]> SALOME platform Git repositories - tools/medcoupling.git/commitdiff
Salome HOME
[EDF27860] : MEDCouplingUMesh.getCellsContainingPoints eps parameter specifies a...
authorAnthony Geay <anthony.geay@edf.fr>
Mon, 14 Aug 2023 08:43:38 +0000 (10:43 +0200)
committerAnthony Geay <anthony.geay@edf.fr>
Mon, 14 Aug 2023 13:55:48 +0000 (15:55 +0200)
src/INTERP_KERNEL/InterpolationUtils.hxx
src/INTERP_KERNEL/PointLocatorAlgos.txx
src/MEDCoupling/MEDCouplingUMesh.cxx
src/MEDCoupling_Swig/MEDCouplingBasicsTest7.py

index e286f8e96660f4099e568c0eb5847bc6a69c0d86..3638f9c64840479888a28839297c8c5a2cf87c4b 100644 (file)
@@ -1253,27 +1253,61 @@ namespace INTERP_KERNEL
       }
     return result;
   }
+
+  /*!
+   * This method normalize input "tetrahedrized polyhedron" to put it around 0,0,0 point and with the normalization factor.
+   *
+   * \param [in,out] ptsOfTetrahedrizedPolyhedron nbfaces * 3 * 3 vector that store in full interlace all the 3 first points of each face of the input polyhedron
+   * \param [in] nbfaces number of faces in the tetrahedrized polyhedron to be normalized
+   * \param [out] centerPt the center of input tetrahedrized polyhedron
+   * \return the normalization factor corresponding to the max amplitude among all nbfaces*3 input points and among X, Y and Z axis.
+   */
+  inline double NormalizeTetrahedrizedPolyhedron(double *ptsOfTetrahedrizedPolyhedron, int nbfaces, double centerPt[3])
+  {
+    centerPt[0] = 0.0; centerPt[1] = 0.0; centerPt[2] = 0.0;
+    double minMax[6]={ std::numeric_limits<double>::max(), -std::numeric_limits<double>::max(),
+    std::numeric_limits<double>::max(), -std::numeric_limits<double>::max(),
+    std::numeric_limits<double>::max(), -std::numeric_limits<double>::max() };
+    for(int iPt = 0 ; iPt < 3 * nbfaces ; ++iPt)
+    {
+      for(int k = 0 ; k < 3 ; ++k)
+      {
+        minMax[2*k]   = std::min(minMax[2*k],ptsOfTetrahedrizedPolyhedron[3*iPt+k]);
+        minMax[2*k+1] = std::max(minMax[2*k+1],ptsOfTetrahedrizedPolyhedron[3*iPt+k]);
+      }
+    }
+    double normFact = 0.0;
+    for(int k = 0 ; k < 3 ; ++k)
+    {
+      centerPt[k] = (minMax[2*k] + minMax[2*k+1]) / 2.0 ;
+      normFact = std::max(minMax[2*k+1] - minMax[2*k], normFact);
+    }
+    // renormalize into ptsOfTetrahedrizedPolyhedron
+    for(int iPt = 0 ; iPt < 3 * nbfaces ; ++iPt)
+    {
+      for(int k = 0 ; k < 3 ; ++k)
+      {
+        ptsOfTetrahedrizedPolyhedron[3*iPt+k] = ( ptsOfTetrahedrizedPolyhedron[3*iPt+k] - centerPt[k] ) / normFact;
+      }
+    }
+    return normFact;
+  }
   
-  /*! Computes the triple product (XA^XB).XC (in 3D)*/
-  inline double triple_product(const double* A, const double*B, const double*C, const double*X)
+  /*!
+   * Computes the triple product (XA^XB).XC/(norm(XA^XB)) (in 3D)
+   * Returned value is equal to the distance (positive or negative depending of the position of C relative to XAB plane) between XAB plane and C point.
+   */
+  inline double TripleProduct(const double *A, const double *B, const double *C, const double *X)
   {
-    double XA[3];
-    XA[0]=A[0]-X[0];
-    XA[1]=A[1]-X[1];
-    XA[2]=A[2]-X[2];
-    double XB[3];
-    XB[0]=B[0]-X[0];
-    XB[1]=B[1]-X[1];
-    XB[2]=B[2]-X[2];
-    double XC[3];
-    XC[0]=C[0]-X[0];
-    XC[1]=C[1]-X[1];
-    XC[2]=C[2]-X[2];
+    double XA[3]={ A[0]-X[0], A[1]-X[1], A[2]-X[2] };
+    double XB[3]={ B[0]-X[0], B[1]-X[1], B[2]-X[2] };
+    double XC[3]={ C[0]-X[0], C[1]-X[1], C[2]-X[2] };
     
-    return 
-      (XA[1]*XB[2]-XA[2]*XB[1])*XC[0]+
-      (XA[2]*XB[0]-XA[0]*XB[2])*XC[1]+
-      (XA[0]*XB[1]-XA[1]*XB[0])*XC[2];
+    double XA_cross_XB[3] = {XA[1]*XB[2]-XA[2]*XB[1], XA[2]*XB[0]-XA[0]*XB[2], XA[0]*XB[1]-XA[1]*XB[0]};
+    // norm is equal to double the area of the triangle
+    double norm = std::sqrt(XA_cross_XB[0]*XA_cross_XB[0]+XA_cross_XB[1]*XA_cross_XB[1]+XA_cross_XB[2]*XA_cross_XB[2]);
+
+    return ( XA_cross_XB[0]*XC[0]+ XA_cross_XB[1]*XC[1] + XA_cross_XB[2]*XC[2] ) / norm;
   }
   
   /*! Subroutine of checkEqualPolygins that tests if two list of nodes (not necessarily distincts) describe the same polygon, assuming they share a common point.*/
index 1365100e307fbdcb460812ead8be59880fd447d4..3ccb2c391623a0d1aaa651fe47aedb9edf19888a 100644 (file)
@@ -31,6 +31,7 @@
 #include <vector>
 #include <set>
 #include <limits>
+#include <memory>
 
 namespace INTERP_KERNEL
 {
@@ -119,7 +120,7 @@ namespace INTERP_KERNEL
        
          here XA^XC and XC^XB have different signs*/
       const int SPACEDIM=MyMeshType::MY_SPACEDIM;
-      int* sign = new int[nbEdges];
+      std::unique_ptr<char[]> sign( new char[nbEdges] );
       for (mcIdType iedge=0; iedge<nbEdges; iedge++)
         {
           const double* A=cellPts+SPACEDIM*iedge;
@@ -132,8 +133,7 @@ namespace INTERP_KERNEL
           else
             sign[iedge]=0;
         }
-      bool ret=decideFromSign(sign, nbEdges);
-      delete [] sign;
+      bool ret=decideFromSign(sign.get(), nbEdges);
       return ret;
     }
 
@@ -198,26 +198,41 @@ namespace INTERP_KERNEL
       const NumberingPolicy numPol=MyMeshType::My_numPol;
       
       int nbfaces = cmType.getNumberOfSons2(conn_elem,conn_elem_sz);
-      int *sign = new int[nbfaces];
-      ConnType *connOfSon = new ConnType[conn_elem_sz];
+      std::unique_ptr<char[]> sign( new char[nbfaces] );
+      std::unique_ptr<ConnType[]> connOfSon( new ConnType[conn_elem_sz] );
+      std::unique_ptr<double[]> ptsOfTetrahedrizedPolyhedron( new double[3*3*nbfaces] );
       for (int iface=0; iface<nbfaces; iface++)
         {
           NormalizedCellType typeOfSon;
-          cmType.fillSonCellNodalConnectivity2(iface,conn_elem,conn_elem_sz,connOfSon,typeOfSon);
+          cmType.fillSonCellNodalConnectivity2(iface,conn_elem,conn_elem_sz,connOfSon.get(),typeOfSon);
           const double* AA=coords+SPACEDIM*(OTT<ConnType,numPol>::coo2C(connOfSon[0]));
+          std::copy(AA,AA+3,ptsOfTetrahedrizedPolyhedron.get()+9*iface);
           const double* BB=coords+SPACEDIM*(OTT<ConnType,numPol>::coo2C(connOfSon[1]));
+          std::copy(BB,BB+3,ptsOfTetrahedrizedPolyhedron.get()+9*iface+3);
           const double* CC=coords+SPACEDIM*(OTT<ConnType,numPol>::coo2C(connOfSon[2]));                                                       
-          double Vol=triple_product(AA,BB,CC,ptToTest);
-          if (Vol<-eps)
+          std::copy(CC,CC+3,ptsOfTetrahedrizedPolyhedron.get()+9*iface+6);
+        }
+      double centerPt[3];
+      double normalizeFact = NormalizeTetrahedrizedPolyhedron(ptsOfTetrahedrizedPolyhedron.get(),nbfaces,centerPt);
+      double ptToTestNorm[3] = {(ptToTest[0]-centerPt[0])/normalizeFact,
+      (ptToTest[1]-centerPt[1])/normalizeFact,
+      (ptToTest[2]-centerPt[2])/normalizeFact};
+      for (int iface=0; iface<nbfaces; iface++)
+        {
+          double lengthNorm = ( TripleProduct(
+          ptsOfTetrahedrizedPolyhedron.get() + 9*iface + 3,
+          ptsOfTetrahedrizedPolyhedron.get() + 9*iface + 6,
+          ptToTestNorm,
+          ptsOfTetrahedrizedPolyhedron.get() + 9*iface) );
+          // assigne sign[iface] : 0 means on the face within eps, 1 or -1 means far from tetra representing face
+          if( lengthNorm<-eps )
             sign[iface]=-1;
-          else if (Vol>eps)
+          else if( lengthNorm>eps )
             sign[iface]=1;
-              else
-                sign[iface]=0;
+          else
+            sign[iface]=0;
         }
-      bool ret=decideFromSign(sign, nbfaces);
-      delete [] sign;
-      delete [] connOfSon;
+      bool ret=decideFromSign(sign.get(), nbfaces);
       return ret;
     }
 
@@ -273,10 +288,10 @@ namespace INTERP_KERNEL
       return isElementContainsPoint(x,type,coords,conn_elem,conn_elem_sz,eps);
     }
                 
-    static bool decideFromSign(const int* sign, mcIdType nbelem)
+    static bool decideFromSign(const char *sign, mcIdType nbelem)
     {
-      int min_sign = 1;
-      int max_sign = -1;
+      char min_sign = 1;
+      char max_sign = -1;
       for (int i=0; i<nbelem;i++)
         {
           min_sign=(sign[i]<min_sign)?sign[i]:min_sign;
index c06cb28386ad625c81412162a7c014db9f2d4164..6d2ad7a88fe6025c15336e6cb6086beb81449664 100755 (executable)
@@ -4356,7 +4356,7 @@ mcIdType MEDCouplingUMesh::getCellContainingPoint(const double *pos, double eps)
  *          point, for more points getCellsContainingPoints() is recommended as it is
  *          faster.
  *  \param [in] pos - array of coordinates of the ball central point.
- *  \param [in] eps - ball radius.
+ *  \param [in] eps - ball radius (i.e. the precision) relative to max dimension along X, Y or Z of the the considered cell bounding box.
  *  \param [out] elts - vector returning ids of the found cells. It is cleared
  *         before inserting ids.
  *  \throw If the coordinates array is not set.
@@ -4423,7 +4423,7 @@ void MEDCouplingUMesh::getCellsContainingPointsZeAlg(const double *pos, mcIdType
  *         X0,Y0,Z0,X1,Y1,Z1,... Size of the array must be \a
  *         this->getSpaceDimension() * \a nbOfPoints
  *  \param [in] nbOfPoints - number of points to locate within \a this mesh.
- *  \param [in] eps - radius of balls (i.e. the precision).
+ *  \param [in] eps - ball radius (i.e. the precision) relative to max dimension along X, Y or Z of the the considered cell bounding box.
  *  \param [out] elts - vector returning ids of found cells.
  *  \param [out] eltsIndex - an array, of length \a nbOfPoints + 1,
  *         dividing cell ids in \a elts into groups each referring to one
index 2a75dce56becf801ec0017baedcc8cbd11f12cfb..c45f74141b3e8a558b556b8bfa4ea15a985a826d 100644 (file)
@@ -1305,6 +1305,31 @@ class MEDCouplingBasicsTest7(unittest.TestCase):
             c,d = DataArrayInt.ExtractFromIndexedArrays( cell, pE3[1], pE3[2] )
             self.assertTrue( ref_c.isEqual(c) )
             self.assertTrue( ref_d.isEqual(d) )
+    
+    def testGetCellContainingPointRelativeEps(self):
+        """
+        See EDF27860 : This test checks that detection of point inside a cell works by normalizing cell around origin with factor equal to the max delta of bbox along axis X, Y or Z.
+        """
+        # in this test cell is vuluntary far from origin {15260.775604514516, 11197.646906189217, 14187.820484060947}
+        # and caracteritic size is ~ 1500
+        coo = DataArrayDouble( [(14724.199858870656, 11928.888084722483, 14442.32726944039), (14788.407409534622, 11992.60694822231, 14453.86181555231), (15572.175148726046, 10798.586790270576, 14471.54225356788), (15643.898717334796, 10853.094666047728, 14477.233802854305), (15005.31495255754, 11573.261110174888, 13933.313698681504), (15070.29423166349, 11636.377758513776, 13946.650959030132), (15797.351350158377, 10466.40572765595, 13965.524190108257), (15869.808770928525, 10519.99285973948, 13972.419352086607), (15273.866774426142, 11216.458197414971, 13433.169979717744), (15340.421031616577, 11277.882145177837, 13446.53598386297), (16013.382514001762, 10132.795887638129, 13465.184281842226), (16086.979064572806, 10184.802292369684, 13472.147425473782)] )
+        m = MEDCouplingUMesh("",3)
+        m.setCoords(coo)
+        m.allocateCells()
+        m.insertNextCell(NORM_TETRA4,[0,5,4,6])
+        m.insertNextCell(NORM_TETRA4,[4,5,9,7])
+
+        ##### See EDF2760 pt is outside cell 0 (6e-4) and 1 (8e-4)
+        pt = DataArrayDouble([(15263.41200205526, 11314.957094727113, 13950.0)])
+        a,b = m.getCellsContainingPoints(pt,1e-3)
+        self.assertTrue(a.isEqual(DataArrayInt([0,1])))
+        self.assertTrue(b.isEqual(DataArrayInt([0,2])))
+
+        # by shifting pt by 10 along Z pt in only inside cell # 0
+        pt += [0,0,10]
+        a1,b1 = m.getCellsContainingPoints(pt,1e-3)
+        self.assertTrue(a1.isEqual(DataArrayInt([0])))
+        self.assertTrue(b1.isEqual(DataArrayInt([0,1])))
 
     pass