-# Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
-#
-# This library is free software; you can redistribute it and/or
-# modify it under the terms of the GNU Lesser General Public
-# License as published by the Free Software Foundation; either
-# version 2.1 of the License.
-#
-# This library is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-# Lesser General Public License for more details.
-#
-# You should have received a copy of the GNU Lesser General Public
-# License along with this library; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-#
-# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
-#
-# File : smesh.py
-# Author : Francis KLOSS, OCC
-# Module : SMESH
-
"""
\namespace smesh
\brief Module smesh
import geompy
import StdMeshers
import SMESH
+from SMESH import *
-
+## Types of algo
REGULAR = 1
PYTHON = 2
-NETGEN = 3
-GHS3D = 4
+MEFISTO = 3
+NETGEN = 4
+GHS3D = 5
+FULL_NETGEN = 6
-smesh = salome.lcc.FindOrLoadComponent("FactoryServer", "SMESH")
-smesh.SetCurrentStudy(salome.myStudy)
+## MirrorType enumeration
+POINT = SMESH_MeshEditor.POINT
+AXIS = SMESH_MeshEditor.AXIS
+PLANE = SMESH_MeshEditor.PLANE
+
+## Smooth_Method enumeration
+LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
+CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
+
+## Fineness enumeration(for NETGEN)
+VeryCoarse = 0
+Coarse = 1
+Moderate = 2
+Fine = 3
+VeryFine = 4
+Custom = 5
NO_NAME = "NoName"
+
+smesh = salome.lcc.FindOrLoadComponent("FactoryServer", "SMESH")
+smesh.SetCurrentStudy(salome.myStudy)
+
+## Global functions
+
+## Gets object name
def GetName(obj):
ior = salome.orb.object_to_string(obj)
sobj = salome.myStudy.FindObjectIOR(ior)
attr = sobj.FindAttribute("AttributeName")[1]
return attr.Value()
+## Sets name to object
def SetName(obj, name):
ior = salome.orb.object_to_string(obj)
sobj = salome.myStudy.FindObjectIOR(ior)
if not sobj is None:
attr = sobj.FindAttribute("AttributeName")[1]
attr.SetValue(name)
+
+## Returns long value from enumeration
+# Uses for FT_... enumeration
+def EnumToLong(theItem):
+ return theItem._v
+
+## Get PointStruct from vertex
+# @param theVertex is GEOM object(vertex)
+# @return SMESH.PointStruct
+def GetPointStruct(theVertex):
+ [x, y, z] = geompy.PointCoordinates(theVertex)
+ return PointStruct(x,y,z)
+
+## Get DirStruct from vector
+# @param theVector is GEOM object(vector)
+# @return SMESH.DirStruct
+def GetDirStruct(theVector):
+ vertices = geompy.SubShapeAll( theVector, geompy.ShapeType["VERTEX"] )
+ if(len(vertices) != 2):
+ print "Error: vector object is incorrect."
+ return None
+ p1 = geompy.PointCoordinates(vertices[0])
+ p2 = geompy.PointCoordinates(vertices[1])
+ pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
+ dir = DirStruct(pnt)
+ return dir
+
+## Get AxisStruct from object
+# @param theObj is GEOM object(line or plane)
+# @return SMESH.AxisStruct
+def GetAxisStruct(theObj):
+ edges = geompy.SubShapeAll( theObj, geompy.ShapeType["EDGE"] )
+ if len(edges) > 1:
+ vertex1, vertex2 = geompy.SubShapeAll( edges[0], geompy.ShapeType["VERTEX"] )
+ vertex3, vertex4 = geompy.SubShapeAll( edges[1], geompy.ShapeType["VERTEX"] )
+ vertex1 = geompy.PointCoordinates(vertex1)
+ vertex2 = geompy.PointCoordinates(vertex2)
+ vertex3 = geompy.PointCoordinates(vertex3)
+ vertex4 = geompy.PointCoordinates(vertex4)
+ v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]]
+ v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]]
+ normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ]
+ axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2])
+ return axis
+ elif len(edges) == 1:
+ vertex1, vertex2 = geompy.SubShapeAll( edges[0], geompy.ShapeType["VERTEX"] )
+ p1 = geompy.PointCoordinates( vertex1 )
+ p2 = geompy.PointCoordinates( vertex2 )
+ axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
+ return axis
+ return None
+
+## From SMESH_Gen interface:
+# ------------------------
+
+## Set the current mode
+def SetEmbeddedMode( theMode ):
+ smesh.SetEmbeddedMode(theMode)
+
+## Get the current mode
+def IsEmbeddedMode():
+ return smesh.IsEmbeddedMode()
+
+## Set the current study
+def SetCurrentStudy( theStudy ):
+ smesh.SetCurrentStudy(theStudy)
+
+## Get the current study
+def GetCurrentStudy():
+ return smesh.GetCurrentStudy()
+
+## Create Mesh object importing data from given UNV file
+# @return an instance of Mesh class
+def CreateMeshesFromUNV( theFileName ):
+ aSmeshMesh = smesh.CreateMeshesFromUNV(theFileName)
+ aMesh = Mesh(aSmeshMesh)
+ return aMesh
+
+## Create Mesh object(s) importing data from given MED file
+# @return a list of Mesh class instances
+def CreateMeshesFromMED( theFileName ):
+ aSmeshMeshes, aStatus = smesh.CreateMeshesFromMED(theFileName)
+ aMeshes = []
+ for iMesh in range(len(aSmeshMeshes)) :
+ aMesh = Mesh(aSmeshMeshes[iMesh])
+ aMeshes.append(aMesh)
+ return aMeshes, aStatus
+
+## Create Mesh object importing data from given STL file
+# @return an instance of Mesh class
+def CreateMeshesFromSTL( theFileName ):
+ aSmeshMesh = smesh.CreateMeshesFromSTL(theFileName)
+ aMesh = Mesh(aSmeshMesh)
+ return aMesh
+
+## From SMESH_Gen interface
+def GetSubShapesId( theMainObject, theListOfSubObjects ):
+ return smesh.GetSubShapesId(theMainObject, theListOfSubObjects)
+
+
+## Filtering. Auxiliary functions:
+# ------------------------------
+
+## Creates an empty criterion
+# @return SMESH.Filter.Criterion
+def GetEmptyCriterion():
+ Type = EnumToLong(FT_Undefined)
+ Compare = EnumToLong(FT_Undefined)
+ Threshold = 0
+ ThresholdStr = ""
+ ThresholdID = ""
+ UnaryOp = EnumToLong(FT_Undefined)
+ BinaryOp = EnumToLong(FT_Undefined)
+ Tolerance = 1e-07
+ TypeOfElement = ALL
+ Precision = -1 ##@1e-07
+ return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
+ UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
+
+## Creates a criterion by given parameters
+# @param elementType is the type of elements(NODE, EDGE, FACE, VOLUME)
+# @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
+# @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
+# @param Treshold is threshold value (range of ids as string, shape, numeric)
+# @param UnaryOp is FT_LogicalNOT or FT_Undefined
+# @param BinaryOp is binary logical operation FT_LogicalAND, FT_LogicalOR or
+# FT_Undefined(must be for the last criterion in criteria)
+# @return SMESH.Filter.Criterion
+def GetCriterion(elementType,
+ CritType,
+ Compare = FT_EqualTo,
+ Treshold="",
+ UnaryOp=FT_Undefined,
+ BinaryOp=FT_Undefined):
+ aCriterion = GetEmptyCriterion()
+ aCriterion.TypeOfElement = elementType
+ aCriterion.Type = EnumToLong(CritType)
+
+ aTreshold = Treshold
+
+ if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]:
+ aCriterion.Compare = EnumToLong(Compare)
+ else:
+ aCriterion.Compare = EnumToLong(FT_EqualTo)
+ aTreshold = Compare
+
+ if CritType in [FT_BelongToGeom, FT_BelongToPlane,
+ FT_BelongToCylinder, FT_LyingOnGeom]:
+ # Check treshold
+ if isinstance(aTreshold, geompy.GEOM._objref_GEOM_Object):
+ aCriterion.ThresholdStr = GetName(aTreshold)
+ aCriterion.ThresholdID = salome.ObjectToID(aTreshold)
+ else:
+ print "Error: Treshold should be a shape."
+ return None
+ elif CritType == FT_RangeOfIds:
+ # Check treshold
+ if isinstance(aTreshold, str):
+ aCriterion.ThresholdStr = aTreshold
+ else:
+ print "Error: Treshold should be a string."
+ return None
+ elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume]:
+ # Here we don't need treshold
+ if aTreshold == FT_LogicalNOT:
+ aCriterion.UnaryOp = EnumToLong(FT_LogicalNOT)
+ elif aTreshold in [FT_LogicalAND, FT_LogicalOR]:
+ aCriterion.BinaryOp = aTreshold
+ else:
+ # Check treshold
+ try:
+ aTreshold = float(aTreshold)
+ aCriterion.Threshold = aTreshold
+ except:
+ print "Error: Treshold should be a number."
+ return None
+
+ if Treshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
+ aCriterion.UnaryOp = EnumToLong(FT_LogicalNOT)
+
+ if Treshold in [FT_LogicalAND, FT_LogicalOR]:
+ aCriterion.BinaryOp = EnumToLong(Treshold)
+ if UnaryOp in [FT_LogicalAND, FT_LogicalOR]:
+ aCriterion.BinaryOp = EnumToLong(UnaryOp)
+
+ if BinaryOp in [FT_LogicalAND, FT_LogicalOR]:
+ aCriterion.BinaryOp = EnumToLong(BinaryOp)
+
+ return aCriterion
+
+
## Mother class to define algorithm, recommended to don't use directly.
#
# More details.
def GetAlgorithm(self):
return self.algo
+ ## Get list of hypothesis that can be used with this algorithm
+ def GetCompatibleHypothesis(self):
+ list = []
+ if self.algo:
+ list = self.algo.GetCompatibleHypothesis()
+ return list
+
+ ## Get name of algo
+ def GetName(self):
+ GetName(self.algo)
+
+ ## Set name to algo
+ def SetName(self, name):
+ SetName(self.algo, name)
+
+ ## Get id of algo
+ def GetId(self):
+ return self.algo.GetId()
+
## Private method. Print error message if a hypothesis was not assigned.
def TreatHypoStatus(self, status, hypName, geomName, isAlgo):
if isAlgo:
hypType = "algorithm"
else:
hypType = "hypothesis"
- if status == SMESH.HYP_UNKNOWN_FATAL :
+ if status == HYP_UNKNOWN_FATAL :
reason = "for unknown reason"
- elif status == SMESH.HYP_INCOMPATIBLE :
+ elif status == HYP_INCOMPATIBLE :
reason = "this hypothesis mismatches algorithm"
- elif status == SMESH.HYP_NOTCONFORM :
+ elif status == HYP_NOTCONFORM :
reason = "not conform mesh would be built"
- elif status == SMESH.HYP_ALREADY_EXIST :
+ elif status == HYP_ALREADY_EXIST :
reason = hypType + " of the same dimension already assigned to this shape"
- elif status == SMESH.HYP_BAD_DIM :
+ elif status == HYP_BAD_DIM :
reason = hypType + " mismatches shape"
- elif status == SMESH.HYP_CONCURENT :
+ elif status == HYP_CONCURENT :
reason = "there are concurrent hypotheses on sub-shapes"
- elif status == SMESH.HYP_BAD_SUBSHAPE :
+ elif status == HYP_BAD_SUBSHAPE :
reason = "shape is neither the main one, nor its subshape, nor a valid group"
else:
return
hypName = '"' + hypName + '"'
geomName= '"' + geomName+ '"'
- if status < SMESH.HYP_UNKNOWN_FATAL:
+ if status < HYP_UNKNOWN_FATAL:
print hypName, "was assigned to", geomName,"but", reason
else:
print hypName, "was not assigned to",geomName,":", reason
pass
-
+
## Private method.
def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
if geom is None:
SetName(self.algo, name + "/" + hypo)
status = mesh.mesh.AddHypothesis(self.geom, self.algo)
self.TreatHypoStatus( status, hypo, name, 1 )
-
+
## Private method
def Hypothesis(self, hyp, args=[], so="libStdMeshersEngine.so"):
hypo = smesh.CreateHypothesis(hyp, so)
status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
self.TreatHypoStatus( status, hyp, name, 0 )
return hypo
-
+
# Public class: Mesh_Segment
# --------------------------
## Private constructor.
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, "Regular_1D")
-
+
## Define "LocalLength" hypothesis to cut an edge in several segments with the same length
# @param l for the length of segments that cut an edge
def LocalLength(self, l):
hyp = self.Hypothesis("LocalLength", [l])
hyp.SetLength(l)
return hyp
-
+
## Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments
# @param n for the number of segments that cut an edge
# @param s for the scale factor (optional)
hyp.SetScaleFactor(s)
hyp.SetNumberOfSegments(n)
return hyp
-
+
## Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
-
+
## Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
-
+
## Define "Deflection1D" hypothesis
# @param d for the deflection
def Deflection1D(self, d):
hyp = self.Hypothesis("Deflection1D", [d])
hyp.SetDeflection(d)
return hyp
-
+
## Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in
# the opposite side in the case of quadrangular faces
def Propagation(self):
def __init__(self, mesh, geom=0):
import Python1dPlugin
self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so")
-
+
## Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality
# @param n for the number of segments that cut an edge
# @param func for the python function that calculate the length of all segments
hyp.SetNumberOfSegments(n)
hyp.SetPythonLog10RatioFunction(func)
return hyp
-
+
# Public class: Mesh_Triangle
# ---------------------------
# More details.
class Mesh_Triangle(Mesh_Algorithm):
+ algoType = 0
+ params = 0
+
## Private constructor.
- def __init__(self, mesh, geom=0):
- self.Create(mesh, geom, "MEFISTO_2D")
+ def __init__(self, mesh, algoType, geom=0):
+ if algoType == MEFISTO:
+ self.Create(mesh, geom, "MEFISTO_2D")
+ elif algoType == NETGEN:
+ self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
+ self.algoType = algoType
## Define "MaxElementArea" hypothesis to give the maximun area of each triangles
# @param area for the maximum area of each triangles
def MaxElementArea(self, area):
- hyp = self.Hypothesis("MaxElementArea", [area])
- hyp.SetMaxElementArea(area)
- return hyp
-
+ if self.algoType == MEFISTO:
+ hyp = self.Hypothesis("MaxElementArea", [area])
+ hyp.SetMaxElementArea(area)
+ return hyp
+ elif self.algoType == NETGEN:
+ print "Netgen 1D-2D algo doesn't support this hypothesis"
+ return None
+
## Define "LengthFromEdges" hypothesis to build triangles based on the length of the edges taken from the wire
def LengthFromEdges(self):
- return self.Hypothesis("LengthFromEdges")
-
+ if self.algoType == MEFISTO:
+ hyp = self.Hypothesis("LengthFromEdges")
+ return hyp
+ elif self.algoType == NETGEN:
+ print "Netgen 1D-2D algo doesn't support this hypothesis"
+ return None
+
+ ## Define "Netgen 2D Parameters" hypothesis
+ def Parameters(self):
+ if self.algoType == NETGEN:
+ self.params = self.Hypothesis("NETGEN_Parameters_2D", [], "libNETGENEngine.so")
+ return self.params
+ elif self.algoType == MEFISTO:
+ print "Mefisto algo doesn't support this hypothesis"
+ return None
+
+ ## Set MaxSize
+ def SetMaxSize(self, theSize):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetMaxSize(theSize)
+
+ ## Set SecondOrder flag
+ def SetSecondOrder(seld, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetSecondOrder(theVal)
+
+ ## Set Optimize flag
+ def SetOptimize(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetOptimize(theVal)
+
+ ## Set Fineness
+ # @param theFineness is:
+ # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
+ def SetFineness(self, theFineness):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetFineness(theFineness)
+
+ ## Set GrowthRate
+ def SetGrowthRate(self, theRate):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetGrowthRate(theRate)
+
+ ## Set NbSegPerEdge
+ def SetNbSegPerEdge(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetNbSegPerEdge(theVal)
+
+ ## Set NbSegPerRadius
+ def SetNbSegPerRadius(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetNbSegPerRadius(theVal)
+
+ ## Set QuadAllowed flag
+ def SetQuadAllowed(self, toAllow):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetQuadAllowed(toAllow)
+
+
# Public class: Mesh_Quadrangle
# -----------------------------
## Private constructor.
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, "Quadrangle_2D")
-
+
## Define "QuadranglePreference" hypothesis, forcing construction
# of quadrangles if the number of nodes on opposite edges is not the same
# in the case where the global number of nodes on edges is even
def QuadranglePreference(self):
hyp = self.Hypothesis("QuadranglePreference")
return hyp
-
+
# Public class: Mesh_Tetrahedron
# ------------------------------
# More details.
class Mesh_Tetrahedron(Mesh_Algorithm):
+ params = 0
+ algoType = 0
+
## Private constructor.
- def __init__(self, mesh, algo, geom=0):
- if algo == NETGEN:
+ def __init__(self, mesh, algoType, geom=0):
+ if algoType == NETGEN:
self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so")
- elif algo == GHS3D:
+ elif algoType == GHS3D:
import GHS3DPlugin
self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so")
+ elif algoType == FULL_NETGEN:
+ self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
+ self.algoType = algoType
## Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral
# @param vol for the maximum volume of each tetrahedral
hyp.SetMaxElementVolume(vol)
return hyp
+ ## Define "Netgen 3D Parameters" hypothesis
+ def Parameters(self):
+ if (self.algoType == FULL_NETGEN):
+ self.params = self.Hypothesis("NETGEN_Parameters", [], "libNETGENEngine.so")
+ return self.params
+ else:
+ print "Algo doesn't support this hypothesis"
+ return None
+
+ ## Set MaxSize
+ def SetMaxSize(self, theSize):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetMaxSize(theSize)
+
+ ## Set SecondOrder flag
+ def SetSecondOrder(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetSecondOrder(theVal)
+
+ ## Set Optimize flag
+ def SetOptimize(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetOptimize(theVal)
+
+ ## Set Fineness
+ # @param theFineness is:
+ # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
+ def SetFineness(self, theFineness):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetFineness(theFineness)
+
+ ## Set GrowthRate
+ def SetGrowthRate(self, theRate):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetGrowthRate(theRate)
+
+ ## Set NbSegPerEdge
+ def SetNbSegPerEdge(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetNbSegPerEdge(theVal)
+
+ ## Set NbSegPerRadius
+ def SetNbSegPerRadius(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetNbSegPerRadius(theVal)
+
# Public class: Mesh_Hexahedron
# ------------------------------
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, "Hexa_3D")
+# Deprecated, only for compatibility!
# Public class: Mesh_Netgen
# ------------------------------
else:
hyp = self.Hypothesis("NETGEN_Parameters_2D", [], "libNETGENEngine.so")
return hyp
-
+
# Public class: Mesh
# ==================
## Class to define a mesh
#
+# The class contains mesh shape, SMESH_Mesh, SMESH_MeshEditor
# More details.
class Mesh:
geom = 0
mesh = 0
+ editor = 0
## Constructor
#
- # Creates mesh on the shape \a geom,
+ # Creates mesh on the shape \a geom(or the empty mesh if geom equal to 0),
# sets GUI name of this mesh to \a name.
- # @param geom Shape to be meshed
+ # @param obj Shape to be meshed or SMESH_Mesh object
# @param name Study name of the mesh
- def __init__(self, geom, name=0):
- self.geom = geom
- self.mesh = smesh.CreateMesh(geom)
- if name == 0:
- SetName(self.mesh, GetName(geom))
+ def __init__(self, obj=0, name=0):
+ if obj != 0:
+ if isinstance(obj, geompy.GEOM._objref_GEOM_Object):
+ self.geom = obj
+ self.mesh = smesh.CreateMesh(self.geom)
+ elif isinstance(obj, SMESH._objref_SMESH_Mesh):
+ self.SetMesh(obj)
else:
+ self.mesh = smesh.CreateEmptyMesh()
+ if name != 0:
SetName(self.mesh, name)
+ elif obj != 0:
+ SetName(self.mesh, GetName(obj))
+
+ self.editor = self.mesh.GetMeshEditor()
+ ## Method that inits the Mesh object from SMESH_Mesh interface
+ # @param theMesh is SMESH_Mesh object
+ def SetMesh(self, theMesh):
+ self.mesh = theMesh
+ self.geom = self.mesh.GetShapeToMesh()
+
## Method that returns the mesh
+ # @return SMESH_Mesh object
def GetMesh(self):
return self.mesh
+ ## Get mesh name
+ def GetName(self):
+ name = GetName(self.GetMesh())
+ return name
+
+ ## Set name to mesh
+ def SetName(self, name):
+ SetName(self.GetMesh(), name)
+
+ ## Get the subMesh object associated to a subShape. The subMesh object
+ # gives access to nodes and elements IDs.
+ # SubMesh will be used instead of SubShape in a next idl version to
+ # adress a specific subMesh...
+ def GetSubMesh(self, theSubObject, name):
+ submesh = self.mesh.GetSubMesh(theSubObject, name)
+ return submesh
+
## Method that returns the shape associated to the mesh
+ # @return GEOM_Object
def GetShape(self):
return self.geom
+ ## Method that associates given shape to the mesh(entails the mesh recreation)
+ # @param geom shape to be meshed(GEOM_Object)
+ def SetShape(self, geom):
+ self.mesh = smesh.CreateMesh(geom)
+
+ ## Return true if hypotheses are defined well
+ # @param theMesh is an instance of Mesh class
+ # @param theSubObject subshape of a mesh shape
+ def IsReadyToCompute(self, theSubObject):
+ return smesh.IsReadyToCompute(self.mesh, theSubObject)
+
+ ## Return errors of hypotheses definintion
+ # error list is empty if everything is OK
+ # @param theMesh is an instance of Mesh class
+ # @param theSubObject subshape of a mesh shape
+ # @return a list of errors
+ def GetAlgoState(self, theSubObject):
+ return smesh.GetAlgoState(self.mesh, theSubObject)
+
+ ## Return geometrical object the given element is built on.
+ # The returned geometrical object, if not nil, is either found in the
+ # study or is published by this method with the given name
+ # @param theMesh is an instance of Mesh class
+ # @param theElementID an id of the mesh element
+ # @param theGeomName user defined name of geometrical object
+ # @return GEOM::GEOM_Object instance
+ def GetGeometryByMeshElement(self, theElementID, theGeomName):
+ return smesh.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
+
## Returns mesh dimension depending on shape one
def MeshDimension(self):
shells = geompy.SubShapeAllIDs( self.geom, geompy.ShapeType["SHELL"] )
else:
return 0;
pass
-
+
## Creates a segment discretization 1D algorithm.
# If the optional \a algo parameter is not sets, this algorithm is REGULAR.
# If the optional \a geom parameter is not sets, this algorithm is global.
return Mesh_Segment_Python(self, geom)
else:
return Mesh_Segment(self, geom)
-
+
## Creates a triangle 2D algorithm for faces.
# If the optional \a geom parameter is not sets, this algorithm is global.
# Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param algo values are: smesh.MEFISTO or smesh.NETGEN
# @param geom If defined, subshape to be meshed
- def Triangle(self, geom=0):
- return Mesh_Triangle(self, geom)
-
+ def Triangle(self, algo=MEFISTO, geom=0):
+ ## if Triangle(geom) is called by mistake
+ if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)):
+ geom = algo
+ algo = MEFISTO
+
+ return Mesh_Triangle(self, algo, geom)
+
## Creates a quadrangle 2D algorithm for faces.
# If the optional \a geom parameter is not sets, this algorithm is global.
# Otherwise, this algorithm define a submesh based on \a geom subshape.
# The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D
# If the optional \a geom parameter is not sets, this algorithm is global.
# Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param algo values are: smesh.NETGEN, smesh.GHS3D
+ # @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.FULL_NETGEN
# @param geom If defined, subshape to be meshed
- def Tetrahedron(self, algo, geom=0):
+ def Tetrahedron(self, algo=NETGEN, geom=0):
## if Tetrahedron(geom) is called by mistake
if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)):
algo, geom = geom, algo
pass
return Mesh_Tetrahedron(self, algo, geom)
-
+
## Creates a hexahedron 3D algorithm for solids.
# If the optional \a geom parameter is not sets, this algorithm is global.
# Otherwise, this algorithm define a submesh based on \a geom subshape.
def Hexahedron(self, geom=0):
return Mesh_Hexahedron(self, geom)
- ## Creates a NETGEN-based 2D or 3D independent algorithm (i.e. needs no
+ ## Deprecated, only for compatibility!
+ # Creates a NETGEN-based 2D or 3D independent algorithm (i.e. needs no
# discrete boundary).
# If the optional \a geom parameter is not sets, this algorithm is global.
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param geom If defined, subshape to be meshed
def Netgen(self, is3D, geom=0):
return Mesh_Netgen(self, is3D, geom)
-
+
## Compute the mesh and return the status of the computation
- def Compute(self):
- ok = smesh.Compute(self.mesh, self.geom)
+ def Compute(self, geom=0):
+ if geom == 0 or not isinstance(geom, geompy.GEOM._objref_GEOM_Object):
+ if self.geom == 0:
+ print "Compute impossible: mesh is not constructed on geom shape."
+ return 0
+ else:
+ geom = self.geom
+ ok = smesh.Compute(self.mesh, geom)
if not ok:
- errors = smesh.GetAlgoState( self.mesh, self.geom )
+ errors = smesh.GetAlgoState( self.mesh, geom )
allReasons = ""
for err in errors:
if err.isGlobalAlgo:
glob = " local "
pass
dim = str(err.algoDim)
- if err.name == SMESH.MISSING_ALGO:
+ if err.name == MISSING_ALGO:
reason = glob + dim + "D algorithm is missing"
- elif err.name == SMESH.MISSING_HYPO:
+ elif err.name == MISSING_HYPO:
name = '"' + err.algoName + '"'
reason = glob + dim + "D algorithm " + name + " misses " + dim + "D hypothesis"
else:
self.Tetrahedron(NETGEN)
pass
return self.Compute()
-
+
## Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
# The parameter \a fineness [0.-1.] defines mesh fineness
def AutomaticHexahedralization(self, fineness=0):
self.Hexahedron()
pass
return self.Compute()
-
+
+ ## Get the list of hypothesis added on a geom
+ # @param geom is subhape of mesh geometry
+ def GetHypothesisList(self, geom):
+ return self.mesh.GetHypothesisList( geom )
+
## Removes all global hypotheses
def RemoveGlobalHypotheses(self):
current_hyps = self.mesh.GetHypothesisList( self.geom )
self.mesh.RemoveHypothesis( self.geom, hyp )
pass
pass
-
+
## Create a mesh group based on geometric object \a grp
# and give a \a name, if this parameter is not defined
# the name is the same as the geometric group name
+ # Note: this function is obsolete. Works like GroupOnGeom().
# @param grp is a geometric group, a vertex, an edge, a face or a solid
# @param name is the name of the mesh group
+ # @return SMESH_GroupOnGeom
def Group(self, grp, name=""):
- if name == "":
- name = grp.GetName()
-
- type = []
- tgeo = str(grp.GetShapeType())
- if tgeo == "VERTEX":
- type = SMESH.NODE
- elif tgeo == "EDGE":
- type = SMESH.EDGE
- elif tgeo == "FACE":
- type = SMESH.FACE
- elif tgeo == "SOLID":
- type = SMESH.VOLUME
- elif tgeo == "SHELL":
- type = SMESH.VOLUME
- elif tgeo == "COMPOUND":
- if len( geompy.GetObjectIDs( grp )) == 0:
- print "Mesh.Group: empty geometric group", GetName( grp )
- return 0
- tgeo = geompy.GetType(grp)
- if tgeo == geompy.ShapeType["VERTEX"]:
- type = SMESH.NODE
- elif tgeo == geompy.ShapeType["EDGE"]:
- type = SMESH.EDGE
- elif tgeo == geompy.ShapeType["FACE"]:
- type = SMESH.FACE
- elif tgeo == geompy.ShapeType["SOLID"]:
- type = SMESH.VOLUME
-
- if type == []:
- print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid"
- return 0
- else:
- return self.mesh.CreateGroupFromGEOM(type, name, grp)
-
- ## Export the mesh in a file with the MED format and choice the \a version of MED format
+ return self.GroupOnGeom(grp, name)
+
+ ## Deprecated, only for compatibility! Please, use ExportMED() method instead.
+ # Export the mesh in a file with the MED format and choice the \a version of MED format
# @param f is the file name
# @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
def ExportToMED(self, f, version, opt=0):
self.mesh.ExportToMED(f, opt, version)
-
+
## Export the mesh in a file with the MED format
# @param f is the file name
- def ExportMED(self, f, opt=0):
- self.mesh.ExportMED(f, opt)
-
+ # @param auto_groups boolean parameter for creating/not creating
+ # the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
+ # the typical use is auto_groups=false.
+ # @param version MED format version(MED_V2_1 or MED_V2_2)
+ def ExportMED(self, f, auto_groups=0, version=MED_V2_2):
+ self.mesh.ExportToMED(f, auto_groups, version)
+
## Export the mesh in a file with the DAT format
# @param f is the file name
def ExportDAT(self, f):
self.mesh.ExportDAT(f)
-
+
## Export the mesh in a file with the UNV format
# @param f is the file name
def ExportUNV(self, f):
self.mesh.ExportUNV(f)
-
+
## Export the mesh in a file with the STL format
# @param f is the file name
# @param ascii defined the kind of file contents
def ExportSTL(self, f, ascii=1):
self.mesh.ExportSTL(f, ascii)
+
+ ###################################################################################
+
+ ## Operations with groups
+ # ----------------------
+
+ ## Creates an empty mesh group
+ # @param elementType is the type of elements in the group
+ # @param name is the name of the mesh group
+ # @return SMESH_Group
+ def CreateEmptyGroup(self, elementType, name):
+ return self.mesh.CreateGroup(elementType, name)
+
+ ## Creates a mesh group based on geometric object \a grp
+ # and give a \a name, if this parameter is not defined
+ # the name is the same as the geometric group name
+ # @param grp is a geometric group, a vertex, an edge, a face or a solid
+ # @param name is the name of the mesh group
+ # @return SMESH_GroupOnGeom
+ def GroupOnGeom(self, grp, name="", type=None):
+ if name == "":
+ name = grp.GetName()
+
+ if type == None:
+ tgeo = str(grp.GetShapeType())
+ if tgeo == "VERTEX":
+ type = NODE
+ elif tgeo == "EDGE":
+ type = EDGE
+ elif tgeo == "FACE":
+ type = FACE
+ elif tgeo == "SOLID":
+ type = VOLUME
+ elif tgeo == "SHELL":
+ type = VOLUME
+ elif tgeo == "COMPOUND":
+ if len( geompy.GetObjectIDs( grp )) == 0:
+ print "Mesh.Group: empty geometric group", GetName( grp )
+ return 0
+ tgeo = geompy.GetType(grp)
+ if tgeo == geompy.ShapeType["VERTEX"]:
+ type = NODE
+ elif tgeo == geompy.ShapeType["EDGE"]:
+ type = EDGE
+ elif tgeo == geompy.ShapeType["FACE"]:
+ type = FACE
+ elif tgeo == geompy.ShapeType["SOLID"]:
+ type = VOLUME
+
+ if type == None:
+ print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid"
+ return 0
+ else:
+ return self.mesh.CreateGroupFromGEOM(type, name, grp)
+
+ ## Create a mesh group by the given ids of elements
+ # @param groupName is the name of the mesh group
+ # @param elementType is the type of elements in the group
+ # @param elemIDs is the list of ids
+ # @return SMESH_Group
+ def MakeGroupByIds(self, groupName, elementType, elemIDs):
+ group = self.mesh.CreateGroup(elementType, groupName)
+ group.Add(elemIDs)
+ return group
+
+ ## Create a mesh group by the given conditions
+ # @param groupName is the name of the mesh group
+ # @param elementType is the type of elements in the group
+ # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
+ # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
+ # @param Treshold is threshold value (range of id ids as string, shape, numeric)
+ # @param UnaryOp is FT_LogicalNOT or FT_Undefined
+ # @return SMESH_Group
+ def MakeGroup(self,
+ groupName,
+ elementType,
+ CritType=FT_Undefined,
+ Compare=FT_EqualTo,
+ Treshold="",
+ UnaryOp=FT_Undefined):
+ aCriterion = GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
+ group = self.MakeGroupByCriterion(groupName, aCriterion)
+ return group
+
+ ## Create a mesh group by the given criterion
+ # @param groupName is the name of the mesh group
+ # @param Criterion is the instance of Criterion class
+ # @return SMESH_Group
+ def MakeGroupByCriterion(self, groupName, Criterion):
+ aFilterMgr = smesh.CreateFilterManager()
+ aFilter = aFilterMgr.CreateFilter()
+ aCriteria = []
+ aCriteria.append(Criterion)
+ aFilter.SetCriteria(aCriteria)
+ group = self.MakeGroupByFilter(groupName, aFilter)
+ return group
+
+ ## Create a mesh group by the given criteria(list of criterions)
+ # @param groupName is the name of the mesh group
+ # @param Criteria is the list of criterions
+ # @return SMESH_Group
+ def MakeGroupByCriteria(self, groupName, theCriteria):
+ aFilterMgr = smesh.CreateFilterManager()
+ aFilter = aFilterMgr.CreateFilter()
+ aFilter.SetCriteria(theCriteria)
+ group = self.MakeGroupByFilter(groupName, aFilter)
+ return group
+
+ ## Create a mesh group by the given filter
+ # @param groupName is the name of the mesh group
+ # @param Criterion is the instance of Filter class
+ # @return SMESH_Group
+ def MakeGroupByFilter(self, groupName, theFilter):
+ anIds = theFilter.GetElementsId(self.mesh)
+ anElemType = theFilter.GetElementType()
+ group = self.MakeGroupByIds(groupName, anElemType, anIds)
+ return group
+
+ ## Creates filter by given parameters of criterion
+ # @param elementType is the type of elements in the group
+ # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
+ # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
+ # @param Treshold is threshold value (range of id ids as string, shape, numeric)
+ # @param UnaryOp is FT_LogicalNOT or FT_Undefined
+ # @return SMESH_Filter
+ def GetFilter(self,
+ elementType,
+ CritType=FT_Undefined,
+ Compare=FT_EqualTo,
+ Treshold="",
+ UnaryOp=FT_Undefined):
+ aCriterion = GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
+ aFilterMgr = smesh.CreateFilterManager()
+ aFilter = aFilterMgr.CreateFilter()
+ aCriteria = []
+ aCriteria.append(aCriterion)
+ aFilter.SetCriteria(aCriteria)
+ return aFilter
+
+ ## Remove a group
+ def RemoveGroup(self, group):
+ self.mesh.RemoveGroup(group)
+
+ ## Remove group with its contents
+ def RemoveGroupWithContents(self, group):
+ self.mesh.RemoveGroupWithContents(group)
+
+ ## Get the list of groups existing in the mesh
+ def GetGroups(self):
+ return self.mesh.GetGroups()
+
+ ## Get the list of names of groups existing in the mesh
+ def GetGroupNames(self):
+ groups = self.GetGroups()
+ names = []
+ for group in groups:
+ names.append(group.GetName())
+ return names
+
+ ## Union of two groups
+ # New group is created. All mesh elements that are
+ # present in initial groups are added to the new one
+ def UnionGroups(self, group1, group2, name):
+ return self.mesh.UnionGroups(group1, group2, name)
+
+ ## Intersection of two groups
+ # New group is created. All mesh elements that are
+ # present in both initial groups are added to the new one.
+ def IntersectGroups(self, group1, group2, name):
+ return self.mesh.IntersectGroups(group1, group2, name)
+
+ ## Cut of two groups
+ # New group is created. All mesh elements that are present in
+ # main group but do not present in tool group are added to the new one
+ def CutGroups(self, mainGroup, toolGroup, name):
+ return self.mesh.CutGroups(mainGroup, toolGroup, name)
+
+
+ ## Get some info about mesh:
+ # ------------------------
+
+ ## Get the log of nodes and elements added or removed since previous
+ # clear of the log.
+ # @param clearAfterGet log is emptied after Get (safe if concurrents access)
+ # @return list of log_block structures:
+ # commandType
+ # number
+ # coords
+ # indexes
+ def GetLog(self, clearAfterGet):
+ return self.mesh.GetLog(clearAfterGet)
+
+ ## Clear the log of nodes and elements added or removed since previous
+ # clear. Must be used immediately after GetLog if clearAfterGet is false.
+ def ClearLog(self):
+ self.mesh.ClearLog()
+
+ ## Get the internal Id
+ def GetId(self):
+ return self.mesh.GetId()
+
+ ## Get the study Id
+ def GetStudyId(self):
+ return self.mesh.GetStudyId()
+
+ ## Check group names for duplications.
+ # Consider maximum group name length stored in MED file.
+ def HasDuplicatedGroupNamesMED(self):
+ return self.mesh.GetStudyId()
+
+ ## Obtain instance of SMESH_MeshEditor
+ def GetMeshEditor(self):
+ return self.mesh.GetMeshEditor()
+
+ ## Get MED Mesh
+ def GetMEDMesh(self):
+ return self.mesh.GetMEDMesh()
+
+
+ ## Get informations about mesh contents:
+ # ------------------------------------
+
+ ## Returns number of nodes in mesh
+ def NbNodes(self):
+ return self.mesh.NbNodes()
+
+ ## Returns number of elements in mesh
+ def NbElements(self):
+ return self.mesh.NbElements()
+
+ ## Returns number of edges in mesh
+ def NbEdges(self):
+ return self.mesh.NbEdges()
+
+ ## Returns number of edges with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbEdgesOfOrder(self, elementOrder):
+ return self.mesh.NbEdgesOfOrder(elementOrder)
+
+ ## Returns number of faces in mesh
+ def NbFaces(self):
+ return self.mesh.NbFaces()
+
+ ## Returns number of faces with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbFacesOfOrder(self, elementOrder):
+ return self.mesh.NbFacesOfOrder(elementOrder)
+
+ ## Returns number of triangles in mesh
+ def NbTriangles(self):
+ return self.mesh.NbTriangles()
+
+ ## Returns number of triangles with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbTrianglesOfOrder(self, elementOrder):
+ return self.mesh.NbTrianglesOfOrder(elementOrder)
+
+ ## Returns number of quadrangles in mesh
+ def NbQuadrangles(self):
+ return self.mesh.NbQuadrangles()
+
+ ## Returns number of quadrangles with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbQuadranglesOfOrder(self, elementOrder):
+ return self.mesh.NbQuadranglesOfOrder(elementOrder)
+
+ ## Returns number of polygons in mesh
+ def NbPolygons(self):
+ return self.mesh.NbPolygons()
+
+ ## Returns number of volumes in mesh
+ def NbVolumes(self):
+ return self.mesh.NbVolumes()
+
+ ## Returns number of volumes with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbVolumesOfOrder(self, elementOrder):
+ return self.mesh.NbVolumesOfOrder(elementOrder)
+
+ ## Returns number of tetrahedrons in mesh
+ def NbTetras(self):
+ return self.mesh.NbTetras()
+
+ ## Returns number of tetrahedrons with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbTetrasOfOrder(self, elementOrder):
+ return self.mesh.NbTetrasOfOrder(elementOrder)
+
+ ## Returns number of hexahedrons in mesh
+ def NbHexas(self):
+ return self.mesh.NbHexas()
+
+ ## Returns number of hexahedrons with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbHexasOfOrder(self, elementOrder):
+ return self.mesh.NbHexasOfOrder(elementOrder)
+
+ ## Returns number of pyramids in mesh
+ def NbPyramids(self):
+ return self.mesh.NbPyramids()
+
+ ## Returns number of pyramids with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbPyramidsOfOrder(self, elementOrder):
+ return self.mesh.NbPyramidsOfOrder(elementOrder)
+
+ ## Returns number of prisms in mesh
+ def NbPrisms(self):
+ return self.mesh.NbPrisms()
+
+ ## Returns number of prisms with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbPrismsOfOrder(self, elementOrder):
+ return self.mesh.NbPrismsOfOrder(elementOrder)
+
+ ## Returns number of polyhedrons in mesh
+ def NbPolyhedrons(self):
+ return self.mesh.NbPolyhedrons()
+
+ ## Returns number of submeshes in mesh
+ def NbSubMesh(self):
+ return self.mesh.NbSubMesh()
+
+ ## Returns list of mesh elements ids
+ def GetElementsId(self):
+ return self.mesh.GetElementsId()
+
+ ## Returns list of ids of mesh elements with given type
+ # @param elementType is required type of elements
+ def GetElementsByType(self, elementType):
+ return self.mesh.GetElementsByType(elementType)
+
+ ## Returns list of mesh nodes ids
+ def GetNodesId(self):
+ return self.mesh.GetNodesId()
+
+ ## Get informations about mesh elements:
+ # ------------------------------------
+
+ ## Returns type of mesh element
+ def GetElementType(self, id, iselem):
+ return self.mesh.GetElementType(id, iselem)
+
+ ## Returns list of submesh elements ids
+ # @param shapeID is geom object(subshape) IOR
+ def GetSubMeshElementsId(self, shapeID):
+ return self.mesh.GetSubMeshElementsId(shapeID)
+
+ ## Returns list of submesh nodes ids
+ # @param shapeID is geom object(subshape) IOR
+ def GetSubMeshNodesId(self, shapeID, all):
+ return self.mesh.GetSubMeshNodesId(shapeID, all)
+
+ ## Returns list of ids of submesh elements with given type
+ # @param shapeID is geom object(subshape) IOR
+ def GetSubMeshElementType(self, shapeID):
+ return self.mesh.GetSubMeshElementType(shapeID)
+
+ ## Get mesh description
+ def Dump(self):
+ return self.mesh.Dump()
+
+
+ ## Get information about nodes and elements of mesh by its ids:
+ # -----------------------------------------------------------
+
+ ## Get XYZ coordinates of node as list of double
+ # If there is not node for given ID - returns empty list
+ def GetNodeXYZ(self, id):
+ return self.mesh.GetNodeXYZ(id)
+
+ ## For given node returns list of IDs of inverse elements
+ # If there is not node for given ID - returns empty list
+ def GetNodeInverseElements(self, id):
+ return self.mesh.GetNodeInverseElements(id)
+
+ ## If given element is node returns IDs of shape from position
+ # else - return ID of result shape after Mesh.FindShape()
+ # If there is not element for given ID - returns -1
+ def GetShapeID(self, id):
+ return self.mesh.GetShapeID(id)
+
+ ## Returns number of nodes for given element
+ # If there is not element for given ID - returns -1
+ def GetElemNbNodes(self, id):
+ return self.mesh.GetElemNbNodes(id)
+
+ ## Returns ID of node by given index for given element
+ # If there is not element for given ID - returns -1
+ # If there is not node for given index - returns -2
+ def GetElemNode(self, id, index):
+ return self.mesh.GetElemNode(id, index)
+
+ ## Returns true if given node is medium node
+ # in given quadratic element
+ def IsMediumNode(self, elementID, nodeID):
+ return self.mesh.IsMediumNode(elementID, nodeID)
+
+ ## Returns true if given node is medium node
+ # in one of quadratic elements
+ def IsMediumNodeOfAnyElem(self, nodeID, elementType):
+ return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
+
+ ## Returns number of edges for given element
+ def ElemNbEdges(self, id):
+ return self.mesh.ElemNbEdges(id)
+
+ ## Returns number of faces for given element
+ def ElemNbFaces(self, id):
+ return self.mesh.ElemNbFaces(id)
+
+ ## Returns true if given element is polygon
+ def IsPoly(self, id):
+ return self.mesh.IsPoly(id)
+
+ ## Returns true if given element is quadratic
+ def IsQuadratic(self, id):
+ return self.mesh.IsQuadratic(id)
+
+ ## Returns XYZ coordinates of bary center for given element
+ # as list of double
+ # If there is not element for given ID - returns empty list
+ def BaryCenter(self, id):
+ return self.mesh.BaryCenter(id)
+
+
+ ## Mesh edition (SMESH_MeshEditor functionality):
+ # ---------------------------------------------
+
+ ## Removes elements from mesh by ids
+ # @param IDsOfElements is list of ids of elements to remove
+ def RemoveElements(self, IDsOfElements):
+ return self.editor.RemoveElements(IDsOfElements)
+
+ ## Removes nodes from mesh by ids
+ # @param IDsOfNodes is list of ids of nodes to remove
+ def RemoveNodes(self, IDsOfNodes):
+ return self.editor.RemoveNodes(IDsOfNodes)
+
+ ## Add node to mesh by coordinates
+ def AddNode(self, x, y, z):
+ return self.editor.AddNode( x, y, z)
+
+
+ ## Create edge both similar and quadratic (this is determed
+ # by number of given nodes).
+ # @param IdsOfNodes List of node IDs for creation of element.
+ # Needed order of nodes in this list corresponds to description
+ # of MED. This description is located by the following link:
+ # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+ def AddEdge(self, IDsOfNodes):
+ return self.editor.AddEdge(IDsOfNodes)
+
+ ## Create face both similar and quadratic (this is determed
+ # by number of given nodes).
+ # @param IdsOfNodes List of node IDs for creation of element.
+ # Needed order of nodes in this list corresponds to description
+ # of MED. This description is located by the following link:
+ # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+ def AddFace(self, IDsOfNodes):
+ return self.editor.AddFace(IDsOfNodes)
+
+ ## Add polygonal face to mesh by list of nodes ids
+ def AddPolygonalFace(self, IdsOfNodes):
+ return self.editor.AddPolygonalFace(IdsOfNodes)
+
+ ## Create volume both similar and quadratic (this is determed
+ # by number of given nodes).
+ # @param IdsOfNodes List of node IDs for creation of element.
+ # Needed order of nodes in this list corresponds to description
+ # of MED. This description is located by the following link:
+ # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+ def AddVolume(self, IDsOfNodes):
+ return self.editor.AddVolume(IDsOfNodes)
+
+ ## Create volume of many faces, giving nodes for each face.
+ # @param IdsOfNodes List of node IDs for volume creation face by face.
+ # @param Quantities List of integer values, Quantities[i]
+ # gives quantity of nodes in face number i.
+ def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
+ return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
+
+ ## Create volume of many faces, giving IDs of existing faces.
+ # @param IdsOfFaces List of face IDs for volume creation.
+ #
+ # Note: The created volume will refer only to nodes
+ # of the given faces, not to the faces itself.
+ def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
+ return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
+
+ ## Move node with given id
+ # @param NodeID id of the node
+ # @param x displacing along the X axis
+ # @param y displacing along the Y axis
+ # @param z displacing along the Z axis
+ def MoveNode(self, NodeID, x, y, z):
+ return self.editor.MoveNode(NodeID, x, y, z)
+
+ ## Replace two neighbour triangles sharing Node1-Node2 link
+ # with ones built on the same 4 nodes but having other common link.
+ # @param NodeID1 first node id
+ # @param NodeID2 second node id
+ # @return false if proper faces not found
+ def InverseDiag(self, NodeID1, NodeID2):
+ return self.editor.InverseDiag(NodeID1, NodeID2)
+
+ ## Replace two neighbour triangles sharing Node1-Node2 link
+ # with a quadrangle built on the same 4 nodes.
+ # @param NodeID1 first node id
+ # @param NodeID2 second node id
+ # @return false if proper faces not found
+ def DeleteDiag(self, NodeID1, NodeID2):
+ return self.editor.DeleteDiag(NodeID1, NodeID2)
+
+ ## Reorient elements by ids
+ # @param IDsOfElements if undefined reorient all mesh elements
+ def Reorient(self, IDsOfElements=None):
+ if IDsOfElements == None:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.Reorient(IDsOfElements)
+
+ ## Reorient all elements of the object
+ # @param theObject is mesh, submesh or group
+ def ReorientObject(self, theObject):
+ return self.editor.ReorientObject(theObject)
+
+ ## Fuse neighbour triangles into quadrangles.
+ # @param IDsOfElements The triangles to be fused,
+ # @param Criterion is used to choose a neighbour to fuse with.
+ # @param MaxAngle is a max angle between element normals at which fusion
+ # is still performed; theMaxAngle is mesured in radians.
+ # @return TRUE in case of success, FALSE otherwise.
+ def TriToQuad(self, IDsOfElements, Criterion, MaxAngle):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.TriToQuad(IDsOfElements, Criterion, MaxAngle)
+
+ ## Fuse neighbour triangles of the object into quadrangles
+ # @param theObject is mesh, submesh or group
+ # @param Criterion is used to choose a neighbour to fuse with.
+ # @param MaxAngle is a max angle between element normals at which fusion
+ # is still performed; theMaxAngle is mesured in radians.
+ # @return TRUE in case of success, FALSE otherwise.
+ def TriToQuadObject (self, theObject, Criterion, MaxAngle):
+ return self.editor.TriToQuadObject(theObject, Criterion, MaxAngle)
+
+ ## Split quadrangles into triangles.
+ # @param IDsOfElements the faces to be splitted.
+ # @param theCriterion is used to choose a diagonal for splitting.
+ # @param @return TRUE in case of success, FALSE otherwise.
+ def QuadToTri (self, IDsOfElements, Criterion):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.QuadToTri(IDsOfElements, Criterion)
+
+ ## Split quadrangles into triangles.
+ # @param theObject object to taking list of elements from, is mesh, submesh or group
+ def QuadToTriObject (self, theObject, Criterion):
+ return self.editor.QuadToTriObject(theObject, Criterion)
+
+ ## Split quadrangles into triangles.
+ # @param theElems The faces to be splitted
+ # @param the13Diag is used to choose a diagonal for splitting.
+ # @return TRUE in case of success, FALSE otherwise.
+ def SplitQuad (self, IDsOfElements, Diag13):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.SplitQuad(IDsOfElements, Diag13)
+
+ ## Split quadrangles into triangles.
+ # @param theObject is object to taking list of elements from, is mesh, submesh or group
+ def SplitQuadObject (self, theObject, Diag13):
+ return self.editor.SplitQuadObject(theObject, Diag13)
+
+ ## Find better splitting of the given quadrangle.
+ # @param IDOfQuad ID of the quadrangle to be splitted.
+ # @param Criterion is a criterion to choose a diagonal for splitting.
+ # @return 1 if 1-3 diagonal is better, 2 if 2-4
+ # diagonal is better, 0 if error occurs.
+ def BestSplit (self, IDOfQuad, Criterion):
+ return self.editor.BestSplit(IDOfQuad, Criterion)
+
+ ## Smooth elements
+ # @param IDsOfElements list if ids of elements to smooth
+ # @param IDsOfFixedNodes list of ids of fixed nodes.
+ # Note that nodes built on edges and boundary nodes are always fixed.
+ # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxAspectRatio varies in range [1.0, inf]
+ # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
+ def Smooth(self, IDsOfElements, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method)
+
+ ## Smooth elements belong to given object
+ # @param theObject object to smooth
+ # @param IDsOfFixedNodes list of ids of fixed nodes.
+ # Note that nodes built on edges and boundary nodes are always fixed.
+ # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxAspectRatio varies in range [1.0, inf]
+ # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
+ def SmoothObject(self, theObject, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxxAspectRatio, Method):
+ return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxxAspectRatio, Method)
+
+ ## Parametric smooth the given elements
+ # @param IDsOfElements list if ids of elements to smooth
+ # @param IDsOfFixedNodes list of ids of fixed nodes.
+ # Note that nodes built on edges and boundary nodes are always fixed.
+ # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxAspectRatio varies in range [1.0, inf]
+ # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
+ def SmoothParametric(IDsOfElements, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method)
+
+ ## Parametric smooth elements belong to given object
+ # @param theObject object to smooth
+ # @param IDsOfFixedNodes list of ids of fixed nodes.
+ # Note that nodes built on edges and boundary nodes are always fixed.
+ # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxAspectRatio varies in range [1.0, inf]
+ # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
+ def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method):
+ return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method)
+
+ ## Converts all mesh to quadratic one, deletes old elements, replacing
+ # them with quadratic ones with the same id.
+ def ConvertToQuadratic(self, theForce3d):
+ self.editor.ConvertToQuadratic(theForce3d)
+
+ ## Converts all mesh from quadratic to ordinary ones,
+ # deletes old quadratic elements, replacing
+ # them with ordinary mesh elements with the same id.
+ def ConvertFromQuadratic(self):
+ return self.editor.ConvertFromQuadratic()
+
+ ## Renumber mesh nodes
+ def RenumberNodes(self):
+ self.editor.RenumberNodes()
+
+ ## Renumber mesh elements
+ def RenumberElements(self):
+ self.editor.RenumberElements()
+
+ ## Generate new elements by rotation of the elements around the axis
+ # @param IDsOfElements list of ids of elements to sweep
+ # @param Axix axis of rotation, AxisStruct or line(geom object)
+ # @param AngleInRadians angle of Rotation
+ # @param NbOfSteps number of steps
+ # @param Tolerance tolerance
+ def RotationSweep(self, IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Axix, geompy.GEOM._objref_GEOM_Object)):
+ Axix = GetAxisStruct(Axix)
+ self.editor.RotationSweep(IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance)
+
+ ## Generate new elements by rotation of the elements of object around the axis
+ # @param theObject object wich elements should be sweeped
+ # @param Axix axis of rotation, AxisStruct or line(geom object)
+ # @param AngleInRadians angle of Rotation
+ # @param NbOfSteps number of steps
+ # @param Tolerance tolerance
+ def RotationSweepObject(self, theObject, Axix, AngleInRadians, NbOfSteps, Tolerance):
+ if ( isinstance( Axix, geompy.GEOM._objref_GEOM_Object)):
+ Axix = GetAxisStruct(Axix)
+ self.editor.RotationSweepObject(theObject, Axix, AngleInRadians, NbOfSteps, Tolerance)
+
+ ## Generate new elements by extrusion of the elements with given ids
+ # @param IDsOfElements list of elements ids for extrusion
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
+ StepVector = GetDirStruct(StepVector)
+ self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
+
+ ## Generate new elements by extrusion of the elements with given ids
+ # @param IDsOfElements is ids of elements
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ # @param ExtrFlags set flags for performing extrusion
+ # @param SewTolerance uses for comparing locations of nodes if flag
+ # EXTRUSION_FLAG_SEW is set
+ def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance):
+ if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
+ StepVector = GetDirStruct(StepVector)
+ self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance)
+
+ ## Generate new elements by extrusion of the elements belong to object
+ # @param theObject object wich elements should be processed
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps):
+ if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
+ StepVector = GetDirStruct(StepVector)
+ self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
+
+ ## Generate new elements by extrusion of the elements belong to object
+ # @param theObject object wich elements should be processed
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps):
+ if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
+ StepVector = GetDirStruct(StepVector)
+ self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
+
+ ## Generate new elements by extrusion of the elements belong to object
+ # @param theObject object wich elements should be processed
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps):
+ if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
+ StepVector = GetDirStruct(StepVector)
+ self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
+
+ ## Generate new elements by extrusion of the given elements
+ # A path of extrusion must be a meshed edge.
+ # @param IDsOfElements is ids of elements
+ # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
+ # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
+ # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
+ # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
+ # @param Angles list of angles
+ # @param HasRefPoint allows to use base point
+ # @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
+ # User can specify any point as the Base Point and the shape will be rotated with respect to this point.
+ def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
+ HasAngles, Angles, HasRefPoint, RefPoint):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( RefPoint, geompy.GEOM._objref_GEOM_Object)):
+ RefPoint = GetPointStruct(RefPoint)
+ return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh, PathShape, NodeStart,
+ HasAngles, Angles, HasRefPoint, RefPoint)
+
+ ## Generate new elements by extrusion of the elements belong to object
+ # A path of extrusion must be a meshed edge.
+ # @param IDsOfElements is ids of elements
+ # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
+ # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
+ # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
+ # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
+ # @param Angles list of angles
+ # @param HasRefPoint allows to use base point
+ # @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
+ # User can specify any point as the Base Point and the shape will be rotated with respect to this point.
+ def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
+ HasAngles, Angles, HasRefPoint, RefPoint):
+ if ( isinstance( RefPoint, geompy.GEOM._objref_GEOM_Object)):
+ RefPoint = GetPointStruct(RefPoint)
+ return self.editor.ExtrusionAlongPathObject(theObject, PathMesh, PathShape, NodeStart,
+ HasAngles, Angles, HasRefPoint, RefPoint)
+
+ ## Symmetrical copy of mesh elements
+ # @param IDsOfElements list of elements ids
+ # @param Mirror is AxisStruct or geom object(point, line, plane)
+ # @param theMirrorType is POINT, AXIS or PLANE
+ # If the Mirror is geom object this parameter is unnecessary
+ # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
+ def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Mirror, geompy.GEOM._objref_GEOM_Object)):
+ Mirror = GetAxisStruct(Mirror)
+ self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
+
+ ## Symmetrical copy of object
+ # @param theObject mesh, submesh or group
+ # @param Mirror is AxisStruct or geom object(point, line, plane)
+ # @param theMirrorType is POINT, AXIS or PLANE
+ # If the Mirror is geom object this parameter is unnecessary
+ # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
+ def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0):
+ if ( isinstance( Mirror, geompy.GEOM._objref_GEOM_Object)):
+ Mirror = GetAxisStruct(Mirror)
+ self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
+
+ ## Translates the elements
+ # @param IDsOfElements list of elements ids
+ # @param Vector direction of translation(DirStruct or vector)
+ # @param Copy allows to copy the translated elements
+ def Translate(self, IDsOfElements, Vector, Copy):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Vector, geompy.GEOM._objref_GEOM_Object)):
+ Vector = GetDirStruct(Vector)
+ self.editor.Translate(IDsOfElements, Vector, Copy)
+
+ ## Translates the object
+ # @param theObject object to translate(mesh, submesh, or group)
+ # @param Vector direction of translation(DirStruct or geom vector)
+ # @param Copy allows to copy the translated elements
+ def TranslateObject(self, theObject, Vector, Copy):
+ if ( isinstance( Vector, geompy.GEOM._objref_GEOM_Object)):
+ Vector = GetDirStruct(Vector)
+ self.editor.TranslateObject(theObject, Vector, Copy)
+
+ ## Rotates the elements
+ # @param IDsOfElements list of elements ids
+ # @param Axis axis of rotation(AxisStruct or geom line)
+ # @param AngleInRadians angle of rotation(in radians)
+ # @param Copy allows to copy the rotated elements
+ def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Axis, geompy.GEOM._objref_GEOM_Object)):
+ Axis = GetAxisStruct(Axis)
+ self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
+
+ ## Rotates the object
+ # @param theObject object to rotate(mesh, submesh, or group)
+ # @param Axis axis of rotation(AxisStruct or geom line)
+ # @param AngleInRadians angle of rotation(in radians)
+ # @param Copy allows to copy the rotated elements
+ def RotateObject (self, theObject, Axis, AngleInRadians, Copy):
+ self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
+
+ ## Find group of nodes close to each other within Tolerance.
+ # @param Tolerance tolerance value
+ # @param list of group of nodes
+ def FindCoincidentNodes (self, Tolerance):
+ return self.editor.FindCoincidentNodes(Tolerance)
+
+ ## Merge nodes
+ # @param list of group of nodes
+ def MergeNodes (self, GroupsOfNodes):
+ self.editor.MergeNodes(GroupsOfNodes)
+
+ ## Remove all but one of elements built on the same nodes.
+ def MergeEqualElements(self):
+ self.editor.MergeEqualElements()
+
+ ## Sew free borders
+ def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
+ FirstNodeID2, SecondNodeID2, LastNodeID2,
+ CreatePolygons, CreatePolyedrs):
+ return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
+ FirstNodeID2, SecondNodeID2, LastNodeID2,
+ CreatePolygons, CreatePolyedrs)
+
+ ## Sew conform free borders
+ def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
+ FirstNodeID2, SecondNodeID2):
+ return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
+ FirstNodeID2, SecondNodeID2)
+
+ ## Sew border to side
+ def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
+ FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
+ return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
+ FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
+
+ ## Sew two sides of a mesh. Nodes belonging to Side1 are
+ # merged with nodes of elements of Side2.
+ # Number of elements in theSide1 and in theSide2 must be
+ # equal and they should have similar node connectivity.
+ # The nodes to merge should belong to sides borders and
+ # the first node should be linked to the second.
+ def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
+ NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
+ NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
+ return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
+ NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
+ NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
+
+ ## Set new nodes for given element.
+ # @param ide the element id
+ # @param newIDs nodes ids
+ # @return If number of nodes is not corresponded to type of element - returns false
+ def ChangeElemNodes(self, ide, newIDs):
+ return self.editor.ChangeElemNodes(ide, newIDs)
+
+ ## If during last operation of MeshEditor some nodes were
+ # created this method returns list of it's IDs, if new nodes
+ # not created - returns empty list
+ def GetLastCreatedNodes(self):
+ return self.editor.GetLastCreatedNodes()
+
+ ## If during last operation of MeshEditor some elements were
+ # created this method returns list of it's IDs, if new elements
+ # not creared - returns empty list
+ def GetLastCreatedElems(self):
+ return self.editor.GetLastCreatedElems()