default = [],
typecast = tuple,
message = "Liste de calculs supplémentaires à stocker et/ou effectuer",
- listval = ["APosterioriCovariance", "BMA", "OMA", "OMB", "Innovation", "SigmaObs2", "MahalanobisConsistency"]
+ listval = ["APosterioriCovariance", "BMA", "OMA", "OMB", "Innovation", "SigmaObs2", "MahalanobisConsistency", "SimulationQuantiles"]
+ )
+ self.defineRequiredParameter(
+ name = "Quantiles",
+ default = [],
+ typecast = tuple,
+ message = "Liste des valeurs de quantiles",
+ )
+ self.defineRequiredParameter(
+ name = "SetSeed",
+ typecast = numpy.random.seed,
+ message = "Graine fixée pour le générateur aléatoire",
+ )
+ self.defineRequiredParameter(
+ name = "NumberOfSamplesForQuantiles",
+ default = 100,
+ typecast = int,
+ message = "Nombre d'échantillons simulés pour le calcul des quantiles",
+ minval = 1,
+ )
+ self.defineRequiredParameter(
+ name = "SimulationForQuantiles",
+ default = "Linear",
+ typecast = str,
+ message = "Type de simulation pour l'estimation des quantiles",
+ listval = ["Linear", "NonLinear"]
)
def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
#
self.StoredVariables["Analysis"].store( Xa.A1 )
#
+ if "OMA" in self._parameters["StoreSupplementaryCalculations"] or \
+ "SigmaObs2" in self._parameters["StoreSupplementaryCalculations"] or \
+ "SimulationQuantiles" in self._parameters["StoreSupplementaryCalculations"]:
+ HXa = Hm(Xa)
+ #
# Calcul de la covariance d'analyse
# ---------------------------------
- if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+ if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"] or \
+ "SimulationQuantiles" in self._parameters["StoreSupplementaryCalculations"]:
HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
if "BMA" in self._parameters["StoreSupplementaryCalculations"]:
self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
if "OMA" in self._parameters["StoreSupplementaryCalculations"]:
- self.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(Hm(Xa)) )
+ self.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
if "OMB" in self._parameters["StoreSupplementaryCalculations"]:
self.StoredVariables["OMB"].store( numpy.ravel(d) )
if "SigmaObs2" in self._parameters["StoreSupplementaryCalculations"]:
TraceR = R.trace(Y.size)
- self.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(Hm(Xa))).T)) ) / TraceR )
+ self.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(HXa)).T)) ) / TraceR )
if "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"]:
self.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
+ if "SimulationQuantiles" in self._parameters["StoreSupplementaryCalculations"]:
+ Qtls = self._parameters["Quantiles"]
+ nech = self._parameters["NumberOfSamplesForQuantiles"]
+ HXa = numpy.matrix(numpy.ravel( HXa )).T
+ YfQ = None
+ for i in range(nech):
+ if self._parameters["SimulationForQuantiles"] == "Linear":
+ dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
+ dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
+ Yr = HXa + dYr
+ elif self._parameters["SimulationForQuantiles"] == "NonLinear":
+ Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
+ Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
+ if YfQ is None:
+ YfQ = Yr
+ else:
+ YfQ = numpy.hstack((YfQ,Yr))
+ YfQ.sort(axis=-1)
+ YQ = None
+ for quantile in Qtls:
+ if not (0. <= quantile <= 1.): continue
+ indice = int(nech * quantile - 1./nech)
+ if YQ is None: YQ = YfQ[:,indice]
+ else: YQ = numpy.hstack((YQ,YfQ[:,indice]))
+ self.StoredVariables["SimulationQuantiles"].store( YQ )
#
logging.debug("%s Taille mémoire utilisée de %.1f Mo"%(self._name, m.getUsedMemory("M")))
logging.debug("%s Terminé"%self._name)
default = [],
typecast = tuple,
message = "Liste de calculs supplémentaires à stocker et/ou effectuer",
- listval = ["APosterioriCovariance", "BMA", "OMA", "OMB", "Innovation", "SigmaBck2", "SigmaObs2", "MahalanobisConsistency"]
+ listval = ["APosterioriCovariance", "BMA", "OMA", "OMB", "Innovation", "SigmaBck2", "SigmaObs2", "MahalanobisConsistency", "SimulationQuantiles"]
+ )
+ self.defineRequiredParameter(
+ name = "Quantiles",
+ default = [],
+ typecast = tuple,
+ message = "Liste des valeurs de quantiles",
+ )
+ self.defineRequiredParameter(
+ name = "SetSeed",
+ typecast = numpy.random.seed,
+ message = "Graine fixée pour le générateur aléatoire",
+ )
+ self.defineRequiredParameter(
+ name = "NumberOfSamplesForQuantiles",
+ default = 100,
+ typecast = int,
+ message = "Nombre d'échantillons simulés pour le calcul des quantiles",
+ minval = 1,
+ )
+ self.defineRequiredParameter(
+ name = "SimulationForQuantiles",
+ default = "Linear",
+ typecast = str,
+ message = "Type de simulation pour l'estimation des quantiles",
+ listval = ["Linear", "NonLinear"]
)
def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
#
# Calcul de la fonction coût
# --------------------------
- if self._parameters["StoreInternalVariables"] or "OMA" in self._parameters["StoreSupplementaryCalculations"] or "SigmaObs2" in self._parameters["StoreSupplementaryCalculations"] or "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"]:
- oma = Y - Hm * Xa
- if self._parameters["StoreInternalVariables"] or "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"]:
+ if self._parameters["StoreInternalVariables"] or \
+ "OMA" in self._parameters["StoreSupplementaryCalculations"] or \
+ "SigmaObs2" in self._parameters["StoreSupplementaryCalculations"] or \
+ "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"] or \
+ "SimulationQuantiles" in self._parameters["StoreSupplementaryCalculations"]:
+ HXa = Hm * Xa
+ oma = Y - HXa
+ if self._parameters["StoreInternalVariables"] or \
+ "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"]:
Jb = 0.5 * (Xa - Xb).T * BI * (Xa - Xb)
Jo = 0.5 * oma.T * RI * oma
J = float( Jb ) + float( Jo )
#
# Calcul de la covariance d'analyse
# ---------------------------------
- if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+ if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"] or \
+ "SimulationQuantiles" in self._parameters["StoreSupplementaryCalculations"]:
A = B - K * Hm * B
if min(A.shape) != max(A.shape):
raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(self._name,str(A.shape)))
self.StoredVariables["SigmaBck2"].store( float( (d.T * Hm * (Xa - Xb))/(Hm * B * Hm.T).trace() ) )
if "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"]:
self.StoredVariables["MahalanobisConsistency"].store( float( 2.*J/d.size ) )
+ if "SimulationQuantiles" in self._parameters["StoreSupplementaryCalculations"]:
+ Qtls = self._parameters["Quantiles"]
+ nech = self._parameters["NumberOfSamplesForQuantiles"]
+ YfQ = None
+ for i in range(nech):
+ if self._parameters["SimulationForQuantiles"] == "Linear":
+ dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
+ dYr = numpy.matrix(numpy.ravel( Hm * dXr )).T
+ Yr = HXa + dYr
+ elif self._parameters["SimulationForQuantiles"] == "NonLinear":
+ Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
+ Yr = numpy.matrix(numpy.ravel( Hm * Xr )).T
+ if YfQ is None:
+ YfQ = Yr
+ else:
+ YfQ = numpy.hstack((YfQ,Yr))
+ YfQ.sort(axis=-1)
+ YQ = None
+ for quantile in Qtls:
+ if not (0. <= quantile <= 1.): continue
+ indice = int(nech * quantile - 1./nech)
+ if YQ is None: YQ = YfQ[:,indice]
+ else: YQ = numpy.hstack((YQ,YfQ[:,indice]))
+ self.StoredVariables["SimulationQuantiles"].store( YQ )
#
logging.debug("%s Taille mémoire utilisée de %.1f Mo"%(self._name, m.getUsedMemory("M")))
logging.debug("%s Terminé"%self._name)
default = [],
typecast = tuple,
message = "Liste de calculs supplémentaires à stocker et/ou effectuer",
- listval = ["APosterioriCovariance", "BMA", "OMA", "OMB", "Innovation", "SigmaBck2", "SigmaObs2", "MahalanobisConsistency"]
+ listval = ["APosterioriCovariance", "BMA", "OMA", "OMB", "Innovation", "SigmaBck2", "SigmaObs2", "MahalanobisConsistency", "SimulationQuantiles"]
+ )
+ self.defineRequiredParameter(
+ name = "Quantiles",
+ default = [],
+ typecast = tuple,
+ message = "Liste des valeurs de quantiles",
+ )
+ self.defineRequiredParameter(
+ name = "SetSeed",
+ typecast = numpy.random.seed,
+ message = "Graine fixée pour le générateur aléatoire",
+ )
+ self.defineRequiredParameter(
+ name = "NumberOfSamplesForQuantiles",
+ default = 100,
+ typecast = int,
+ message = "Nombre d'échantillons simulés pour le calcul des quantiles",
+ minval = 1,
+ )
+ self.defineRequiredParameter(
+ name = "SimulationForQuantiles",
+ default = "Linear",
+ typecast = str,
+ message = "Type de simulation pour l'estimation des quantiles",
+ listval = ["Linear", "NonLinear"]
)
def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
Hm = Hm.reshape(Y.size,Xb.size) # ADAO & check shape
Ha = HO["Adjoint"].asMatrix(Xb)
Ha = Ha.reshape(Xb.size,Y.size) # ADAO & check shape
+ H = HO["Direct"].appliedTo
#
# Utilisation éventuelle d'un vecteur H(Xb) précalculé
# ----------------------------------------------------
if HO["AppliedToX"] is not None and HO["AppliedToX"].has_key("HXb"):
HXb = HO["AppliedToX"]["HXb"]
else:
- H = HO["Direct"].appliedTo
HXb = H( Xb )
HXb = numpy.asmatrix(numpy.ravel( HXb )).T
#
#
# Calcul de la fonction coût
# --------------------------
- if self._parameters["StoreInternalVariables"] or "OMA" in self._parameters["StoreSupplementaryCalculations"] or "SigmaObs2" in self._parameters["StoreSupplementaryCalculations"] or "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"]:
- oma = Y - Hm * Xa
- if self._parameters["StoreInternalVariables"] or "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"]:
+ if self._parameters["StoreInternalVariables"] or \
+ "OMA" in self._parameters["StoreSupplementaryCalculations"] or \
+ "SigmaObs2" in self._parameters["StoreSupplementaryCalculations"] or \
+ "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"] or \
+ "SimulationQuantiles" in self._parameters["StoreSupplementaryCalculations"]:
+ HXa = numpy.matrix(numpy.ravel( H( Xa ) )).T
+ oma = Y - HXa
+ if self._parameters["StoreInternalVariables"] or \
+ "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"]:
Jb = 0.5 * (Xa - Xb).T * BI * (Xa - Xb)
Jo = 0.5 * oma.T * RI * oma
J = float( Jb ) + float( Jo )
#
# Calcul de la covariance d'analyse
# ---------------------------------
- if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+ if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"] or \
+ "SimulationQuantiles" in self._parameters["StoreSupplementaryCalculations"]:
A = B - K * Hm * B
if min(A.shape) != max(A.shape):
raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(self._name,str(A.shape)))
self.StoredVariables["SigmaBck2"].store( float( (d.T * Hm * (Xa - Xb))/(Hm * B * Hm.T).trace() ) )
if "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"]:
self.StoredVariables["MahalanobisConsistency"].store( float( 2.*J/d.size ) )
+ if "SimulationQuantiles" in self._parameters["StoreSupplementaryCalculations"]:
+ Qtls = self._parameters["Quantiles"]
+ nech = self._parameters["NumberOfSamplesForQuantiles"]
+ HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
+ HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
+ YfQ = None
+ for i in range(nech):
+ if self._parameters["SimulationForQuantiles"] == "Linear":
+ dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
+ dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
+ Yr = HXa + dYr
+ elif self._parameters["SimulationForQuantiles"] == "NonLinear":
+ Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
+ Yr = numpy.matrix(numpy.ravel( H( Xr ) )).T
+ if YfQ is None:
+ YfQ = Yr
+ else:
+ YfQ = numpy.hstack((YfQ,Yr))
+ YfQ.sort(axis=-1)
+ YQ = None
+ for quantile in Qtls:
+ if not (0. <= quantile <= 1.): continue
+ indice = int(nech * quantile - 1./nech)
+ if YQ is None: YQ = YfQ[:,indice]
+ else: YQ = numpy.hstack((YQ,YfQ[:,indice]))
+ self.StoredVariables["SimulationQuantiles"].store( YQ )
#
logging.debug("%s Taille mémoire utilisée de %.1f Mo"%(self._name, m.getUsedMemory("M")))
logging.debug("%s Terminé"%self._name)
self.StoredVariables["OMB"] = Persistence.OneVector(name = "OMB")
self.StoredVariables["BMA"] = Persistence.OneVector(name = "BMA")
self.StoredVariables["APosterioriCovariance"] = Persistence.OneMatrix(name = "APosterioriCovariance")
+ self.StoredVariables["SimulationQuantiles"] = Persistence.OneMatrix(name = "SimulationQuantiles")
def get(self, key=None):
"""