INCLUDE(tests.set)
+SET(TEST_REINIT_SALOME "False")
+SALOME_CONFIGURE_FILE(tests.py.in tests.py)
+
SALOME_GENERATE_TESTS_ENVIRONMENT(tests_env)
-FOREACH(test ${GOOD_TESTS})
- GET_FILENAME_COMPONENT(testname ${test} NAME_WE)
- ADD_TEST(NAME ${testname}
- COMMAND ${PYTHON_EXECUTABLE} -B ${CMAKE_SOURCE_DIR}/doc/salome/examples/testme.py ${CMAKE_CURRENT_SOURCE_DIR}/${test})
- SET_TESTS_PROPERTIES(${testname} PROPERTIES ENVIRONMENT "${tests_env}")
-ENDFOREACH()
+IF(SMESH_JOIN_TESTS)
+ ADD_TEST(NAME SMESH_examples COMMAND ${PYTHON_EXECUTABLE} -B ${CMAKE_SOURCE_DIR}/doc/salome/examples/testme.py tests.py)
+ELSE(SMESH_JOIN_TESTS)
+ FOREACH(test ${GOOD_TESTS})
+ GET_FILENAME_COMPONENT(testname ${test} NAME_WE)
+ ADD_TEST(NAME ${testname}
+ COMMAND ${PYTHON_EXECUTABLE} -B ${CMAKE_SOURCE_DIR}/doc/salome/examples/testme.py ${CMAKE_CURRENT_SOURCE_DIR}/${test})
+ SET_TESTS_PROPERTIES(${testname} PROPERTIES ENVIRONMENT "${tests_env}")
+ ENDFOREACH()
+ENDIF(SMESH_JOIN_TESTS)
# install Python scripts
SALOME_INSTALL_SCRIPTS("${EXAMPLES_TESTS}" ${SALOME_INSTALL_DOC}/examples/SMESH)
# Build geometric groups
# ----------------------
-def group(name, shape, type, base=None, direction=None):
- t = geompy.ShapeType[type]
- g = geompy.CreateGroup(shape, t)
-
- geompy.addToStudyInFather(shape, g, name)
-
- if base!=None:
- l = geompy.GetShapesOnPlaneWithLocationIDs(shape, t, direction, base, GEOM.ST_ON)
- geompy.UnionIDs(g, l)
-
- return g
-
-group_a = group("baseA", blocks, "FACE", base, direction)
-
-base_b = geompy.MakeVertex(0, 0, height)
-group_b = group("baseB", blocks, "FACE", base_b, direction)
-
-group_1 = group("limit", blocks, "SOLID")
+group_a = geompy.CreateGroup(blocks, geompy.ShapeType["FACE"])
+geompy.addToStudyInFather(blocks, group_a, "baseA")
+items = geompy.GetShapesOnPlaneWithLocationIDs(blocks, geompy.ShapeType["FACE"], direction, base, GEOM.ST_ON)
+geompy.UnionIDs(group_a, items)
+
+base_b = geompy.MakeVertex(0, 0, height)
+group_b = geompy.CreateGroup(blocks, geompy.ShapeType["FACE"])
+geompy.addToStudyInFather(blocks, group_b, "baseB")
+items = geompy.GetShapesOnPlaneWithLocationIDs(blocks, geompy.ShapeType["FACE"], direction, base_b, GEOM.ST_ON)
+geompy.UnionIDs(group_b, items)
+
+group_1 = geompy.CreateGroup(blocks, geompy.ShapeType["SOLID"])
+geompy.addToStudyInFather(blocks, group_1, "limit")
group_1_all = geompy.SubShapeAllIDs(blocks, geompy.ShapeType["SOLID"])
geompy.UnionIDs(group_1, group_1_all)
group_1_box = geompy.GetBlockNearPoint(blocks, base)
smesh.UpdateStudy()
-def discretize(x, y, z, nbSeg, shape=blocks):
- vert = geompy.MakeVertex( x, y, z )
- edge = geompy.GetEdgeNearPoint( shape, vert )
- algo = hexa.Segment( edge )
- algo.NumberOfSegments( nbSeg )
- algo.Propagation()
-
hexa = smesh.Mesh(blocks)
hexa_1d = hexa.Segment()
hexa_1d.NumberOfSegments(1)
-discretize(+radius , +radius, 0, 5)
-discretize(-radius , +radius, 0, 8)
-discretize((radius+size)/2, 0, 0, 10)
-discretize( +radius, 0, height/2, 20)
+vertex = geompy.MakeVertex(+radius, +radius, 0)
+edge = geompy.GetEdgeNearPoint(blocks, vertex)
+algo = hexa.Segment(edge)
+algo.NumberOfSegments(5)
+algo.Propagation()
+
+vertex = geompy.MakeVertex(-radius, +radius, 0)
+edge = geompy.GetEdgeNearPoint(blocks, vertex)
+algo = hexa.Segment(edge)
+algo.NumberOfSegments(8)
+algo.Propagation()
+
+vertex = geompy.MakeVertex((radius+size)/2, 0, 0)
+edge = geompy.GetEdgeNearPoint(blocks, vertex)
+algo = hexa.Segment(edge)
+algo.NumberOfSegments(10)
+algo.Propagation()
+
+vertex = geompy.MakeVertex(+radius, 0, height/2)
+edge = geompy.GetEdgeNearPoint(blocks, vertex)
+algo = hexa.Segment(edge)
+algo.NumberOfSegments(20)
+algo.Propagation()
hexa.Quadrangle()
hexa.Hexahedron()
# Add Polygon
-import math
-
import salome
salome.salome_init()
import SMESH, SALOMEDS
from salome.smesh import smeshBuilder
-smesh = smeshBuilder.New()
-
+smesh = smeshBuilder.New()
# create an empty mesh structure
mesh = smesh.Mesh()
# a method to build a polygonal mesh element with <nb_vert> angles:
-def MakePolygon (a_mesh, x0, y0, z0, radius, nb_vert):
+def MakePolygon (a_mesh, x0, y0, z0, radius, nb_vert, smesh_builder):
+ import math
+
al = 2.0 * math.pi / nb_vert
node_ids = []
# Create nodes for a polygon
for ii in range(nb_vert):
- nid = mesh.AddNode(x0 + radius * math.cos(ii*al),
- y0 + radius * math.sin(ii*al),
- z0)
+ nid = smesh_builder.AddNode(x0 + radius * math.cos(ii*al),
+ y0 + radius * math.sin(ii*al),
+ z0)
node_ids.append(nid)
pass
# Create a polygon
- return mesh.AddPolygonalFace(node_ids)
+ return smesh_builder.AddPolygonalFace(node_ids)
# Create three polygons
-f1 = MakePolygon(mesh, 0, 0, 0, 30, 13)
-f2 = MakePolygon(mesh, 0, 0, 10, 21, 9)
-f3 = MakePolygon(mesh, 0, 0, 20, 13, 6)
+f1 = MakePolygon(mesh, 0, 0, 0, 30, 13, smesh_builder=mesh)
+f2 = MakePolygon(mesh, 0, 0, 10, 21, 9, smesh_builder=mesh)
+f3 = MakePolygon(mesh, 0, 0, 20, 13, 6, smesh_builder=mesh)
salome.sg.updateObjBrowser()
# Mesh
# Mesh the given shape with the given 1d hypothesis
-def Mesh1D(shape1d, nbSeg, name):
- mesh1d_tool = smesh.Mesh(shape1d, name)
+def Mesh1D(shape1d, nbSeg, name, smesh_builder):
+ mesh1d_tool = smesh_builder.Mesh(shape1d, name)
algo = mesh1d_tool.Segment()
hyp = algo.NumberOfSegments(nbSeg)
isDone = mesh1d_tool.Compute()
return mesh1d_tool
# Create a mesh with six nodes, seven edges and two quadrangle faces
-def MakeQuadMesh2(mesh_name):
- quad_1 = smesh.Mesh(name = mesh_name)
+def MakeQuadMesh2(mesh_name, smesh_builder):
+ quad_1 = smesh_builder.Mesh(name = mesh_name)
# six nodes
n1 = quad_1.AddNode(0, 20, 10)
return [quad_1, [1,2,3,4,5,6,7], [8,9]]
# Path meshes
-Edge_straight_mesh = Mesh1D(Edge_straight, 7, "Edge_straight")
-Edge_bezierrr_mesh = Mesh1D(Edge_bezierrr, 7, "Edge_bezierrr")
-Wire_polyline_mesh = Mesh1D(Wire_polyline, 3, "Wire_polyline")
-Edge_Circle_mesh = Mesh1D(Edge_Circle , 8, "Edge_Circle")
+Edge_straight_mesh = Mesh1D(Edge_straight, 7, "Edge_straight", smesh_builder=smesh)
+Edge_bezierrr_mesh = Mesh1D(Edge_bezierrr, 7, "Edge_bezierrr", smesh_builder=smesh)
+Wire_polyline_mesh = Mesh1D(Wire_polyline, 3, "Wire_polyline", smesh_builder=smesh)
+Edge_Circle_mesh = Mesh1D(Edge_Circle , 8, "Edge_Circle" , smesh_builder=smesh)
# Initial meshes (to be extruded)
-[quad_1, ee_1, ff_1] = MakeQuadMesh2("quad_1")
-[quad_2, ee_2, ff_2] = MakeQuadMesh2("quad_2")
-[quad_3, ee_3, ff_3] = MakeQuadMesh2("quad_3")
-[quad_4, ee_4, ff_4] = MakeQuadMesh2("quad_4")
-[quad_5, ee_5, ff_5] = MakeQuadMesh2("quad_5")
-[quad_6, ee_6, ff_6] = MakeQuadMesh2("quad_6")
-[quad_7, ee_7, ff_7] = MakeQuadMesh2("quad_7")
+[quad_1, ee_1, ff_1] = MakeQuadMesh2("quad_1", smesh_builder=smesh)
+[quad_2, ee_2, ff_2] = MakeQuadMesh2("quad_2", smesh_builder=smesh)
+[quad_3, ee_3, ff_3] = MakeQuadMesh2("quad_3", smesh_builder=smesh)
+[quad_4, ee_4, ff_4] = MakeQuadMesh2("quad_4", smesh_builder=smesh)
+[quad_5, ee_5, ff_5] = MakeQuadMesh2("quad_5", smesh_builder=smesh)
+[quad_6, ee_6, ff_6] = MakeQuadMesh2("quad_6", smesh_builder=smesh)
+[quad_7, ee_7, ff_7] = MakeQuadMesh2("quad_7", smesh_builder=smesh)
# ExtrusionAlongPath
# IDsOfElements, PathMesh, PathShape, NodeStart,
--- /dev/null
+DIR='@CMAKE_CURRENT_SOURCE_DIR@'
+TESTS='@GOOD_TESTS@'
+REINIT_SALOME=@TEST_REINIT_SALOME@
+
+import os
+import unittest
+import salome
+
+class MyTest(unittest.TestCase):
+ def setUp(self):
+ if REINIT_SALOME:
+ salome.salome_init()
+ def tearDown(self):
+ if REINIT_SALOME:
+ salome.salome_close()
+ pass
+
+if __name__ == "__main__":
+ tests = TESTS.split(';')
+ for test in tests:
+ file_name = os.path.basename(test)
+ if os.path.isabs(test):
+ file_path = file_name
+ else:
+ file_path = os.path.join(DIR, file_name)
+ case_name = 'test_' + file_name[:-3]
+ code = """
+def func(self):
+ with open('{}') as f:
+ exec(f.read())
+"""
+ exec(code.format(file_path))
+ setattr(MyTest, case_name, func)
+
+ unittest.main()
smesh = smeshBuilder.New()
import salome_notebook
-import numpy as np
-
# define my 2D algorithm
-def my2DMeshing( geomFace ):
+def my2DMeshing(geomFace, geom_builder, smesh_builder):
+ import numpy as np
# find gravity center of geomFace
- gcXYZ = geompy.PointCoordinates( geompy.MakeCDG( geomFace ))
+ gcXYZ = geom_builder.PointCoordinates( geom_builder.MakeCDG( geomFace ))
# define order and orientation of edges
sortedEdges = []
- geomEdges = geompy.SubShapeAll( geomFace, geompy.ShapeType["EDGE"])
+ geomEdges = geom_builder.SubShapeAll( geomFace, geom_builder.ShapeType["EDGE"])
sortedEdges.append(( geomEdges.pop(0), True ))
while geomEdges:
prevEdge_rev = sortedEdges[ -1 ]
- prevVV = geompy.SubShapeAll( prevEdge_rev[0], geompy.ShapeType["VERTEX"])
+ prevVV = geom_builder.SubShapeAll( prevEdge_rev[0], geom_builder.ShapeType["VERTEX"])
prevV2 = prevVV[ prevEdge_rev[1] ]
found = False
for iE in range( len( geomEdges )):
- v1,v2 = geompy.SubShapeAll( geomEdges[ iE ], geompy.ShapeType["VERTEX"])
- same1,same2 = [( geompy.MinDistance( prevV2, v ) < 1e-7 ) for v in [v1,v2] ]
+ v1,v2 = geom_builder.SubShapeAll( geomEdges[ iE ], geom_builder.ShapeType["VERTEX"])
+ same1,same2 = [( geom_builder.MinDistance( prevV2, v ) < 1e-7 ) for v in [v1,v2] ]
if not same1 and not same2: continue
sortedEdges.append(( geomEdges.pop( iE ), same1 ))
found = True
# put nodes on edges in a right order
nodes = []
for edge, isForward in sortedEdges:
- v1,v2 = geompy.SubShapeAll( edge, geompy.ShapeType["VERTEX"])
- edgeNodes = mesh.GetSubMeshNodesId( v2, all=False ) + \
- mesh.GetSubMeshNodesId( edge, all=False ) + \
- mesh.GetSubMeshNodesId( v1, all=False )
+ v1,v2 = geom_builder.SubShapeAll( edge, geom_builder.ShapeType["VERTEX"])
+ edgeNodes = smesh_builder.GetSubMeshNodesId( v2, all=False ) + \
+ smesh_builder.GetSubMeshNodesId( edge, all=False ) + \
+ smesh_builder.GetSubMeshNodesId( v1, all=False )
if not isForward: edgeNodes.reverse()
nodes.extend( edgeNodes[:-1] )
r2 = 1 - r1
nodesInside = []
for n in nodes:
- nXYZ = mesh.GetNodeXYZ( n )
+ nXYZ = smesh_builder.GetNodeXYZ( n )
newXYZ = np.add( np.multiply( r1, gcXYZ ), np.multiply( r2, nXYZ ))
- nodesInside.append( mesh.AddNode( newXYZ[0], newXYZ[1], newXYZ[2] ))
- mesh.SetNodeOnFace( nodesInside[-1], geomFace, 0, 0 )
+ nodesInside.append( smesh_builder.AddNode( newXYZ[0], newXYZ[1], newXYZ[2] ))
+ smesh_builder.SetNodeOnFace( nodesInside[-1], geomFace, 0, 0 )
# find out orientation of faces to create
# geomFace normal
- faceNorm = geompy.GetNormal( geomFace )
- v1,v2 = [ geompy.PointCoordinates( v ) \
- for v in geompy.SubShapeAll( faceNorm, geompy.ShapeType["VERTEX"]) ]
+ faceNorm = geom_builder.GetNormal( geomFace )
+ v1,v2 = [ geom_builder.PointCoordinates( v ) \
+ for v in geom_builder.SubShapeAll( faceNorm, geom_builder.ShapeType["VERTEX"]) ]
faceNormXYZ = np.subtract( v2, v1 )
outDirXYZ = np.subtract( v1, [ 50, 50, 50 ] )
if np.dot( faceNormXYZ, outDirXYZ ) < 0: # reversed face
faceNormXYZ = np.multiply( -1., faceNormXYZ )
# mesh face normal
- e1 = np.subtract( mesh.GetNodeXYZ( nodes[0] ), mesh.GetNodeXYZ( nodes[1] ))
- e2 = np.subtract( mesh.GetNodeXYZ( nodes[0] ), mesh.GetNodeXYZ( nodesInside[0] ))
+ e1 = np.subtract( smesh_builder.GetNodeXYZ( nodes[0] ), smesh_builder.GetNodeXYZ( nodes[1] ))
+ e2 = np.subtract( smesh_builder.GetNodeXYZ( nodes[0] ), smesh_builder.GetNodeXYZ( nodesInside[0] ))
meshNorm = np.cross( e1, e2 )
# faces orientation
reverse = ( np.dot( faceNormXYZ, meshNorm ) < 0 )
n1, n2, n3, n4 = nodes[iN-1], nodes[iN-2], nodesInside[iN-2], nodesInside[iN-1]
iN -= 1
if reverse:
- f = mesh.AddFace( [n1, n2, n3, n4] )
+ f = smesh_builder.AddFace( [n1, n2, n3, n4] )
else:
- f = mesh.AddFace( [n4, n3, n2, n1] )
+ f = smesh_builder.AddFace( [n4, n3, n2, n1] )
# new faces must be assigned to geometry to allow 3D algorithm finding them
- mesh.SetMeshElementOnShape( f, geomFace )
+ smesh_builder.SetMeshElementOnShape( f, geomFace )
if reverse:
nodesInside.reverse()
- polygon = mesh.AddPolygonalFace( nodesInside )
- mesh.SetMeshElementOnShape( polygon, geomFace )
+ polygon = smesh_builder.AddPolygonalFace( nodesInside )
+ smesh_builder.SetMeshElementOnShape( polygon, geomFace )
return
mesh.Quadrangle()
mesh.UseExistingFaces(f1) # UseExistingFaces() allows using my2DMeshing();
mesh.UseExistingFaces(f2) # assign UseExistingFaces() BEFORE calling my2DMeshing()!
-my2DMeshing( f1 )
-my2DMeshing( f2 )
+my2DMeshing(f1, geom_builder=geompy, smesh_builder=mesh)
+my2DMeshing(f2, geom_builder=geompy, smesh_builder=mesh)
assert mesh.Compute()
# compute 3D mesh