1 0 !- 1 \n\
+ 1 1 0 !- 2 \n\
+ 1 0 0 !- 3 \n\
+ 0 0 1 !- 4 \n\
+ 0 1 1 !- 5 \n\
+ 1 1 1 !- 6 \n\
+ 1 0 1 !- 7 \n\
+ !!! Indices of points of 6 tetras: \n\
+ 0 3 4 1 \n\
+ 7 4 3 1 \n\
+ 4 7 5 1 \n\
+ 6 2 5 7 \n\
+ 1 5 2 7 \n\
+ 2 3 1 7 \n"
- ## Creates a projection 2D algorithm for faces.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
- def Projection2D(self, geom=0):
- return Mesh_Projection2D(self, geom)
+ pattern = self.smeshpyD.GetPattern()
+ isDone = pattern.LoadFromFile(pattern_tetra)
+ if not isDone:
+ print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
+ return isDone
- ## Creates a projection 3D algorithm for solids.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
- def Projection3D(self, geom=0):
- return Mesh_Projection3D(self, geom)
+ pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
+ isDone = pattern.MakeMesh(self.mesh, False, False)
+ if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
- ## Creates a 3D extrusion (Prism 3D) or RadialPrism 3D algorithm for solids.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
- def Prism(self, geom=0):
- shape = geom
- if shape==0:
- shape = self.geom
- nbSolids = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SOLID"] ))
- nbShells = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHELL"] ))
- if nbSolids == 0 or nbSolids == nbShells:
- return Mesh_Prism3D(self, geom)
- return Mesh_RadialPrism3D(self, geom)
+ # split quafrangle faces near triangular facets of volumes
+ self.SplitQuadsNearTriangularFacets()
- ## Compute the mesh and return the status of the computation
- def Compute(self, geom=0):
- if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
- if self.geom == 0:
- print "Compute impossible: mesh is not constructed on geom shape."
- return 0
- else:
- geom = self.geom
- ok = False
- try:
- ok = self.smeshpyD.Compute(self.mesh, geom)
- except SALOME.SALOME_Exception, ex:
- print "Mesh computation failed, exception caught:"
- print " ", ex.details.text
- except:
- import traceback
- print "Mesh computation failed, exception caught:"
- traceback.print_exc()
- if not ok:
- errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
- allReasons = ""
- for err in errors:
- if err.isGlobalAlgo:
- glob = "global"
- else:
- glob = "local"
- pass
- dim = err.algoDim
- name = err.algoName
- if len(name) == 0:
- reason = '%s %sD algorithm is missing' % (glob, dim)
- elif err.state == HYP_MISSING:
- reason = ('%s %sD algorithm "%s" misses %sD hypothesis'
- % (glob, dim, name, dim))
- elif err.state == HYP_NOTCONFORM:
- reason = 'Global "Not Conform mesh allowed" hypothesis is missing'
- elif err.state == HYP_BAD_PARAMETER:
- reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value'
- % ( glob, dim, name ))
- elif err.state == HYP_BAD_GEOMETRY:
- reason = ('%s %sD algorithm "%s" is assigned to geometry mismatching'
- 'its expectation' % ( glob, dim, name ))
- else:
- reason = "For unknown reason."+\
- " Revise Mesh.Compute() implementation in smeshDC.py!"
- pass
- if allReasons != "":
- allReasons += "\n"
- pass
- allReasons += reason
- pass
- if allReasons != "":
- print '"' + GetName(self.mesh) + '"',"has not been computed:"
- print allReasons
- else:
- print '"' + GetName(self.mesh) + '"',"has not been computed."
- pass
- pass
- if salome.sg.hasDesktop():
- smeshgui = salome.ImportComponentGUI("SMESH")
- smeshgui.Init(salome.myStudyId)
- smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) )
- salome.sg.updateObjBrowser(1)
- pass
- return ok
+ return isDone
- ## Compute tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
- # The parameter \a fineness [0,-1] defines mesh fineness
- def AutomaticTetrahedralization(self, fineness=0):
- dim = self.MeshDimension()
- # assign hypotheses
- self.RemoveGlobalHypotheses()
- self.Segment().AutomaticLength(fineness)
- if dim > 1 :
- self.Triangle().LengthFromEdges()
- pass
- if dim > 2 :
- self.Tetrahedron(NETGEN)
- pass
- return self.Compute()
+ ## @brief Split hexahedrons into prisms.
+ #
+ # Use pattern mapping functionality for splitting.
+ # @param theObject object to take list of hexahedrons from; is mesh, submesh or group.
+ # @param theNode000,theNode001 is in range [0,7]; give an orientation of the
+ # pattern relatively each hexahedron: the (0,0,0) key-point of pattern
+ # will be mapped into <theNode000>-th node of each volume, the (0,0,1)
+ # key-point will be mapped into <theNode001>-th node of each volume.
+ # The edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
+ # @return TRUE in case of success, FALSE otherwise.
+ def SplitHexaToPrisms (self, theObject, theNode000, theNode001):
+ # Pattern: 5.---------.6
+ # /|# /|
+ # / | # / |
+ # / | # / |
+ # / | # / |
+ # (0,0,1) 4.---------.7 |
+ # | | | |
+ # | 1.----|----.2
+ # | / * | /
+ # | / * | /
+ # | / * | /
+ # |/ *|/
+ # (0,0,0) 0.---------.3
+ pattern_prism = "!!! Nb of points: \n 8 \n\
+ !!! Points: \n\
+ 0 0 0 !- 0 \n\
+ 0 1 0 !- 1 \n\
+ 1 1 0 !- 2 \n\
+ 1 0 0 !- 3 \n\
+ 0 0 1 !- 4 \n\
+ 0 1 1 !- 5 \n\
+ 1 1 1 !- 6 \n\
+ 1 0 1 !- 7 \n\
+ !!! Indices of points of 2 prisms: \n\
+ 0 1 3 4 5 7 \n\
+ 2 3 1 6 7 5 \n"
- ## Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
- # The parameter \a fineness [0,-1] defines mesh fineness
- def AutomaticHexahedralization(self, fineness=0):
- dim = self.MeshDimension()
- # assign hypotheses
- self.RemoveGlobalHypotheses()
- self.Segment().AutomaticLength(fineness)
- if dim > 1 :
- self.Quadrangle()
- pass
- if dim > 2 :
- self.Hexahedron()
- pass
- return self.Compute()
+ pattern = self.smeshpyD.GetPattern()
+ isDone = pattern.LoadFromFile(pattern_prism)
+ if not isDone:
+ print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
+ return isDone
- ## Assign hypothesis
- # @param hyp is a hypothesis to assign
- # @param geom is subhape of mesh geometry
- def AddHypothesis(self, hyp, geom=0):
- if isinstance( hyp, Mesh_Algorithm ):
- hyp = hyp.GetAlgorithm()
- pass
- if not geom:
- geom = self.geom
- pass
- status = self.mesh.AddHypothesis(geom, hyp)
- isAlgo = hyp._narrow( SMESH_Algo )
- TreatHypoStatus( status, GetName( hyp ), GetName( geom ), isAlgo )
- return status
+ pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
+ isDone = pattern.MakeMesh(self.mesh, False, False)
+ if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
- ## Unassign hypothesis
- # @param hyp is a hypothesis to unassign
- # @param geom is subhape of mesh geometry
- def RemoveHypothesis(self, hyp, geom=0):
- if isinstance( hyp, Mesh_Algorithm ):
- hyp = hyp.GetAlgorithm()
- pass
- if not geom:
- geom = self.geom
- pass
- status = self.mesh.RemoveHypothesis(geom, hyp)
- return status
+ # split quafrangle faces near triangular facets of volumes
+ self.SplitQuadsNearTriangularFacets()
- ## Get the list of hypothesis added on a geom
- # @param geom is subhape of mesh geometry
- def GetHypothesisList(self, geom):
- return self.mesh.GetHypothesisList( geom )
+ return isDone
- ## Removes all global hypotheses
- def RemoveGlobalHypotheses(self):
- current_hyps = self.mesh.GetHypothesisList( self.geom )
- for hyp in current_hyps:
- self.mesh.RemoveHypothesis( self.geom, hyp )
- pass
- pass
+ ## Smooth elements
+ # @param IDsOfElements list if ids of elements to smooth
+ # @param IDsOfFixedNodes list of ids of fixed nodes.
+ # Note that nodes built on edges and boundary nodes are always fixed.
+ # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxAspectRatio varies in range [1.0, inf]
+ # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
+ def Smooth(self, IDsOfElements, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method)
- ## Create a mesh group based on geometric object \a grp
- # and give a \a name, \n if this parameter is not defined
- # the name is the same as the geometric group name \n
- # Note: Works like GroupOnGeom().
- # @param grp is a geometric group, a vertex, an edge, a face or a solid
- # @param name is the name of the mesh group
- # @return SMESH_GroupOnGeom
- def Group(self, grp, name=""):
- return self.GroupOnGeom(grp, name)
+ ## Smooth elements belong to given object
+ # @param theObject object to smooth
+ # @param IDsOfFixedNodes list of ids of fixed nodes.
+ # Note that nodes built on edges and boundary nodes are always fixed.
+ # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxAspectRatio varies in range [1.0, inf]
+ # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
+ def SmoothObject(self, theObject, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxxAspectRatio, Method):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxxAspectRatio, Method)
- ## Deprecated, only for compatibility! Please, use ExportMED() method instead.
- # Export the mesh in a file with the MED format and choice the \a version of MED format
- # @param f is the file name
- # @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
- def ExportToMED(self, f, version, opt=0):
- self.mesh.ExportToMED(f, opt, version)
+ ## Parametric smooth the given elements
+ # @param IDsOfElements list if ids of elements to smooth
+ # @param IDsOfFixedNodes list of ids of fixed nodes.
+ # Note that nodes built on edges and boundary nodes are always fixed.
+ # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxAspectRatio varies in range [1.0, inf]
+ # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
+ def SmoothParametric(self, IDsOfElements, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method)
- ## Export the mesh in a file with the MED format
- # @param f is the file name
- # @param auto_groups boolean parameter for creating/not creating
- # the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
- # the typical use is auto_groups=false.
- # @param version MED format version(MED_V2_1 or MED_V2_2)
- def ExportMED(self, f, auto_groups=0, version=MED_V2_2):
- self.mesh.ExportToMED(f, auto_groups, version)
+ ## Parametric smooth elements belong to given object
+ # @param theObject object to smooth
+ # @param IDsOfFixedNodes list of ids of fixed nodes.
+ # Note that nodes built on edges and boundary nodes are always fixed.
+ # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxAspectRatio varies in range [1.0, inf]
+ # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
+ def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method)
- ## Export the mesh in a file with the DAT format
- # @param f is the file name
- def ExportDAT(self, f):
- self.mesh.ExportDAT(f)
+ ## Converts all mesh to quadratic one, deletes old elements, replacing
+ # them with quadratic ones with the same id.
+ def ConvertToQuadratic(self, theForce3d):
+ self.editor.ConvertToQuadratic(theForce3d)
- ## Export the mesh in a file with the UNV format
- # @param f is the file name
- def ExportUNV(self, f):
- self.mesh.ExportUNV(f)
+ ## Converts all mesh from quadratic to ordinary ones,
+ # deletes old quadratic elements, \n replacing
+ # them with ordinary mesh elements with the same id.
+ def ConvertFromQuadratic(self):
+ return self.editor.ConvertFromQuadratic()
- ## Export the mesh in a file with the STL format
- # @param f is the file name
- # @param ascii defined the kind of file contents
- def ExportSTL(self, f, ascii=1):
- self.mesh.ExportSTL(f, ascii)
+ ## Renumber mesh nodes
+ def RenumberNodes(self):
+ self.editor.RenumberNodes()
+ ## Renumber mesh elements
+ def RenumberElements(self):
+ self.editor.RenumberElements()
- # Operations with groups:
- # ----------------------
+ ## Generate new elements by rotation of the elements around the axis
+ # @param IDsOfElements list of ids of elements to sweep
+ # @param Axix axis of rotation, AxisStruct or line(geom object)
+ # @param AngleInRadians angle of Rotation
+ # @param NbOfSteps number of steps
+ # @param Tolerance tolerance
+ # @param MakeGroups to generate new groups from existing ones
+ def RotationSweep(self, IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Axix, geompyDC.GEOM._objref_GEOM_Object)):
+ Axix = self.smeshpyD.GetAxisStruct(Axix)
+ if MakeGroups:
+ return self.editor.RotationSweepMakeGroups(IDsOfElements, Axix,
+ AngleInRadians, NbOfSteps, Tolerance)
+ self.editor.RotationSweep(IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance)
+ return []
- ## Creates an empty mesh group
- # @param elementType is the type of elements in the group
- # @param name is the name of the mesh group
- # @return SMESH_Group
- def CreateEmptyGroup(self, elementType, name):
- return self.mesh.CreateGroup(elementType, name)
+ ## Generate new elements by rotation of the elements of object around the axis
+ # @param theObject object wich elements should be sweeped
+ # @param Axix axis of rotation, AxisStruct or line(geom object)
+ # @param AngleInRadians angle of Rotation
+ # @param NbOfSteps number of steps
+ # @param Tolerance tolerance
+ # @param MakeGroups to generate new groups from existing ones
+ def RotationSweepObject(self, theObject, Axix, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ if ( isinstance( Axix, geompyDC.GEOM._objref_GEOM_Object)):
+ Axix = self.smeshpyD.GetAxisStruct(Axix)
+ if MakeGroups:
+ return self.editor.RotationSweepObjectMakeGroups(theObject, Axix, AngleInRadians,
+ NbOfSteps, Tolerance)
+ self.editor.RotationSweepObject(theObject, Axix, AngleInRadians, NbOfSteps, Tolerance)
+ return []
- ## Creates a mesh group based on geometric object \a grp
- # and give a \a name, \n if this parameter is not defined
- # the name is the same as the geometric group name
- # @param grp is a geometric group, a vertex, an edge, a face or a solid
- # @param name is the name of the mesh group
- # @return SMESH_GroupOnGeom
- def GroupOnGeom(self, grp, name="", typ=None):
- if name == "":
- name = grp.GetName()
+ ## Generate new elements by extrusion of the elements with given ids
+ # @param IDsOfElements list of elements ids for extrusion
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ # @param MakeGroups to generate new groups from existing ones
+ def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
+ StepVector = self.smeshpyD.GetDirStruct(StepVector)
+ if MakeGroups:
+ return self.editor.ExtrusionSweepMakeGroups(IDsOfElements, StepVector, NbOfSteps)
+ self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
+ return []
- if typ == None:
- tgeo = str(grp.GetShapeType())
- if tgeo == "VERTEX":
- typ = NODE
- elif tgeo == "EDGE":
- typ = EDGE
- elif tgeo == "FACE":
- typ = FACE
- elif tgeo == "SOLID":
- typ = VOLUME
- elif tgeo == "SHELL":
- typ = VOLUME
- elif tgeo == "COMPOUND":
- if len( self.geompyD.GetObjectIDs( grp )) == 0:
- print "Mesh.Group: empty geometric group", GetName( grp )
- return 0
- tgeo = self.geompyD.GetType(grp)
- if tgeo == geompyDC.ShapeType["VERTEX"]:
- typ = NODE
- elif tgeo == geompyDC.ShapeType["EDGE"]:
- typ = EDGE
- elif tgeo == geompyDC.ShapeType["FACE"]:
- typ = FACE
- elif tgeo == geompyDC.ShapeType["SOLID"]:
- typ = VOLUME
+ ## Generate new elements by extrusion of the elements with given ids
+ # @param IDsOfElements is ids of elements
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ # @param ExtrFlags set flags for performing extrusion
+ # @param SewTolerance uses for comparing locations of nodes if flag
+ # EXTRUSION_FLAG_SEW is set
+ # @param MakeGroups to generate new groups from existing ones
+ def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance, MakeGroups=False):
+ if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
+ StepVector = self.smeshpyD.GetDirStruct(StepVector)
+ if MakeGroups:
+ return self.editor.AdvancedExtrusionMakeGroups(IDsOfElements, StepVector, NbOfSteps,
+ ExtrFlags, SewTolerance)
+ self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps,
+ ExtrFlags, SewTolerance)
+ return []
- if typ == None:
- print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid"
- return 0
- else:
- return self.mesh.CreateGroupFromGEOM(typ, name, grp)
+ ## Generate new elements by extrusion of the elements belong to object
+ # @param theObject object wich elements should be processed
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ # @param MakeGroups to generate new groups from existing ones
+ def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
+ StepVector = self.smeshpyD.GetDirStruct(StepVector)
+ if MakeGroups:
+ return self.editor.ExtrusionSweepObjectMakeGroups(theObject, StepVector, NbOfSteps)
+ self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
+ return []
- ## Create a mesh group by the given ids of elements
- # @param groupName is the name of the mesh group
- # @param elementType is the type of elements in the group
- # @param elemIDs is the list of ids
- # @return SMESH_Group
- def MakeGroupByIds(self, groupName, elementType, elemIDs):
- group = self.mesh.CreateGroup(elementType, groupName)
- group.Add(elemIDs)
- return group
+ ## Generate new elements by extrusion of the elements belong to object
+ # @param theObject object wich elements should be processed
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ # @param MakeGroups to generate new groups from existing ones
+ def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
+ StepVector = self.smeshpyD.GetDirStruct(StepVector)
+ if MakeGroups:
+ return self.editor.ExtrusionSweepObject1DMakeGroups(theObject, StepVector, NbOfSteps)
+ self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
+ return []
- ## Create a mesh group by the given conditions
- # @param groupName is the name of the mesh group
- # @param elementType is the type of elements in the group
- # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
- # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
- # @param Treshold is threshold value (range of id ids as string, shape, numeric)
- # @param UnaryOp is FT_LogicalNOT or FT_Undefined
- # @return SMESH_Group
- def MakeGroup(self,
- groupName,
- elementType,
- CritType=FT_Undefined,
- Compare=FT_EqualTo,
- Treshold="",
- UnaryOp=FT_Undefined):
- aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
- group = self.MakeGroupByCriterion(groupName, aCriterion)
- return group
+ ## Generate new elements by extrusion of the elements belong to object
+ # @param theObject object wich elements should be processed
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ # @param MakeGroups to generate new groups from existing ones
+ def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
+ StepVector = self.smeshpyD.GetDirStruct(StepVector)
+ if MakeGroups:
+ return self.editor.ExtrusionSweepObject2DMakeGroups(theObject, StepVector, NbOfSteps)
+ self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
+ return []
- ## Create a mesh group by the given criterion
- # @param groupName is the name of the mesh group
- # @param Criterion is the instance of Criterion class
- # @return SMESH_Group
- def MakeGroupByCriterion(self, groupName, Criterion):
- aFilterMgr = self.smeshpyD.CreateFilterManager()
- aFilter = aFilterMgr.CreateFilter()
- aCriteria = []
- aCriteria.append(Criterion)
- aFilter.SetCriteria(aCriteria)
- group = self.MakeGroupByFilter(groupName, aFilter)
- return group
+ ## Generate new elements by extrusion of the given elements
+ # A path of extrusion must be a meshed edge.
+ # @param IDsOfElements is ids of elements
+ # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
+ # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
+ # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
+ # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
+ # @param Angles list of angles
+ # @param HasRefPoint allows to use base point
+ # @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
+ # User can specify any point as the Base Point and the shape will be rotated with respect to this point.
+ # @param MakeGroups to generate new groups from existing ones
+ # @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps
+ def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
+ HasAngles, Angles, HasRefPoint, RefPoint,
+ MakeGroups=False, LinearVariation=False):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
+ RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
+ pass
+ if MakeGroups:
+ return self.editor.ExtrusionAlongPathMakeGroups(IDsOfElements, PathMesh.GetMesh(),
+ PathShape, NodeStart, HasAngles,
+ Angles, HasRefPoint, RefPoint)
+ return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh.GetMesh(), PathShape,
+ NodeStart, HasAngles, Angles, HasRefPoint, RefPoint)
+
+ ## Generate new elements by extrusion of the elements belong to object
+ # A path of extrusion must be a meshed edge.
+ # @param IDsOfElements is ids of elements
+ # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
+ # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
+ # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
+ # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
+ # @param Angles list of angles
+ # @param HasRefPoint allows to use base point
+ # @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
+ # User can specify any point as the Base Point and the shape will be rotated with respect to this point.
+ # @param MakeGroups to generate new groups from existing ones
+ # @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps
+ def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
+ HasAngles, Angles, HasRefPoint, RefPoint,
+ MakeGroups=False, LinearVariation=False):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
+ RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
+ if MakeGroups:
+ return self.editor.ExtrusionAlongPathObjectMakeGroups(theObject, PathMesh.GetMesh(),
+ PathShape, NodeStart, HasAngles,
+ Angles, HasRefPoint, RefPoint)
+ return self.editor.ExtrusionAlongPathObject(theObject, PathMesh.GetMesh(), PathShape,
+ NodeStart, HasAngles, Angles, HasRefPoint,
+ RefPoint)
+
+ ## Symmetrical copy of mesh elements
+ # @param IDsOfElements list of elements ids
+ # @param Mirror is AxisStruct or geom object(point, line, plane)
+ # @param theMirrorType is POINT, AXIS or PLANE
+ # If the Mirror is geom object this parameter is unnecessary
+ # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
+ # @param MakeGroups to generate new groups from existing ones (if Copy)
+ def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0, MakeGroups=False):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
+ Mirror = self.smeshpyD.GetAxisStruct(Mirror)
+ if Copy and MakeGroups:
+ return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType)
+ self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
+ return []
+
+ ## Create a new mesh by symmetrical copy of mesh elements
+ # @param IDsOfElements list of elements ids
+ # @param Mirror is AxisStruct or geom object(point, line, plane)
+ # @param theMirrorType is POINT, AXIS or PLANE
+ # If the Mirror is geom object this parameter is unnecessary
+ # @param MakeGroups to generate new groups from existing ones
+ # @param NewMeshName is a name of new mesh to create
+ def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType, MakeGroups=0, NewMeshName=""):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
+ Mirror = self.smeshpyD.GetAxisStruct(Mirror)
+ mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType,
+ MakeGroups, NewMeshName)
+ return Mesh(self.smeshpyD,self.geompyD,mesh)
- ## Create a mesh group by the given criteria(list of criterions)
- # @param groupName is the name of the mesh group
- # @param Criteria is the list of criterions
- # @return SMESH_Group
- def MakeGroupByCriteria(self, groupName, theCriteria):
- aFilterMgr = self.smeshpyD.CreateFilterManager()
- aFilter = aFilterMgr.CreateFilter()
- aFilter.SetCriteria(theCriteria)
- group = self.MakeGroupByFilter(groupName, aFilter)
- return group
+ ## Symmetrical copy of object
+ # @param theObject mesh, submesh or group
+ # @param Mirror is AxisStruct or geom object(point, line, plane)
+ # @param theMirrorType is POINT, AXIS or PLANE
+ # If the Mirror is geom object this parameter is unnecessary
+ # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
+ # @param MakeGroups to generate new groups from existing ones (if Copy)
+ def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0, MakeGroups=False):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
+ Mirror = self.smeshpyD.GetAxisStruct(Mirror)
+ if Copy and MakeGroups:
+ return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType)
+ self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
+ return []
- ## Create a mesh group by the given filter
- # @param groupName is the name of the mesh group
- # @param Criterion is the instance of Filter class
- # @return SMESH_Group
- def MakeGroupByFilter(self, groupName, theFilter):
- anIds = theFilter.GetElementsId(self.mesh)
- anElemType = theFilter.GetElementType()
- group = self.MakeGroupByIds(groupName, anElemType, anIds)
- return group
+ ## Create a new mesh by symmetrical copy of object
+ # @param theObject mesh, submesh or group
+ # @param Mirror is AxisStruct or geom object(point, line, plane)
+ # @param theMirrorType is POINT, AXIS or PLANE
+ # If the Mirror is geom object this parameter is unnecessary
+ # @param MakeGroups to generate new groups from existing ones
+ # @param NewMeshName is a name of new mesh to create
+ def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType,MakeGroups=0, NewMeshName=""):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ if (isinstance(Mirror, geompyDC.GEOM._objref_GEOM_Object)):
+ Mirror = self.smeshpyD.GetAxisStruct(Mirror)
+ mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType,
+ MakeGroups, NewMeshName)
+ return Mesh( self.smeshpyD,self.geompyD,mesh )
- ## Pass mesh elements through the given filter and return ids
- # @param theFilter is SMESH_Filter
- # @return list of ids
- def GetIdsFromFilter(self, theFilter):
- return theFilter.GetElementsId(self.mesh)
+ ## Translates the elements
+ # @param IDsOfElements list of elements ids
+ # @param Vector direction of translation(DirStruct or vector)
+ # @param Copy allows to copy the translated elements
+ # @param MakeGroups to generate new groups from existing ones (if Copy)
+ def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
+ Vector = self.smeshpyD.GetDirStruct(Vector)
+ if Copy and MakeGroups:
+ return self.editor.TranslateMakeGroups(IDsOfElements, Vector)
+ self.editor.Translate(IDsOfElements, Vector, Copy)
+ return []
- ## Verify whether 2D mesh element has free edges(edges connected to one face only)\n
- # Returns list of special structures(borders).
- # @return list of SMESH.FreeEdges.Border structure: edge id and two its nodes ids.
- def GetFreeBorders(self):
- aFilterMgr = self.smeshpyD.CreateFilterManager()
- aPredicate = aFilterMgr.CreateFreeEdges()
- aPredicate.SetMesh(self.mesh)
- aBorders = aPredicate.GetBorders()
- return aBorders
+ ## Create a new mesh of translated elements
+ # @param IDsOfElements list of elements ids
+ # @param Vector direction of translation(DirStruct or vector)
+ # @param MakeGroups to generate new groups from existing ones
+ # @param NewMeshName is a name of new mesh to create
+ def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
+ Vector = self.smeshpyD.GetDirStruct(Vector)
+ mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName)
+ return Mesh ( self.smeshpyD, self.geompyD, mesh )
- ## Remove a group
- def RemoveGroup(self, group):
- self.mesh.RemoveGroup(group)
+ ## Translates the object
+ # @param theObject object to translate(mesh, submesh, or group)
+ # @param Vector direction of translation(DirStruct or geom vector)
+ # @param Copy allows to copy the translated elements
+ # @param MakeGroups to generate new groups from existing ones (if Copy)
+ def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False):
+ if ( isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
+ Vector = self.smeshpyD.GetDirStruct(Vector)
+ if Copy and MakeGroups:
+ return self.editor.TranslateObjectMakeGroups(theObject, Vector)
+ self.editor.TranslateObject(theObject, Vector, Copy)
+ return []
- ## Remove group with its contents
- def RemoveGroupWithContents(self, group):
- self.mesh.RemoveGroupWithContents(group)
+ ## Create a new mesh from translated object
+ # @param theObject object to translate(mesh, submesh, or group)
+ # @param Vector direction of translation(DirStruct or geom vector)
+ # @param MakeGroups to generate new groups from existing ones
+ # @param NewMeshName is a name of new mesh to create
+ def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""):
+ if (isinstance(theObject, Mesh)):
+ theObject = theObject.GetMesh()
+ if (isinstance(Vector, geompyDC.GEOM._objref_GEOM_Object)):
+ Vector = self.smeshpyD.GetDirStruct(Vector)
+ mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName)
+ return Mesh( self.smeshpyD, self.geompyD, mesh )
- ## Get the list of groups existing in the mesh
- def GetGroups(self):
- return self.mesh.GetGroups()
+ ## Rotates the elements
+ # @param IDsOfElements list of elements ids
+ # @param Axis axis of rotation(AxisStruct or geom line)
+ # @param AngleInRadians angle of rotation(in radians)
+ # @param Copy allows to copy the rotated elements
+ # @param MakeGroups to generate new groups from existing ones (if Copy)
+ def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
+ Axis = self.smeshpyD.GetAxisStruct(Axis)
+ if Copy and MakeGroups:
+ return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians)
+ self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
+ return []
- ## Get number of groups existing in the mesh
- def NbGroups(self):
- return self.mesh.NbGroups()
+ ## Create a new mesh of rotated elements
+ # @param IDsOfElements list of element ids
+ # @param Axis axis of rotation(AxisStruct or geom line)
+ # @param AngleInRadians angle of rotation(in radians)
+ # @param MakeGroups to generate new groups from existing ones
+ # @param NewMeshName is a name of new mesh to create
+ def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
+ Axis = self.smeshpyD.GetAxisStruct(Axis)
+ mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians,
+ MakeGroups, NewMeshName)
+ return Mesh( self.smeshpyD, self.geompyD, mesh )
- ## Get the list of names of groups existing in the mesh
- def GetGroupNames(self):
- groups = self.GetGroups()
- names = []
- for group in groups:
- names.append(group.GetName())
- return names
+ ## Rotates the object
+ # @param theObject object to rotate(mesh, submesh, or group)
+ # @param Axis axis of rotation(AxisStruct or geom line)
+ # @param AngleInRadians angle of rotation(in radians)
+ # @param Copy allows to copy the rotated elements
+ # @param MakeGroups to generate new groups from existing ones (if Copy)
+ def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False):
+ if (isinstance(theObject, Mesh)):
+ theObject = theObject.GetMesh()
+ if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
+ Axis = self.smeshpyD.GetAxisStruct(Axis)
+ if Copy and MakeGroups:
+ return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians)
+ self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
+ return []
- ## Union of two groups
- # New group is created. All mesh elements that are
- # present in initial groups are added to the new one
- def UnionGroups(self, group1, group2, name):
- return self.mesh.UnionGroups(group1, group2, name)
+ ## Create a new mesh from a rotated object
+ # @param theObject object to rotate (mesh, submesh, or group)
+ # @param Axis axis of rotation(AxisStruct or geom line)
+ # @param AngleInRadians angle of rotation(in radians)
+ # @param MakeGroups to generate new groups from existing ones
+ # @param NewMeshName is a name of new mesh to create
+ def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""):
+ if (isinstance( theObject, Mesh )):
+ theObject = theObject.GetMesh()
+ if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
+ Axis = self.smeshpyD.GetAxisStruct(Axis)
+ mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians,
+ MakeGroups, NewMeshName)
+ return Mesh( self.smeshpyD, self.geompyD, mesh )
- ## Intersection of two groups
- # New group is created. All mesh elements that are
- # present in both initial groups are added to the new one.
- def IntersectGroups(self, group1, group2, name):
- return self.mesh.IntersectGroups(group1, group2, name)
+ ## Find group of nodes close to each other within Tolerance.
+ # @param Tolerance tolerance value
+ # @param list of group of nodes
+ def FindCoincidentNodes (self, Tolerance):
+ return self.editor.FindCoincidentNodes(Tolerance)
- ## Cut of two groups
- # New group is created. All mesh elements that are present in
- # main group but do not present in tool group are added to the new one
- def CutGroups(self, mainGroup, toolGroup, name):
- return self.mesh.CutGroups(mainGroup, toolGroup, name)
+ ## Find group of nodes close to each other within Tolerance.
+ # @param Tolerance tolerance value
+ # @param SubMeshOrGroup SubMesh or Group
+ # @param list of group of nodes
+ def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance):
+ return self.editor.FindCoincidentNodesOnPart(SubMeshOrGroup, Tolerance)
+ ## Merge nodes
+ # @param list of group of nodes
+ def MergeNodes (self, GroupsOfNodes):
+ self.editor.MergeNodes(GroupsOfNodes)
- # Get some info about mesh:
- # ------------------------
+ ## Find elements built on the same nodes.
+ # @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching
+ # @return a list of groups of equal elements
+ def FindEqualElements (self, MeshOrSubMeshOrGroup):
+ return self.editor.FindEqualElements(MeshOrSubMeshOrGroup)
- ## Get the log of nodes and elements added or removed since previous
- # clear of the log.
- # @param clearAfterGet log is emptied after Get (safe if concurrents access)
- # @return list of log_block structures:
- # commandType
- # number
- # coords
- # indexes
- def GetLog(self, clearAfterGet):
- return self.mesh.GetLog(clearAfterGet)
+ ## Merge elements in each given group.
+ # @param GroupsOfElementsID groups of elements for merging
+ def MergeElements(self, GroupsOfElementsID):
+ self.editor.MergeElements(GroupsOfElementsID)
- ## Clear the log of nodes and elements added or removed since previous
- # clear. Must be used immediately after GetLog if clearAfterGet is false.
- def ClearLog(self):
- self.mesh.ClearLog()
+ ## Remove all but one of elements built on the same nodes.
+ def MergeEqualElements(self):
+ self.editor.MergeEqualElements()
- def SetAutoColor(self, color):
- self.mesh.SetAutoColor(color)
+ ## Sew free borders
+ def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
+ FirstNodeID2, SecondNodeID2, LastNodeID2,
+ CreatePolygons, CreatePolyedrs):
+ return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
+ FirstNodeID2, SecondNodeID2, LastNodeID2,
+ CreatePolygons, CreatePolyedrs)
- def GetAutoColor(self):
- return self.mesh.GetAutoColor()
+ ## Sew conform free borders
+ def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
+ FirstNodeID2, SecondNodeID2):
+ return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
+ FirstNodeID2, SecondNodeID2)
- ## Get the internal Id
- def GetId(self):
- return self.mesh.GetId()
+ ## Sew border to side
+ def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
+ FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
+ return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
+ FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
- ## Get the study Id
- def GetStudyId(self):
- return self.mesh.GetStudyId()
+ ## Sew two sides of a mesh. Nodes belonging to Side1 are
+ # merged with nodes of elements of Side2.
+ # Number of elements in theSide1 and in theSide2 must be
+ # equal and they should have similar node connectivity.
+ # The nodes to merge should belong to sides borders and
+ # the first node should be linked to the second.
+ def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
+ NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
+ NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
+ return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
+ NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
+ NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
- ## Check group names for duplications.
- # Consider maximum group name length stored in MED file.
- def HasDuplicatedGroupNamesMED(self):
- return self.mesh.HasDuplicatedGroupNamesMED()
+ ## Set new nodes for given element.
+ # @param ide the element id
+ # @param newIDs nodes ids
+ # @return If number of nodes is not corresponded to type of element - returns false
+ def ChangeElemNodes(self, ide, newIDs):
+ return self.editor.ChangeElemNodes(ide, newIDs)
- ## Obtain instance of SMESH_MeshEditor
- def GetMeshEditor(self):
- return self.mesh.GetMeshEditor()
+ ## If during last operation of MeshEditor some nodes were
+ # created this method returns list of its IDs, \n
+ # if new nodes not created - returns empty list
+ def GetLastCreatedNodes(self):
+ return self.editor.GetLastCreatedNodes()
- ## Get MED Mesh
- def GetMEDMesh(self):
- return self.mesh.GetMEDMesh()
+ ## If during last operation of MeshEditor some elements were
+ # created this method returns list of its IDs, \n
+ # if new elements not creared - returns empty list
+ def GetLastCreatedElems(self):
+ return self.editor.GetLastCreatedElems()
+## Mother class to define algorithm, recommended to do not use directly.
+#
+# More details.
+class Mesh_Algorithm:
+ # @class Mesh_Algorithm
+ # @brief Class Mesh_Algorithm
- # Get informations about mesh contents:
- # ------------------------------------
+ #def __init__(self,smesh):
+ # self.smesh=smesh
+ def __init__(self):
+ self.mesh = None
+ self.geom = None
+ self.subm = None
+ self.algo = None
- ## Returns number of nodes in mesh
- def NbNodes(self):
- return self.mesh.NbNodes()
+ ## Find hypothesis in study by its type name and parameters.
+ # Find only those hypothesis, which was created in smeshpyD engine.
+ def FindHypothesis (self, hypname, args, CompareMethod, smeshpyD):
+ study = smeshpyD.GetCurrentStudy()
+ #to do: find component by smeshpyD object, not by its data type
+ scomp = study.FindComponent(smeshpyD.ComponentDataType())
+ if scomp is not None:
+ res,hypRoot = scomp.FindSubObject(SMESH.Tag_HypothesisRoot)
+ # is hypotheses root label exists?
+ if res and hypRoot is not None:
+ iter = study.NewChildIterator(hypRoot)
+ # check all published hypotheses
+ while iter.More():
+ hypo_so_i = iter.Value()
+ attr = hypo_so_i.FindAttribute("AttributeIOR")[1]
+ if attr is not None:
+ anIOR = attr.Value()
+ hypo_o_i = salome.orb.string_to_object(anIOR)
+ if hypo_o_i is not None:
+ # is hypothesis?
+ hypo_i = hypo_o_i._narrow(SMESH.SMESH_Hypothesis)
+ if hypo_i is not None:
+ # belongs to this engine?
+ if smeshpyD.GetObjectId(hypo_i) > 0:
+ # is it the needed hypothesis?
+ if hypo_i.GetName() == hypname:
+ # check args
+ if CompareMethod(hypo_i, args):
+ # found!!!
+ return hypo_i
+ pass
+ pass
+ pass
+ pass
+ pass
+ iter.Next()
+ pass
+ pass
+ pass
+ return None
- ## Returns number of elements in mesh
- def NbElements(self):
- return self.mesh.NbElements()
+ ## Find algorithm in study by its type name.
+ # Find only those algorithm, which was created in smeshpyD engine.
+ def FindAlgorithm (self, algoname, smeshpyD):
+ study = smeshpyD.GetCurrentStudy()
+ #to do: find component by smeshpyD object, not by its data type
+ scomp = study.FindComponent(smeshpyD.ComponentDataType())
+ if scomp is not None:
+ res,hypRoot = scomp.FindSubObject(SMESH.Tag_AlgorithmsRoot)
+ # is algorithms root label exists?
+ if res and hypRoot is not None:
+ iter = study.NewChildIterator(hypRoot)
+ # check all published algorithms
+ while iter.More():
+ algo_so_i = iter.Value()
+ attr = algo_so_i.FindAttribute("AttributeIOR")[1]
+ if attr is not None:
+ anIOR = attr.Value()
+ algo_o_i = salome.orb.string_to_object(anIOR)
+ if algo_o_i is not None:
+ # is algorithm?
+ algo_i = algo_o_i._narrow(SMESH.SMESH_Algo)
+ if algo_i is not None:
+ # belongs to this engine?
+ if smeshpyD.GetObjectId(algo_i) > 0:
+ # is it the needed algorithm?
+ if algo_i.GetName() == algoname:
+ # found!!!
+ return algo_i
+ pass
+ pass
+ pass
+ pass
+ iter.Next()
+ pass
+ pass
+ pass
+ return None
- ## Returns number of edges in mesh
- def NbEdges(self):
- return self.mesh.NbEdges()
+ ## If the algorithm is global, return 0; \n
+ # else return the submesh associated to this algorithm.
+ def GetSubMesh(self):
+ return self.subm
- ## Returns number of edges with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbEdgesOfOrder(self, elementOrder):
- return self.mesh.NbEdgesOfOrder(elementOrder)
+ ## Return the wrapped mesher.
+ def GetAlgorithm(self):
+ return self.algo
- ## Returns number of faces in mesh
- def NbFaces(self):
- return self.mesh.NbFaces()
+ ## Get list of hypothesis that can be used with this algorithm
+ def GetCompatibleHypothesis(self):
+ mylist = []
+ if self.algo:
+ mylist = self.algo.GetCompatibleHypothesis()
+ return mylist
- ## Returns number of faces with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbFacesOfOrder(self, elementOrder):
- return self.mesh.NbFacesOfOrder(elementOrder)
+ ## Get name of algo
+ def GetName(self):
+ GetName(self.algo)
- ## Returns number of triangles in mesh
- def NbTriangles(self):
- return self.mesh.NbTriangles()
+ ## Set name to algo
+ def SetName(self, name):
+ SetName(self.algo, name)
- ## Returns number of triangles with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbTrianglesOfOrder(self, elementOrder):
- return self.mesh.NbTrianglesOfOrder(elementOrder)
+ ## Get id of algo
+ def GetId(self):
+ return self.algo.GetId()
- ## Returns number of quadrangles in mesh
- def NbQuadrangles(self):
- return self.mesh.NbQuadrangles()
+ ## Private method.
+ def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
+ if geom is None:
+ raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape"
+ algo = self.FindAlgorithm(hypo, mesh.smeshpyD)
+ if algo is None:
+ algo = mesh.smeshpyD.CreateHypothesis(hypo, so)
+ pass
+ self.Assign(algo, mesh, geom)
+ return self.algo
- ## Returns number of quadrangles with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbQuadranglesOfOrder(self, elementOrder):
- return self.mesh.NbQuadranglesOfOrder(elementOrder)
+ ## Private method
+ def Assign(self, algo, mesh, geom):
+ if geom is None:
+ raise RuntimeError, "Attemp to create " + algo + " algoritm on None shape"
+ self.mesh = mesh
+ piece = mesh.geom
+ if not geom:
+ self.geom = piece
+ else:
+ self.geom = geom
+ name = GetName(geom)
+ if name==NO_NAME:
+ name = mesh.geompyD.SubShapeName(geom, piece)
+ mesh.geompyD.addToStudyInFather(piece, geom, name)
+ self.subm = mesh.mesh.GetSubMesh(geom, algo.GetName())
- ## Returns number of polygons in mesh
- def NbPolygons(self):
- return self.mesh.NbPolygons()
+ self.algo = algo
+ status = mesh.mesh.AddHypothesis(self.geom, self.algo)
+ TreatHypoStatus( status, algo.GetName(), GetName(self.geom), True )
- ## Returns number of volumes in mesh
- def NbVolumes(self):
- return self.mesh.NbVolumes()
+ def CompareHyp (self, hyp, args):
+ print "CompareHyp is not implemented for ", self.__class__.__name__, ":", hyp.GetName()
+ return False
+
+ def CompareEqualHyp (self, hyp, args):
+ return True
- ## Returns number of volumes with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbVolumesOfOrder(self, elementOrder):
- return self.mesh.NbVolumesOfOrder(elementOrder)
+ ## Private method
+ def Hypothesis (self, hyp, args=[], so="libStdMeshersEngine.so",
+ UseExisting=0, CompareMethod=""):
+ hypo = None
+ if UseExisting:
+ if CompareMethod == "": CompareMethod = self.CompareHyp
+ hypo = self.FindHypothesis(hyp, args, CompareMethod, self.mesh.smeshpyD)
+ pass
+ if hypo is None:
+ hypo = self.mesh.smeshpyD.CreateHypothesis(hyp, so)
+ a = ""
+ s = "="
+ i = 0
+ n = len(args)
+ while i<n:
+ a = a + s + str(args[i])
+ s = ","
+ i = i + 1
+ pass
+ SetName(hypo, hyp + a)
+ pass
+ status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
+ TreatHypoStatus( status, GetName(hypo), GetName(self.geom), 0 )
+ return hypo
- ## Returns number of tetrahedrons in mesh
- def NbTetras(self):
- return self.mesh.NbTetras()
- ## Returns number of tetrahedrons with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbTetrasOfOrder(self, elementOrder):
- return self.mesh.NbTetrasOfOrder(elementOrder)
+# Public class: Mesh_Segment
+# --------------------------
- ## Returns number of hexahedrons in mesh
- def NbHexas(self):
- return self.mesh.NbHexas()
+## Class to define a segment 1D algorithm for discretization
+#
+# More details.
+class Mesh_Segment(Mesh_Algorithm):
- ## Returns number of hexahedrons with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbHexasOfOrder(self, elementOrder):
- return self.mesh.NbHexasOfOrder(elementOrder)
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ Mesh_Algorithm.__init__(self)
+ self.Create(mesh, geom, "Regular_1D")
- ## Returns number of pyramids in mesh
- def NbPyramids(self):
- return self.mesh.NbPyramids()
+ ## Define "LocalLength" hypothesis to cut an edge in several segments with the same length
+ # @param l for the length of segments that cut an edge
+ # @param UseExisting if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ # @param p precision, used for number of segments calculation.
+ # It must be pozitive, meaningfull values are in range [0,1].
+ # In general, number of segments is calculated with formula:
+ # nb = ceil((edge_length / l) - p)
+ # Function ceil rounds its argument to the higher integer.
+ # So, p=0 means rounding of (edge_length / l) to the higher integer,
+ # p=0.5 means rounding of (edge_length / l) to the nearest integer,
+ # p=1 means rounding of (edge_length / l) to the lower integer.
+ # Default value is 1e-07.
+ def LocalLength(self, l, UseExisting=0, p=1e-07):
+ hyp = self.Hypothesis("LocalLength", [l,p], UseExisting=UseExisting,
+ CompareMethod=self.CompareLocalLength)
+ hyp.SetLength(l)
+ hyp.SetPrecision(p)
+ return hyp
- ## Returns number of pyramids with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbPyramidsOfOrder(self, elementOrder):
- return self.mesh.NbPyramidsOfOrder(elementOrder)
+ ## Check if the given "LocalLength" hypothesis has the same parameters as given arguments
+ def CompareLocalLength(self, hyp, args):
+ if IsEqual(hyp.GetLength(), args[0]):
+ return IsEqual(hyp.GetPrecision(), args[1])
+ return False
- ## Returns number of prisms in mesh
- def NbPrisms(self):
- return self.mesh.NbPrisms()
+ ## Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments
+ # @param n for the number of segments that cut an edge
+ # @param s for the scale factor (optional)
+ # @param UseExisting if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ def NumberOfSegments(self, n, s=[], UseExisting=0):
+ if s == []:
+ hyp = self.Hypothesis("NumberOfSegments", [n], UseExisting=UseExisting,
+ CompareMethod=self.CompareNumberOfSegments)
+ else:
+ hyp = self.Hypothesis("NumberOfSegments", [n,s], UseExisting=UseExisting,
+ CompareMethod=self.CompareNumberOfSegments)
+ hyp.SetDistrType( 1 )
+ hyp.SetScaleFactor(s)
+ hyp.SetNumberOfSegments(n)
+ return hyp
- ## Returns number of prisms with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbPrismsOfOrder(self, elementOrder):
- return self.mesh.NbPrismsOfOrder(elementOrder)
+ ## Check if the given "NumberOfSegments" hypothesis has the same parameters as given arguments
+ def CompareNumberOfSegments(self, hyp, args):
+ if hyp.GetNumberOfSegments() == args[0]:
+ if len(args) == 1:
+ return True
+ else:
+ if hyp.GetDistrType() == 1:
+ if IsEqual(hyp.GetScaleFactor(), args[1]):
+ return True
+ return False
- ## Returns number of polyhedrons in mesh
- def NbPolyhedrons(self):
- return self.mesh.NbPolyhedrons()
+ ## Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing
+ # @param start for the length of the first segment
+ # @param end for the length of the last segment
+ # @param UseExisting if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ def Arithmetic1D(self, start, end, UseExisting=0):
+ hyp = self.Hypothesis("Arithmetic1D", [start, end], UseExisting=UseExisting,
+ CompareMethod=self.CompareArithmetic1D)
+ hyp.SetLength(start, 1)
+ hyp.SetLength(end , 0)
+ return hyp
- ## Returns number of submeshes in mesh
- def NbSubMesh(self):
- return self.mesh.NbSubMesh()
+ ## Check if the given "Arithmetic1D" hypothesis has the same parameters as given arguments
+ def CompareArithmetic1D(self, hyp, args):
+ if IsEqual(hyp.GetLength(1), args[0]):
+ if IsEqual(hyp.GetLength(0), args[1]):
+ return True
+ return False
- ## Returns list of mesh elements ids
- def GetElementsId(self):
- return self.mesh.GetElementsId()
+ ## Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing
+ # @param start for the length of the first segment
+ # @param end for the length of the last segment
+ # @param UseExisting if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ def StartEndLength(self, start, end, UseExisting=0):
+ hyp = self.Hypothesis("StartEndLength", [start, end], UseExisting=UseExisting,
+ CompareMethod=self.CompareStartEndLength)
+ hyp.SetLength(start, 1)
+ hyp.SetLength(end , 0)
+ return hyp
- ## Returns list of ids of mesh elements with given type
- # @param elementType is required type of elements
- def GetElementsByType(self, elementType):
- return self.mesh.GetElementsByType(elementType)
+ ## Check if the given "StartEndLength" hypothesis has the same parameters as given arguments
+ def CompareStartEndLength(self, hyp, args):
+ if IsEqual(hyp.GetLength(1), args[0]):
+ if IsEqual(hyp.GetLength(0), args[1]):
+ return True
+ return False
- ## Returns list of mesh nodes ids
- def GetNodesId(self):
- return self.mesh.GetNodesId()
+ ## Define "Deflection1D" hypothesis
+ # @param d for the deflection
+ # @param UseExisting if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ def Deflection1D(self, d, UseExisting=0):
+ hyp = self.Hypothesis("Deflection1D", [d], UseExisting=UseExisting,
+ CompareMethod=self.CompareDeflection1D)
+ hyp.SetDeflection(d)
+ return hyp
- # Get informations about mesh elements:
- # ------------------------------------
+ ## Check if the given "Deflection1D" hypothesis has the same parameters as given arguments
+ def CompareDeflection1D(self, hyp, args):
+ return IsEqual(hyp.GetDeflection(), args[0])
- ## Returns type of mesh element
- def GetElementType(self, id, iselem):
- return self.mesh.GetElementType(id, iselem)
+ ## Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in
+ # the opposite side in the case of quadrangular faces
+ def Propagation(self):
+ return self.Hypothesis("Propagation", UseExisting=1, CompareMethod=self.CompareEqualHyp)
- ## Returns list of submesh elements ids
- # @param Shape is geom object(subshape) IOR
- # Shape must be subshape of a ShapeToMesh()
- def GetSubMeshElementsId(self, Shape):
- if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
- ShapeID = Shape.GetSubShapeIndices()[0]
- else:
- ShapeID = Shape
- return self.mesh.GetSubMeshElementsId(ShapeID)
+ ## Define "AutomaticLength" hypothesis
+ # @param fineness for the fineness [0-1]
+ # @param UseExisting if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ def AutomaticLength(self, fineness=0, UseExisting=0):
+ hyp = self.Hypothesis("AutomaticLength",[fineness],UseExisting=UseExisting,
+ CompareMethod=self.CompareAutomaticLength)
+ hyp.SetFineness( fineness )
+ return hyp
- ## Returns list of submesh nodes ids
- # @param Shape is geom object(subshape) IOR
- # Shape must be subshape of a ShapeToMesh()
- def GetSubMeshNodesId(self, Shape, all):
- if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
- ShapeID = Shape.GetSubShapeIndices()[0]
- else:
- ShapeID = Shape
- return self.mesh.GetSubMeshNodesId(ShapeID, all)
+ ## Check if the given "AutomaticLength" hypothesis has the same parameters as given arguments
+ def CompareAutomaticLength(self, hyp, args):
+ return IsEqual(hyp.GetFineness(), args[0])
- ## Returns list of ids of submesh elements with given type
- # @param Shape is geom object(subshape) IOR
- # Shape must be subshape of a ShapeToMesh()
- def GetSubMeshElementType(self, Shape):
- if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
- ShapeID = Shape.GetSubShapeIndices()[0]
+ ## Define "SegmentLengthAroundVertex" hypothesis
+ # @param length for the segment length
+ # @param vertex for the length localization: vertex index [0,1] | vertex object.
+ # Any other integer value means what hypo will be set on the
+ # whole 1D shape, where Mesh_Segment algorithm is assigned.
+ # @param UseExisting if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ def LengthNearVertex(self, length, vertex=0, UseExisting=0):
+ import types
+ store_geom = self.geom
+ if type(vertex) is types.IntType:
+ if vertex == 0 or vertex == 1:
+ vertex = self.mesh.geompyD.SubShapeAllSorted(self.geom, geompyDC.ShapeType["VERTEX"])[vertex]
+ self.geom = vertex
+ pass
+ pass
else:
- ShapeID = Shape
- return self.mesh.GetSubMeshElementType(ShapeID)
-
- ## Get mesh description
- def Dump(self):
- return self.mesh.Dump()
+ self.geom = vertex
+ pass
+ ### 0D algorithm
+ if self.geom is None:
+ raise RuntimeError, "Attemp to create SegmentAroundVertex_0D algoritm on None shape"
+ name = GetName(self.geom)
+ if name == NO_NAME:
+ piece = self.mesh.geom
+ name = self.mesh.geompyD.SubShapeName(self.geom, piece)
+ self.mesh.geompyD.addToStudyInFather(piece, self.geom, name)
+ algo = self.FindAlgorithm("SegmentAroundVertex_0D", self.mesh.smeshpyD)
+ if algo is None:
+ algo = self.mesh.smeshpyD.CreateHypothesis("SegmentAroundVertex_0D", "libStdMeshersEngine.so")
+ pass
+ status = self.mesh.mesh.AddHypothesis(self.geom, algo)
+ TreatHypoStatus(status, "SegmentAroundVertex_0D", name, True)
+ ###
+ hyp = self.Hypothesis("SegmentLengthAroundVertex", [length], UseExisting=UseExisting,
+ CompareMethod=self.CompareLengthNearVertex)
+ self.geom = store_geom
+ hyp.SetLength( length )
+ return hyp
+ ## Check if the given "LengthNearVertex" hypothesis has the same parameters as given arguments
+ def CompareLengthNearVertex(self, hyp, args):
+ return IsEqual(hyp.GetLength(), args[0])
- # Get information about nodes and elements of mesh by its ids:
- # -----------------------------------------------------------
+ ## Define "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
+ # If the 2D mesher sees that all boundary edges are quadratic ones,
+ # it generates quadratic faces, else it generates linear faces using
+ # medium nodes as if they were vertex ones.
+ # The 3D mesher generates quadratic volumes only if all boundary faces
+ # are quadratic ones, else it fails.
+ def QuadraticMesh(self):
+ hyp = self.Hypothesis("QuadraticMesh", UseExisting=1, CompareMethod=self.CompareEqualHyp)
+ return hyp
- ## Get XYZ coordinates of node as list of double
- # \n If there is not node for given ID - returns empty list
- def GetNodeXYZ(self, id):
- return self.mesh.GetNodeXYZ(id)
+# Public class: Mesh_CompositeSegment
+# --------------------------
- ## For given node returns list of IDs of inverse elements
- # \n If there is not node for given ID - returns empty list
- def GetNodeInverseElements(self, id):
- return self.mesh.GetNodeInverseElements(id)
+## Class to define a segment 1D algorithm for discretization
+#
+# More details.
+class Mesh_CompositeSegment(Mesh_Segment):
- ## @brief Return position of a node on shape
- # @return SMESH::NodePosition
- def GetNodePosition(self,NodeID):
- return self.mesh.GetNodePosition(NodeID)
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ self.Create(mesh, geom, "CompositeSegment_1D")
- ## If given element is node returns IDs of shape from position
- # \n If there is not node for given ID - returns -1
- def GetShapeID(self, id):
- return self.mesh.GetShapeID(id)
- ## For given element returns ID of result shape after
- # FindShape() from SMESH_MeshEditor
- # \n If there is not element for given ID - returns -1
- def GetShapeIDForElem(self,id):
- return self.mesh.GetShapeIDForElem(id)
+# Public class: Mesh_Segment_Python
+# ---------------------------------
- ## Returns number of nodes for given element
- # \n If there is not element for given ID - returns -1
- def GetElemNbNodes(self, id):
- return self.mesh.GetElemNbNodes(id)
+## Class to define a segment 1D algorithm for discretization with python function
+#
+# More details.
+class Mesh_Segment_Python(Mesh_Segment):
- ## Returns ID of node by given index for given element
- # \n If there is not element for given ID - returns -1
- # \n If there is not node for given index - returns -2
- def GetElemNode(self, id, index):
- return self.mesh.GetElemNode(id, index)
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ import Python1dPlugin
+ self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so")
- ## Returns IDs of nodes of given element
- def GetElemNodes(self, id):
- return self.mesh.GetElemNodes(id)
+ ## Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality
+ # @param n for the number of segments that cut an edge
+ # @param func for the python function that calculate the length of all segments
+ # @param UseExisting if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ def PythonSplit1D(self, n, func, UseExisting=0):
+ hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so",
+ UseExisting=UseExisting, CompareMethod=self.ComparePythonSplit1D)
+ hyp.SetNumberOfSegments(n)
+ hyp.SetPythonLog10RatioFunction(func)
+ return hyp
- ## Returns true if given node is medium node
- # in given quadratic element
- def IsMediumNode(self, elementID, nodeID):
- return self.mesh.IsMediumNode(elementID, nodeID)
+ ## Check if the given "PythonSplit1D" hypothesis has the same parameters as given arguments
+ def ComparePythonSplit1D(self, hyp, args):
+ #if hyp.GetNumberOfSegments() == args[0]:
+ # if hyp.GetPythonLog10RatioFunction() == args[1]:
+ # return True
+ return False
- ## Returns true if given node is medium node
- # in one of quadratic elements
- def IsMediumNodeOfAnyElem(self, nodeID, elementType):
- return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
+# Public class: Mesh_Triangle
+# ---------------------------
- ## Returns number of edges for given element
- def ElemNbEdges(self, id):
- return self.mesh.ElemNbEdges(id)
+## Class to define a triangle 2D algorithm
+#
+# More details.
+class Mesh_Triangle(Mesh_Algorithm):
- ## Returns number of faces for given element
- def ElemNbFaces(self, id):
- return self.mesh.ElemNbFaces(id)
+ # default values
+ algoType = 0
+ params = 0
- ## Returns true if given element is polygon
- def IsPoly(self, id):
- return self.mesh.IsPoly(id)
+ _angleMeshS = 8
+ _gradation = 1.1
- ## Returns true if given element is quadratic
- def IsQuadratic(self, id):
- return self.mesh.IsQuadratic(id)
+ ## Private constructor.
+ def __init__(self, mesh, algoType, geom=0):
+ Mesh_Algorithm.__init__(self)
- ## Returns XYZ coordinates of bary center for given element
- # as list of double
- # \n If there is not element for given ID - returns empty list
- def BaryCenter(self, id):
- return self.mesh.BaryCenter(id)
+ self.algoType = algoType
+ if algoType == MEFISTO:
+ self.Create(mesh, geom, "MEFISTO_2D")
+ pass
+ elif algoType == BLSURF:
+ import BLSURFPlugin
+ self.Create(mesh, geom, "BLSURF", "libBLSURFEngine.so")
+ self.SetPhysicalMesh()
+ elif algoType == NETGEN:
+ if noNETGENPlugin:
+ print "Warning: NETGENPlugin module unavailable"
+ pass
+ self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
+ pass
+ elif algoType == NETGEN_2D:
+ if noNETGENPlugin:
+ print "Warning: NETGENPlugin module unavailable"
+ pass
+ self.Create(mesh, geom, "NETGEN_2D_ONLY", "libNETGENEngine.so")
+ pass
+ ## Define "MaxElementArea" hypothesis to give the maximum area of each triangle
+ # @param area for the maximum area of each triangle
+ # @param UseExisting if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ #
+ # Only for algoType == MEFISTO || NETGEN_2D
+ def MaxElementArea(self, area, UseExisting=0):
+ if self.algoType == MEFISTO or self.algoType == NETGEN_2D:
+ hyp = self.Hypothesis("MaxElementArea", [area], UseExisting=UseExisting,
+ CompareMethod=self.CompareMaxElementArea)
+ hyp.SetMaxElementArea(area)
+ return hyp
+ elif self.algoType == NETGEN:
+ print "Netgen 1D-2D algo doesn't support this hypothesis"
+ return None
- # Mesh edition (SMESH_MeshEditor functionality):
- # ---------------------------------------------
+ ## Check if the given "MaxElementArea" hypothesis has the same parameters as given arguments
+ def CompareMaxElementArea(self, hyp, args):
+ return IsEqual(hyp.GetMaxElementArea(), args[0])
- ## Removes elements from mesh by ids
- # @param IDsOfElements is list of ids of elements to remove
- def RemoveElements(self, IDsOfElements):
- return self.editor.RemoveElements(IDsOfElements)
+ ## Define "LengthFromEdges" hypothesis to build triangles
+ # based on the length of the edges taken from the wire
+ #
+ # Only for algoType == MEFISTO || NETGEN_2D
+ def LengthFromEdges(self):
+ if self.algoType == MEFISTO or self.algoType == NETGEN_2D:
+ hyp = self.Hypothesis("LengthFromEdges", UseExisting=1, CompareMethod=self.CompareEqualHyp)
+ return hyp
+ elif self.algoType == NETGEN:
+ print "Netgen 1D-2D algo doesn't support this hypothesis"
+ return None
- ## Removes nodes from mesh by ids
- # @param IDsOfNodes is list of ids of nodes to remove
- def RemoveNodes(self, IDsOfNodes):
- return self.editor.RemoveNodes(IDsOfNodes)
+ ## Set PhysicalMesh
+ # @param thePhysicalMesh is:
+ # DefaultSize or Custom
+ def SetPhysicalMesh(self, thePhysicalMesh=1):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetPhysicalMesh(thePhysicalMesh)
- ## Add node to mesh by coordinates
- def AddNode(self, x, y, z):
- return self.editor.AddNode( x, y, z)
+ ## Set PhySize flag
+ def SetPhySize(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetPhySize(theVal)
+ ## Set GeometricMesh
+ # @param theGeometricMesh is:
+ # DefaultGeom or Custom
+ def SetGeometricMesh(self, theGeometricMesh=0):
+ if self.params == 0:
+ self.Parameters()
+ if self.params.GetPhysicalMesh() == 0: theGeometricMesh = 1
+ self.params.SetGeometricMesh(theGeometricMesh)
- ## Create edge both similar and quadratic (this is determed
- # by number of given nodes).
- # @param IdsOfNodes List of node IDs for creation of element.
- # Needed order of nodes in this list corresponds to description
- # of MED. \n This description is located by the following link:
- # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
- def AddEdge(self, IDsOfNodes):
- return self.editor.AddEdge(IDsOfNodes)
+ ## Set AngleMeshS flag
+ def SetAngleMeshS(self, theVal=_angleMeshS):
+ if self.params == 0:
+ self.Parameters()
+ if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS
+ self.params.SetAngleMeshS(theVal)
- ## Create face both similar and quadratic (this is determed
- # by number of given nodes).
- # @param IdsOfNodes List of node IDs for creation of element.
- # Needed order of nodes in this list corresponds to description
- # of MED. \n This description is located by the following link:
- # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
- def AddFace(self, IDsOfNodes):
- return self.editor.AddFace(IDsOfNodes)
+ ## Set Gradation flag
+ def SetGradation(self, theVal=_gradation):
+ if self.params == 0:
+ self.Parameters()
+ if self.params.GetGeometricMesh() == 0: theVal = self._gradation
+ self.params.SetGradation(theVal)
- ## Add polygonal face to mesh by list of nodes ids
- def AddPolygonalFace(self, IdsOfNodes):
- return self.editor.AddPolygonalFace(IdsOfNodes)
+ ## Set QuadAllowed flag
+ #
+ # Only for algoType == NETGEN || NETGEN_2D
+ def SetQuadAllowed(self, toAllow=True):
+ if self.algoType == NETGEN_2D:
+ if toAllow: # add QuadranglePreference
+ self.Hypothesis("QuadranglePreference", UseExisting=1, CompareMethod=self.CompareEqualHyp)
+ else: # remove QuadranglePreference
+ for hyp in self.mesh.GetHypothesisList( self.geom ):
+ if hyp.GetName() == "QuadranglePreference":
+ self.mesh.RemoveHypothesis( self.geom, hyp )
+ pass
+ pass
+ pass
+ return
+ if self.params == 0:
+ self.Parameters()
+ if self.params:
+ self.params.SetQuadAllowed(toAllow)
+ return
- ## Create volume both similar and quadratic (this is determed
- # by number of given nodes).
- # @param IdsOfNodes List of node IDs for creation of element.
- # Needed order of nodes in this list corresponds to description
- # of MED. \n This description is located by the following link:
- # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
- def AddVolume(self, IDsOfNodes):
- return self.editor.AddVolume(IDsOfNodes)
+ ## Define "Netgen 2D Parameters" hypothesis
+ #
+ # Only for algoType == NETGEN
+ def Parameters(self):
+ if self.algoType == NETGEN:
+ self.params = self.Hypothesis("NETGEN_Parameters_2D", [],
+ "libNETGENEngine.so", UseExisting=0)
+ return self.params
+ elif self.algoType == MEFISTO:
+ print "Mefisto algo doesn't support NETGEN_Parameters_2D hypothesis"
+ return None
+ elif self.algoType == NETGEN_2D:
+ print "NETGEN_2D_ONLY algo doesn't support 'NETGEN_Parameters_2D' hypothesis"
+ print "NETGEN_2D_ONLY uses 'MaxElementArea' and 'LengthFromEdges' ones"
+ return None
+ elif self.algoType == BLSURF:
+ self.params = self.Hypothesis("BLSURF_Parameters", [],
+ "libBLSURFEngine.so", UseExisting=0)
+ return self.params
+ return None
- ## Create volume of many faces, giving nodes for each face.
- # @param IdsOfNodes List of node IDs for volume creation face by face.
- # @param Quantities List of integer values, Quantities[i]
- # gives quantity of nodes in face number i.
- def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
- return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
+ ## Set MaxSize
+ #
+ # Only for algoType == NETGEN
+ def SetMaxSize(self, theSize):
+ if self.params == 0:
+ self.Parameters()
+ if self.params is not None:
+ self.params.SetMaxSize(theSize)
- ## Create volume of many faces, giving IDs of existing faces.
- # @param IdsOfFaces List of face IDs for volume creation.
+ ## Set SecondOrder flag
#
- # Note: The created volume will refer only to nodes
- # of the given faces, not to the faces itself.
- def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
- return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
+ # Only for algoType == NETGEN
+ def SetSecondOrder(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ if self.params is not None:
+ self.params.SetSecondOrder(theVal)
+ ## Set Optimize flag
+ #
+ # Only for algoType == NETGEN
+ def SetOptimize(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ if self.params is not None:
+ self.params.SetOptimize(theVal)
- ## @brief Bind a node to a vertex
- # @param NodeID - node ID
- # @param Vertex - vertex or vertex ID
- # @return True if succeed else raise an exception
- def SetNodeOnVertex(self, NodeID, Vertex):
- if ( isinstance( Vertex, geompyDC.GEOM._objref_GEOM_Object)):
- VertexID = Vertex.GetSubShapeIndices()[0]
- else:
- VertexID = Vertex
- try:
- self.editor.SetNodeOnVertex(NodeID, VertexID)
- except SALOME.SALOME_Exception, inst:
- raise ValueError, inst.details.text
- return True
+ ## Set Fineness
+ # @param theFineness is:
+ # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
+ #
+ # Only for algoType == NETGEN
+ def SetFineness(self, theFineness):
+ if self.params == 0:
+ self.Parameters()
+ if self.params is not None:
+ self.params.SetFineness(theFineness)
+ ## Set GrowthRate
+ #
+ # Only for algoType == NETGEN
+ def SetGrowthRate(self, theRate):
+ if self.params == 0:
+ self.Parameters()
+ if self.params is not None:
+ self.params.SetGrowthRate(theRate)
- ## @brief Store node position on an edge
- # @param NodeID - node ID
- # @param Edge - edge or edge ID
- # @param paramOnEdge - parameter on edge where the node is located
- # @return True if succeed else raise an exception
- def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge):
- if ( isinstance( Edge, geompyDC.GEOM._objref_GEOM_Object)):
- EdgeID = Edge.GetSubShapeIndices()[0]
- else:
- EdgeID = Edge
- try:
- self.editor.SetNodeOnEdge(NodeID, EdgeID, paramOnEdge)
- except SALOME.SALOME_Exception, inst:
- raise ValueError, inst.details.text
- return True
+ ## Set NbSegPerEdge
+ #
+ # Only for algoType == NETGEN
+ def SetNbSegPerEdge(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ if self.params is not None:
+ self.params.SetNbSegPerEdge(theVal)
- ## @brief Store node position on a face
- # @param NodeID - node ID
- # @param Face - face or face ID
- # @param u - U parameter on face where the node is located
- # @param v - V parameter on face where the node is located
- # @return True if succeed else raise an exception
- def SetNodeOnFace(self, NodeID, Face, u, v):
- if ( isinstance( Face, geompyDC.GEOM._objref_GEOM_Object)):
- FaceID = Face.GetSubShapeIndices()[0]
- else:
- FaceID = Face
- try:
- self.editor.SetNodeOnFace(NodeID, FaceID, u, v)
- except SALOME.SALOME_Exception, inst:
- raise ValueError, inst.details.text
- return True
+ ## Set NbSegPerRadius
+ #
+ # Only for algoType == NETGEN
+ def SetNbSegPerRadius(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ if self.params is not None:
+ self.params.SetNbSegPerRadius(theVal)
- ## @brief Bind a node to a solid
- # @param NodeID - node ID
- # @param Solid - solid or solid ID
- # @return True if succeed else raise an exception
- def SetNodeInVolume(self, NodeID, Solid):
- if ( isinstance( Solid, geompyDC.GEOM._objref_GEOM_Object)):
- SolidID = Solid.GetSubShapeIndices()[0]
- else:
- SolidID = Solid
- try:
- self.editor.SetNodeInVolume(NodeID, SolidID)
- except SALOME.SALOME_Exception, inst:
- raise ValueError, inst.details.text
- return True
+ ## Set Decimesh flag
+ def SetDecimesh(self, toAllow=False):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetDecimesh(toAllow)
- ## @brief Bind an element to a shape
- # @param ElementID - element ID
- # @param Shape - shape or shape ID
- # @return True if succeed else raise an exception
- def SetMeshElementOnShape(self, ElementID, Shape):
- if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
- ShapeID = Shape.GetSubShapeIndices()[0]
- else:
- ShapeID = Shape
- try:
- self.editor.SetMeshElementOnShape(ElementID, ShapeID)
- except SALOME.SALOME_Exception, inst:
- raise ValueError, inst.details.text
- return True
+ pass
- ## Move node with given id
- # @param NodeID id of the node
- # @param x new X coordinate
- # @param y new Y coordinate
- # @param z new Z coordinate
- def MoveNode(self, NodeID, x, y, z):
- return self.editor.MoveNode(NodeID, x, y, z)
+# Public class: Mesh_Quadrangle
+# -----------------------------
- ## Find a node closest to a point
- # @param x X coordinate of a point
- # @param y Y coordinate of a point
- # @param z Z coordinate of a point
- # @return id of a node
- def FindNodeClosestTo(self, x, y, z):
- preview = self.mesh.GetMeshEditPreviewer()
- return preview.MoveClosestNodeToPoint(x, y, z, -1)
+## Class to define a quadrangle 2D algorithm
+#
+# More details.
+class Mesh_Quadrangle(Mesh_Algorithm):
- ## Find a node closest to a point and move it to a point location
- # @param x X coordinate of a point
- # @param y Y coordinate of a point
- # @param z Z coordinate of a point
- # @return id of a moved node
- def MeshToPassThroughAPoint(self, x, y, z):
- return self.editor.MoveClosestNodeToPoint(x, y, z, -1)
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ Mesh_Algorithm.__init__(self)
+ self.Create(mesh, geom, "Quadrangle_2D")
- ## Replace two neighbour triangles sharing Node1-Node2 link
- # with ones built on the same 4 nodes but having other common link.
- # @param NodeID1 first node id
- # @param NodeID2 second node id
- # @return false if proper faces not found
- def InverseDiag(self, NodeID1, NodeID2):
- return self.editor.InverseDiag(NodeID1, NodeID2)
+ ## Define "QuadranglePreference" hypothesis, forcing construction
+ # of quadrangles if the number of nodes on opposite edges is not the same
+ # in the case where the global number of nodes on edges is even
+ def QuadranglePreference(self):
+ hyp = self.Hypothesis("QuadranglePreference", UseExisting=1,
+ CompareMethod=self.CompareEqualHyp)
+ return hyp
- ## Replace two neighbour triangles sharing Node1-Node2 link
- # with a quadrangle built on the same 4 nodes.
- # @param NodeID1 first node id
- # @param NodeID2 second node id
- # @return false if proper faces not found
- def DeleteDiag(self, NodeID1, NodeID2):
- return self.editor.DeleteDiag(NodeID1, NodeID2)
+# Public class: Mesh_Tetrahedron
+# ------------------------------
- ## Reorient elements by ids
- # @param IDsOfElements if undefined reorient all mesh elements
- def Reorient(self, IDsOfElements=None):
- if IDsOfElements == None:
- IDsOfElements = self.GetElementsId()
- return self.editor.Reorient(IDsOfElements)
+## Class to define a tetrahedron 3D algorithm
+#
+# More details.
+class Mesh_Tetrahedron(Mesh_Algorithm):
- ## Reorient all elements of the object
- # @param theObject is mesh, submesh or group
- def ReorientObject(self, theObject):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- return self.editor.ReorientObject(theObject)
+ params = 0
+ algoType = 0
- ## Fuse neighbour triangles into quadrangles.
- # @param IDsOfElements The triangles to be fused,
- # @param theCriterion is FT_...; used to choose a neighbour to fuse with.
- # @param MaxAngle is a max angle between element normals at which fusion
- # is still performed; theMaxAngle is mesured in radians.
- # @return TRUE in case of success, FALSE otherwise.
- def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- return self.editor.TriToQuad(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
+ ## Private constructor.
+ def __init__(self, mesh, algoType, geom=0):
+ Mesh_Algorithm.__init__(self)
- ## Fuse neighbour triangles of the object into quadrangles
- # @param theObject is mesh, submesh or group
- # @param theCriterion is FT_...; used to choose a neighbour to fuse with.
- # @param MaxAngle is a max angle between element normals at which fusion
- # is still performed; theMaxAngle is mesured in radians.
- # @return TRUE in case of success, FALSE otherwise.
- def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- return self.editor.TriToQuadObject(theObject, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
+ if algoType == NETGEN:
+ self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so")
+ pass
- ## Split quadrangles into triangles.
- # @param IDsOfElements the faces to be splitted.
- # @param theCriterion is FT_...; used to choose a diagonal for splitting.
- # @return TRUE in case of success, FALSE otherwise.
- def QuadToTri (self, IDsOfElements, theCriterion):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- return self.editor.QuadToTri(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion))
+ elif algoType == GHS3D:
+ import GHS3DPlugin
+ self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so")
+ pass
- ## Split quadrangles into triangles.
- # @param theObject object to taking list of elements from, is mesh, submesh or group
- # @param theCriterion is FT_...; used to choose a diagonal for splitting.
- def QuadToTriObject (self, theObject, theCriterion):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- return self.editor.QuadToTriObject(theObject, self.smeshpyD.GetFunctor(theCriterion))
+ elif algoType == FULL_NETGEN:
+ if noNETGENPlugin:
+ print "Warning: NETGENPlugin module has not been imported."
+ self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
+ pass
- ## Split quadrangles into triangles.
- # @param theElems The faces to be splitted
- # @param the13Diag is used to choose a diagonal for splitting.
- # @return TRUE in case of success, FALSE otherwise.
- def SplitQuad (self, IDsOfElements, Diag13):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- return self.editor.SplitQuad(IDsOfElements, Diag13)
+ self.algoType = algoType
- ## Split quadrangles into triangles.
- # @param theObject is object to taking list of elements from, is mesh, submesh or group
- def SplitQuadObject (self, theObject, Diag13):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- return self.editor.SplitQuadObject(theObject, Diag13)
+ ## Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral
+ # @param vol for the maximum volume of each tetrahedral
+ # @param UseExisting if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ def MaxElementVolume(self, vol, UseExisting=0):
+ hyp = self.Hypothesis("MaxElementVolume", [vol], UseExisting=UseExisting,
+ CompareMethod=self.CompareMaxElementVolume)
+ hyp.SetMaxElementVolume(vol)
+ return hyp
- ## Find better splitting of the given quadrangle.
- # @param IDOfQuad ID of the quadrangle to be splitted.
- # @param theCriterion is FT_...; a criterion to choose a diagonal for splitting.
- # @return 1 if 1-3 diagonal is better, 2 if 2-4
- # diagonal is better, 0 if error occurs.
- def BestSplit (self, IDOfQuad, theCriterion):
- return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion))
+ ## Check if the given "MaxElementVolume" hypothesis has the same parameters as given arguments
+ def CompareMaxElementVolume(self, hyp, args):
+ return IsEqual(hyp.GetMaxElementVolume(), args[0])
- ## Split quafrangle faces near triangular facets of volumes
- #
- def SplitQuadsNearTriangularFacets(self):
- faces_array = self.GetElementsByType(SMESH.FACE)
- for face_id in faces_array:
- if self.GetElemNbNodes(face_id) == 4: # quadrangle
- quad_nodes = self.mesh.GetElemNodes(face_id)
- node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1])
- isVolumeFound = False
- for node1_elem in node1_elems:
- if not isVolumeFound:
- if self.GetElementType(node1_elem, True) == SMESH.VOLUME:
- nb_nodes = self.GetElemNbNodes(node1_elem)
- if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism
- volume_elem = node1_elem
- volume_nodes = self.mesh.GetElemNodes(volume_elem)
- if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2
- if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4
- isVolumeFound = True
- if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3
- self.SplitQuad([face_id], False) # diagonal 2-4
- elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4
- isVolumeFound = True
- self.SplitQuad([face_id], True) # diagonal 1-3
- elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2
- if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2
- isVolumeFound = True
- self.SplitQuad([face_id], True) # diagonal 1-3
+ ## Define "Netgen 3D Parameters" hypothesis
+ def Parameters(self):
+ if (self.algoType == FULL_NETGEN):
+ self.params = self.Hypothesis("NETGEN_Parameters", [],
+ "libNETGENEngine.so", UseExisting=0)
+ return self.params
+ else:
+ print "Algo doesn't support this hypothesis"
+ return None
- ## @brief Split hexahedrons into tetrahedrons.
- #
- # Use pattern mapping functionality for splitting.
- # @param theObject object to take list of hexahedrons from; is mesh, submesh or group.
- # @param theNode000,theNode001 is in range [0,7]; give an orientation of the
- # pattern relatively each hexahedron: the (0,0,0) key-point of pattern
- # will be mapped into <theNode000>-th node of each volume, the (0,0,1)
- # key-point will be mapped into <theNode001>-th node of each volume.
- # The (0,0,0) key-point of used pattern corresponds to not split corner.
- # @return TRUE in case of success, FALSE otherwise.
- def SplitHexaToTetras (self, theObject, theNode000, theNode001):
- # Pattern: 5.---------.6
- # /|#* /|
- # / | #* / |
- # / | # * / |
- # / | # /* |
- # (0,0,1) 4.---------.7 * |
- # |#* |1 | # *|
- # | # *.----|---#.2
- # | #/ * | /
- # | /# * | /
- # | / # * | /
- # |/ #*|/
- # (0,0,0) 0.---------.3
- pattern_tetra = "!!! Nb of points: \n 8 \n\
- !!! Points: \n\
- 0 0 0 !- 0 \n\
- 0 1 0 !- 1 \n\
- 1 1 0 !- 2 \n\
- 1 0 0 !- 3 \n\
- 0 0 1 !- 4 \n\
- 0 1 1 !- 5 \n\
- 1 1 1 !- 6 \n\
- 1 0 1 !- 7 \n\
- !!! Indices of points of 6 tetras: \n\
- 0 3 4 1 \n\
- 7 4 3 1 \n\
- 4 7 5 1 \n\
- 6 2 5 7 \n\
- 1 5 2 7 \n\
- 2 3 1 7 \n"
+ ## Set MaxSize
+ def SetMaxSize(self, theSize):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetMaxSize(theSize)
- pattern = self.smeshpyD.GetPattern()
- isDone = pattern.LoadFromFile(pattern_tetra)
- if not isDone:
- print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
- return isDone
+ ## Set SecondOrder flag
+ def SetSecondOrder(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetSecondOrder(theVal)
- pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
- isDone = pattern.MakeMesh(self.mesh, False, False)
- if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
+ ## Set Optimize flag
+ def SetOptimize(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetOptimize(theVal)
- # split quafrangle faces near triangular facets of volumes
- self.SplitQuadsNearTriangularFacets()
+ ## Set Fineness
+ # @param theFineness is:
+ # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
+ def SetFineness(self, theFineness):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetFineness(theFineness)
- return isDone
+ ## Set GrowthRate
+ def SetGrowthRate(self, theRate):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetGrowthRate(theRate)
- ## @brief Split hexahedrons into prisms.
- #
- # Use pattern mapping functionality for splitting.
- # @param theObject object to take list of hexahedrons from; is mesh, submesh or group.
- # @param theNode000,theNode001 is in range [0,7]; give an orientation of the
- # pattern relatively each hexahedron: the (0,0,0) key-point of pattern
- # will be mapped into <theNode000>-th node of each volume, the (0,0,1)
- # key-point will be mapped into <theNode001>-th node of each volume.
- # The edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
- # @return TRUE in case of success, FALSE otherwise.
- def SplitHexaToPrisms (self, theObject, theNode000, theNode001):
- # Pattern: 5.---------.6
- # /|# /|
- # / | # / |
- # / | # / |
- # / | # / |
- # (0,0,1) 4.---------.7 |
- # | | | |
- # | 1.----|----.2
- # | / * | /
- # | / * | /
- # | / * | /
- # |/ *|/
- # (0,0,0) 0.---------.3
- pattern_prism = "!!! Nb of points: \n 8 \n\
- !!! Points: \n\
- 0 0 0 !- 0 \n\
- 0 1 0 !- 1 \n\
- 1 1 0 !- 2 \n\
- 1 0 0 !- 3 \n\
- 0 0 1 !- 4 \n\
- 0 1 1 !- 5 \n\
- 1 1 1 !- 6 \n\
- 1 0 1 !- 7 \n\
- !!! Indices of points of 2 prisms: \n\
- 0 1 3 4 5 7 \n\
- 2 3 1 6 7 5 \n"
+ ## Set NbSegPerEdge
+ def SetNbSegPerEdge(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetNbSegPerEdge(theVal)
+
+ ## Set NbSegPerRadius
+ def SetNbSegPerRadius(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetNbSegPerRadius(theVal)
- pattern = self.smeshpyD.GetPattern()
- isDone = pattern.LoadFromFile(pattern_prism)
- if not isDone:
- print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
- return isDone
+# Public class: Mesh_Hexahedron
+# ------------------------------
- pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
- isDone = pattern.MakeMesh(self.mesh, False, False)
- if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
+## Class to define a hexahedron 3D algorithm
+#
+# More details.
+class Mesh_Hexahedron(Mesh_Algorithm):
- # split quafrangle faces near triangular facets of volumes
- self.SplitQuadsNearTriangularFacets()
+ params = 0
+ algoType = 0
- return isDone
+ ## Private constructor.
+ def __init__(self, mesh, algoType=Hexa, geom=0):
+ Mesh_Algorithm.__init__(self)
- ## Smooth elements
- # @param IDsOfElements list if ids of elements to smooth
- # @param IDsOfFixedNodes list of ids of fixed nodes.
- # Note that nodes built on edges and boundary nodes are always fixed.
- # @param MaxNbOfIterations maximum number of iterations
- # @param MaxAspectRatio varies in range [1.0, inf]
- # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
- def Smooth(self, IDsOfElements, IDsOfFixedNodes,
- MaxNbOfIterations, MaxAspectRatio, Method):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
- MaxNbOfIterations, MaxAspectRatio, Method)
+ self.algoType = algoType
- ## Smooth elements belong to given object
- # @param theObject object to smooth
- # @param IDsOfFixedNodes list of ids of fixed nodes.
- # Note that nodes built on edges and boundary nodes are always fixed.
- # @param MaxNbOfIterations maximum number of iterations
- # @param MaxAspectRatio varies in range [1.0, inf]
- # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
- def SmoothObject(self, theObject, IDsOfFixedNodes,
- MaxNbOfIterations, MaxxAspectRatio, Method):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
- MaxNbOfIterations, MaxxAspectRatio, Method)
+ if algoType == Hexa:
+ self.Create(mesh, geom, "Hexa_3D")
+ pass
- ## Parametric smooth the given elements
- # @param IDsOfElements list if ids of elements to smooth
- # @param IDsOfFixedNodes list of ids of fixed nodes.
- # Note that nodes built on edges and boundary nodes are always fixed.
- # @param MaxNbOfIterations maximum number of iterations
- # @param MaxAspectRatio varies in range [1.0, inf]
- # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
- def SmoothParametric(self, IDsOfElements, IDsOfFixedNodes,
- MaxNbOfIterations, MaxAspectRatio, Method):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
- MaxNbOfIterations, MaxAspectRatio, Method)
+ elif algoType == Hexotic:
+ import HexoticPlugin
+ self.Create(mesh, geom, "Hexotic_3D", "libHexoticEngine.so")
+ pass
- ## Parametric smooth elements belong to given object
- # @param theObject object to smooth
- # @param IDsOfFixedNodes list of ids of fixed nodes.
- # Note that nodes built on edges and boundary nodes are always fixed.
- # @param MaxNbOfIterations maximum number of iterations
- # @param MaxAspectRatio varies in range [1.0, inf]
- # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
- def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
- MaxNbOfIterations, MaxAspectRatio, Method):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
- MaxNbOfIterations, MaxAspectRatio, Method)
+ ## Define "MinMaxQuad" hypothesis to give the three hexotic parameters
+ def MinMaxQuad(self, min=3, max=8, quad=True):
+ self.params = self.Hypothesis("Hexotic_Parameters", [], "libHexoticEngine.so",
+ UseExisting=0)
+ self.params.SetHexesMinLevel(min)
+ self.params.SetHexesMaxLevel(max)
+ self.params.SetHexoticQuadrangles(quad)
+ return self.params
- ## Converts all mesh to quadratic one, deletes old elements, replacing
- # them with quadratic ones with the same id.
- def ConvertToQuadratic(self, theForce3d):
- self.editor.ConvertToQuadratic(theForce3d)
+# Deprecated, only for compatibility!
+# Public class: Mesh_Netgen
+# ------------------------------
- ## Converts all mesh from quadratic to ordinary ones,
- # deletes old quadratic elements, \n replacing
- # them with ordinary mesh elements with the same id.
- def ConvertFromQuadratic(self):
- return self.editor.ConvertFromQuadratic()
+## Class to define a NETGEN-based 2D or 3D algorithm
+# that need no discrete boundary (i.e. independent)
+#
+# This class is deprecated, only for compatibility!
+#
+# More details.
+class Mesh_Netgen(Mesh_Algorithm):
- ## Renumber mesh nodes
- def RenumberNodes(self):
- self.editor.RenumberNodes()
+ is3D = 0
- ## Renumber mesh elements
- def RenumberElements(self):
- self.editor.RenumberElements()
+ ## Private constructor.
+ def __init__(self, mesh, is3D, geom=0):
+ Mesh_Algorithm.__init__(self)
- ## Generate new elements by rotation of the elements around the axis
- # @param IDsOfElements list of ids of elements to sweep
- # @param Axix axis of rotation, AxisStruct or line(geom object)
- # @param AngleInRadians angle of Rotation
- # @param NbOfSteps number of steps
- # @param Tolerance tolerance
- # @param MakeGroups to generate new groups from existing ones
- def RotationSweep(self, IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( Axix, geompyDC.GEOM._objref_GEOM_Object)):
- Axix = self.smeshpyD.GetAxisStruct(Axix)
- if MakeGroups:
- return self.editor.RotationSweepMakeGroups(IDsOfElements, Axix,
- AngleInRadians, NbOfSteps, Tolerance)
- self.editor.RotationSweep(IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance)
- return []
+ if noNETGENPlugin:
+ print "Warning: NETGENPlugin module has not been imported."
- ## Generate new elements by rotation of the elements of object around the axis
- # @param theObject object wich elements should be sweeped
- # @param Axix axis of rotation, AxisStruct or line(geom object)
- # @param AngleInRadians angle of Rotation
- # @param NbOfSteps number of steps
- # @param Tolerance tolerance
- # @param MakeGroups to generate new groups from existing ones
- def RotationSweepObject(self, theObject, Axix, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- if ( isinstance( Axix, geompyDC.GEOM._objref_GEOM_Object)):
- Axix = self.smeshpyD.GetAxisStruct(Axix)
- if MakeGroups:
- return self.editor.RotationSweepObjectMakeGroups(theObject, Axix, AngleInRadians,
- NbOfSteps, Tolerance)
- self.editor.RotationSweepObject(theObject, Axix, AngleInRadians, NbOfSteps, Tolerance)
- return []
+ self.is3D = is3D
+ if is3D:
+ self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
+ pass
- ## Generate new elements by extrusion of the elements with given ids
- # @param IDsOfElements list of elements ids for extrusion
- # @param StepVector vector, defining the direction and value of extrusion
- # @param NbOfSteps the number of steps
- # @param MakeGroups to generate new groups from existing ones
- def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
- StepVector = self.smeshpyD.GetDirStruct(StepVector)
- if MakeGroups:
- return self.editor.ExtrusionSweepMakeGroups(IDsOfElements, StepVector, NbOfSteps)
- self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
- return []
+ else:
+ self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
+ pass
- ## Generate new elements by extrusion of the elements with given ids
- # @param IDsOfElements is ids of elements
- # @param StepVector vector, defining the direction and value of extrusion
- # @param NbOfSteps the number of steps
- # @param ExtrFlags set flags for performing extrusion
- # @param SewTolerance uses for comparing locations of nodes if flag
- # EXTRUSION_FLAG_SEW is set
- # @param MakeGroups to generate new groups from existing ones
- def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance, MakeGroups=False):
- if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
- StepVector = self.smeshpyD.GetDirStruct(StepVector)
- if MakeGroups:
- return self.editor.AdvancedExtrusionMakeGroups(IDsOfElements, StepVector, NbOfSteps,
- ExtrFlags, SewTolerance)
- self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps,
- ExtrFlags, SewTolerance)
- return []
+ ## Define hypothesis containing parameters of the algorithm
+ def Parameters(self):
+ if self.is3D:
+ hyp = self.Hypothesis("NETGEN_Parameters", [],
+ "libNETGENEngine.so", UseExisting=0)
+ else:
+ hyp = self.Hypothesis("NETGEN_Parameters_2D", [],
+ "libNETGENEngine.so", UseExisting=0)
+ return hyp
- ## Generate new elements by extrusion of the elements belong to object
- # @param theObject object wich elements should be processed
- # @param StepVector vector, defining the direction and value of extrusion
- # @param NbOfSteps the number of steps
- # @param MakeGroups to generate new groups from existing ones
- def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
- StepVector = self.smeshpyD.GetDirStruct(StepVector)
- if MakeGroups:
- return self.editor.ExtrusionSweepObjectMakeGroups(theObject, StepVector, NbOfSteps)
- self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
- return []
+# Public class: Mesh_Projection1D
+# ------------------------------
- ## Generate new elements by extrusion of the elements belong to object
- # @param theObject object wich elements should be processed
- # @param StepVector vector, defining the direction and value of extrusion
- # @param NbOfSteps the number of steps
- # @param MakeGroups to generate new groups from existing ones
- def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
- StepVector = self.smeshpyD.GetDirStruct(StepVector)
- if MakeGroups:
- return self.editor.ExtrusionSweepObject1DMakeGroups(theObject, StepVector, NbOfSteps)
- self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
- return []
+## Class to define a projection 1D algorithm
+#
+# More details.
+class Mesh_Projection1D(Mesh_Algorithm):
+
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ Mesh_Algorithm.__init__(self)
+ self.Create(mesh, geom, "Projection_1D")
+
+ ## Define "Source Edge" hypothesis, specifying a meshed edge to
+ # take a mesh pattern from, and optionally association of vertices
+ # between the source edge and a target one (where a hipothesis is assigned to)
+ # @param edge to take nodes distribution from
+ # @param mesh to take nodes distribution from (optional)
+ # @param srcV is vertex of \a edge to associate with \a tgtV (optional)
+ # @param tgtV is vertex of \a the edge where the algorithm is assigned,
+ # to associate with \a srcV (optional)
+ # @param UseExisting if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None, UseExisting=0):
+ hyp = self.Hypothesis("ProjectionSource1D", [edge,mesh,srcV,tgtV],
+ UseExisting=0)
+ #UseExisting=UseExisting, CompareMethod=self.CompareSourceEdge)
+ hyp.SetSourceEdge( edge )
+ if not mesh is None and isinstance(mesh, Mesh):
+ mesh = mesh.GetMesh()
+ hyp.SetSourceMesh( mesh )
+ hyp.SetVertexAssociation( srcV, tgtV )
+ return hyp
- ## Generate new elements by extrusion of the elements belong to object
- # @param theObject object wich elements should be processed
- # @param StepVector vector, defining the direction and value of extrusion
- # @param NbOfSteps the number of steps
- # @param MakeGroups to generate new groups from existing ones
- def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
- StepVector = self.smeshpyD.GetDirStruct(StepVector)
- if MakeGroups:
- return self.editor.ExtrusionSweepObject2DMakeGroups(theObject, StepVector, NbOfSteps)
- self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
- return []
+ ## Check if the given "SourceEdge" hypothesis has the same parameters as given arguments
+ #def CompareSourceEdge(self, hyp, args):
+ # # seems to be not really useful to reuse existing "SourceEdge" hypothesis
+ # return False
- ## Generate new elements by extrusion of the given elements
- # A path of extrusion must be a meshed edge.
- # @param IDsOfElements is ids of elements
- # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
- # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
- # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
- # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
- # @param Angles list of angles
- # @param HasRefPoint allows to use base point
- # @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
- # User can specify any point as the Base Point and the shape will be rotated with respect to this point.
- # @param MakeGroups to generate new groups from existing ones
- # @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps
- def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
- HasAngles, Angles, HasRefPoint, RefPoint,
- MakeGroups=False, LinearVariation=False):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
- RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
- pass
- if MakeGroups:
- return self.editor.ExtrusionAlongPathMakeGroups(IDsOfElements, PathMesh.GetMesh(),
- PathShape, NodeStart, HasAngles,
- Angles, HasRefPoint, RefPoint)
- return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh.GetMesh(), PathShape,
- NodeStart, HasAngles, Angles, HasRefPoint, RefPoint)
- ## Generate new elements by extrusion of the elements belong to object
- # A path of extrusion must be a meshed edge.
- # @param IDsOfElements is ids of elements
- # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
- # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
- # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
- # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
- # @param Angles list of angles
- # @param HasRefPoint allows to use base point
- # @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
- # User can specify any point as the Base Point and the shape will be rotated with respect to this point.
- # @param MakeGroups to generate new groups from existing ones
- # @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps
- def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
- HasAngles, Angles, HasRefPoint, RefPoint,
- MakeGroups=False, LinearVariation=False):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
- RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
- if MakeGroups:
- return self.editor.ExtrusionAlongPathObjectMakeGroups(theObject, PathMesh.GetMesh(),
- PathShape, NodeStart, HasAngles,
- Angles, HasRefPoint, RefPoint)
- return self.editor.ExtrusionAlongPathObject(theObject, PathMesh.GetMesh(), PathShape,
- NodeStart, HasAngles, Angles, HasRefPoint,
- RefPoint)
+# Public class: Mesh_Projection2D
+# ------------------------------
- ## Symmetrical copy of mesh elements
- # @param IDsOfElements list of elements ids
- # @param Mirror is AxisStruct or geom object(point, line, plane)
- # @param theMirrorType is POINT, AXIS or PLANE
- # If the Mirror is geom object this parameter is unnecessary
- # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
- # @param MakeGroups to generate new groups from existing ones (if Copy)
- def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0, MakeGroups=False):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
- Mirror = self.smeshpyD.GetAxisStruct(Mirror)
- if Copy and MakeGroups:
- return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType)
- self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
- return []
+## Class to define a projection 2D algorithm
+#
+# More details.
+class Mesh_Projection2D(Mesh_Algorithm):
- ## Create a new mesh by symmetrical copy of mesh elements
- # @param IDsOfElements list of elements ids
- # @param Mirror is AxisStruct or geom object(point, line, plane)
- # @param theMirrorType is POINT, AXIS or PLANE
- # If the Mirror is geom object this parameter is unnecessary
- # @param MakeGroups to generate new groups from existing ones
- # @param NewMeshName is a name of new mesh to create
- def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType, MakeGroups=0, NewMeshName=""):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
- Mirror = self.smeshpyD.GetAxisStruct(Mirror)
- mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType,
- MakeGroups, NewMeshName)
- return Mesh(self.smeshpyD,self.geompyD,mesh)
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ Mesh_Algorithm.__init__(self)
+ self.Create(mesh, geom, "Projection_2D")
- ## Symmetrical copy of object
- # @param theObject mesh, submesh or group
- # @param Mirror is AxisStruct or geom object(point, line, plane)
- # @param theMirrorType is POINT, AXIS or PLANE
- # If the Mirror is geom object this parameter is unnecessary
- # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
- # @param MakeGroups to generate new groups from existing ones (if Copy)
- def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0, MakeGroups=False):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
- Mirror = self.smeshpyD.GetAxisStruct(Mirror)
- if Copy and MakeGroups:
- return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType)
- self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
- return []
+ ## Define "Source Face" hypothesis, specifying a meshed face to
+ # take a mesh pattern from, and optionally association of vertices
+ # between the source face and a target one (where a hipothesis is assigned to)
+ # @param face to take mesh pattern from
+ # @param mesh to take mesh pattern from (optional)
+ # @param srcV1 is vertex of \a face to associate with \a tgtV1 (optional)
+ # @param tgtV1 is vertex of \a the face where the algorithm is assigned,
+ # to associate with \a srcV1 (optional)
+ # @param srcV2 is vertex of \a face to associate with \a tgtV1 (optional)
+ # @param tgtV2 is vertex of \a the face where the algorithm is assigned,
+ # to associate with \a srcV2 (optional)
+ # @param UseExisting if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ #
+ # Note: association vertices must belong to one edge of a face
+ def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None,
+ srcV2=None, tgtV2=None, UseExisting=0):
+ hyp = self.Hypothesis("ProjectionSource2D", [face,mesh,srcV1,tgtV1,srcV2,tgtV2],
+ UseExisting=0)
+ #UseExisting=UseExisting, CompareMethod=self.CompareSourceFace)
+ hyp.SetSourceFace( face )
+ if not mesh is None and isinstance(mesh, Mesh):
+ mesh = mesh.GetMesh()
+ hyp.SetSourceMesh( mesh )
+ hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
+ return hyp
- ## Create a new mesh by symmetrical copy of object
- # @param theObject mesh, submesh or group
- # @param Mirror is AxisStruct or geom object(point, line, plane)
- # @param theMirrorType is POINT, AXIS or PLANE
- # If the Mirror is geom object this parameter is unnecessary
- # @param MakeGroups to generate new groups from existing ones
- # @param NewMeshName is a name of new mesh to create
- def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType,MakeGroups=0, NewMeshName=""):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- if (isinstance(Mirror, geompyDC.GEOM._objref_GEOM_Object)):
- Mirror = self.smeshpyD.GetAxisStruct(Mirror)
- mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType,
- MakeGroups, NewMeshName)
- return Mesh( self.smeshpyD,self.geompyD,mesh )
+ ## Check if the given "SourceFace" hypothesis has the same parameters as given arguments
+ #def CompareSourceFace(self, hyp, args):
+ # # seems to be not really useful to reuse existing "SourceFace" hypothesis
+ # return False
- ## Translates the elements
- # @param IDsOfElements list of elements ids
- # @param Vector direction of translation(DirStruct or vector)
- # @param Copy allows to copy the translated elements
- # @param MakeGroups to generate new groups from existing ones (if Copy)
- def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
- Vector = self.smeshpyD.GetDirStruct(Vector)
- if Copy and MakeGroups:
- return self.editor.TranslateMakeGroups(IDsOfElements, Vector)
- self.editor.Translate(IDsOfElements, Vector, Copy)
- return []
+# Public class: Mesh_Projection3D
+# ------------------------------
- ## Create a new mesh of translated elements
- # @param IDsOfElements list of elements ids
- # @param Vector direction of translation(DirStruct or vector)
- # @param MakeGroups to generate new groups from existing ones
- # @param NewMeshName is a name of new mesh to create
- def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
- Vector = self.smeshpyD.GetDirStruct(Vector)
- mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName)
- return Mesh ( self.smeshpyD, self.geompyD, mesh )
+## Class to define a projection 3D algorithm
+#
+# More details.
+class Mesh_Projection3D(Mesh_Algorithm):
- ## Translates the object
- # @param theObject object to translate(mesh, submesh, or group)
- # @param Vector direction of translation(DirStruct or geom vector)
- # @param Copy allows to copy the translated elements
- # @param MakeGroups to generate new groups from existing ones (if Copy)
- def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False):
- if ( isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
- Vector = self.smeshpyD.GetDirStruct(Vector)
- if Copy and MakeGroups:
- return self.editor.TranslateObjectMakeGroups(theObject, Vector)
- self.editor.TranslateObject(theObject, Vector, Copy)
- return []
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ Mesh_Algorithm.__init__(self)
+ self.Create(mesh, geom, "Projection_3D")
+
+ ## Define "Source Shape 3D" hypothesis, specifying a meshed solid to
+ # take a mesh pattern from, and optionally association of vertices
+ # between the source solid and a target one (where a hipothesis is assigned to)
+ # @param solid to take mesh pattern from
+ # @param mesh to take mesh pattern from (optional)
+ # @param srcV1 is vertex of \a solid to associate with \a tgtV1 (optional)
+ # @param tgtV1 is vertex of \a the solid where the algorithm is assigned,
+ # to associate with \a srcV1 (optional)
+ # @param srcV2 is vertex of \a solid to associate with \a tgtV1 (optional)
+ # @param tgtV2 is vertex of \a the solid where the algorithm is assigned,
+ # to associate with \a srcV2 (optional)
+ # @param UseExisting - if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ #
+ # Note: association vertices must belong to one edge of a solid
+ def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0,
+ srcV2=0, tgtV2=0, UseExisting=0):
+ hyp = self.Hypothesis("ProjectionSource3D",
+ [solid,mesh,srcV1,tgtV1,srcV2,tgtV2],
+ UseExisting=0)
+ #UseExisting=UseExisting, CompareMethod=self.CompareSourceShape3D)
+ hyp.SetSource3DShape( solid )
+ if not mesh is None and isinstance(mesh, Mesh):
+ mesh = mesh.GetMesh()
+ hyp.SetSourceMesh( mesh )
+ hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
+ return hyp
- ## Create a new mesh from translated object
- # @param theObject object to translate(mesh, submesh, or group)
- # @param Vector direction of translation(DirStruct or geom vector)
- # @param MakeGroups to generate new groups from existing ones
- # @param NewMeshName is a name of new mesh to create
- def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""):
- if (isinstance(theObject, Mesh)):
- theObject = theObject.GetMesh()
- if (isinstance(Vector, geompyDC.GEOM._objref_GEOM_Object)):
- Vector = self.smeshpyD.GetDirStruct(Vector)
- mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName)
- return Mesh( self.smeshpyD, self.geompyD, mesh )
+ ## Check if the given "SourceShape3D" hypothesis has the same parameters as given arguments
+ #def CompareSourceShape3D(self, hyp, args):
+ # # seems to be not really useful to reuse existing "SourceShape3D" hypothesis
+ # return False
- ## Rotates the elements
- # @param IDsOfElements list of elements ids
- # @param Axis axis of rotation(AxisStruct or geom line)
- # @param AngleInRadians angle of rotation(in radians)
- # @param Copy allows to copy the rotated elements
- # @param MakeGroups to generate new groups from existing ones (if Copy)
- def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
- Axis = self.smeshpyD.GetAxisStruct(Axis)
- if Copy and MakeGroups:
- return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians)
- self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
- return []
- ## Create a new mesh of rotated elements
- # @param IDsOfElements list of element ids
- # @param Axis axis of rotation(AxisStruct or geom line)
- # @param AngleInRadians angle of rotation(in radians)
- # @param MakeGroups to generate new groups from existing ones
- # @param NewMeshName is a name of new mesh to create
- def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
- Axis = self.smeshpyD.GetAxisStruct(Axis)
- mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians,
- MakeGroups, NewMeshName)
- return Mesh( self.smeshpyD, self.geompyD, mesh )
+# Public class: Mesh_Prism
+# ------------------------
- ## Rotates the object
- # @param theObject object to rotate(mesh, submesh, or group)
- # @param Axis axis of rotation(AxisStruct or geom line)
- # @param AngleInRadians angle of rotation(in radians)
- # @param Copy allows to copy the rotated elements
- # @param MakeGroups to generate new groups from existing ones (if Copy)
- def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False):
- if (isinstance(theObject, Mesh)):
- theObject = theObject.GetMesh()
- if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
- Axis = self.smeshpyD.GetAxisStruct(Axis)
- if Copy and MakeGroups:
- return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians)
- self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
- return []
+## Class to define a 3D extrusion algorithm
+#
+# More details.
+class Mesh_Prism3D(Mesh_Algorithm):
- ## Create a new mesh from a rotated object
- # @param theObject object to rotate (mesh, submesh, or group)
- # @param Axis axis of rotation(AxisStruct or geom line)
- # @param AngleInRadians angle of rotation(in radians)
- # @param MakeGroups to generate new groups from existing ones
- # @param NewMeshName is a name of new mesh to create
- def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""):
- if (isinstance( theObject, Mesh )):
- theObject = theObject.GetMesh()
- if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
- Axis = self.smeshpyD.GetAxisStruct(Axis)
- mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians,
- MakeGroups, NewMeshName)
- return Mesh( self.smeshpyD, self.geompyD, mesh )
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ Mesh_Algorithm.__init__(self)
+ self.Create(mesh, geom, "Prism_3D")
- ## Find group of nodes close to each other within Tolerance.
- # @param Tolerance tolerance value
- # @param list of group of nodes
- def FindCoincidentNodes (self, Tolerance):
- return self.editor.FindCoincidentNodes(Tolerance)
+# Public class: Mesh_RadialPrism
+# -------------------------------
- ## Find group of nodes close to each other within Tolerance.
- # @param Tolerance tolerance value
- # @param SubMeshOrGroup SubMesh or Group
- # @param list of group of nodes
- def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance):
- return self.editor.FindCoincidentNodesOnPart(SubMeshOrGroup, Tolerance)
+## Class to define a Radial Prism 3D algorithm
+#
+# More details.
+class Mesh_RadialPrism3D(Mesh_Algorithm):
- ## Merge nodes
- # @param list of group of nodes
- def MergeNodes (self, GroupsOfNodes):
- self.editor.MergeNodes(GroupsOfNodes)
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ Mesh_Algorithm.__init__(self)
+ self.Create(mesh, geom, "RadialPrism_3D")
- ## Find elements built on the same nodes.
- # @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching
- # @return a list of groups of equal elements
- def FindEqualElements (self, MeshOrSubMeshOrGroup):
- return self.editor.FindEqualElements(MeshOrSubMeshOrGroup)
+ self.distribHyp = self.Hypothesis("LayerDistribution", UseExisting=0)
+ self.nbLayers = None
- ## Merge elements in each given group.
- # @param GroupsOfElementsID groups of elements for merging
- def MergeElements(self, GroupsOfElementsID):
- self.editor.MergeElements(GroupsOfElementsID)
+ ## Return 3D hypothesis holding the 1D one
+ def Get3DHypothesis(self):
+ return self.distribHyp
- ## Remove all but one of elements built on the same nodes.
- def MergeEqualElements(self):
- self.editor.MergeEqualElements()
+ ## Private method creating 1D hypothes and storing it in the LayerDistribution
+ # hypothes. Returns the created hypothes
+ def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
+ #print "OwnHypothesis",hypType
+ if not self.nbLayers is None:
+ self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
+ self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
+ study = self.mesh.smeshpyD.GetCurrentStudy() # prevent publishing of own 1D hypothesis
+ hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
+ self.mesh.smeshpyD.SetCurrentStudy( study ) # anable publishing
+ self.distribHyp.SetLayerDistribution( hyp )
+ return hyp
- ## Sew free borders
- def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
- FirstNodeID2, SecondNodeID2, LastNodeID2,
- CreatePolygons, CreatePolyedrs):
- return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
- FirstNodeID2, SecondNodeID2, LastNodeID2,
- CreatePolygons, CreatePolyedrs)
+ ## Define "NumberOfLayers" hypothesis, specifying a number of layers of
+ # prisms to build between the inner and outer shells
+ # @param UseExisting if ==true - search existing hypothesis created with
+ # same parameters, else (default) - create new
+ def NumberOfLayers(self, n, UseExisting=0):
+ self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
+ self.nbLayers = self.Hypothesis("NumberOfLayers", [n], UseExisting=UseExisting,
+ CompareMethod=self.CompareNumberOfLayers)
+ self.nbLayers.SetNumberOfLayers( n )
+ return self.nbLayers
- ## Sew conform free borders
- def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
- FirstNodeID2, SecondNodeID2):
- return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
- FirstNodeID2, SecondNodeID2)
+ ## Check if the given "NumberOfLayers" hypothesis has the same parameters as given arguments
+ def CompareNumberOfLayers(self, hyp, args):
+ return IsEqual(hyp.GetNumberOfLayers(), args[0])
- ## Sew border to side
- def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
- FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
- return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
- FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
+ ## Define "LocalLength" hypothesis, specifying segment length
+ # to build between the inner and outer shells
+ # @param l for the length of segments
+ # @param p for the precision of rounding
+ def LocalLength(self, l, p=1e-07):
+ hyp = self.OwnHypothesis("LocalLength", [l,p])
+ hyp.SetLength(l)
+ hyp.SetPrecision(p)
+ return hyp
- ## Sew two sides of a mesh. Nodes belonging to Side1 are
- # merged with nodes of elements of Side2.
- # Number of elements in theSide1 and in theSide2 must be
- # equal and they should have similar node connectivity.
- # The nodes to merge should belong to sides borders and
- # the first node should be linked to the second.
- def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
- NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
- NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
- return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
- NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
- NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
+ ## Define "NumberOfSegments" hypothesis, specifying a number of layers of
+ # prisms to build between the inner and outer shells
+ # @param n for the number of segments
+ # @param s for the scale factor (optional)
+ def NumberOfSegments(self, n, s=[]):
+ if s == []:
+ hyp = self.OwnHypothesis("NumberOfSegments", [n])
+ else:
+ hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
+ hyp.SetDistrType( 1 )
+ hyp.SetScaleFactor(s)
+ hyp.SetNumberOfSegments(n)
+ return hyp
- ## Set new nodes for given element.
- # @param ide the element id
- # @param newIDs nodes ids
- # @return If number of nodes is not corresponded to type of element - returns false
- def ChangeElemNodes(self, ide, newIDs):
- return self.editor.ChangeElemNodes(ide, newIDs)
+ ## Define "Arithmetic1D" hypothesis, specifying distribution of segments
+ # to build between the inner and outer shells as arithmetic length increasing
+ # @param start for the length of the first segment
+ # @param end for the length of the last segment
+ def Arithmetic1D(self, start, end ):
+ hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
+ hyp.SetLength(start, 1)
+ hyp.SetLength(end , 0)
+ return hyp
- ## If during last operation of MeshEditor some nodes were
- # created this method returns list of its IDs, \n
- # if new nodes not created - returns empty list
- def GetLastCreatedNodes(self):
- return self.editor.GetLastCreatedNodes()
+ ## Define "StartEndLength" hypothesis, specifying distribution of segments
+ # to build between the inner and outer shells as geometric length increasing
+ # @param start for the length of the first segment
+ # @param end for the length of the last segment
+ def StartEndLength(self, start, end):
+ hyp = self.OwnHypothesis("StartEndLength", [start, end])
+ hyp.SetLength(start, 1)
+ hyp.SetLength(end , 0)
+ return hyp
- ## If during last operation of MeshEditor some elements were
- # created this method returns list of its IDs, \n
- # if new elements not creared - returns empty list
- def GetLastCreatedElems(self):
- return self.editor.GetLastCreatedElems()
+ ## Define "AutomaticLength" hypothesis, specifying number of segments
+ # to build between the inner and outer shells
+ # @param fineness for the fineness [0-1]
+ def AutomaticLength(self, fineness=0):
+ hyp = self.OwnHypothesis("AutomaticLength")
+ hyp.SetFineness( fineness )
+ return hyp
+
+# Private class: Mesh_UseExisting
+# -------------------------------
+class Mesh_UseExisting(Mesh_Algorithm):
+
+ def __init__(self, dim, mesh, geom=0):
+ if dim == 1:
+ self.Create(mesh, geom, "UseExisting_1D")
+ else:
+ self.Create(mesh, geom, "UseExisting_2D")